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ABSTRACT

Binary masking is a simple yet efficient method for source separa-
tion, and certain binary patterns have shown to give a large improve-
ment in speech intelligibility. These binary patterns are difficult to
calculate in real-life applications because they require the clean tar-
get sound to be available. Accepting that the calculated binary mask
will contain errors when calculated using noisy speech, we propose a
method for error-correction based on a hidden Markov model of the
error-free target binary mask. If the method is used in applications
like hearing aids or cochlear implants, the complexity must be kept
low. This requirement limits the achievable performance, but the re-
sults show that it is possible to correct errors in the binary mask and
reduce noise energy at the expence of a loss of target energy.

Index Terms— Binary masks, target binary mask, hidden
Markov model, speech intelligibility, error-correction.

1. INTRODUCTION

For source separation, time-frequency masking has been widely used
[1]. Basically, time-frequency masking is to apply a time-varying
and frequency-dependent gain to a signal in a number of frequency
channels. However, the main interest in time-frequency masking is
not the application of the gain but how to calculate the gain at dif-
ferent times and frequencies. This gain pattern is referred to as the
mask, and if the mask only contains zeros and ones, the method is
referred to as binary masking. The interest in binary masking in ap-
plications like hearing aids and cochlear implants can be explained
by its simplicity and efficiency. Simplicity, because the decision is
to either keep the time-frequency unit or remove it, and efficiency
with regards to speech intelligibility as shown in the several studies.
In [2, 3] the ideal binary mask was applied to noisy speech show-
ing a high increase in intelligibility measured by subjective listening
tests. This ideal binary mask was further studied in [4] along with the
target binary mask - both showing a large increase in intelligibility
when applied to noisy speech. The target binary mask TBM is cal-
culated by comparing the time-frequency representation of the target
sound T with the long term average energy of the target speech r

TBMk,τ =

{

1, if
Tk,τ

rk
> LC

0, otherwise
, (1)

where LC is the local SNR criterion, τ the time index, k the fre-
quency channel, and subscripts refer to the elements in the matrices
TBM and T or elements in the vector r. The LC value controls
the density of the TBM as measured by the percentage of ones in
the binary mask within speech intervals, and high intelligibility was
achieved with densities between 20% and 60% in [4].

TBM>TFR

Target

r

Noise

Mixture

Fig. 1. Setup for calculation of the target binary mask (TBM). The
block named TFR calculates the time-frequency representation of
the mixture which are compared to the long term average speech
energy r to get the TBM.

The gain in intelligibility makes the TBM interesting in appli-
cations where loss of intelligibility is a problem, e.g., for hearing
impaired in noisy conditions. The classic approaches to this prob-
lem have been examined in [5], where different speech enhancement
algorithms are evaluated using normal-hearing listeners, but only a
single algorithm in a single noise condition improved intelligiblity
significantly. More promising methods exists in the area of source
separation (e.g. [6]), but the complexity of these algorithms makes
them unusable in low-complexity applications.

The obvious drawback of using the TBM is the requirement of
the clean target sound. This requirement is difficult to fulfill in real-
life applications. However, estimates of the TBM could be obtained
using array processing or noise reduction techniques, which could
be followed by an error-correction of the estimated TBM. This two
step approach–estimation and error-correction–is not optimal, but it
might call for simpler solutions, instead of the optimal solution of
estimating the TBM correctly. In this study, we will focus on the
error-correction step, well aware that the estimation step is not a triv-
ial problem.

The error-correction will be based on a model of the TBM from
a training set of clean speech. This approach assumes that the TBM
from different speakers share some common characteristics which
can be captured and generalized by the model. The validity of this
assumption will be verified in the present work by examining the
models ability to identify errors in a TBM calculated from noisy
speech. If all errors should be identified, the complexity of the model
would make it unusable in low-complexity systems, and a second
objective is to examine the efficiency of the error-correction using
relative simple models of the TBM.

The setup shown in Figure 1 is used to examine the efficiency
of the proposed error-correction method. In this setup, the TBM
will be error-free, if no noise sound is present and r is known. If a
noise sound is present, two types of errors will be introduced. False

ones will be found, if the noise sound increases the energy in time-
frequency units to be larger than r, and false zeros will be found
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Fig. 2. The structure of the used HMM. At time t, the state qt gen-
erates an observation ot and change state with probability Aqt,qt+1

.
The probability of being in state qt and seeing a one in frequency
channel k is defined by bqt

(k) as shown with gray.

if the target and noise sound cancel each other in certain frequency
channels. At high signal-to-noise ratios (SNR), no errors will be
introduced in the TBM, but as the SNR decreases the number of
false ones will increase. Ultimately, the binary mask will become
an all-one mask, but in this situation error-correction is not useful,
although forcing some frequency channels to zero could decrease the
total number of false units. The expectation is that at intermediate
SNRs, when the number of errors are comparable to the number of
correct time-frequency units, it is possible to reduce the total number
of errors.

2. BINARY MASK MODEL

The error-correction is based on a hidden Markov model (HMM)
[7] of the TBM. The HMM is a widely used statistical model for
pattern recognition and speech processing and is particularly suited
to model time-series with time-varying statistical properties. In the
HMM, the hidden layer contains a number of states, which, at each
time increament, can change and generate an observation, and from
a sequence of observations, the most probable sequence of states can
be calculated using the Viterbi algorithm [7].

In the present application, the observations will be the noisy
TBM, the states will be the noise-free TBM, and the error-correction
will be the step of calculating the most probable noise-free TBM
from the noisy TBM using the Viterbi algorithm. The states in the
used HMM are binary column vectors with size K × 1, where K is
the number of frequency channels as seen in Figure 2. Each state in
the HMM represents the TBM at a single time index τ , and the prob-
ability of changing state is described by the state-transition probabil-
ity matrix A, where the element Ai,j is the probability of changing
from state i to j. If the TBM is described by a limited number of
states N , errors will be introduced as seen in Figure 3. We refer
to this process as quantization of the binary mask. In each state j,
the observation probability bj(k) determines the probability of a one
in each of the K frequency channels. If we assume that the target
sound and noise sound are independent and do not overlap in time,
the observation probability in state j is given by

bj(k) = bT
j (k) + bN(k) − bT

j (k)bN(k), (2)

where bT
j (k) is the probability of a one generated by the target sound,

and bN(k) is the probability of a one generated by the noise sound.
If the N states could describe the TBM without quantization errors,
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Fig. 3. (A) is the target binary mask from 1.8 s of speech. (B) is (A)
quantized using 256 states. (C) is the speech from (A) mixed with
speech shaped noise at 0 dB SNR. (D) is (C) after error-correction
using a 256 state HMM.

the element bj(k) would identical to the element at frequency k in
the binary column vector in state j, but because of the quantization
bT
j (k) will not be binary. If d columns from the training data are

quantized to the same state j, and c out of the d columns have a
one at frequency index k, we see that bT

j (k) = c/d. The probability

of a one generated by the noise bN(k) is independent of the states
but dependent on the SNR, so bN(k) will be estimated from a short
segment of the noise sound prior to the error-correction. The last
parameter in the HMM is the initial state distribution which is chosen
to be the state with an all-zero column vector.

3. TRAINING

To find the parameters for the HMM, speech from the EUROM cor-
pus was used [8]. First, the TBM was calculated from 36 minutes of
speech created by 4 male and 4 female speakers normalized to have
equal energy. To calculate T in (1), a 32 band Gammatone filterbank
[9] with centerfrequencies from 80 Hz to 8000 Hz equally spaced on
the ERB (equivalent rectangular bandwidth) scale was used. The
energy from each filterbank channel was divided into 20 ms frames
with 10 ms overlap, and an LC value of 0 dB was used in (1). The
long term average energy r used in (1) was the long term average
energy of the 8 speakers and not the long term average energy of the
individual speakers as used in [4]. The 36 minutes of speech pro-
duced a training TBM with size 216000 × 32 from which N states
were found while minimizing the quantization error measured by
the total number of false ones and false zeros. This quantization was
done using the K-mode algorithm which is similar to the well-known
K-means algorithm but suitable for clustering binary data [10]. From
the quantized TBM, the state-transition probabilities Ai,j was calcu-
lated by counting the number of state changes from i to j and divide
by the total number of visits in state i. To find bT

j (k), the columns
in the training data that were quantized to the same state j were col-
lected and the probability of a one in each of the K frequency chan-
nels was calculated. bN(k) was calculated online using the first 5
seconds of the noisy speech where no target speech is present. From
the binary mask obtained with the noise, bN(k) can be calculated by
counting the number of ones in each frequency channel k and divide
by the length of the binary mask.
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Fig. 4. False units in the error-corrected target binary mask as a func-
tion of number of states in the HMM. (V) is error-correction using
the Viterbi algorithm, (C) is error-correction using a causal Viterbi
algorithm, and (Q) is simple quantization of the noisy TBM. The
percentages of false units before error-correction were 0.2% false
zeros, 15.9% false ones, and 16.1% in total.

4. EVALUATION

To evaluate the proposed method for error-correction of the TBM,
two simulations were carried out. The first simulation shows the
relation between the number of states and the performance of the
error-correction measured by the number of correct time-frequency
units. The second simulation shows the performance at different
SNRs and noise sounds measured by the loss of target energy and
the remaining noise in the output prior or post the error-correction.
In both simulations 10 sentences from a male and female speaker
were used, and the two speakers were not part of the training data.

In the first simulation, the sentences were mixed with speech
shaped noise at 0 dB SNR. An HMM with a varying number of states
was trained as described in Section 3 and used to correct errors in the
noisy TBM. In Figure 4, the percentage of false time-frequency units
is shown after the error-correction, and for comparison the number
of false units are also shown for the quantized noisy TBM and error-
correction using a causal Viterbi algorithm. All percentages are cal-
culated relative to the total number of time-frequency units in the
binary mask. The percentages of false units in the TBM before error-
corrections were 0.2% false zeros, 15.9% false ones, and 16.1% in
total. As the number of states increases in Figure 4, the number of
false ones increases, whereas the number of false zeros decreases.
At the lower limit with a single state in the HMM, this single state
will be the all-zero column vector, making it impossible to have false
ones in the error-corrected binary mask. When the number of states
is increased, the states have low densities and limit the maximum
number of false ones, but as the number of states is further increased
the number of false units levels off. Using 1024 states, the number of
false units in total is 8.1% - a reduction of 8 percentage point com-
pared to the noisy TBM, but the reduction of false ones is achieved at
the cost of an increase in false zeros relative to the noisy TBM. The
Viterbi algorithm uses previous, current and future columns from the
noisy TBM to calculate the best state sequence. In low-delay appli-
cations, the dependency on the future is critical and for comparision
a causal Viterbi has been implemented. This algorithm finds the best
state sequence using only the previous and current columns in the
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Fig. 5. The noise residue PNR and the loss of target energy PEL

are shown before and after the error-correction. The HMM used for
error-correction has 256 states.

noisy TBM, and, as seen in Figure 4, this modification does not re-
duce performance significantly.

In the second simulation, the performance at -10 dB to 15 dB
SNR was examined using a 256 state HMM trained as described in
Section 3. The sentences were mixed with four different noise types:
speech shaped noise, a high-frequency sound from a bottling hall,
a low-frequency sound from the interior of a car, and a 7 speaker
babble noise. Performance was measured using the percentage of

energy loss and the percentage of noise residue [11]:

PEL =

∑

n

e2

1(n)

∑

n

I2(n)
(3) PNR =

∑

n

e2

2(n)

∑

n

O2(n)
. (4)

I(n) is the resynthesized sound using the TBM, O(n) is the
resynthesized output prior or post error-correction, e1(n) is the
sound found in I(n) but not in O(n), and e2(n) is the sound found
in O(n) but not in I(n). From the results in Figure 5, we see a
similar behavior with the four different noise types. At low SNR
the percentage of unwanted noise energy P prior

NR is very high for
the noisy TBM before error-correction. As the SNR is increased,
the number of false ones in the TBM is decreased resulting in a
lower percentage of unwanted noise energy. Ultimately, when SNR
is further increased, P prior

NR reduces to 0% because no false ones
is found in the noisy TBM. The noise residue after error-correction
P post

NR shows that the noise energy is reduced at SNRs below 10 dB
but slighly increased at SNRs around 15 dB. This increase shows
that error-correction of an error-free TBM can introduce false ones
because of the limited number of states in the HMM. The measure
P prior

EL shows that loss of target energy using the noisy TBM is
close to 0%, because very few false zeros are found in the noisy
TBM before error-correction. When error-correction is introduced
the loss of target energy is increased as shown by P post

EL : At low
SNRs, we find a significant loss of target energy, but as the SNR
increases this loss is reduced and levels off at around 8%. The lower



limit of P post

EL at 8% has the same explanation as the increase in

P post

NR at high SNRs: The limited number of states in the HMM will
increase the number of false ones and zeros in the TBM, when the
noisy TBM contains very few errors. For all four noise types expect
the babble noise, the best performance is found around 0 − 5 dB
SNR, when the error-correction reduces the noise energy more than
the target energy. Listening to the processed mixtures of speech and
noise before and after error-correction confirms this finding.

5. DISCUSSION

The results confirm that a model of the TBM can be build and used to
correct errors in the noisy TBM. As seen in the two simulations, the
reduction of false ones comes with a price of an increase in false
zeros. Even though the relation between the percentage of false
time-frequency units and intelligibility has been established in [12],
it is difficult to use their results to determine the intelligibility of
the noisy or error-corrected TBM. The errors in [12] are uniformly
spread in time and frequency and that assumption is not correct for
the errors in the present study. In [12], they find that false ones re-
duce intelligibility more than false zeros, but one must assume that
the location of errors and the noise type have a significant impact on
intelligibility, e.g. if the false zeros are found at onsets in the target
speech.

Knowing the relation between false time-frequency units and in-
telligibility could change the model parameters. If it was known
that false ones would reduce intelligibility more than false zeros, the
model could be changed to allow more false zeros than false ones.
This weighting would make it possible to adjust the relative level of
P post

NR and P post

EL . Furthermore, the errors impact on intelligibility is
probably frequency dependent making it useful to reduce quantiza-
tion error at certain frequencies at the expense of increases at other
frequencies.

The increase in false zeros from the error-correction gave a loss
of target energy. This drawback could be reduced, if a lower LC
value was used in (1) to calcualte the TBM. The results in [4] show
that high intelligibility can be obtained for a range of LC values, so
the loss of target energy does not necessarily cause a loss in intelligi-
bility. However, lowering the LC value will also increase the number
of false ones in the binary mask.

An interesting question to consider is if the performance of the
error-correction will continue to improve with an increasing number
of states. Using more states will reduce the quantization error, but
errors will be inevitable. False ones in the TBM can make a wrong
sequence of states more probable than the correct sequence and sim-
ilar with false zeros. This limitation is a drawback of working in the
binary domain, because the amount of information about the target
and noise sound is greatly reduced compared to the time-frequency
representation of the sounds from which the TBM is calculated.

Another limitation of the model is the use of multiple speakers
and the long term average energy r in (1) not being adjusted to the
individual speaker as in [4]. Multiple speakers give a model of the
TBM that is more general but less precise for the individual speakers.
This problem might be solved by adjusting r to the speaker, and in
that way obtain a TBM that is less different between speakers. If a
speaker independent TBM could be obtained, the model would be
stronger but this is not easily obtained.

More complex models, e.g., factorial HMMs, could also make
the error-correction more efficient. However, the complexity of the
model should be considered carefully with respect to the complex-
ity of the signal or pattern. The binary mask is a simplified pattern
compared to the time-frequency representation, and a very complex

model of this simplified pattern might not be optimal. Instead, mod-
els of the time-frequency representation should be considered. This
statement is also relevant for the present work, because, even though
the complexity of the model is low, the computational cost of us-
ing the large number of states can be a problem in applications like
hearing aids.

6. CONCLUSION

We have proposed a method for error-correction of the TBM cal-
culated from noisy speech. The method is based on a HMM and
trained on noise-free examples of the TBM, and it has been shown
that model can correct errors, although the reduction of false ones
has the drawback of increasing the number of false zeros. Knowing
that this error-correction can be succesfull makes algorithms for es-
timation of the TBM more interesting and useful in real-life applica-
tions like hearing aids and cochlear implants. The model used in this
study can be further improved, e.g. by weighting of different time-
frequency units, but the model can also be useful for similar prob-
lems involving binary patterns obtained from noisy observations.
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