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Abstract

This thesis introduces the novel concept of sentinel rules (sentinels). Sentinels are
intended to represent the relationships between the data originating from the exter-
nal environment and the data representing the critical organizational performance.
The intention with sentinels is to warn business users about potential changes to Key
Performance Indicators (KPIs) and thereby facilitate corrective action before such a
change becomes a reality. In theory, sentinels have been described in the Computer
Aided Leadership & Management (CALM) philosophy as a way to expand the win-
dow of opportunity for organizations, and thus a way facilitate successful navigation
even though the world behaves chaotically due to globalization of commerce and
connectivity. In this thesis, the sentinels from theory are turned into a reality such
that common users at all organizational levels can benefit from the early warnings of
sentinels.

Specifically, sentinels are rule relationships at the schema level in a multidimen-
sional data cube. These relationships represent changes over time in certain measures
that are followed by a change in a user defined critical measure, typically a KPI. An
important property of a sentinel is bi-directionality, which means that the change re-
lationship holds in the complement direction, since a sentinel with the bi-directional
property has a higher chance of being causal rather than coincidental. Sentinels can
vary in complexity depending on the number of measures that are included in the
rule: Regular sentinels represent relationships where changes in one measure leads
to changes in another within a given time frame. Generalized sentinels represent
relationships between changes in multiple measures leading to changes in a given
measure within a given time frame. Multidimensional sentinels combine the schema
and the data levels, meaning that each measure change in the rule can hold for either
subsets or the entire cube. A generalized sentinel could for example notify users that
revenue might drop within two months if an increase in customer problems combined
with a decrease in website traffic is observed, whereas a multidimensional sentinel
could warn users that revenue might drop within two months if an increase in cus-
tomer complaints in USA (drilldown into geography dimension) combined with a
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ii Abstract

decrease in the money invested in customer support for laptop computers (drilldown
into product dimension) is observed.

The work leading to this thesis progressed from algorithms for regular sentinel
mining with only one source and one target measure, into algorithms for mining gen-
eralized and multidimensional sentinels with multiple source measures. Furthermore,
the mining algorithms became capable of automatically fitting the best warning pe-
riods for a given sentinel. Aside from expanding the capabilities of the algorithms,
the work demonstrates a significant progression in the efficiency of sentinel min-
ing, where the latest bitmap-based algorithms, that also take advantage of modern
CPUs, are 3–4 orders of magnitude faster than the first SQL-based sentinel mining
algorithm. This work also led to the industrial implementation of sentinel mining in
the commercial software TARGIT BI Suite, which attracted the attention of leading
industry analysts. In short, the work in this thesis has turned sentinel mining from
a theoretical idea into concrete, highly efficient algorithms, and in addition it has
demonstrated sentinels to be useful and unique.
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Chapter 1

Introduction

1.1 Motivation

On-Line Analytical Processing (OLAP) has been successfully applied to improve de-
cision making in organizations, and as data volumes and update frequencies increase,
there is a growing need for automated processes that rapidly capture the essence of
the data. However, as globalized trading and connectivity increases, the pace and
unpredictability of business operations increase as well. This means that traditional
methods of user driven data discovery will be too slow, and traditional methods of
long-term forecasting will be unreliable since the environment is in reality behaving
chaotically. For business users and their organizations this means that the ability to
act swiftly based upon changes in the environment is the key determining factor for
success and failure.

The framework proposed as part of the Computer Aided Leadership & Manage-
ment (CALM) philosophy [36] is specifically made to cope with the challenges faced
by leaders and managers since they effectively operate in a world of chaos due to the
globalization of commerce and connectivity; one could say that in this chaotic world,
the ability to continuously act is far more determinative for success than the ability
to long-term forecast. The idea in CALM is to take the Observation-Orientation-
Decision-Action (OODA) loop (originally pioneered by “Top Gun” fighter pilot John
Boyd in the 1950s), and integrate business intelligence (BI) technologies to dras-
tically increase the speed with which a user in an organization cycles through the
OODA loop.

Using the framework proposed in the CALM philosophy, any organization and
its purpose can be described as a number of OODA loops (Figure 1.1) that are con-
tinuously cycled by users and conform to one or more Key Performance Indicators
(KPI’s) that define their success. The rationale is that if these four phases are cycled
continuously and as fast as possible for every business user in an organization, then
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2 Introduction

the organization is optimizing its resources and maximizing its ability to deal with
both problems and opportunities. If we succeed in allowing a user in an organiza-
tion to move as fast as possible all the way from the observation phase to the action
phase, we are basically using information technology to channel the core competency
of that organization as effectively into its environment as possible. In CALM we use
the following definitions of the individual phases:

Observation in this phase we use technology to look at the data with an expectation
of what it should be.

Orientation in this phase we look at the data in different ways depending on what
it shows, typically this phase is initiated after something in the observation phase has
proven to be different from what we expected.

Decision this phase is currently undertaken primarily by human intelligence, but
the results found in the Data Warehouse can be evaluated against other external or
internal -typically unstructured- data.

Action based on the decision made, we seek to implement the course of action
chosen.

Figure 1.1: The OODA loop aligned with the different BI disciplines.
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Having established a number of OODA loops with a number of KPI’s assigned,
we should ideally provide the users with technology that can help them identify pat-
terns that can give early warnings whenever a KPI is threatened, and thus allow pro-
vide the user with a time advantage in the observation phase in order to take correc-
tive action before our KPI is impacted. In the CALM philosophy, we refer to such a
technology as a sentinel.

One could say that sentinels, once identified, reduce the time from observation to
action, and that the discovery of sentinels reduces the time in the orientation phase.
One way to look at the sentinel concept is that it expands the “horizon” by allowing
the user to see data from the external environment, and not only for the internal
performance of the organization. The idea behind placing sentinels at the outskirts of
the data available for an organization seeks to harness both these ways of improving
reaction time and thus organizational competitiveness. Metaphorically, what we seek
to do for navigation of organizations with sentinels, is what radars do for navigation
of ships.

This thesis is based on research in pursuit of making the sentinels described in
the CALM philosophy into a reality. The goal of this research was to develop the sen-
tinel technology and to make it available for the global 274,000 users of the TARGIT
Business Intelligence Suite (TARGIT BI Suite). The TARGIT BI Suite is a com-
mercial software package for business intelligence, which is specifically directed at
organizations that seek to improve the speed in the OODA loop for its employees.
The primary driver for the TARGIT BI Suite has been a strong focus on usability
as well as on the integration of the traditional business intelligence disciplines, i.e.,
dashboarding, analysis, and reporting. Therefore, the sentinel research is concerned
with limiting the complexity for the end users as much as possible, as well as ensur-
ing integration with the industrial standard multidimensional database environment,
in addition to transferring sentinels from concept to reality. In this context, it should
be noted that bringing data mining capabilities to end-users has been a dream for the
software industry since the late 1990s, yet no company had succeeded in delivering
to this promise when this project was initiated (see Chapter 5).

1.2 Contributions

Chapter 2 defines the concept of sentinel rules for multi-dimensional data for the first
time. The sentinel rules in this chapter are later referred to as regular sentinel rules
or simple sentinel rules since they can only describe a relationship between two mea-
sures. For instance, a surge in negative blogging about a company could trigger a
sentinel rule warning that revenue will decrease within two months, so a new course
of action can be taken. We demonstrate, by example, how sentinel rules work at the
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schema level as opposed to the data level, and their operations on data changes as
opposed to absolute data values. In this chapter, the first sentinel mining algorithm
is presented along with its implementation in SQL. Although the implementation of
sentinel mining is straight forward, compared to what will be presented in the fol-
lowing chapters, we demonstrate that this particular implementation scales linearly
on large data volumes. Another important contribution in this chapter is the demon-
stration of the distinct differences between sentinel mining and sequential pattern
mining as well as its difference from correlation techniques. In this case it is specifi-
cally demonstrated that sentinel mining can find strong and useful sentinel rules that
would otherwise be hidden when using sequential pattern mining or correlation tech-
niques.

Chapter 3 extends the formal definitions from previous chapter into generalized
sentinel rules which we also refer to as just sentinels. With the generalization, sen-
tinels are now capable of describing relationships with multiple measures in a multi-
dimensional data cube. Specifically, generalized sentinel rules represent schema level
relationships where changes over time in multiple so-called source measures are fol-
lowed by similar changes over time in a so-called target measure. Compared to the
previous example, these sentinels could notify a user that revenue might drop within
two months if an increase in customer problems combined with a decrease in website
traffic is observed. If the vice versa also holds, i.e., a decrease in customer problems
combined with an increase in website traffic is expected to lead to an increase in rev-
enue, we have a bi-directional sentinel, which has a higher chance of being causal
rather than coincidental (The desirability of bi-directionality is further explained in
Chapters 4 and 5). In this chapter a novel quality measure, Balance, which describes
the degree of bi-directionality in a sentinel is introduced. Furthermore, the quality
measure, Score, which is used to assess the overall quality of a sentinel, is also in-
troduced. Using greedy algorithms that seek for the highest Score, we are able to
extend the abilities of sentinel mining to combine multiple measures into better sen-
tinels as well as auto-fitting the best warning period. For optimization, we introduce
a novel Reduced Pattern Growth (RPG) optimization, which in combination with a
hill climbing optimization, contributes to a significantly more efficient sentinel min-
ing algorithm, SentHiRPG. The SentHiRPG algorithm is demonstrated to be efficient
and to scale to very large datasets on both real and synthetic data.

Chapter 4 is a user side demonstration of sentinel mining as it has been imple-
mented in the TARGIT BI Suite. In addition, this chapter gives a more intuitive pre-
sentation of the sentinel mining concept than the previous chapters. The focus of this
chapter is to demonstrate how sentinel mining can be conducted by casual users with-
out any prior technical knowledge. The built-in context awareness of the TARGIT
BI Suite, which is a facilitator for a fast OODA cycle, is demonstrated to facilitate
an intuitive way for users to conduct sentinel mining. Specifically, is is demonstrated
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how a user with a minimum of input can mine sentinels and subsequently schedule
them for future notifications.

Chapter 5 describes the underlying technology that is presented in Chapter 4, and
it describes the underlying implementation that has been done in the TARGIT BI
Suite version 2K10 in order to provide the users with sentinel mining. This chapter
extends the intuitive presentation from the previous chapter and describes in more
detail how sentinels are mined from both a data and a user perspective. This chapter
also describes the architecture used in the implementation of the, SentHiRPG, sen-
tinel mining algorithm in the TARGIT BI Suite. Specifically, the chapter describes in
detail the TARGIT ANTserver component layer by layer in which the sentinel mining
algorithm has been implemented. Following the implementation, feedback following
the version 2K9 launch from both customers and market analysts is described. The
industrial implementation of sentinel mining is tested on a real-world operational
data warehouse located in TARGIT A/S. On this data warehouse, it is demonstrated
through extensive experiments, that mining and usage of sentinels is feasible with
good performance for the typical users on a real, operational data warehouse.

Chapter 6 introduces a novel and very efficient algorithm, SentBit, that is 2–3
orders of magnitude faster than the SentHiRPG algorithm. The general idea is to
encode all measure changes, referred to as indication streams, into bitmaps, and sub-
sequently to conduct the entire mining process as bitmap operations. The bitmap
operations include so-called indication joins, that rapidly combine measure changes
using AND operations. By representing the entire sentinel mining problem by bitmap
operations, we are able to effectively utilize modern CPU specific instructions dedi-
cated to counting the number of bits set in a given stream of indications. This means
that all quality measures needed to evaluate a given sentinel can be rapidly calculated.
In addition, the multi-core architectures available on modern processors allow us to
run the joins and evaluations of multiple sentinels in parallel. The SentBit algorithm
optimized by CPU specific instructions and the parallelization is evaluated to gain
unsurpassed efficiency by a factor of 2–3 orders of magnitude over the SentHiRPG
algorithm. We demonstrate that the SentBit algorithm scales efficiently to very large
datasets, which is verified by extensive experiments on both real and synthetic data.

Chapter 7 presents a highly efficient bitmap-based algorithm, SentBMD for dis-
covery of so-called multidimensional sentinels. Compared to earlier examples, mul-
tidimensional sentinels notify users based on previous observations in subsets of a
multidimensional data cube, e.g., that revenue might drop within two months if an
increase in customer complaints in USA (drilldown into geography dimension) com-
bined with a decrease in the money invested in customer support for laptop computers
(drilldown into product dimension) is observed. In other words, compared to prior
algorithms, the SentBMD algorithm is able to discover patterns that include the hi-
erarchical dimensions in an OLAP cube. Compared to SentBit in previous chapter,
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the SentBMD algorithm combine the schema and the data levels, meaning that each
measure change in the rule can hold for either subsets or the entire cube. In addition,
the SentBMD algorithm allows source measures to be progressively input during the
mining process which means that the encoding of source measure changes can run in
parallel with the mining process. SentBMD is thus even more efficient in the utiliza-
tion of multiple cores on modern CPUs. Finally, this chapter demonstrates through
extensive experiments that the SentBMD algorithm is significantly more efficient than
SentBit when running on comparable “flat datasets”, and that SentBMD scales effi-
ciently to very large real and synthetic datasets.

Appendix A explains in more detail how sentinels are linked to the CALM phi-
losophy, and it uses the Observation-Orientation-Decision-Action (OODA) concept
as a mean to identify three new desired technologies in business intelligence appli-
cations (whereof sentinels is one) that improve the speed and quality in the decision
making processes.

A final contribution of this work is that bitmapped sentinel mining has been made
commercially available in the TARGIT BI Suite version 2K10 SR1. A fully func-
tional demo version can be downloaded from www.targit.com.

The thesis is organized as a collection of individual papers. The chapters are
organized such that material that is used in or motivates the work in another chapter
appears first. However, each chapter/appendix is self-contained and can be read in
isolation. The chapters have been slightly modified during the integration such that,
for example, their bibliographies have been combined to one and references to “this
paper” have been changed to references to “this chapter”. There are some overlaps
between the introductional parts of the chapters. Specifically, the motivation part of
the introduction in Chapters 2–7 is overlapping. In addition, the description of the
sentinel concept is overlapping in Chapters 4 and 6. Finally, given the integration
of the papers as progressing research, the related work mentioned in each chapter
overlaps with the related work of chapter based on the previous paper. When reading
the thesis cover to cover, the following sections can be skipped: Section 4.3, “The
SentHiRPG Algorithm” paragraph in Section 5.3, and Section 6.2.

The papers included in the thesis are listed below. Chapter 2 is based on Paper 1,
Chapter 3 is based on Paper 2 and so on until Chapter 7 which is based on Paper 6.
Appendix A is a short paper from an invited talk at the 10th ACM international work-
shop on Data warehousing and OLAP in 2007 [37].

1. M. Middelfart and T.B. Pedersen. Discovering Sentinel Rules for Business
Intelligence. DB Tech Report no. 24, dbtr.cs.aau.dk [38]. Short version
in Proceedings of the 20th International Conference on Database and Expert
Systems Applications (DEXA), pp. 592–602, 2009 [39].
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2. M. Middelfart, T.B. Pedersen, and J. Krogsgaard. Efficient Discovery of Gen-
eralized Sentinel Rules. In Proceedings of the 21st International Conference
on Database and Expert Systems Applications (DEXA), Part II, pp. 32–48,
2010 [40].

3. M. Middelfart and T.B. Pedersen. Using Sentinel Technology in the TARGIT
BI Suite. In Proceedings of the VLDB Endowment 3(2): 1629–1632, 2010 [41].

4. M. Middelfart and T.B. Pedersen. Implementing Sentinel Technology in the
TARGIT BI Suite. In submission [42].

5. M. Middelfart, T.B. Pedersen, and J. Krogsgaard. Efficient Sentinel Mining
Using Bitmaps on Modern Processors. In submission [43].

6. M. Middelfart, T.B. Pedersen, and J. Krogsgaard. Multidimensional Sentinel
Mining Using Bitmaps. In submission [44].

1.3 Related Work

In general, there has been very little theory about how best to apply computing to the
decision process in a data warehousing context. Kimball’s “Analytical Cycle” [30] is
the exception, however compared to the CALM [36] theory it does not strive for hu-
man/computer synergies. In addition, some work has cited John Boyd of the OODA
loop [32], however none have used the OODA loop as the primary driver for the im-
plementation and integration of BI disciplines in a decision process such as it was
done with CALM. The ability to predict a certain incident based on a number of pre-
vious incidents have been well explored in association rule mining [2], also known
as frequent pattern mining. Perhaps the most popular real-world application of as-
sociation rules is the traditional basket analysis case, where the frequency of items
purchased together in a supermarket is analyzed and the rules generated are applied
when physically positioning the products inside the store. Today, we also see these
types of rules applied in on-line stores that recommend additional products when
buying one based on the rationale: “other people who bought this product did also
buy this additional product”. Sequential pattern mining has a lot of similarity to as-
sociation rule mining, however, it allows a time period to pass between the “baskets”.
It should of course be noted that “basket” at this stage is simply a label for a group
of incidents happening together. In general, one can say that these mining techniques
are concerned with identifying an incident, a premise, that leads to another incident,
the consequent. In other words, these techniques are focused on co-occurrence pat-
terns within absolute data values for categorical data, and by using these patterns to
create a number of rules to be used for prediction of behavior within a given domain.
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With regards to association rule mining, significant effort has been put into the
optimization of the original Apriori algorithm [3]. These improvements have con-
tributed with more efficiency and lower memory usage by growing a compressed
frequent pattern tree in memory [25]. The addition of a period between the incidents
in sequential pattern mining adds to the complexity of association rules, meaning that
an Apriori approach is even more costly [5], and thus new approaches to improving
the performance of mining sequential patterns have emerged [24, 48, 49, 57]. In pat-
tern mining it has proven a challenge that a huge number of more or less interesting
rules are output, and thus improvements to the selection process of thresholds that
determine the interestingness of rules has been introduced to association rule min-
ing [58]. Similarly, sequential pattern mining process has also seen improvements
in terms of applying constraints [21], as well as a querying-type approach [20] that
makes the mining process more interactive. Another approach to limiting the output
of pattern mining to only the most relevant rules have been explored in the mining
of non-derivable frequent itemsets [12]. This approach seek to limit the number of
association rules (frequent patterns) in the output, and thus allow the user of the algo-
rithm to only focus on the most important of association rules, e.g., those rules that
are unique and from which all other rules can be derived. Additionally, similar com-
pression of the output has been explored for sequential patterns with so-called con-
junctive sequential patterns [53] that seek to condense the output of sequential pattern
mining similarly to the mining of non-derivable frequent itemsets mentioned above,
e.g., the two sequential patterns {(a)(b)(a, c), (a, b)(c)} can both be described by the
conjunction (b)(c) that supports both patterns. Another aspect of sequential pattern
mining has been the various approaches to handling the period of the sequence, e.g.,
involving multiple time granularities [9] or allowing for partial periodicity of pat-
terns [23].

Gradual rule mining [7,10,27,31] is a process much like association rules, where
the categorical data are created by mapping numerical data to fuzzy partitions, with
the primary objective of describing the absolute values of a measure, and thereby
identify complete overall relationships.

Correlation [26,60] and regression [4] techniques are other approaches to predic-
tion, these techniques identify trends that can be used to create a mathematical model
of the domain. The time dimension is typically one of the input parameters in the
model, and by extending the time dimension into the future, the model can then be
used to output predicted outcomes.

The introduction of novel CPU architectures and multi-dimensional databases
have extended all of the techniques above. In [6], association rule mining exploits
a parallel shared-nothing multiprocessor system. In addition, multi-core parallelism
has been applied to gradual rule mining [31]. In general, the use of parallelization
has been applied successfully in data warehousing in order to deal with the huge vol-
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umes of data that resides in these systems [17,18]. With regards to multi-dimensional
databases, these data structures have been explored in multi-dimensional pattern min-
ing [51, 52] and multi-level frequent pattern mining [19] which apply the same tech-
niques to more dimensions and dimensional levels than just one. Regression has also
been used in multi-dimensional databases, e.g., Bellwether Analysis can be used on
historical sales data to identify a leading indicator that can predict the global sales of
a new product, for which only a short period of data is available [13, 14].

Sentinel mining is different from association rule and sequential pattern mining
since its primary focus is to identify strong relationships in smaller subsets of the
data in order to warn users about potential problems that need attention and action.
The fact that sentinels represent a subset of the data rather than a global trend means
that a sentinel is able to stimulate a specific action, since the user is presented with
the specific causal relationship leading to the threat. One could say that sentinels are
concerned with mining relationships between change points in the data, and based
on these we seek to predict and warn about potential turning points (desired or un-
desired) for critical measures. The motivation for bellwether analysis is similar to
that of sentinel mining, since the idea is to identify early indicators of future out-
come for a given measure. However, similar to gradual rules, these techniques are
also concerned with the absolute values of a measure, as opposed to sentinels that
are based on changes in the measure values. With regards to the output, sentinels are
more specific “micro-predictions”, i.e., strong rules that hold for a subset of the data
and stimulate specific actions, and are thus complementary to these techniques. Sen-
tinels are therefore useful for detecting incidents and generating warnings whenever
changes (that would otherwise go unnoticed) in a relevant source measure occur. The
differences described for bellwether analysis also hold for correlation and regression
techniques in general, and in Chapter 2, we provide a concrete example to demon-
strate the difference between these techniques and sentinel mining.

The main difference between association rule [2], sequential pattern mining [5],
and multi-level frequent pattern mining [52] is that sentinel mining is working on
relative changes in data as opposed to absolute data values. In a multi-dimensional
setup, association rule mining typically works on categorical data, i.e., dimension
values, whereas sentinels work on numerical data such as measure values. An impor-
tant property of sentinels is the ability to describe bi-directional relationships, which
essentially means that sentinels are able to predict in both directions on the measure
targeted for prediction. Association rules, sequential patterns, and gradual rules do
not have this property. In addition, the schema-level nature of sentinels, meaning
that they describe relationships between measures rather than data values, is another
differentiator. The combination of schema-level and bi-directional rules based on rel-
ative changes in data allows us to generate fewer, more general, rules. If we assume
that we could mine a “sentinel-like” rule using sequential pattern mining, such a rule
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would only be uni-directional, as opposed to sentinels that can be bi-directional and
thus stronger with a greater chance of being causal rather than coincidental as elabo-
rated in Chapter 5. In Chapter 2 we specifically provide a concrete, realistic example
where nothing useful is found using these techniques, while sentinel mining do find
meaningful rules.

With regards to the optimizations applied in sentinel mining, the schema level
nature of sentinels, including the focus on data changes, gives rise to the various
optimizations that are applied in Chapters 3, 6, and 7. In Chapter 3, the table of
combinations (TC) and the reduced pattern growth (RPG) optimization, and such op-
timizations can therefore not be offered by sequential pattern mining or other known
optimizations for simpler “market basket”-type data such as [11]. Similarly, the abil-
ity to combine source measures into better sentinel rules, adds to the distance between
sentinels and optimizations offered in prior art such as [3, 24, 46, 48, 49, 57, 59]. In
Chapters 6 and 7, the bitmapped encoding of measures and the processor specific
optimizations also rely on the schema level property of sentinels.

Aside from the scientific community, sentinels are also distinctively different
from the traditional algorithms offered in the business intelligence industry. The in-
dustry analyst Gartner, is a well-known authority in the business intelligence industry,
and the Magic Quadrant analysis is by many considered the most influential descrip-
tion of the top international vendors. The Magic Quadrant analysis for 2010 [54]
categorizes 15 vendors as either “market leaders” (7 companies), “challengers” (3
companies), or “niche players” (5 companies). The companies identified as “mar-
ket leaders” are: IBM, Oracle, Microsoft, SAS, SAP, Information Builders, and
MicroStrategy. Gartner categorizes features such as sentinels as “predictive mod-
eling and data mining”, and all “market leaders” have features within this category.
However, only SAS seems to be significantly differentiated from the other “mar-
ket leaders” in this category with a more comprehensive predictive offering since
the company originated from forecasting and predictive modeling, whereas the other
companies started as DBMS providers or as providers of reporting centric solutions.
Out of all features offered by the “market leaders” [8,28,34,35,47,56], the algorithms
that to some extent resemble the functionality of sentinels are association rules, se-
quential patterns, and regression techniques. This also holds for the “challenger”
Tibco, which is the only other noteworthy company with “predictive modeling and
data mining” features. As explained above, these competing techniques are distinctly
different from the sentinel technology implemented by TARGIT. Moreover, TARGIT
is a new entrant in the ”niche player” category of the Magic Quadrant, and with ref-
erence to Gartner’s statement below, the sentinels of TARGIT are also perceived as a
unique feature in the Magic Quadrant analysis [54].
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“The introduction of an innovative alerting solution, called Sentinels (essentially
prediction-based rules), enables an end user to react quickly to alerts for certain
indicators. Through the combination with Targit’s desktop alerts, a user gets an
early-warning notification when a predefined rule has been violated and the user can
proactively take corrective measures. This capability adds to Targit’s attractiveness
for end users.”

In general, TARGIT is seen by Gartner as a “niche player” with a strong foothold
in the mid-market, and with a unique position in its approach to BI usability. This
is very much in line with the fast OODA loops facilitated by BI mentioned in the
previous section. Therefore the entire concept of sentinels is unique from a market
perspective.





Chapter 2

Discovering Sentinel Rules for
Business Intelligence

This chapter proposes the concept of sentinel rules for multi-dimensional data that
warns users when measure data concerning the external environment changes. For
instance, a surge in negative blogging about a company could trigger a sentinel rule
warning that revenue will decrease within two months, so a new course of action
can be taken. Hereby, we expand the window of opportunity for organizations and
facilitate successful navigation even though the world behaves chaotically. Since
sentinel rules are at the schema level as opposed to the data level, and operate on data
changes as opposed to absolute data values, we are able to discover strong and useful
sentinel rules that would otherwise be hidden when using sequential pattern mining
or correlation techniques. We present a method for sentinel rule discovery and an
implementation of this method that scales linearly on large data volumes.

2.1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with the
challenges facing managers that operate in a world of chaos due to the globalization
of commerce and connectivity [36]; in this chaotic world, the ability to continuously
act is far more crucial for success than the ability to long-term forecast. The idea in
CALM is to take the Observation-Orientation-Decision-Action (OODA) loop (orig-
inally pioneered by “Top Gun”1 fighter pilot John Boyd in the 1950s [32]), and in-

1Colonel John Boyd was fighter instructor at Nellis Air Force Base in Nevada, the predecessor of
U.S. Navy Fighter Weapons School nicknamed “Top Gun”.

13
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tegrate business intelligence (BI) technologies to drastically increase the speed with
which a user in an organization cycles through the OODA loop. Using CALM, any
organization can be described as a set of OODA loops that are continuously cycled
to fulfill one or more Key Performance Indicators (KPI’s). One way to improve the
speed from observation to action is to expand the “horizon” by allowing the user to
see data from the external environment, and not only for the internal performance of
the organization. Another way is to give early warnings when factors change that
might influence the user’s KPI’s, e.g., revenue. Placing “sentinels” at the outskirts
of the data available seeks to harness both ways of improving reaction time and thus
organizational competitiveness.

A sentinel rule is a relationship between two measures, A and B, in an OLAP
database where we know, that a change in measure A at one point in time affects
measure B within a certain warning period, with a certain confidence. If such a re-
lationship exists, we call measure A the source measure, and measure B the target
measure. Usually, the target measure is, or contributes to, a KPI. The source measure
ideally represents the external environment, or is as close to the external environment
as possible. Examples of source measures for an organization could be: the number
of negative blog entries (external), the number of positive articles in papers (exter-
nal), or the number of complaints from customers (internal, yet as close to external
as possible). Examples of target measures could be: revenue or contribution margin.
Imagine a company selling a product globally where we discovered the sentinel rule:
“IF negative blogs go up THEN revenue goes down within two months AND IF nega-
tive blogs go down THEN revenue goes up within two months”. Assume that Google
is searched daily for negative blogs, and the number of negative blogs is stored in the
company’s OLAP database. Also, the company’s BI solution can notify users based
on sentinel rules. When a user receives notification that the number of negative blogs
goes up, he will know that revenue will go down in two months with a certain confi-
dence. Depending on the situation, the user might have a number of evasive actions
such as: post positive blogs to sway the mood, or reduce cost to cope with a reduc-
tion in revenue. Regardless of the action, the sentinel rule has raised awareness of a
problem and reduced the time from observation to action. Metaphorically, sentinels
seek to do for organizations what radars do for navigation of ships.

The novel contributions in this chapter include the sentinel rule concept, and an
algorithm that discover sentinel rules on multi-dimensional data. We give a formal
definition of sentinel rules, and we define the indication concept for rules and for
source and target measures. In this context, we provide a contradiction elimination
process that allows us to generate more general rules that are easy to interpret. We
also provide a useful notation for sentinel rules. We conduct several experiments to
validate that our algorithm scales linearly on large volumes of synthetic and real-
world data and on databases with high complexity in terms of the number of mea-
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sures. Since sentinel rules operate on data changes as opposed to absolute data val-
ues, and are at the schema level as opposed to the data level (such as association rules
and sequential patterns), we can find strong rules that neither association rules nor
sequential pattern mining would find. In addition, we found sentinel rules to be com-
plementary to correlation techniques, since our solution finds “micro-predictions”
that hold for a smaller subset within a dataset; using correlation techniques alone
such rules would be “hidden in the average”. We believe that we are the first to pro-
pose the concept of sentinel rules, and to provide an algorithm and implementation
for discovering them.

The next section presents the formal definition, Section 2.3 presents an algorithm
including an assessment of its complexity. Section 2.5 presents a scalability and a
qualitative study. Section 2.6 presents the work related to the discovery of sentinel
rules.

2.2 Problem Definition

Running Example: Imagine a company that sells products world-wide, and that
we, in addition to the traditional financial figures such as revenue, Rev, have been
monitoring the environment outside our organization and collected that information
in three measures. The measure NBlgs represents the number of times an entry is
written on a blog where a user is venting a negative opinion about our company or
products. The measure CstPrb represents the number of times a customer contacts
our company with a problem related to our products. The measure WHts represents
the number of hits on our website, and this figure has been cleansed in order to
represent human contact exclusively, eliminating traffic by robots etc.

T : D2: M1: M2: M3: M4:
Time Region NBlgs CstPrb WHts Rev

2007-Q1 Asia 20 50 1,000 10,000
2007-Q2 Asia 21 45 1,500 9,000
2007-Q3 Asia 17 33 2,000 11,000
2007-Q4 Asia 15 34 2,500 13,000
2007-Q1 EU 30 41 3,000 20,000
2007-Q2 EU 25 36 3,500 25,000
2007-Q3 EU 22 46 4,000 28,000
2007-Q4 EU 19 37 4,500 35,000
2007-Q1 USA 29 60 5,000 50,000
2007-Q2 USA 35 70 5,500 55,000
2007-Q3 USA 40 72 6,500 45,000
2007-Q4 USA 39 73 7,500 40,000

Table 2.1: Example dataset.
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In Table 2.1 we see a subset from our database, representing each quarter in year
2007 across three geographical regions. It should be noted that a subset like Ta-
ble 2.1 can easily be extracted from a multi-dimensional database, i.e., if the desired
data are the base level of the database no processing is needed, if the desired levels are
higher than the base level, the data might or might not be preaggregated. However,
both extraction and aggregation are typically basic built in functions of any multi-
dimensional database. The three measures: NBlgs, CstPrb and WHts, representing
the external environment around our company, have been presented along with the in-
ternal measure, Rev, representing our Revenue. The variable names: T,D2,M1...M4

have been assigned to the dimensions and measures in order to create transparency to
the formal definition in Section 2.2.

We are interested in discovering whether we can use any of the external measures
to predict a future impact on the internal Revenue measure; in other words we are
looking for sentinel rules where one of the measures M1...M3 can give us an early
warning about changes to M4. To distinguish between which measures are “causing”
the other, we call the measures M1...M3 source measures and the measure M4 is
called the target measure.

Formal Definition: Let C be a multi-dimensional data cube containing a set of di-
mensions: D = {D1, D2...Dn} and a set of measures: M = {M1,M2...Mp}. We
denote the members of the dimensions in D by d1, d2...dn and we denote the corre-
sponding measure values for any combination of dimension members by m1,m2...mp.
A measure value is a function, Mi, that returns the value of a given measure corre-
sponding to the dimension members it is presented with. We will now provide a series
of definitions that define a source measure, A, is a sentinel for a target measure, B,
i.e., a guarded watchtower from which we monitor A in order to know about changes
ahead of time to B. The sentinel rule between A and B is denoted A  B. We
assume, without loss of generality, that there is only one time dimension, T , in C,
and that T = D1, and subsequently t = d1. A fact, f , in C is then defined as:

f = (t, d2, d3...dn,m1,m2...mp) (2.1)

Given a fact f , the measure Mi is a function Mi(t, d2, d3...dn) = mi. The
“dimension” part of f , (t, d2, d3...dn), is called a cell. The shifting of a fact f , f ′,
is a fact with the same non-time dimension values (d2...dn) as f , but for time period
t + o, if it exists in C, i.e., a period of o members later on the time dimension. We
denote the offset, o, and define the function as:

Shift(C, f, o) = f ′ = (t+ o, d2, d3...dn,m
′
1,m

′
2...m

′
p) if f ′ ∈ C (2.2)
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Since we are interested in the change in data, we introduce the measure difference
function, Diff. With Diff, we find the relative changes to each of the measures during
the time period specified by the offset. Diff is defined as follows:

Diff (C, f, o) = (t, d2, d3...dn,
m′

1 −m1

m1
,
m′

2 −m2

m2
...
m′

p −mp

mp
)

where f = (t, d2, d3...dn,m1,m2...mp) ∧ f ∈ C ∧
f ′ = Shift(C, f, o) = (t+ o, d2, d3...dn,m

′
1,m

′
2...m

′
p) ∧ f ′ ∈ C

(2.3)
Given a threshold, α, we say that x ∈ Diff (C, f, o) is an indication on a measure,

Mi, if:

x = (t, d2, d3...dn,
m′

1 −m1

m1
, ...,

m′
i −mi

mi
, ...,

m′
p −mp

mp
)∧ |m

′
i −mi

mi
| = α (2.4)

We say that an indication on Mi, x, is positive, denoted MiN, when m′
i−mi

mi
> 0

and consequently that an indication, x, is negative, denoted MiH, when m′
i−mi

mi
< 0.

We define a wildcard, ∗, meaning that Mi∗ can be either MiN or MiH.
In our running example, when assessing whether a relationship exists, we are not

concerned with minor fluctuations, so we define a threshold of 10%, meaning that a
measure has to change at least 10% up or down in order to be of interest. Furthermore,
given the dataset we have, we are interested in seeing the changes that occur over
quarters as presented in Table 2.1. This means that we set the threshold α = 10%
and then the offset o = 1 Quarter. In Table 2.2, we have calculated the changes
from each quarter to the next and subjected each change to an evaluation against the
threshold of 10% change. We denote positive indications by N and subsequently
negative by H, if a change is less than 10% in either direction it is deemed “neutral”.
Please note that since we are dealing with changes between periods, we naturally get
one less row for each region.

T : D2: M1: M2: M3: M4:
Time Region NBlgs CstPrb WHts Rev

’07:Q1→Q2 Asia neutral M2H M3N M4H
’07:Q2→Q3 Asia M1H M2H M3N M4N
’07:Q3→Q4 Asia M1H neutral M3N M4N
’07:Q1→Q2 EU M1H M2H M3N M4N
’07:Q2→Q3 EU M1H M2N M3N M4N
’07:Q3→Q4 EU M1H M2H M3N M4N
’07:Q1→Q2 USA M1N M2N M3N M4N
’07:Q2→Q3 USA M1N neutral M3N M4H
’07:Q3→Q4 USA neutral neutral M3N M4H

Table 2.2: Indications between quarters.
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ST (C, o, w) = {(Diff (C, f, o),Diff (C,Shift(C, f, w), o))|f ∈ C} (2.5)

A Source-Target Set, ST , is defined as paired indications of changes over time,
where the source and target measures have been shifted with the offset, o. The target
measures have additionally been shifted with a warning period, w, which is the time-
frame after which we should expect a change on a target measure, after an indication
on a source measure has occurred. We say that (x, x′) ∈ ST (C, o, w) supports the
indication rule AN→ BN if x is an indication of AN and x′ is an indication of BN.
In this case, we also say that x supports AN and x ′ supports BN. The support of an
indication rule is the number of (x, x′) ∈ ST (C, o, w) which supports the rule. The
support of indication rules AH → BH, AN → BH and AH → BN as well as the
support for indications AH and BH are defined similarly. We denote the support of
an indication and an indication rule by IndSupp followed by the name of the indica-
tion or indication rule, respectively, e.g., IndSuppAN and IndSuppAN→BN.

A sentinel rule is an unambiguous relationship between A and B, thus we must
first eliminate contradicting indication rules, if such exist, before we have a sentinel
rule. We refer to this process as the contradiction elimination process, and we use
it to remove indication rules with the same premise, but a different consequent, and
vice versa, e.g., if both AN → BN and AN → BH or if both AN → BN and
AH → BN are supported. To eliminate such contradictions, we pair the indica-
tion rules in two sets that do not contradict each other, and we denote these sets by
A → B and A → inv(B), as follows: A → B = {AN → BN, AH → BH} and
A → inv(B) = {AN → BH, AH → BN}. Here inv indicates an inverted relation-
ship between the indications on A and B, e.g. if AN then BH, and vice versa.

For the purpose of being able to deduct the support of the indication rule(s)
we eliminate, we define functions for returning the premise and the consequent in-
dication, IndPrem and IndCons, from an indication rule AN → BN as follows:
IndPrem(AN→ BN) = AN and IndCons(AN→ BN) = BN. Furthermore, we
define the complement of an indication as follows: AN = AH and AH = AN. We
can now define a contradicting indication rule as a function, ContraRule, for an indi-
cation rule, IndRule, as follows:

ContraRule(IndRule) = IndPrem(IndRule)→ IndCons(IndRule) (2.6)

ElimSupp(IndRule) = IndSuppIndRule − IndSuppContraRule(IndRule) (2.7)

The support after elimination, ElimSupp, of an indication rule, IndRule, where
the support of the contradicting indication rule, ContraRule(IndRule), has been elim-
inated can be calculated as shown in Formula (2.7).
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MaxRule =



{IndRulei | IndRulei ∈A→ B ∧ ElimSupp(IndRulei) > 0}
if IndSuppA→B >= IndSuppA→inv(B),

{IndRulei | IndRulei ∈A→ inv(B) ∧ ElimSupp(IndRulei) > 0}
if IndSuppA→B < IndSuppA→inv(B).

(2.8)
MaxRule is the set of indication rule(s), IndRulei , in the set (A → B or

A→ inv(B)) with the highest IndSupp and where ElimSupp(IndRulei) > 0. With
MaxRule, we have identified the best indication rule(s) for a sentinel rule that rep-
resents an unambiguous relationship between A and B, i.e., the non-contradicting
indication rules with the highest ElimSupp. In other words, we have eliminated the
contradicting indication rules where the premise contradicts the consequent, as well
as the orthogonal indication rules where different premises have the same conse-
quent. If the MaxRule set consists of only one indication rule, we refer to the sentinel
rule based on this as a uni-directional rule.

We denote the support of a sentinel rule by SentSupp, followed by the name of the
sentinel rule, e.g., SentSuppA B . For a potential sentinel rule, A B, we define
SentSupp as the sum of the support of source measure indications for the indication
rule(s) contained in the sentinel rule:

SentSuppA B =


IndSuppAN if AH→ B∗ ̸∈ MaxRule,
IndSuppAH if AN→ B∗ ̸∈ MaxRule,
IndSuppAN + IndSuppAH otherwise.

(2.9)

In Formula (2.9) we note the difference between the support of an indication rule,
IndSupp, and a sentinel rule, SentSupp. Specifically, when calculating the support of
a sentinel rule, SentSuppA B , we only consider the support of indications on the
source measure (the premise), AN and AH. With indication rules, both indications
on the source and target measure needs to occur. The reason is, that the consequential
support of indications on the target measure, BN or BH, is taken into consideration
when calculating the confidence of the sentinel rule in Formula (2.10). In the case of
a uni-directional rule (the two first cases) we only consider the support of indications
on the source measure that have the same direction as the one indication rule in
MaxRule; this is done in order not to penalize otherwise good uni-directional rules in
terms of confidence. We denote confidence by Conf, and define the confidence for a
sentinel rule, A B, as follows:

ConfA B =

∑
IndRulei∈MaxRule ElimSupp(IndRulei)

SentSuppA B

(2.10)

The minimum threshold for SentSupp is denoted β, and the minimum threshold
for Conf is denoted γ. With these definitions, we say that a sentinel rule, A  B,
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with an offset, o, and a warning period, w, exists in C when SentSuppA B = β
and ConfA B = γ. α, β, γ, o, and w are provided by the user, and typically set iter-
atively based on the user’s experience.

Sentinel rule notation: To express sentinel rules with easy readability, we use to
show that there is a sentinel rule between a source measure, A, and a target measure,
B. In the case, where a bi-directional rule represents an inverted relationship between
the source and the target measure, we add inv to the target measure. In the case where
the rule is uni-directional, we add N or H to both the source and the target measure
to express the direction of the sentinel rule.

In our running example, we limit ourselves to investigating whether sentinel rules
exist between any of the source measures M1...M3 and the target measure M4. We
now need to compare the changes in M1...M3 to changes in M4 at a later time. In
this case, we choose the timeframe of 1 quarter again, meaning that warning period
w = 1 Quarter. In Table 2.3, we show the comparison between the source measure
indications and the target measure indication one quarter later. The measure M4 is
basically moved one line up -or as shown in Table 2.3; one quarter back. This means
that all source measures for Asia changing 2007: Q2→Q3 as shown in the left column
are now compared on the same line, within the same row, to the change on the target
measure, M4, for Asia changing 2007: Q3→Q4 and so on. The shift of M4 shown in
the row with data for the period one quarter earlier is denoted M ′

4. Please note that
since we are looking at changes between the periods selected on the time dimension,
as noted earlier, we naturally get one less row for each geographical region, when we
make the comparison across 1 quarter.

Based on Table 2.3, we count the support for each combination of indication
changes, the indication rules, for each potential sentinel rule; in addition, we can
count the support of the relationship overall, basically the support means counting
all rows that do not have a “neutral” change on the source measure since we define

T : D2: M1: M2: M3: M ′
4:

Time Region NBlgs CstPrb WHts Rev
’07:Q1→Q2 Asia neutral M2H M3N M ′

4N
’07:Q2→Q3 Asia M1H M2H M3N M ′

4N
’07:Q1→Q2 EU M1H M2H M3N M ′

4N
’07:Q2→Q3 EU M1H M2N M3N M ′

4N
’07:Q1→Q2 USA M1N M2N M3N M ′

4H
’07:Q2→Q3 USA M1N neutral M3N M ′

4H

Table 2.3: Target and source measure comparison
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indications as being either positive or negative. For example, we see summarized in
Table 2.4(a), that the indication rule M1H→M ′

4N is supported 3 times in the dataset
shown in Table 2.3; we say that the indication rule M1H → M ′

4N has a support of
3, and the sentinel rule M1  M4 has a support of all indication rule combinations
which in this case is 5. Table 2.4(a) through 2.4(c) lists the indication rules for each
potential sentinel rule with their respective support (Formula (2.9)).

As mentioned earlier, the ideal sentinel rule describes changes bi-directionally so
that it can “predict” both positive and negative changes on the target measure. How-
ever, the relationship also needs to be non-contradictory in order to be useful as a
sentinel rule. To do this, we eliminate the indications that contradict each other as de-
scribed in Formulae (2.6) and (2.7). In Table 2.4(b) we find the a uni-directional rule
where the two contradicting indication rules have equal support, thus we disregard
these indications completely (Formula (2.9)) and therefore SentSuppM2 M4=3. In
Table 2.4(c) the contradiction elimination process does not eliminate both indica-
tion rules, it reduces the two indication rules to one and decreases ElimSupp (For-
mula (2.7)) in the calculation of confidence.

In order to identify the best sentinel rules, we set the thresholds β = 3 and
γ = 60%. Table 2.4(d) through 2.4(f) show the sentinel rules from our running ex-
ample and their respective conformance to the thresholds we have set. As seen in
Table 2.4(e) and 2.4(f), we end up having uni-directional sentinel rules, since the in-
dication rules M2N→M ′

4N and M2N→M ′
4H, as shown in Table 2.4(b), contradict

each other and have equal support. In addition, the indication rules M3N → M ′
4N

and M3N → M ′
4H contradict each other in Table 2.4(c). Of these, M3N → M ′

4N is
strongest and “wins” the elimination process (Formula (2.8)) as seen in Table 2.4(f).

(a) M1  M4

M1 M ′
4 IndSupp

M1N M ′
4N 0

M1H M ′
4H 0

M1N M ′
4H 2

M1H M ′
4N 3

SentSuppM1 M4 = 5

(b) M2  M4

M2 M ′
4 IndSupp

M2N M ′
4N 1

M2H M ′
4H 0

M2N M ′
4H 1

M2H M ′
4N 3

SentSuppM2 M4 = 3

(c) M3  M4

M3 M ′
4 IndSupp

M3N M ′
4N 4

M3H M ′
4H 0

M3N M ′
4H 2

M3H M ′
4N 0

SentSuppM3 M4 = 6

(d) M1  M4

M1 M ′
4 ElimSupp

M1N M ′
4H 2

M1H M ′
4N 3

SentSuppM1 M4 = 5
ConfM1 M4 = 5

5
= 100%

Conformance: ok

(e) M2  M4

M2 M ′
4 ElimSupp

M2H M ′
4N 3

SentSuppM2 M4 = 3
ConfM2 M4 = 3

5
= 60%

Conformance: ok

(f) M3  M4

M3 M ′
4 ElimSupp

M3N M ′
4N 2

SentSuppM3 M4 = 6
ConfM3 M4 = 2

6
= 33%

Conformance: failed

Table 2.4: Indication rule and sentinel rule support
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Based on this example, we have now found that there are two sentinel rules that
can provide our company with an early warning. If we monitor the changes to M1,
the number of negative blog entries, we will know one quarter in advance whether to
expect an increase or a decrease in M4 Revenue. If we monitor the number of times
a customer contacts our company with a problem related to our products, M2, we
will know one quarter ahead whether to expect an increase in Revenue. This example
demonstrates the usefulness of the sentinel concept, and the idea is that we attempt
to place our sentinels as close to the external environment as possible and with as
high reliability as possible. Using the notation defined earlier in this section, we can
express the rules found in our running example as follows: NBlgs  inv(Rev) and
CstPrbH  RevN

2.3 The FindSentinels Algorithm

The following algorithm has been implemented in SQL on a Microsoft SQL Server
2005 as explained in Section 2.5. The actual SQL code can be found in Section 2.4.
We assume without loss of generality that of the p measures in the dataset, C,
M1...Mp−1 are the source measures and Mp is the target measure.

Step 1 creates a temporary table where each unique value of (time dimension
value) t, is sorted in ascending order and assigned an integer, Id, growing by 1 for
each t. This temporary table will allow us to select values of t for comparison with a
given distance in periods, regardless of the format of the period field, t, in the data-
base. To optimize performance, we create an index on the period table. By joining 4
copies of each of the original dataset and the period table (one for each of the periods:
t, t + o, t + w, and t + w + o), we create a Source-Target set (Formula (2.5)) and
calculate indications (Formulae (2.3) and (2.4)) for our selected p-1 source measures
and one target measure. We calculate these indications for each cell (dimension com-
bination) in the dataset, and return -1, 0, or 1 depending on whether the indication is
negative, neutral or positive against the threshold α.

Step 2 counts the number of positive and negative indications on the source mea-
sure, and for each of these source measure indications, it summarizes the indications
on the target measure. Since the indications are expressed as -1, 0 or 1, our contra-
diction elimination process can be carried out using sum.

Step 3 retrieves the potential rules from previous output, meaning that a source
measure needs to have at least one indication with a consequential indication on
the target measure, i.e., ElimSupp<> 0. For each of these rules, we calculate the
sum of the support of source measure indications, SentSupp, the sum of absolute
indications on the target measure, AbsElimSupp, as well as MaxElimSupp which is
max(ElimSupp). In addition, we calculate the Direction of the relationship between
source and target measure where 1 is straightforward and -1 is inverted. The nature



2.3 The FindSentinels Algorithm 23

of Direction also helps us eliminate orthogonal rules since these will always have Di-
rection=0. This is true because an orthogonal relationship means that both positive
and negative indications on the source measure leads to only one type of indication
on the target measure. Finally, we calculate the number of indication rules, IndRule-
Count, in the potential sentinel rule. This information is used to distinguish between
bi- and uni-directional rules. Using this information, we can now identify the sentinel
rules that comply with the criteria of SentSupp >= β and Conf >= γ. In addition,
we can use the values of IndRuleCount, Direction, and MaxElimSupp to describe the
sentinel rule in accordance with our notation. We store the output in a table called
FinalResult.

Algorithm FindSentinels
Input: A dataset, C, an offset, o, a warning period, w, a threshold for indications, α, a minimum
SentSupp threshold, β, and a minimum Conf threshold, γ.
Output: Sentinel rules with their respective SentSupp and Conf.
Method: Sentinel rules are discovered as follows:

1. Scan the dataset C once and retrieve unique values of t into an indexed subset. Use the subset to
reference each cell (t, d2, ... ,dn) ∈ C with the corresponding cells for {t+o, t+w, t+w+o} ∈
C. Output a Source-Target set (Formula (2.5)) for each cell, (t, d2, ... ,dn), where the indications
(Formulae (2.3) and (2.4)) on source measures, M1...Mp−1, are calculated using {t, t+ o} and
the indications on target measure, Mp, is calculated using {t+ w, t+ w + o}.

2. For each positive and negative source measure indication, MiInd , in the output from Step 1,
count the number of source measure indications as IndSuppi and sum the target measure indi-
cations as ElimSuppi .

3. Retrieve from the output from Step 2, each source measure, Mi ∈ M1...Mp−1, where Elim-
Supp<> 0.
For each of these source measures, calculate: SentSupp=sum(IndSupp),
AbsElimSupp=sum|ElimSupp|, MaxElimSupp=max(ElimSupp),
Direction=avg(sign(MiInd )*sign(ElimSupp)), and IndRuleCount as the number of different in-
dications (positive, negative). Output the rules where SentSupp >= β and
Conf = AbsElimSupp

SentSupp
>= γ, use IndRuleCount=2 to identify bi-directional rules and Direc-

tion to describe whether the relationship is straight-forward or inverted. For uni-directional
rules (IndRuleCount= 1) use the four combinations of Direction and sign(MaxElimSupp) to
describe the relationship.

Upon execution of the algorithm, FindSentinels, with the dataset from our running
example as C, we get the output table named FinalResult as seen in Table 2.5. We
note that the result is similar to that of Tables 2.4(d) & 2.4(e), and we can easily rec-
ognize the sentinel rules: NBlgs  inv(Rev) and CstPrbH  RevN

SentinelRule SentSupp Conf
NBlgs->inv(Rev) 5 100
CstPrb dec->Rev inc 3 100

Table 2.5: The FinalResult table
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Computational Complexity: When we examine the individual statements of the
algorithm, FindSentinels, we notice that the size of output for each step is at most
as large as the input, thus the computational complexity will be dominated by the
size of the input. The size of the input for Step 3 is much smaller than for previous
statements and can thus be disregarded. The retrieve of unique t in Step 1 can be
performed in O(n) using a hash-based algorithm [22], where n is the size of the
dataset, C. The indexing can be done in time O(p log p) where p is the number of
periods, and since p << n this cost can be disregarded. The major cost in Step 1 is
the 8-way join, and since p << n this cost will be dominated by the cost of the join
of 4 copies of C, and even this can be performed in time O(n) using hash-joins [22].
Since the number of source measures are a small constant, Step 2 can also be done in
O(n) using hash-aggregation [22]. In summary, the whole algorithm can be done in
time O(n), where n is the size of C, and the algorithm thus scales linearly.

2.4 SQL-Based Implementation

The following SQL is written for Microsoft SQL Server 2005 as explained in Sec-
tion 2.3. We assume without loss of generality that of the p measures in the dataset,
C, M1...Mp−1 are the source measures and Mp is the target measure.

Statement 1 creates a temporary table called Period where each unique value of
(time dimension value) t, is sorted in ascending order and assigned an integer, Id,
growing by 1 for each t. This table will allow us to select values of t for comparison
with a given distance in periods, regardless of the format of the period field, t, in the
database. In Statement 2, we create an index on the period table to optimize perfor-
mance of the following operations.

By joining 4 copies of each of the original dataset and the period table (one for
each of the periods: t, t + o, t + w, and t + w + o) in Statement 3, we create a ta-
ble called Result3 which contains the indications on the source measures as a result
of the differences in measure values from period id to period id+o. In addition, we
calculate the indications on the target measure from period id+w to period id+w+o.
We calculate these indications for each cell (dimension combination) in the dataset.
The custom function, Ind, handles the Formulae (2.3) and (2.4) and returns -1, 0,
or 1 depending on whether the indication is negative, neutral or positive against the
threshold α. This statement handles the shifting of facts, Formulae (2.1) and (2.2),
and produces a Source-Target set (Formula (2.5) for our selected p-1 source measures
and one target measure. After executing Statement 3, we have a table which contains
the same information as Table 2.3 in our running example with indications expressed
as -1, 0 or 1.

Statement 4 counts the number of positive and negative indications on the source
measure, and for each of these source measure indications, it summarizes the indi-
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cations on the target measure. The output is stored in Result4. Since the indications
are expressed as -1, 0 or 1, our contradiction elimination process can be carried out
simply by this summation.

Statement 5 retrieves the potential rules from Result4, meaning that a source mea-
sure needs to have at least one indication with a consequential indication on the target
measure, i.e., ElimSupp<> 0. For each of these rules, we calculate the sum of the
support of source measure indications, SentSupp, the numeric sum of indications on
the target measure, AbsElimSupp, as well as MaxElimSupp which is max(ElimSupp).
In addition, Statement 5 calculates the Direction of the relationship between source
and target measure where 1 is straightforward and -1 is inverted. The nature of Di-
rection also helps us eliminate orthogonal rules since these will always have Direc-
tion=0. This is true because an orthogonal relationship means that both positive and
negative indications on the source measure leads to only one type of indication on
the target measure. Finally, Statement 5 calculates the number of indication rules,
IndRuleCount, in the potential sentinel rule. This information is used to distinguish
between bi- and uni-directional rules. The output of Statement 5 is stored in Result5.

Using Result5 in Statement 6, we identify the sentinel rules that comply with the
criteria of SentSupp >= β and Conf >= γ. We use the values of IndRuleCount,
Direction, and MaxElimSupp to describe the sentinel rule in accordance with our no-
tation. The output is stored in FinalResult.

SQL Statements for FindSentinels(C, o, w, α, β, γ)
(1) SELECT T, ROW NUMBER() OVER (ORDER BY T) AS Id

INTO Period FROM (SELECT DISTINCT T FROM C) AS subselect

(2) CREATE INDEX PeriodIndex ON Period(T)

(3) SELECT a.T, a.D2, ... , a.Dn,
Ind((b.M1-a.M1)/a.M1,α) AS M1ind,
Ind((b.M2-a.M2)/a.M1,α) AS M2ind,
...
Ind((d.Mp-c.Mp)/c.Mp,α) AS TMind

INTO Result3
FROM C a, C b, C c, C d,

Period pa, Period pb, Period pc, Period pd,
WHERE a.t=pa.t AND b.t=pb.t AND c.t=pc.t AND d.t=pd.t AND

a.D2=b.D2 AND a.D2=c.D2 AND a.D2=d.D2 AND
...
a.Dn=b.Dn AND a.Dn=c.Dn AND a.Dn=d.Dn AND
pb.id=pa.id+o AND pc.id=pa.id+w pd.id=pa.id+w+o

Custom function Ind is implemented as follows for source and target measure:
SIGN(ROUND(((b.Mi-a.Mi)/a.Mi)*100/α, 0, 1)) AS Miind
SIGN(ROUND(((d.Mp-c.Mp)/c.Mp)*100/α, 0, 1)) AS TMind

(4) SELECT sourcemeasure, Ind, COUNT(*) AS IndSupp, SUM(TMind) AS ElimSupp
INTO Result4
FROM (SELECT "M1" AS SourceMeasure, M1ind AS Ind, TMind FROM Result3
UNION ALL SELECT "M2" AS SourceMeasure, M2ind AS Ind, TMind FROM Result3
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...
UNION ALL SELECT "Mp−1" AS SourceMeasure, Mp−1ind AS Ind, TMind
FROM Result3) AS subselect
WHERE Ind<>0
GROUP BY SourceMeasure, Ind

(5) SELECT SourceMeasure, SUM(IndSupp) AS SentSupp,

SUM(ABS(ElimSupp)) AS ElimSupp, MAX(ElimSupp) AS MaxElimSupp,

AVG(SIGN(Ind)*SIGN(ElimSupp)) AS Direction,

COUNT(*) AS IndRuleCount

INTO Result5

FROM Result4

WHERE ElimSupp<>0

GROUP BY SourceMeasure

(6) SELECT SentinelRule, SentSupp, Conf INTO FinalResult FROM

(SELECT SourceMeasure+’->inv(target)’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction<0 and IndRuleCount=2

UNION ALL SELECT SourceMeasure+’->target’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction>0 and IndRuleCount=2

UNION ALL SELECT SourceMeasure+’ inc->target dec’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction<0 and MaxElimSupp<0 and IndRuleCount=1

UNION ALL SELECT SourceMeasure+’ dec->target inc’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction<0 and MaxElimSupp>0 and IndRuleCount=1

UNION ALL SELECT SourceMeasure+’ dec->target dec’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction>0 and MaxElimSupp<0 and IndRuleCount=1

UNION ALL SELECT SourceMeasure+’ inc->target inc’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction>0 and MaxElimSupp>0 and IndRuleCount=1

) as subselect

WHERE SentSupp>=β and Conf>=γ

2.5 Experiments

Setup: The experimental evaluation was conducted on an Intel Core2 Quad CPU
(Q6600) 2.40GHz PC server with 4GB RAM and 1 500GB disk (7,200 RPM) run-
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ning a 32Bit version of Microsoft SQL Server 2005 (MS SQL) on Windows Vista
Business, Service Pack 1. The recovery model on MS SQL was set to “simple”. In
addition, MS SQL is restarted and the database and logfile space are shrunk before
each run.

We use two ranges of datasets for the experiments, a range of synthetic datasets
and a range of real-world datasets. The synthetic datasets closely resemble our run-
ning example, i.e., there are three regions and one product that are iterated over a
variable number of periods and variable number of source measures to produce a
dataset of the desired size in rows and source measures. The synthetic datasets pro-
duce the same sentinel rules as output as our running example when subjected to
our SQL implementation. The synthetic datasets with three source measures and one
target measure, similar to our running example, ranges from 100,000 to 10,000,000
rows with 1,000,000 row intervals from 2,000,000 to 10,000,000 rows, and includes
datasets with 500,000 and 1,500,000 rows in order to monitor the behavior of the
SQL implementation more closely at low data volumes. In addition, we generate
datasets with 1,000,000 rows and with 1, 10, 20, 50, 100 and 150 source measures
and one target measure.

The real-world datasets are produced based on a dataset from a medium-sized
Danish company with one location and one product, the original dataset contains 78
months (6.5 years) of monthly aggregated measures of Website hits, Support cases,
New customers and Revenue. Descendants of this dataset are produced by adding
the original dataset to itself the number of times needed to get the desired number of
rows, but each time the dataset is added, it is done with a new product number. By
doing this, we end up having a significant amount of data with real-world patterns.
Using this approach, all real-world datasets have a number of rows in multiples of 78,
namely: 78; 780; 7,800; 78,000; 312,000; 468,000; 624,000; 780,000; 1,560,000;
3,120,000; 4,680,000; 6,240,000 and 7,800,000 rows. The results presented repre-
sent the average time for 5 runs.

Synthetic data - scaling number of rows: We run the SQL implementation against
all the synthetic datasets with three source and one target measure. We have plotted
the results in both logarithmic scale, Figure 2.1(a), and linear scale, Figure 2.1(e),
in order to get a better impression of the scaling at both the low end and the high
end. We notice that the SQL implementation scales linearly as expected based on our
assessment of the O(n) computational complexity. We attribute the jump in process
time that occurs between the experiments on 5,000,000 and 6,000,000 rows, to the
DBMS’ inability to handle everything in memory thus requiring more disk I/O. A
similar factor is seen between the experiments on 1,500,000 and 2,000,000 rows.
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Figure 2.1: Performance results

Synthetic data - scaling source measures: The SQL implementation is run against
the synthetic datasets with a varying number of source measures and 1,000,000 rows.
The results are plotted in Figures 2.1(b) and 2.1(f). We observe a linear behavior
in computation time until we reach more than 100 source measures where process
time increases drastically. However, 100 measures is a very high number in a normal
OLAP cube, since real-world implementations in our experience typically have a sum
of source and target measures less than 50.

Synthetic data - scaling warning period: In this experiment, we vary the warning
period, w, with the values: 1, 10, 20, 100, 200, 500, 1000 on a dataset with 1,000,000
rows. Results are plotted in Figures 2.1(c) and 2.1(g). As expected, the SQL im-
plementation is almost unaffected by a variation in warning period, the process time
remains close to constant because the intermediate results of the SQL solution’s steps
are about the same size.

Real-world data - scaling number of rows: Changing now to real-world datasets,
we run the SQL implementation on the real-world datasets with varying number of
rows. The results are plotted in Figures 2.1(d) and 2.1(h). In general, we observe a
behavior close to linear, but the jump in process time due to a change from memory
to disk, appear different from what we observed in the experiments on synthetic data.
We attribute the variance to the fact that the joins behave slightly different since the
period field has lower cardinality and the product field has higher cardinality in the
real-world datasets compared to the synthetic datasets. We acknowledge, however,
that overall the SQL implementation scales linearly on real-data; additionally, we
notice that the performance on real-world data is faster than the performance on the
synthetic data with a factor of 1.4 at 7,800,000 rows.
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Qualitative Experiment: Other than a performance assessment of our SQL imple-
mentation, we conduct an experiment by allowing the o and w values to vary on the
original real-world dataset. Our inspiration is a business case in which we want to
find the best sentinel rules in terms of SentSupp and Conf. We vary the granularity of
the offset period, o, to be either month, quarter or year. We vary the warning period,
w, to be of same granularity as the offset, and to start anywhere in between the period
defined by the offset and 12 months prior to the period defined by the offset. When
running this experiment, we found an interesting sentinel rule with SentSupp of 33
out of 78 input rows and 79.5% Conf that told us that if the number of Website hits
goes up one year, the revenue will go up the following year. Although this rule is not
a surprise, since we are dealing with a company in growth, we notice that our solution
has discovered a sentinel rule by autonomously selecting o and w on real data, and
the rule is exactly of the type and on the level of detail that we are looking for.

Experiment Summary: From the experiments we validate that our SQL imple-
mentation does indeed have O(n) computational complexity, and that it scales lin-
early to 10 million rows of aggregate data. We recall that a real-world dataset can
easily be as small as 78 rows. A real-world scenario can, however, increase in com-
plexity when the cardinality increases on the dimensions involved. From these ex-
periments, we would expect that good performance can be gained for a real-world
organization, e.g., on 6.5 years of data aggregated monthly for a company with 100
geographical locations and 1,000 products gives 7,800,000 rows. Furthermore, we
found that even though a brute-force approach was applied in fitting o and w to get
the best sentinel rules, such an approach can realistically be used on a real dataset to
provide relevant results.

2.6 Related Work

For decades, focus has been on immediate data warehousing challenges of obtaining
and storing data for business purposes, and making it accessible with high perfor-
mance [61]. OLAP applications have emerged, but with the exception of Kimball’s
“Analytical Cycle” [30], there has been little theory such as CALM [36] about how to
combine specific BI technologies to meet the management challenge of turning data
into valuable decisions.

The idea that some actions or incidents are interlinked has been well explored in
association rules [2]. The traditional case study of association rules has been basket-
type association rules, and significant effort has been put into optimizing the initially
proposed Apriori algorithm [3], including its extension to exploit the performance of
a parallel shared-nothing multiprocessor system [6]. Improvements in performance
as well as lower memory usage compared to the Apriori algorithm has been gained
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by growing a compressed frequent pattern tree in memory [25], and improvements
in the selection process of thresholds that determine the interestingness of rules has
also been introduced [58].

Sequential pattern mining introduces a sequence in which actions or incidents
take place, with the intention of predicting one action or incident based on know-
ing another one. This adds to the complexity of association rules which makes the
Apriori approach even more costly [5], thus new approaches to improving the perfor-
mance of mining sequential patterns have emerged [24,48,49,57]. Another aspect of
sequential pattern mining has been the various approaches to handling the period of
the sequence, e.g., involving multiple time granularities [9] or allowing for partial pe-
riodicity of patterns [23]. The focus on user control of the sequential pattern mining
process in terms of applying constraints [21], and in a querying-type approach [20]
has also been explored. The introduction of multi-dimensional databases has given
rise to multi-dimensional pattern mining [51] which applies the same techniques to
more dimensions than just one.

In general, association rule mining seeks to find co-occurrence patterns within
absolute data values, whereas our solution works on the relative changes in data.
In addition, association rule mining typically works on categorical data, i.e., dimen-
sion values, whereas our solution works on numerical data such as measure values.
Sequential pattern mining allows a time period to pass between the premise and the
consequent in the rule, but it remains focused on co-occurrence patterns within abso-
lute data values for categorical data. Furthermore, our solution generates rules at the
schema level, as opposed to the data level, using a contradiction elimination process.
The combination of schema-level rules based on relative changes in data allows us
to generate fewer, more general, rules that cannot be found with neither association
rules nor sequential pattern mining. In Section 2.7 we demonstrate why sequential
pattern mining does not find any meaningful rules in our running example presented
in Section 2.2.

Other approaches to interpreting the behavior of data sequences are various re-
gression [4] and correlation [26,60] techniques which attempt to describe a functional
relationship between one measure and another. In comparison, we can say that sen-
tinel rules are a set of “micro-predictions” that are complementary to regression and
correlation techniques. Sentinel rules are useful for discovering strong relationships
between a smaller subset within a dataset, and thus they are useful for detecting
warnings whenever changes (that would otherwise go unnoticed) in a relevant source
measure occur. In addition, regression and correlation techniques do not support
uni-directional relationships such as our solution. Regression and correlation based
techniques, on the other hand, are useful for describing the overall trends within a
dataset. In Section 2.8, we specifically demonstrate using a concrete, realistic exam-
ple how correlation tend to blind the user by the average.
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Finally, the work on similarity search in timeseries databases [4] attempt to de-
scribe periods in which one measure behaves similar to another. This work is differ-
ent from sentinel rules since it does not generate schema-level rules (or rules at all),
furthermore it does not allow the description of a uni-directional relationships.

2.7 Sentinels Rules vs. Sequential Pattern Mining

Sequential pattern mining identifies patterns of items that occur with a certain fre-
quency in a dataset of transactions grouped in sequences, i.e., a sequence could look
like this: {(ab)c}, where (ab) and c are transactions. The support of patterns such
as “item a leads to item c” are found by counting the number of times a transaction
containing a is followed by a transaction containing c.

To exemplify the difference between our solution and sequential pattern mining;
specifically the difference between working on absolute data values and relative data
changes, we can simply subject our running example dataset in Table 2.1 to sequen-
tial pattern mining. Since all values in this dataset are unique, we will only find
patterns with an absolute support of only 1 and confidence of 100%, as follows:

“NBlgs=20 leads to Rev=9000”
“CstPrb=50 leads to Rev=9000”
“WHts=1000 leads to Rev=9000”
“NBlgs=20 and CstPrb=50 leads to Rev=9000”
“NBlgs=20 and WHts=1000 leads to Rev=9000”
“NBlgs=20 and CstPrb=50 and WHts=1000 leads to Rev=9000”
...

The rules above above have been generated using only the first line in the dataset in
Table 2.1, meaning that the complete set would generate 12x6=72 rules. If we think
of a 1,000 record dataset with the same properties as Table 2.1, such a dataset would
result in 6,000 rules. In other words, since the data-level rules generated by sequen-
tial pattern mining are value specific, as opposed to relative change “events” at the
schema level, we get a large output in which we do not find any significant patterns.
Thus no meaningful, high-level rules can be found by sequential pattern mining di-
rectly.

2.8 Sentinels Rules vs. Correlation Techniques

If we compare sentinel rules with correlation techniques, one could intuitively think
that correlations would be able to detect exactly the same relationships as sentinel
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rules, at least when comparing correlations to bi-directional sentinel rules. However,
when subjecting data to correlation techniques [26, 60], we do not find the same ex-
plicit relationships as we do with sentinel rules.

The reason that correlation techniques gives different results compared to our sen-
tinel rules, lies in the fact, that correlation techniques are focused on identifying re-
lationships with the minimal Euclidean distance between pairs, this means that there
is a tendency to favor “smooth” data series with few outliers. On the other hand, the
intention of sentinel rules is to give a user an early warning, and from an operational
perspective we can even say that we are particularly interested in the source measure
changes (perhaps unusual/“outlier”) that appear to have consequential change effect
on the target measure. This difference means (from a sentinel perspective) that corre-
lation techniques “blind us by the average” when our goal is to get an early warning.

Tables 2.6(a)–2.6(c) exemplify these differences by describing the relationship
between a source measure, A, and a target measure, B, with both sentinel rules and
correlation. The data series in Tables 2.6(a)–2.6(c) have been pre-processed so that
each line represents a combination of A for time period, t, and B for time period,
t+w (w = 1). The distance in time between the lines is o. We operate with the same
values for α, β, and γ as in our running example, specifically: α = 10%, β = 3, and
γ = 60%. For correlation, we say that it needs to account for more than 50% of the
variation (correlation-coefficient2 > 0.5) between the series in order to be relevant.
In fact, it does not even make sense to consider correlations that account for 50%
or less, since such correlations would be less precise than simply flipping a coin to

(a) A inv(B)

A B Indication
99 1000
89 1100 AH→ BN
90 1001
98 1015
113 900 AN→ BH
101 1025 AH→ BN
108 1100
105 1090
109 1040
90 1145 AH→ BN
Sentinel rule:
SentSuppA inv(B) = 4
ConfA inv(B) = 100%
Correlation:
Coefficient = -0.4307
Accounts for = 18.55%

(b) AH  BN
A B Indication

500 1000
400 1200 AH→ BN
363 1095
399 1200
350 1400 AH→ BN
316 1265
323 1285
355 1410
300 1600 AH→ BN
329 1755
Sentinel rule:
SentSuppAH BN = 3
ConfAH BN = 100%
Correlation:
Coefficient = -0.6919
Accounts for = 47.87%

(c) AH  BN
A B Indication

100 1000
90 1100 AH→ BN
81 1210 AH→ BN
73 1331 AH→ BN
66 1464 AH→ BN
59 1611 AH→ BN
53 1772 AH→ BN
48 1949 AH→ BN
43 2144 AH→ BN
39 2358 AH→ BN
Sentinel rule:
SentSuppAH BN = 9
ConfAH BN = 100%
Correlation:
Coefficient = -0.9688
Accounts for = 93.85%

Table 2.6: Example relationships.
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Figure 2.2: Graphs based on data from Table 2.6(a).

decide whether target measure, B, will go up or down. We can now read the indi-
vidual indications directly, and by correlating the two data series, we get a lagged
correlation with the same warning period as the sentinel rules. Table 2.6(a) shows
a bi-directional sentinel rule, A  inv(B), that is not discovered using correlation
techniques, . Table 2.6(b) shows a uni-directional sentinel rule, AH  BN, that is
not discovered using correlation techniques. In . Table 2.6(c), correlation and sen-
tinel rules both find a uni-directional rule, AH  BN.

The data from . Table 2.6(a) is plotted in Fig. 2.2(a), note again that the top line
(B) is shifted w = 1 period(s) backwards. We note the visible changes for A and B,
where A has been scaled by a factor of 6 for better visibility. The changes that leads
to sentinel rules have been highlighted by an arrow from A to B. When looking at
Fig. 2.2(a) it seems clear that there is a relationship between the changes. However,
when displaying the same data in a scatter plot, Fig. 2.2(b), to test the correlation
visually, we find that the relationship between A and B seems to be rather chaotic or
at least non-linear. This is the reason that we get a very poor correlation, whereas on
the other hand, we find a strong sentinel rule based on four indications.

Following these examples, we confirm the differences between sentinel rules and
correlation thecniques by applying correlation techniques [26, 60] to our running
example in Table 2.1. Correlation techniques find lagged correlations between all
source measures and the target measure, but the only correlation that accounts for
more than 50% of the variation, is identified between WHts and Rev which is in con-
trast to the bi- and uni-directional sentinel rules between NBlgs and Rev, and between
CstPrb and Rev, which we found with our solution.

In summary, we could say that sentinel rules are a set of “micro-predictions” that
are complementary to correlation techniques. Sentinel rules are useful for discover-
ing strong relationships between a smaller subset within a dataset, and thus they are
useful for detecting warnings whenever changes (that would otherwise go unnoticed)
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in a relevant source measure occur. Correlation techniques, on the other hand, are
useful for describing the overall trends within a dataset.

2.9 Conclusion and Future Work

We have proposed a novel approach for discovering so-called sentinel rules in a multi-
dimensional database for business intelligence. The sentinel rules were generated at
schema level, which means that they are more general and cleansed for contradic-
tions, and thus easy to interpret. These sentinel rules can be used to expand the
window of opportunity for an organization to act based on changes in the environ-
ment in which it operates. We demonstrated how an implementation in SQL could
be done, and we showed that it scales linearly on large volumes of both synthetic and
real-world data. We also demonstrated that sentinel rules with relevance for decision
making can be extracted from real-world data. In this context, we proved the possi-
bility of automatic fitting of both warning and observation periods. With regards to
novelty, we specifically demonstrated that sentinel rules are different from sequential
pattern mining, since sentinel rules operate at the schema level and use a contra-
diction elimination process to generate fewer, more general rules. Furthermore, we
found sentinel rules to be complementary to correlation techniques, in that they could
discover strong relationships between a smaller subset within a dataset; a relationship
that would otherwise be “hidden in the average” using correlation techniques alone.

There are several perspectives for future work. First, an idea would be to use the
SQL implementation described in this chapter as a baseline for new improved algo-
rithms in terms of performance. Secondly, the ability to automatically fit α, β, γ, o,
and w on large volumes of data and different granularities should be explored. Third,
it would make sense to seek for rules where multiple source measures are combined
into a sentinel rule. Fourth, a natural development would also be to seek sentinel
rules for multiple target measures at the same time to improve overall performance.
Fifth, an idea could be to improve the solution in the multi-dimensional environment
by allowing the sentinel rule mining to fit the aggregation level on dimensions auto-
matically as well as automatically select the location and shape of the data area where
the sentinel rules best apply.

From a business and decision-making stand point, more effort should be put into
automatically pruning the sentinel rules found e.g., by assessing their interrelated
relevance. Additionally, the degree of balance between the positive and the negative
indications behind the sentinel rule, or to which degree rules are irrelevant based on
orthogonal relationships between the source and the target measure, should be further
explored in order for it to be automated.



Chapter 3

Efficient Discovery of Generalized
Sentinel Rules

This chapter proposes the concept of generalized sentinel rules (sentinels) and
presents an algorithm for their discovery. Sentinels represent schema level relation-
ships between changes over time in certain measures in a multi-dimensional data
cube. Sentinels notify users based on previous observations, e.g., that revenue might
drop within two months if an increase in customer problems combined with a de-
crease in website traffic is observed. If the vice versa also holds, we have a bi-
directional sentinel, which has a higher chance of being causal rather than coinci-
dental. We significantly extend prior work to combine multiple measures into better
sentinels as well as auto-fitting the best warning period. We introduce two novel qual-
ity measures, Balance and Score, that are used for selecting the best sentinels. We
introduce an efficient algorithm incorporating novel optimization techniques. The
algorithm is efficient and scales to very large datasets, which is verified by extensive
experiments on both real and synthetic data. Moreover, we are able to discover strong
and useful sentinels that could not be found when using sequential pattern mining or
correlation techniques.

3.1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with the
challenges facing managers that operate in a world of chaos due to the globalization
of commerce and connectivity [36]; in this chaotic world, the ability to continuously
react is far more crucial for success than the ability to long-term forecast. The idea in
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CALM is to take the Observation-Orientation-Decision-Action (OODA) loop (orig-
inally pioneered by “Top Gun” fighter pilot John Boyd in the 1950s), and integrate
business intelligence (BI) technologies to drastically increase the speed with which
a user in an organization cycles through the OODA loop. One way to improve the
speed from observation to action is to expand the “time-horizon” by providing the
user of a BI system with warnings based on “micro-predictions” of changes to an
important measure, often called a Key Performance Indicator (KPI). A generalized
sentinel rule (sentinel for short) is a causal relationship where changes in one or mul-
tiple source measures, are followed by changes to a target measure (typically a KPI),
within a given time period, referred to as the warning period. We attribute higher
quality to bi-directional sentinels that can predict changes in both directions, since
such a relationship intuitively is less likely to be coincidental. An example of a sen-
tinel for a company could be: “IF Number of Customer Problems go up and Website
Traffic goes down THEN Revenue goes down within two months AND IF Number
of Customer Problems go down and Website Traffic goes up THEN Revenue goes
up within two months”. Such a rule will allow a BI system to notify a user to take
corrective action once there is an occurrence of, e.g., “Customer Problems go up and
Website Traffic goes down”, since he knows, based on the “micro-prediction” of the
rule, that Revenue, with the probability stated by the rule’s confidence, will go down
in two months if no action is taken. In Section 3.4 we describe an example where a
valuable, and not so obvious, sentinel was uncovered.

Compared to prior art, sentinels are mined on the measures and dimensions of
multiple cubes in an OLAP database, as opposed to the “flat file” formats used by
most traditional data mining methods. Sentinels find rules that would be impossible
to detect using traditional techniques, since sentinels operate on data changes at the
schema level as opposed to absolute data values at the data level such as association
rules [2] and sequential patterns typically do [5]. This means that our solution works
on numerical data such as measure values, whereas association rules and sequential
patterns work on categorical data, i.e., dimension values. In [38] we specifically
provide a concrete, realistic example where nothing useful is found using these tech-
niques, while sentinel mining do find meaningful rules. In addition, bi-directional
sentinels are stronger than both association rules and sequential patterns since such
relationships have a greater chance of being causal rather than coincidental. The
schema level nature of sentinels gives rise to the table of combinations (TC) and the
reduced pattern growth (RPG) optimization (see Section 3.3), and such optimizations
can therefore not be offered by sequential pattern mining or other known optimiza-
tions for simpler “market basket”-type data such as [11]. In addition to the TC and
RPG optimizations, the auto-fitting of the warning period, and the ability to combine
source measures into better sentinel rules, adds to the distance between our solution
and optimizations offered in prior art such as [3, 24, 46, 48, 49, 57, 59].



3.1 Introduction 37

Gradual rule mining [10] is a process much like association rules, where the cat-
egorical data are created by mapping numerical data to fuzzy partitions, and thus this
technique works on numerical data similar to our solution. However, similar to asso-
ciation rules and sequential patterns, gradual rule mining does not have the schema
level property of sentinels that allows our solution to create the strong bi-directional
rules. Moreover, the primary objective of gradual rules is to describe the absolute
values of a measure, whereas our solution operates on changes in the measure val-
ues. Therefore, for similar reasons as mentioned above, gradual rule mining does not
have the ability to use the TC and RPG optimizations, and neither does it have the
ability to auto-fit a warning period for a given rule.

Other approaches to interpreting the behavior of data sequences are various re-
gression [4] and correlation [26, 60] techniques which attempt to describe a func-
tional relationship between one measure and another. Similar to gradual rules, these
techniques are also concerned with the absolute values of a measure, as opposed to
sentinels that are based on changes in the measure values. With regards to the out-
put, sentinels are more specific “micro-predictions”, and are thus complementary to
these techniques. Sentinels are useful for discovering strong relationships between
a smaller subset within a dataset as explained in Chapter 2, and thus they are useful
for detecting warnings whenever changes (that would otherwise go unnoticed) in a
relevant source measure occur.

The novel contributions in this chapter are as follows: First we generalize the
concept of sentinel rules from previous work into generalized sentinel rules, that al-
low multiple source measures to be combined in sentinels, and that can facilitate
auto-fitting of the best warning period. In this context, we define two new qualita-
tive measures for sentinels, namely: Balance and Score, and we expand the previous
notation to support our generalization. Secondly, we present an algorithm for sen-
tinel discovery that can combine multiple source measures and auto-fit the optimal
warning period within a given range. In the algorithm, we introduce and define the
optimization technique called Reduced Pattern Growth, and we apply Hill Climbing
for further optimization. In addition, our algorithm uses a so-called Table of Combi-
nations that efficiently supports these optimization techniques. Third, we assess the
computational complexity and conduct extensive experiments to validate our com-
plexity assessment, and we verify that our optimized algorithm scales well on large
volumes of real-world and synthetic data.

The remainder of the chapter is structured as follows: Section 3.2 presents the
formal definition, Section 3.3 presents the new SentHiRPG algorithm and its im-
plementation. Section 3.4 presents a scalability study, and Section 3.5 presents our
conclusions and proposals for future work.
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3.2 Problem Definition

Running Example: We imagine having a company that sells products world-wide,
and that we, in addition to the traditional financial measures such as revenue, Rev,
have been monitoring the environment outside our organization and collected that
information in three measures. The measure NBlgs represents the number of times
an entry is written on a blog where a user is venting a negative opinion about our
company or products. The measure CstPrb represents the number of times a cus-
tomer contacts our company with a problem related to our products. The measure
WHts represents the number of human hits on our website. We want to investigate
whether we can use changes on any of the external measures (NBlgs, CstPrb, WHts)
to predict a future change on the internal measure (Rev). To generalize our terminol-
ogy, we call the external measures NBlgs, CstPrb, and WHts source measures and the
internal measure, Rev, the target measure.

In Table 3.1 we see two subsets from our database, the source measures repre-
senting the external environment have been extracted for January to October 2008,
and the target measure has been extracted for February to November 2008. For both
source and target measures we have calculated the cases where a measure changes
10% or more, either up or down, from one month to another.

(a) Source
Month NBlgs CstPrb WHts Indications
2008-Jan 80 310 1227
2008-Feb 89 390 1101 NBlgsN,CstPrbN,WHtsH
2008-Mar 90 363 1150
2008-Apr 99 399 987 NBlgsN,WHtsH
2008-May 113 440 888 NBlgsN,CstPrbN,WHtsH
2008-Jun 101 297 1147 NBlgsH,CstPrbH,WHtsN
2008-Jul 115 323 1003 NBlgsN,WHtsH
2008-Aug 105 355 999
2008-Sep 93 294 993 NBlgsH,CstPrbH
2008-Oct 100 264 1110 CstPrbH,WHtsN

(b) Target
Month Rev Indications
2008-Feb 1020
2008-Mar 911 RevH
2008-Apr 1001
2008-May 1015
2008-Jun 900 RevH
2008-Jul 1025 RevN
2008-Aug 1100
2008-Sep 1090
2008-Oct 970 RevH
2008-Nov 1150 RevN

Table 3.1: Source and target measure data with indications

Formal Definition: Let C be a multi-dimensional cube containing a set of facts,
C = {(d1, d2, ..., dn,m1,m2, ...,mp)}. The dimension values, d1, d2, ..., dn, be-
long to the dimensions D1, D2, ..., Dn, and we refer to the “dimension part” of a fact,
(d1, d2, ..., dn), as a cell. We say that a cell belongs to C, denoted by (d1, d2, ..., dn) ∈
C, when a fact (d1, d2, ..., dn,m1,m2, ...,mp) ∈ C exists. We say that a measure
value, mi, is the result of a partial function, Mi : D1 × D2 × ... × Dn ↪→ ℜ, de-
noted by, Mi(d1, d2, ..., dn) = mi, if (d1, d2, ..., dn) ∈ C and 1 5 i 5 p. We
assume, without loss of generality, that there is only one time dimension, T , in C,
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and that T = D1, and subsequently t = d1. In addition, we assume that measures
M1, ...,Mp−1 are source measures, and that measure Mp is the target measure. An
indication, Indi, tells us whether a measure, Mi, changes by at least α over a period,
o. We define Indi(C, t, o, d2, d3, ..., dn) as shown in Formula 3.1.

if (t, d2, d3, ..., dn) ∈ C ∧ (t+ o, d2, d3, ..., dn) ∈ C then Indi(C, t, o, d2, d3, ..., dn) =
MiN if

Mi(t+ o, d2, d3, ..., dn)−Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
= α

MiH if
Mi(t+ o, d2, d3, ..., dn)−Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
5 −α

Mi I otherwise

(3.1)

We refer to MiN as a positive indication, to MiH as a negative indication, and to
Mi I as a neutral indication. We define a wildcard, ?, meaning that Mi? can be either
MiN, MiH, or Mi I. In addition, we define the complement of an indication as fol-
lows: MiN = MiH, MiH = MiN, and Mi I = Mi I. We expand the complement
to work for sets by taking the complement of each element, and we expand the wild-
card to work for sets meaning that any member of the set can have any indication. An
indication set, IndSet(C, t, o, d2, d3, ..., dn), as shown in Formula 3.2, is a set of all
possible combinations of indications (of up to RuleLen source measures) that occur
for one or more source measures in the same cell. We use MaxSource as a threshold
for the maximum number of source measures we want to combine in an IndSet, and
we denote the number of indications in a given IndSet by RuleLen(IndSet).

IndSet(C, t, o, d2, d3, ..., dn) = {{Indi1 (C, t, o, d2, d3, ..., dn), ...,
Indiq (C, t, o, d2, d3, ..., dn), ..., IndiRuleLen (C, t, o, d2, d3, ..., dn)}|
1 5 RuleLen 5 MaxSource ∧ 1 5 iq 5 p− 1}

(3.2)

A sentinel set, SentSet, is defined as all indications in a cube, C, given the offset,
o, where the source measure indication sets, ISs , are paired with the indications on
the target measure, Indp , that occur a given warning period, w, later.

SentSet(C, o, w) = {(ISs , Indp(C, t+ w, o, d2, d3, ..., dn))|
ISs ∈ IndSet(C, t, o, d2, d3, ..., dn) ∧
(t, d2, d3, ..., dn) ∈ C ∧ (t+ w, d2, d3, ..., dn) ∈ C

∧ ∀Indm ∈ ISs : (Indm ̸= Mm I)}

(3.3)

We say that (IndSource , IndTarget) ∈ SentSet(C, o, w) supports the indication
rule denoted IndSource → IndTarget . The support of an indication rule, denoted by
IndSuppSource→Target , is the number of (IndSource , IndTarget) ∈ SentSet(C, o, w)
which support the rule. Similarly, the support of Source, IndSuppSource , is the num-
ber of (IndSource ,Mp?) ∈ SentSet(C, o, w). In Table 3.1, we have calculated the
indications (Formula 3.1) with α = 10% as well as arranged the indications for the
source measures in the largest possible indication set (Formula 3.2) for each month.
The combination of the source and target measures is equivalent to a sentinel set
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(Formula 3.3) where o and w are both set to 1 month. We see that for example the
indication rule NBlgsN→ RevH has a support, IndSuppNBlgsN→RevH, of 2, and the
indication NBlgsN has a support, IndSuppNBlgsN, of 4.

A generalized sentinel rule is an unambiguous relationship between Source and
Target, that consists of one or two indication rules. Therefore, we say that there are
only two potential sentinels between a set of source measures, Source, and a tar-
get measure, Target, namely: Source  Target or Source  inv(Target), where
inv represents an inverted relationship (intuitively, when source changes up, target
changes down and vice versa). The relationships between the two potential general-
ized sentinel rules and their indication rules are defined in Formula 3.4.

Source  Target = {IndSource → IndTarget , IndSource → IndTarget}

Source  inv(Target) = {IndSource → IndTarget , IndSource → IndTarget}
(3.4)

If two contradicting indication rules are both supported in SentSet, e.g.
IndSource → IndTarget and IndSource → IndTarget , we use the contradiction elimi-
nation process (Formula 3.5) to eliminate the indication rules with the least support
that have the same premise, but a different consequent, and vice versa. However, in
order to reflect the contradiction between the indication rules as a less desired feature,
we reduce the support of the “cleansed rule” by deducting the support of the rules we
eliminated from the support of the rules we preserve.

ElimSuppSource Target = IndSuppSource→Target − IndSuppSource→Target

+ IndSuppSource→Target − IndSuppSource→Target

(3.5)

Essentially, we force our generalized sentinel rule to be either Source  Target
or Source  inv(Target), and thereby we effectively eliminate both contradict-
ing (same premise but different consequent) and orthogonal (different premise but
same consequent) indication rules. ElimSupp represents the sum of the support
for the indication rule(s) in a sentinel after elimination of its contradictions, and if
ElimSuppSource Target is positive, it means that the sentinel Source  Target
contains the strongest indication rules (as opposed to Source  inv(Target)).
Subsequently, SentRules(C , o,w) (Formula 3.6) conducts the elimination process
and extract the generalized sentinel rules from C with the offset o and the warning
period w. We note that SentRules only contain rules where ElimSupp > 0, this way
we eliminate sentinels composed by indication rules that completely contradict each
other (ElimSupp = 0).

SentRules(C , o,w) =
{Sources  Targetp | (Sources?,Targetp?) ∈ SentSet(C, o, w)}
if ElimSuppSources Targetp > 0
{Sources  inv(Targetp) | (Sources?,Targetp?) ∈ SentSet(C, o, w)}
if ElimSuppSources inv(Targetp) > 0

(3.6)
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BalanceSource Target =
4× |A| × |B|
(|A|+ |B|)2

where A = IndSuppSource→Target − IndSuppSource→Target

B = IndSuppSource→Target − IndSuppSource→Target

(3.7)

SentSuppSource Target =
IndSuppSource , ifBalanceSource Target = 0 ∧ IndSuppSource > 0

IndSuppSource , ifBalanceSource Target = 0 ∧ IndSuppSource > 0

IndSuppSource + IndSuppSource , otherwise

(3.8)

ConfSource Target =
ElimSuppSource Target

SentSuppSource Target
(3.9)

To determine the quality of a sentinel, Source  Target ∈ SentRules(C , o,w),
we define Formulae 3.7 to 3.9. Balance (Formula 3.7) is used to determine the de-
gree to which a generalized sentinel rule is uni-directional (Balance=0) or completely
bi-directional (Balance=1), meaning that there are exactly the same amounts of pos-
itive and negative indications on the target measure in the data used to discover the
rule. SentSupp (Formula 3.8) tells us how often the premise of the sentinel occurs,
and Conf (Formula 3.9) tells us how often, when the premise occurs, the consequent
occurs within w time. We denote the minimum threshold for SentSupp by σ, the min-
imum threshold for Conf is denoted by γ, and the minimum threshold for Balance is
denoted by β. With these definitions, we say that a sentinel, A  B, with an offset,
o, and a warning period, w, exists in C when SentSuppA B = σ, ConfA B = γ,
and BalanceA B = β. We use the following notation when describing a generalized
sentinel rule: we use inv relative to the first source measure which is never inverted.
The order of the source measures in a rule is unimportant for its logic, thus source
measures can be ordered as it is seen most fit for presentation purposes. In the case
where the rule is uni-directional, we addN orH to both the source and the target mea-
sure to express the distinct direction of the sentinel. We add ∧ between the source
measures, when there is more than one source measure in a rule, e.g., A∧B∧C  D,
A ∧ inv(B) C, and AN ∧BH  CN.

If we revert to our running example and apply Formulae 3.4, 3.5, and 3.6 to the
data, we get Table 3.2 as output. Using Formulae 3.7, 3.8, and 3.9, we test each rule
to see if it meets the thresholds MaxSource = 3, σ = 3, γ = 60%, and β = 70%.
The column Conformance lists the result of this test. We use same order as Table 3.1
to ease the readability. With regards to the failing rules we should note that the uni-
directional rules NBlgsN→ RevH and NBlgsN ∧ CstPrbN→ RevH have higher
confidence than the bi-directional rules based on the same indications. However since
our threshold for balance is greater than zero, these uni-directional rules would also
fail and are thus not listed in the table. In Table 3.2, the generalized sentinel rules
found can be ordered by either RuleLen, SentSupp, Conf, Balance, or a combination
in order to describe the quality of the rules. However, when using an optimization
algorithm, e.g, hill climbing, it is desirable to be able to describe the quality of a rule
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with just a single number. For this purpose we denote the maximal value of ElimSupp
for any sentinel in SentRules(C, o, w) by MaxElimSupp(C, o, w).

Score(Source  Target) = (1− wp +
(1 +Maxw − w)× wp

Maxw
)

× (
1

2
+

1 +MaxSource − RuleLen(Source)

MaxSource × 2
)× ElimSuppSource Target

MaxElimSupp(C, o, w)

× ConfSource Target × (
1

2
+

BalanceSource Target

2
)

(3.10)

We define Score for a sentinel, Source  Target ∈ SentRules(C, o, w), as
shown in Formula 3.10. With this definition of Score, we introduce the threshold,
Maxw, which is the maximum length of the warning period, w, we are willing to
accept. The constant, wp, represents the warning penalty, i.e., the degree to which
we want to penalize rules with a higher w (0=no penalty, 1=full penalty). The idea
of penalizing higher values of w is relevant if a pattern is cyclic, e.g., if the indica-
tion of a sentinel occurs every 12 months, and the relationship between the indica-
tions on the source measure(s) and the target measure is less than 12 months, then
a given rule with a warning period w is more desirable than the same rule with a
warning period w+12. We also take into consideration that it is desirable to have
shorter, general rules with low RuleLen. This prevents our algorithm from “over-
fitting” rules [45] and thus generating very specific and therefore irrelevant rules.
In addition, Score takes into consideration the actual number of times the rule oc-
curs in a cube, adjusted for contradictions, ElimSupp, as well as the confidence,
Conf, of the rule. Finally, we consider the Balance of the rule, since we have a
preference for rules that are bi-directional. In Table 3.2 the ordering by Score has
proven useful, and we note that the two bottom rules with the lowest Score are also
the rules that fail to meet the thresholds we set. Given these thresholds, and con-
stants set to wp = 1

2 ,Maxw = 10, we would expect a conforming rule to have:

Score = (1− 1
2 +

(1+10−1)× 1
2

10 )× (12 +
1+3−3
3×2 )× 3×0.6

4 ×0.6× (12 +
0.7
2 ) = 0.15. We

should note that this is only a “rule of thumb” since the values in Formula 3.10 may

SentRules RuleLen SentSupp Conf Balance Score OK
(ElimSupp) ?

CstPrb ∧ inv(WHts) inv(Rev) 2 4 (4) 100% 100% 0.83 OK
WHts  Rev 1 6 (4) 67% 100% 0.67 OK
NBlgs ∧ CstPrb ∧ inv(WHts) inv(Rev) 3 3 (3) 100% 89% 0.47 OK
CstPrb  inv(Rev) 1 5 (3) 60% 89% 0.43 OK
NBlgs ∧ inv(WHts) inv(Rev) 2 5 (3) 60% 89% 0.35 OK

NBlgs ∧ CstPrb  inv(Rev) 2 4 (2) 50% 0% 0.10 Failed
NBlgs  inv(Rev) 1 6 (2) 33% 0% 0.08 Failed

Table 3.2: Sentinels ordered by their respective Conformance and Score.
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vary, thus the thresholds needs to be inspected individually to determine if a rule is
conforming or not. With Score as a uniform way to assess the quality of a generalized
sentinel rule, we can now define Optimalw(C,o), as shown in Formula 3.11, which is
the value of w, 1 5 w 5 Maxw , where SentRules(C,o,w) contains the rule with the
highest Score. The reason for the construction details of Score is elaborated further
in Chapter 5.

Optimalw(C, o) = w such that 1 5 w,w′ 5Maxw ∧ ∃S ∈ SentRules(C , o,w) :

(∀w′ ̸= w : (∀S ′ ∈ SentRules(C , o,w ′) : (Score(S) = Score(S ′))))
(3.11)

SentRulesPruned(C , o,w) = S ∈ SentRules(C , o,w) |
̸ ∃S ′ ∈ SentRules(C , o,w) : (Score(S ′) = Score(S) ∧ IndSourceS′ ⊂ IndSourceS )}

(3.12)

Having found the optimal w, it is also desirable to prune the generalized sentinel
rules such that we only output the best rules in terms of Score, and the shortest rules in
terms of number of source measures. For this purpose, we use the SentRulesPruned
function, as shown in Formula 3.12, that eliminates rules with poor quality (lower
Score) if a shorter rule exists with at least as good a Score, and where the indication
set is a proper subset of the longer rule.

We say that SentRulesPruned(C, o,Optimalw(C, o)) ordered by their respec-
tive Score are the best sentinels in a database, C, with the offset, o. Using the
SentRulesPruned function, we note that NBlgs ∧ CstPrb ∧ inv(WHts) inv(Rev)
in third line in Table 3.2 would be eliminated since the shorter rule
CstPrb ∧ inv(WHts) inv(Rev) has a better Score. In other words, we do not
improve the quality by adding NBlgs.

3.3 Discovering Generalized Sentinel Rules

Preliminaries: To discover all generalized sentinel rules in a cube, C, we intuitively
need to test all possible rule combinations where the number of source measures com-
bined varies from 1 to MaxSource, and the warning period, w, varies from 1 to Maxw.
However, as an alternative to this brute force approach, we apply two good approx-
imations to improve performance, namely, Reduced Pattern Growth (RPG) to opti-
mize the combining of source measures, and hill climbing to optimize the auto-fit of
warning periods. Intuitively, it is not hard to imagine that the number of source mea-
sures has a significant impact on the performance of the algorithm since they can each
have indications in two directions, and all of these directions can be combined. This
means that the total number of combinations for k source measures is

∑l
x=1

2k!
(2k−x)!

where l = MaxSource. If we preserve the order of the source measures we can
reduce the number of potential rules (permutations) to

∑l
x=1

2k!
l!(2k−x)! , however, the
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number of combinations still explode when a significant amount of source measures
needs to be examined. Therefore, there is a performance reward if we can prune the
source measures that are unlikely to become part of any good rule, at an early stage in
the algorithm. From experiments on real-world data, we know that the likelihood of
individual source measures being part of a good rule can be described as a power law,
meaning that a few source measures are very likely to be part of many good rules for
a given target measure, whereas the majority of source measures are not likely to be
part of a good rule at all. Given this property of source measures, the ability to prune
has a significant potential for performance improvement. In addition to reducing the
number of source measures we examine, we can save time and memory by storing
only the best rules in memory. The RPG optimization, described below, has these
two abilities.

The Table of Combinations (TC) (Table 3.3) is an intermediate table used for
optimization. The TC is generated in one pass over the cube, C. We use a slid-
ing window of Maxw + o rows in memory for each combination of (d2, d3, ..., dn)
to update the indications (Formula 3.1) on source and target measures for w ∈
{1, 2, ...,Maxw}. For each occurrence of combined source measure indications,
(Indm1 , ..., Indmp−1 ), the target measure indication, Indmp , is calculated for all val-
ues of w ∈ {1, 2, ...,Maxw}, and the indications, ElimSuppw , are mapped to inte-
gers as follows: Inc→1, Dec→-1, and Neutral→0. The discretized values are added
to the fields ElimSuppw on the unique row in TC for the combination
(Indm1 , ..., Indmp−1 ). In addition, the field CombSupp on this row is increased
by 1. If a combination, (Indm1 , ..., Indmp−1 ), does not exist in TC, an additional
row is appended with the new combination. The TC holds all indication rules with
RuleLen(Source) = p − 1 with their respective ElimSupp (Formula 3.5), denoted
by ElimSuppw=x for all x ∈ {1, 2, ...,Maxw}. We store the additional informa-
tion about the direction of the target measure in the sign of ElimSuppw (positive=up,

IndM1 IndM2 IndM3 ... IndMp−1
CombSupp ElimSupp ElimSupp ElimSupp ... ElimSupp

w = 1 w = 2 w = 3 ... w = Maxw
Neutral Neutral Dec Dec 1 1 -1 -1 1
Neutral Inc Inc Inc 2 0 -2 1 1
Neutral Dec Dec Dec 3 -1 3 1 -1
Neutral Dec Neutral Dec 1 1 1 -1 0
Neutral Dec Dec Inc 1 -1 0 0 -1
Neutral Neutral Inc Dec 1 0 0 -1 1
Neutral Inc Neutral Dec 1 0 -1 1 1
Neutral Inc Inc Inc 1 -1 1 1 -1

Inc Inc Dec Dec 4 3 4 -1 0
Dec Inc Inc Inc 3 -3 -3 0 0

Table 3.3: Logical Table of Combinations (TC) Example
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negative=down). The field CombSupp in TC holds the support of the given source
measure indication combination, and is used for calculating SentSupp (Formula 3.8).
Once generated, the TC is a highly compressed form representing the information
needed to mine all potential sentinel rules in C. In the TC, a rule,
SentRule ∈ SentRules(C , o,w), has SentSupp =

∑
CombSupp (Formula 3.8)

when selecting the rows that support either IndSourceSentRule
or IndSourceSentRule

. Simi-
larly, the components for Balance (Formula 3.7) can be found as
A =

∑
x∈X ElimSuppw where X are the rows that support IndSourceSentRule

, and
B =

∑
y∈Y ElimSuppw where Y are the rows that support IndSourceSentRule

. We re-
call from Formulae 3.4 and 3.6 that a bi-directional sentinel has Balance > 0 and
thus require a pair of indication rules with opposite directions.

In Table 3.3, the sentinel M1  Mp has SentSuppM1 Mp = 7, A = 3,
and B = −3, when w = 1 (as seen in column ElimSuppw=1 ), meaning that the
rule has ElimSuppM1 Mp = |A| + |B| = 6. We note that A and B have been
cleansed for contradictions prior to insertion in the TC, and that the sign is a prop-
erty used by the TC and should thus be omitted. We have ConfM1 Mp = 0.857 and
BalanceM1 Mp = 1 when the warning period, w, is 1. Similarly, we can find the
values for M3 ∧Mp−1  inv(Mp) by inspecting the rows where M3 ̸= Neutral ∧
Mp−1 ̸= Neutral. If we set w = 2, we find SentSuppM3∧Mp−1 inv(Mp) = 14, A =
−4, and B = 6, ElimSuppM3∧Mp−1 inv(Mp) = 10, thus ConfM3∧Mp−1 inv(Mp) =
0.714. In addition, we have BalanceM3∧Mp−1 inv(Mp) = 0.960. A sentinel is there-
fore typically combined from multiple rows in the TC, i.e., a rule with
RuleLen(Source) 5 MaxSource will need a full scan of TC to identify ElimSupp,
Balance, and SentSupp because MaxSource << p. Since we do not know which
source measure indications occur at the same time, there is no generic sorting method
that can optimize the scans further.

Reduced Pattern Growth (RPG) is a method that delivers a good approximation
of the top sentinel rules, and which is much more efficient than a full pattern growth of
all combinations of source measures. The quality of the approximation is examined
in detail in Section 3.4, specifically in Figure 3.4(a). In the RPG process, we identify
the source measures, that are most likely to be part of the best generalized sentinel
rules for a given value of w, as an alternative to testing all combinations of source
measures. We do this by inspecting the influence of the source measure in the TC,
defined as the number of rows in the TC in which a source measure has indications
different from neutral while at the same time the indication on the target measure
is different from neutral (zero in Table 3.3). With this definition we can assess the
influence, Inf, of all source measures for each value of w as shown in Table 3.4. We
note that the source measure Mp−1 is the most influential from our TC (Table 3.3),



46 Efficient Discovery of Generalized Sentinel Rules

w InfM1 InfM2 InfM3 InfMp−1
InfAll InfM2+M3+Mp−1

Pareto

1 2 6 6 7 22 19 86%
2 2 7 6 8 25 21 84%
3 1 6 6 8 24 20 83%
...

Maxw 0 5 6 7 18 18 100%

Table 3.4: Source Measure Influence & Pareto Example

specifically it has an influence of 8 for values w = 2 and w = 3, and it has an
influence of 7 for values w = 1 and w = Maxw . With the notion of the source
measures “behaving” in accordance with a power law, we apply a Pareto principle to
select only the most influential source measures, meaning that we select the source
measures with a total influence that account for more than RPGpareto % of the sum
of the influence of all source measures. In Table 3.4 we see that source measures M2,
M3, and Mp−1 account for more than 80% of the influence for all values of w, i.e.
setting RPGpareto = 80% would mean that we only consider these three measures
for the values of w shown in the table. Alternatively, setting RPGpareto = 85%
would mean that source measure M1 would also be included in the pattern growth
for values w = 2 and w = 3. From this point, we grow sentinels from the measures
identified. Starting with 1 source measure, we add the remaining influential source
measures one at a time to create longer rules until the maximum number of source
measures we desire is reached. In this process we only store a sentinel, and continue
to add source measures, if the added source measures give a higher Score.

Hill Climbing identifies the warning period, w, where the sentinel with the highest
Score exists as an alternative to calculating all max(Score) for all w. We optimize
the hill climbing process by changing w +22 in the direction of the local maximum
while Score increased. Once Score decreases, we have passed a local maximum, and
we test Score for w − 1 as well to ensure that we have not stepped over the local
maximum. During the hill climb, the set of sentinels with the highest Score resides in
memory until a better set for another value of w is found. Upon termination, the best
set of generalized sentinel rules SentRulesPruned(C, o,Optimalw(C, o)) resides
in memory.

The SentHiRPG Algorithm: We assume without loss of generality that of the p
measures in the cube, C, M1...Mp−1 are the source measures and Mp is the target
measure.
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Step 1 scans the cube, C, and builds the Table of Combinations (TC) (Table 3.3).
Since the data is received in sorted order by the time-dimension, t, for each com-
bination of (d2, d3, ..., dn), we only need a sliding window of Maxw + o rows in
memory to update the indications (Formula 3.1) on source and target measures for
w ∈ {1, 2, ...,Maxw}. Using the procedure UpdateTC, each unique combination of
source measure indications, (Indm1 , ..., Indmp−1 ), that exists in the cube, C, is added

Algorithm: SentHiRPG
Input: A list of facts from a cube, C, ordered by (d2, d3, ..., dn, t), an offset, o, a maximum warning
period length, Maxw, a maximum number of source measures per rule, MaxSource, a warning penalty,
wp, a threshold for RPG, RPGpareto, a threshold for indications, α, a minimum SentSupp threshold, σ,
a minimum Conf threshold, γ, and a minimum Balance threshold, β.
Output: Sentinel rules with a given warning period, Optimalw, and their respective SentSupp, Conf,
Balance, and Score.
Method: Sentinel rules are discovered as follows:

Procedure UpdateTC. For each cell pair, {(t, d2, d3, ..., dn), (t + o, d2, d3, ..., dn)} in memory,
calculate the indications (Formula 3.1) using α on source measures m1...mp−1, discretize
Indmi ∈ (Indm1 , ..., Indmp−1 ) as Inc, Dec, or Neutral. If combination (Indm1 , ..., Indmp−1 )
does not already exist in Table of Combinations (TC), append row to TC. For each
w ∈ {1, 2, ...,Maxw}, for the combination (Indm1 , ..., Indmp−1 ), update the value of
the indication, ElimSuppw , by adding the indication (Formula 3.1) based on the pairs,
{(t + w, d2, d3, ..., dn), (t + w + o, d2, d3, ..., dn)} in memory, discretized as 1, -1, or 0. In
addition, increase the value of the combination support counter, CombSupp, by 1.

Function RPGmeasures(w); Returns a set of source measures. For each source measure, Mi ∈
{M1...Mp−1}, calculate influence as

∑
ElimSuppw for all rows in TC where mi ̸= Neutral.

Return source measures in ascending order of influence until
∑

influence of source measures returned∑
influence of all source measures =

RPGpareto.

1. Scan C, and when the sliding window of Maxw + o rows are in memory perform UpdateTC
whenever a new row is read. From this point keep only Maxw + o rows in memory by disre-
garding the oldest row whenever a new row is read until a new combination of (d2, d3, ..., dn)
occurs, at this point flush all rows and load new Maxw + o rows for the next combination of
(d2, d3, ..., dn). Repeat UpdateTC whenever a new row is read until the scan of C is complete,
and while the sliding window of Maxw + o rows exist in memory.

2. Find the value of w that corresponds to Optimalw(C,o) (Formula 3.11) by hill climbing on the
value of max(Score(SentRules(C,o,w))) (Formulae 3.6 and 3.10). The generalized sentinel rules
for each tested w, SentRules(C,o,w), are “grown” from 1 to MaxSource in RuleLen by combining
the source measures returned by RPGmeasures(w). Only rules with source measure combina-
tions where Score improves when adding an additional source measure are stored, meaning that
the output will be equivalent to SentRulesPruned(C, o, w) (Formula 3.12). While testing dif-
ferent values of w, the sentinels with the highest score at any given time is stored in memory
and not flushed until a better set of rules exists for another value of w.

3. Output the “best” generalized sentinel rules from memory, i.e.,
SentRulesPruned(C, o,Optimalw(C, o)) (Formula 3.12), where SentSupp >= σ,
Conf => γ, and Balance >= β.
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or updated in the TC. For each source measure combination, the indications on the
target measure, Indmp , are calculated for all values of w ∈ {1, 2, ...,Maxw}, and
the indications, ElimSuppw , are mapped to integers as follows: Inc→1, Dec→-1, and
Neutral→0. The discretized values are added to the fields ElimSuppw on the unique
row in TC for the combination (Indm1 , ..., Indmp−1 ). In addition, the field CombSupp
on the row is increased by 1 each time the source measure combination occurs. In
other words, as we scan the cube, C, new unique combinations of (Indm1 ...Indmp−1 )
make the number of rows in the TC grow. Every time one of these combinations are
found during the scan, 1, -1, or 0 is added to the corresponding value for ElimSuppw ,
and the value of CombSupp is increased by 1. Following Step 1, we have the contri-
bution to ElimSupp (Formula 3.5) for all values of w ∈ {1, 2, ...,Maxw} as well as
SentSupp (Formula 3.8) for each source measure combination in the TC.

When selecting the rows that support either IndSourceSentRule
or IndSourceSentRule

in the TC, a rule, SentRule ∈ SentRules(C , o,w), has SentSupp =
∑

CombSupp
(Formula 3.8). Similarly, the components for Balance (Formula 3.7) can be found
as A =

∑
x∈X ElimSuppw where X are the rows that support IndSourceSentRule

, and
B =

∑
y∈Y ElimSuppw where Y are the rows that support IndSourceSentRule

. We
should note that since we express the direction (Inc or Dec) with the sign of the
indications on the target measure, ElimSuppw , we need to use the absolute values
for each direction when calculating ElimSupp, thus we have ElimSupp = |A|+ |B |
(Formulae 3.5 and 3.7). In the conceptual description of the TC, we calculated
SentSuppM1 Mp = 7, ConfM1 Mp = 0.857 and BalanceM1 Mp = 1 for the
sentinel M1  Mp when w = 1. Calculating Score with these values allows us
to compare the quality of any sentinel combined from the source measures and the
target measure in C using the TC.

In Step 2 we identify the best value of w, Optimalw(C,o) (Formula 3.11), which
is defined as the value of w where the sentinel(s) with the highest Score exist(s)
(Formula 3.10). We use two optimization techniques for this purpose: hill climbing
and Reduced Pattern Growth as explained above. Hill climbing is a well-known
optimization technique [33] and it is an alternative to testing all values of w ∈
{1, 2, ...,Maxw} to identify max(Score(SentRules(C,o,w))) (Formulae 3.6 and 3.10).
During the hill climbing process, whenever a value of w needs to be inspected to
identify max(Score(SentRules(C,o,w))), we apply the Reduced Pattern Growth (RPG)
function, RPGmeasures. Having identified the most influential source measures, we
“grow” the sentinels with RuleLen=1 to “longer” rules until RuleLen=MaxSource
by combining the source measures returned by RPGmeasures for a given value of w.
During this process we only store sentinels with greater RuleLen if the extended Rule-
Len translates into a higher Score. This means that we are growing a set of sentinels
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equivalent to SentRulesPruned(C, o, w) (Formula 3.12). Once all sentinels have
been grown for a particular value of w, the max(Score(SentRules(C,o,w))) value is re-
turned to the hill climbing process to determine whether to examine more values of w
or not. During the entire hill climb, the set of sentinels with the highest Score so far is
stored in memory until a better set is found for another value of w. Upon termination,
the best set of generalized sentinel rules SentRulesPruned(C, o,Optimalw(C, o))
resides in memory.

In Step 3 the sentinels that conform with the thresholds for SentSupp, Conf and
Balance from the set SentRulesPruned(C, o,Optimalw(C, o)) are output from mem-
ory.

Computational Complexity: The algorithm has a complexity ofO(n+c×p(q)l×
kl ×m) where n is the size of C, c is the size of TC, p the percentage of remaining
source measures expressed as a function of q, where q is RPGpareto, l is MaxSource,
and m is Maxw. In Section 3.4 we verify this assessment through extensive experi-
ments.

Implementation: The SentHiRPG algorithm variants were implemented in Mi-
crosoft C# and compiled into a stand-alone 64-bit executable file. The initial version
loaded the data directly from a Microsoft SQL Server during Step 1. However, this
approach was not able to feed the data fast enough to stress test the algorithm. As a
consequence, we loaded all data into main memory and from here into Step 1. This
approach is realistic (see Section 3.4) and it provided sufficient bandwidth to stress
the algorithm in order to see the effect of the optimizations applied. The TC built
in Step 1 is stored in a hash table where each source measure indication for a row is
encoded into 2 bits. In Step 2, when testing a given value of w, we found that testing
all combinations of source measures from RuleLen = 1 to RuleLen = MaxSource,
and storing only longer rules if Score improved, was far more efficient than a genetic
algorithm without mutation. We use the following algorithm variants: Brute: brute
force, both optimization options are off. Hi: Hill climbing optimization activated,
RPG off. RPG: Reduced Pattern Growth activated, hill climb off. HiRPG: both Hill
climb & Reduced Pattern Growth activated.

3.4 Experiments

We use a range of synthetic datasets and a range of real-world datasets for the ex-
periments. The synthetic datasets closely resemble our running example and have
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the same rule relationships, since the three source measures are duplicated to create
a dataset with any number of source measures. The synthetic datasets range from
1,000,000 to 10,000,000 rows in 1,000,000 row intervals, with 50 source measures
and one target measure. We note that the sizes of these datasets are huge compared to
the real-world dataset. In general, we would expect any real application of sentinels
to work on significantly fewer rows since we typically aggregate the data, e.g., into
months or weeks, before finding sentinels. In addition, we have generated datasets
with 1,000,000 rows and with 1, 10, 20, 50, 100 and 150 source measures and one
target measure. The real-world datasets are produced from the operational data ware-
house of TARGIT A/S. Based on experience with more than 3,800 customers world-
wide, we will characterize this dataset as typical for a medium-sized company with
a mature data warehouse. The original dataset contains 241 months (20.1 years) of
operational data scattered across 148 source measures. Descendants of this dataset
are produced by selecting a given number of source measures randomly to produce
datasets with 10, 20, 30, ..., 140 source measures. When nothing else is specified,
the synthetic dataset has 1,000,000 rows, and the algorithm has the following set-
tings: wp=0.5, MaxSource=3, Pareto=85%, and thresholds: SentSupp=3, Conf =0.6,
and Balance=0.7.

Scaling rows: In Figure 3.1 we validate that “HiRPG” scales linearly to 10 mil-
lion rows of data. In Figure 3.1(a) a “simple Brute” with TC optimization alone was
far more efficient than the baseline from prior art (Chapter 2). In Figure 3.1(b) we
compare “simple Brute” with “HiRPG ”; the distance between the lines is the cost
of auto-fitting w over 50 periods and combining 50 source measures. As expected,
based on our assessment of computational complexity, we observe “simple Brute”
and “HiRPG” to scale linearly in the number of rows (when the other factors are
kept constant). We observe the difference between “simple Brute” and “HiRPG”
to be close to constant for an explanation of the slight increase in runtime. In Fig-
ure 3.1(c) the variants scale linearly as expected, and not surprisingly the fully opti-
mized “HiRPG” is best.
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Scaling source measures: Scaling the number of source measures on real data has
an exponential impact on all variants, but “HiRPG” and “RPG” are very efficient in
reducing this impact. On the comparable synthetic dataset in Figure 3.2(b) “RPG”and
“Hi” are almost equal in efficiency, and we see “Hi” excelling when expanding the
fitting period in Figure 3.2(c). We attribute this to the existence of a true power
law in the real data, whereas in the synthetic data the relationships between source
and target measures are simply repeated for every three measures which means that
many measures have strong relationships. The fact that “Hi” improves further when
increasing Maxw is not surprising since hill climbing specifically reduces the cost
of increasing Maxw. We note that for the synthetic data “HiRPG” is still by far
the most efficient variant of the algorithm, and although the dominant computational
complexity is cubic in the number of source measures (MaxSource = 3 and the
other factors are also kept constant), the RPG optimization significantly reduces this
impact.

Scaling the fitting period: In this experiment, we vary the Maxw over which we fit
the warning period, w. In Figure 3.3(a) and (b) we see that “HiRPG” is performing
best when scaling Maxw, followed by “Hi”, that lack the RPG optimization. Both
variants scale linearly to the extreme fitting over 10,000 periods. In Figure 3.3(c)
the same lack of RPG optimization is more evident on real data, given the power law
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explained earlier. The slight decrease in runtime on the higher values of Maxw should
be seen in the context that the dataset has only 241 rows. Therefore, we should not
interpret the findings on the real dataset as sub-linear scalability. In other words, we
note that scaling the fitting of w scales linearly as expected from our assessment of
computational complexity (when the other factors are kept constant).

Scaling parameters RPGpareto and MaxSource: In Figure 3.4(a) we see the re-
call ( Number of Sentinels - false negatives

Number of Sentinels ) of the top 10 to 100 top-Score sentinels for
“HiRPG”. We note the significant drop in the recall at RPGpareto = 80. In Fig-
ure 3.4(b) we see performance for “HiRPG” when scaling RPGpareto. We notice
the impact cost when RPGpareto > 85. Combining Figure 3.4(a) and (b) suggests
a recall “sweet-spot” at RPGpareto = 85 (100% of top 10, and 88% of top 100)
before the performance cost “explodes”. In Figure 3.4(c) we scale MaxSource for
“HiRPG”. We note that performance on the real dataset passes the synthetic dataset
as the complexity “explodes”. We attribute this shift to the power law in the real
dataset, i.e., as MaxSource increases, so does the effect of the RPG process.

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90 100

R
ec

al
l p

er
ce

nt
ag

e

Top # of sentinel rules

RPGpareto=95, 100
RPGpareto=90
RPGpareto=85
RPGpareto=80

(a) Recall on Real Data, Maxw =

24

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 55  60  65  70  75  80  85  90  95 100

S
ec

on
ds

RPGpareto

Real data
Synthetic data

(b) Scaling RPGpareto

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1  2  3  4  5  6

S
ec

on
ds

MaxSource

Real data
Synthetic data

(c) Scaling MaxSource

Figure 3.4: HiRPG Performance when scaling parameters RPGpareto and MaxSource

Qualitative Experiment: Apart from assessing the performance of SentHiRPG,
we also found interesting and business relevant sentinels on the real-world data, e.g,
IF the number of people involved in a customer decision process decrease AND the
revenue from training increase, both by 10% or more, THEN the total revenue for
TARGIT A/S is expected to increase by 10% or more within three months; and vice
versa. In this particular case for TARGIT A/S, it was surprising that the number
of people involved in the decision process could be used as an indicator, whereas
it has been known for some time that selling more training will typically make a
customer expand his solution. Intuitively, it makes sense that if more people are
involved in a decision process, then it takes more time, and therefore less revenue
will be generated on the short-term. In Chapter 5 these sentinels and their business
potential is described in greater detail.
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3.5 Conclusion and Future Work

We have proposed a novel approach for discovering so-called generalized sentinel
rules (sentinels) in a multi-dimensional data cube for business intelligence. We ex-
tended prior work to allow multiple measures to be combined into better sentinels
using the novel qualitative measures Balance and Score. In addition, these mea-
sures were used to auto-fit the best warning period for the sentinel. We presented
an algorithm that, given a target measure, could autonomously find the best warn-
ing period and output the best sentinels from this. In the algorithm we introduced a
novel table of combinations (TC) and a reduced pattern growth (RPG) approach, and
we demonstrated the optimization effect of these approaches in combination with a
hill-climbing optimization to produce from ten to twenty times improvement in per-
formance. We showed that our optimized algorithm scales linearly on large volumes
of data and when fitting warning period over large period intervals, and that it scales
close to linearly when combining large sets of source measures. We have previously
demonstrated that sentinels can find strong and general rules that would not be found
by sequential pattern mining or correlation techniques (Chapter 2), this obviously
holds even more for generalized sentinel rules.

For future work, a natural development would be to mine sentinels for multiple
target measures simultaneously to improve performance. Secondly, we could exploit
the multi-dimensional environment by having sentinel mining fit the aggregation level
on dimensions as well as select the location and shape of the data area. Third, a par-
allelization of SentHiRPG could improve scaling to datasets with even more source
measures.





Chapter 4

Using Sentinel Technology in the
TARGIT BI Suite

This chapter demonstrates so-called sentinels in the TARGIT BI Suite. Sentinels are
a novel type of rules that can warn a user if one or more measure changes in a multi-
dimensional data cube are expected to cause a change to another measure critical to
the user. We present the concept of sentinels, and we explain how sentinels represent
stronger and more specific rules than sequential patterns and correlation techniques.
In addition, we present the algorithm, implementation, and data warehouse setup
that are prerequisites for our demo. In the demo we present a dialogue where users,
without any prior technical knowledge, are able to select a critical measure, a number
of cubes, and a time dimension, and subsequently mine and schedule sentinels for
early warnings.

4.1 Introduction

Bringing data mining to the masses has been a failed quest by major business intel-
ligence (BI) vendors since the late 1990s [50]. From a business perspective, there
is an obvious potential to use the available computing resources to allow users in an
OLAP environment to use data mining for exploring data relationships that are prac-
tically impossible to find manually. We believe that integration of BI disciplines and
usability is the key to unlock the big potential of end user data mining that has not yet
reached the business users. With this in mind, we have implemented so-called sen-
tinels in the TARGIT BI Suite that is currently available to more than 274,000 users
across more than 3,800 organizations world-wide.
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A sentinel is a novel type of causal rule-based relationship; the concept and
formal definitions have been developed in a collaborative research project between
TARGIT A/S and Aalborg University (Chapters 2 and 5). Sentinels are discovered
through a data mining process, where changes in one or multiple source measures are
followed by changes to a target measure (typically a KPI), within a given time pe-
riod, referred to as the warning period. An example of a sentinel for a company could
be: “IF Number of Customer Problems go up and Website Traffic Volume goes down
THEN Revenue goes down within two months AND IF Number of Customer Prob-
lems go down and Website Traffic Volume goes up THEN Revenue goes up within
two months”. Such a rule will allow a BI system to notify a user to take corrective
action, e.g., if “Number of Customer Problems go up and Website Traffic Volume
goes down”.

Sentinels are based on the Computer Aided Leadership & Management (CALM)
theory [36]. The idea in CALM is to take the Observation-Orientation-Decision-
Action (OODA) loop (originally pioneered by “Top Gun” fighter pilot John Boyd
in the 1950s), and integrate BI technologies to drastically increase the speed with
which a user “travels” through the OODA loop. Sentinels improve the speed of the
OODA loop’s observation and orientation phases by giving the decision maker an
early warning (faster observation) that threatens a KPI. At the same time, the sentinel
highlights the threat (faster orientation) by listing the measure changes that appears to
be “causing” it. In other words, sentinels contribute with both synergy and efficiency
for a user cycling an OODA loop.

Sentinels are mined on the measures and dimensions of multiple cubes in an
OLAP database, as opposed to the “flat file” formats used by most traditional data
mining methods. Sentinels find rules that would be impossible to detect using tradi-
tional techniques, since sentinels operate on data changes at the schema level as op-
posed to absolute data values at the data level such as association rules and sequential
patterns typically do [5]. As explained in Section 4.2, the bi-directional sentinels are
stronger rules than those mined by sequential pattern mining (Chapter 5). In addition,
sentinels are more specific than the relationships that can be found using regression
techniques such as [60]. In this context, sentinels are a set of “micro-predictions”
that are complementary to regression and correlation techniques. Sentinels are useful
for discovering strong relationships between a smaller subset within a dataset (Chap-
ter 2), and thus they are useful for detecting warnings whenever changes (that would
otherwise go unnoticed) in a relevant source measure occur.

In Section 4.2, we present the concept of sentinels with a data example. In Sec-
tions 4.3 and 4.4 we present the sentinel mining algorithm and its context in the
TARGIT BI Suite. In Section 4.5 we demonstrate sentinel mining from a user context
in the TARGIT BI Suite. In Section 4.6 we conclude and present market feedback.
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(a) Source

Month PeoInv UniRev Change
2008-Jan 1 115
2008-Feb 2 115 PeoInvN
2008-Mar 2 100 UniRevH
2008-Apr 3 90 PeoInvN,UniRevH
2008-May 2 363 PeoInvH,UniRevN
2008-Jun 3 310 PeoInvN,UniRevH
2008-Jul 2 440 PeoInvH,UniRevN
2008-Aug 4 297 PeoInvN,UniRevH
2008-Sep 5 260 PeoInvN,UniRevH
2008-Oct 6 230 PeoInvN,UniRevH
2008-Nov 4 294 PeoInvH,UniRevN
2008-Dec 5 264 PeoInvN,UniRevH
2009-Jan 6 230 PeoInvN,UniRevH
2009-Feb 4 270 PeoInvH,UniRevN
2009-Mar 3 353 PeoInvH,UniRevN
2009-Apr 2 400 PeoInvH,UniRevN

(b) Target

Month Rev Change
2008-Apr 900
2008-May 1001 RevN
2008-Jun 1200 RevN
2008-Jul 750 RevH
2008-Aug 1001 RevN
2008-Sep 1100
2008-Oct 1250 RevN
2008-Nov 970 RevH
2008-Dec 850 RevH
2009-Jan 720 RevH
2009-Feb 1250 RevN
2009-Mar 930 RevH
2009-Apr 800 RevH
2009-May 1100 RevN
2009-Jun 1400 RevN
2009-Jul 1600 RevN

Table 4.1: The relationship between two source measures and a target measure

4.2 The Sentinel Concept

Table 4.1 is an example, where two subsets have been extracted from a database.
We have assigned short names to the measures as follows: PeoInv = the number of
people involved in the decision process for customer projects, UniRev = the revenue
of training courses, and Rev = revenue for the entire organization. The source mea-
sures, PeoInv and UniRev, have been extracted for January 2008 to April 2009. The
target measure, Rev, has been extracted for April 2008 to July 2009; a similar period
in length starting three months later. We refer to these three months as the Warning
Period. We have shown the cases where measures change 10% or more, either up (N)
or down (H), from one month to another.

As seen in the 16 rows in Table 4.1, the measures PeoInv and UniRev tend to
change in a combined pattern such that when PeoInv goes up, UniRev goes down,
and vice versa. This source measure pattern is observed 13 times, out of 15 possible.
If we combine this pattern with the subsequent changes to Rev three months later, we
see that Rev changes in the same direction as UniRev in 12, out of 13 possible times
(denoted by #ChangesToSource = 13). Another observation is that the relationship
Rev and the combination of PeoInv and UniRev goes in both directions, which is a
property we refer to as bi-directionality. Intuitively, one can say that if a relation-
ship is bi-directional, then there is a greater chance that the relationship is causal,
as opposed to a uni-directional relationship where a pattern is observed for measure
changes in one direction only. Consider a case where revenue and staff costs increase
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over a period of time. This yields the uni-directional relationship that an increase in
revenue leads to an increase in staff costs the following month; in this case a decrease
in revenue will not necessarily lead to a decrease in staff costs since these costs tend
to be more fixed. Therefore, bi-directional relationships are more desirable. It is
also noteworthy that Rev changes 6 times up (denoted by A = 6) and 6 times down
(denoted by B = 6) in combination with PeoInv and UniRev since this “balance”
again adds to the likeliness that the relationship is indeed causal. In summary we can
say that a sentinel exists in Table 4.1 where changes in PeoInv and UniRev is able to
warn three months ahead about changes to Rev with a Confidence of 92% (12 out of
13 times), defined as Confidence = |A+B|

#ChangesToSource . Balance = 4×|A|×|B|
(|A|+|B|)2 is a

measure for the degree to which a sentinel is balanced, and in this case the sentinel is
perfectly balanced, meaning that Balance = 1. We note that the higher quality from
bi-directionality achieved by assessing Balance, is impossible to achieve for sequen-
tial patterns since they can only represent one direction of changes in each pattern.

In addition to the combined relationship of the source measures, we can also ob-
serve “simple” sentinels (Chapter 2) with only one source and one target measure in
Table 4.1. However, the inverted relationship between PeoInv and Rev, as well as
the relationship between UniRev and Rev, each have one occurrence (the first two
changes) where Rev changes in the opposite direction of what we would expect from
all other changes. To assess the prediction ability for such sentinels we must first
eliminate its internal contradictions. In this case, it is done by simply deducting
the number of times Rev changes in the “unexpected” direction from the number of
times Rev changes in the “expected” direction. This means that both source measures
change 14 times, whereas the target measure after elimination changes only 11 times
(12− 1). Therefore the simple sentinels have a poorer Confidence of 79% (5+6

14 ) and
are slightly less balanced (Balance = 4×|5|×|6|

(|5|+|6|)2 = 0.99) compared to the sentinel
where the source measures were combined. On the other hand, simpler sentinels
with fewer source measures have the advantage of being more general than very spe-
cific, potentially overfitted, sentinels with many source measures, and therefore the
simplicity of a sentinel is also important.

4.3 The SentHiRPG algorithm

The SentHiRPG algorithm in Chapter 3 can find so-called generalized sentinel rules,
like the sentinels found in the previous example. SentHiRPG applies a novel scoring
principle, Score (Formula 4.1), which incorporates Confidence, Balance, Warning
Period, and number of source measures of the sentinels.
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Score =
|A+B|

max|A+B|
× Confidence × (

1

2
+

Balance

2
)

× (
1

2
+

1 +MaxW −Warning Period

MaxW × 2
)

× (
1

2
+

1 +MaxSource − |Source|
MaxSource × 2

)

(4.1)

Score expresses the quality of a sentinel as a single value and thus allows us to iden-
tify the best sentinel(s) in any larger set of sentinels. max|A+B| is found in the entire
set of sentinels. MaxW and MaxSource are thresholds for the maximum Warning Pe-
riod and the maximum number of source measures we are willing to accept. Using
Score, the SentHiRPG applies a novel Reduced Pattern Growth (RPG) optimization
that can quickly identify which measures that are candidates for the strongest rela-
tionships. RPG is facilitated by an intermediate optimized format called The Table of
Combinations (TC). In addition, SentHiRPG applies a hill-climbing approach to find
the best warning period for the sentinels.
The Table of Combinations is an intermediate hash table that is generated in one
pass over the input data. Once generated, it can represent any measure change com-
bination needed to mine all potential sentinels.
Reduced Pattern Growth delivers a good approximation of the top sentinels, and
costs only 14% of the comparable cost for a full pattern growth (Chapter 3). The idea
is to quickly identify the most influential source measures, where influence is defined
as the number of times that a source measure change whenever the target measure
also change. Having calculated the influence for all source measures, a Pareto Prin-
ciple is applied to select the source measures in ranked order that account for 85%
(configurable) of the sum of all influences. From this point, we grow sentinels from
the measures identified. Starting with 1 source measure, we add the remaining influ-
ential source measures one at a time to create longer rules until the maximum number
of source measures we desire is reached. In this process we only store a sentinel, and
continue to add source measures, if the added source measures give a higher Score.

We note that the unique bi-directional nature of sentinels gives rise to the TC and
RPG optimizations (Chapter 3), and thus cannot be offered by sequential pattern min-
ing or other known optimizations for simpler “market basket”-type data such as [11].
Hill Climbing is used to identify the warning period, w, where the sentinel with the
highest Score exists as an alternative to calculating all max(Score) for all w. Using
a specialized 2-step/1-step hill climbing with two starting points, this approach only
consume 53% of the time compared to testing all possible warning periods (Chap-
ter 3).
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The SentHiRPG algorithm can be described as three steps that incorporate these
three optimizations:

Input: A target measure, a time-dimension, and a set of cubes.
Step 1: Build TC during one scan of the input data.
Step 2: Hill climb w to max(Score) of the sentinels constructed

from TC with the source measures found in RPG.
Step 3: Output sentinels for w that meet the quality thresholds.

4.4 Sentinels in the TARGIT BI Suite

Figure 4.1: Architecture.

The architecture of the TARGIT BI Suite
is shown in Figure 4.1. The implemen-
tation of sentinel mining in the TARGIT
BI Suite consists of two parts: 1. The
dialogue shown in Figures 4.3(a) and
4.3(b) which has been implemented in the
TARGIT client, and 2. the sentinel en-
gine in the TARGIT ANTserver (high-
lighted with red in Figure 4.1). The client
dialogue allows the user to manipulate
the input parameters before sending the
input (target measure, time-dimension,
and a set of cubes) to the sentinel en-
gine. Upon completion of the mining
process, the sentinel engine will trans-
fer the sentinels found to the dialogue,
that will then present these. From this
stage the user can select one or more sen-
tinels to become agents and submitted
to the TARGIT ANTserver’s scheduling
service. The demonstration in this chap-
ter will focus on the client dialogue, and from this perspective we will take the highly
efficient SentHiRPG algorithm implemented in the TARGIT ANTserver for granted.
A detailed description of the server side implementation and performance can be
found in Chapter 5.
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Figure 4.2: Context in an analysis in TARGIT BI Suite

A few words about clicks and context: As mentioned in Section 4.1, it is a big
challenge to allow users to data mine without any prior technical knowledge. For
this purpose we apply ”fewest clicks” as a quantitative approach to usability. The
rationale is that minimizing the number of interactions (clicks) the user has during
the OODA loop equals reducing the amount of training needed as well as the risk of
making mistakes; and most importantly, we improve the speed of the cycle. To re-
duce the number of clicks, we keep track of the user’s context. The context includes
the measures and the dimension levels and criteria over which they are displayed, as
well as the importance of a given measure compared to others, e.g., if a measure is
analyzed on more dimension levels or more often than others, then it is most likely
important. As shown in Figure 4.2, the context can be used to provide the user with
an exact explanation about the data shown.

The context also allows the user to move very freely between the different BI dis-
ciplines, e.g., from a reporting context (characterized by a formalized layout) directly
to an analysis context (characterized by displaying the data over more dimensions)
with just one click. Similarly, the user can go directly from an analysis (or report)
to a sentinel search simply by clicking the “search for sentinels” button (Figure 4.2)
whenever something is interesting.
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4.5 The Demonstration

The setup: The demonstration is run on the data warehouse in TARGIT A/S that
has been operational for ten years. The data warehouse has been continuously adapted
to the challenges of the organization. Today, the TARGIT data warehouse is based
on a Microsoft (MS) SQL Server 2008 which is used for storage and staging of oper-
ational data. Upon transformation into cubes for different business areas, these data
are made available to users through the TARGIT BI Suite that resides on top of the
MS Analysis Services 2008. The data warehouse contains 16 GB of data, organized
in 16 cubes with 250 measures and 109 dimensions. It is “mature” in the sense that
there has not been any significant change to number of measures and dimensions over
the past few years.

Searching for sentinels: The following demo flow will be shown live. However,
the session will be interactive in order for users to see sentinel mining from other
contexts as well.

Clicking the “search for sentinels” button (magnified) in Figure 4.2 will make the
dialog in Figure 4.3(a) appear. We note that the system detects that revenue is most
“interesting” over monthly periods since this was the context of Figure 4.2. From this
point we can initiate the sentinel discovery process or use the dialog to change the
Prediction Measure, the Source Cubes, Time, or the Criteria before clicking “OK”.
The search will typically run for a few minutes on the server before Figure 4.3(b)
appears.

The sentinels in Figure 4.3(b) were found in the TARGIT data warehouse. The
best sentinel is based on a combined relationship between the number of people
involved in the decision process for customer projects and the revenue of training
courses at the “TARGIT University”. The direction in which the measure changes
are related is shown by the red and green (dark and light in grey-scale) bi-directional
arrows next to each of the measures. The top sentinel shows that if the number of peo-
ple involved decrease and the university revenue increase, both by 10% or more, then
the total revenue for TARGIT A/S is expected to increase by 10% or more within
three months. As explained in Section 4.1, the sentinel is bi-directional and thus
works in the opposite direction as well.
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(a) Start by selecting the target measure and period for warnings

(b) End by listing the sentinels that can give an early warning

Figure 4.3: Searching for sentinels in the TARGIT BI Suite
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By selecting this sentinel and clicking the “schedule” button, the user will now be
notified with a given frequency, typically equal to the period over which we searched
for sentinels (in this case monthly). If the combined incident of People Involved in-
crease and University Revenue decrease occur, then the user will receive an email or
notification directly on the desktop stating that:

Revenue is expected to decrease at least 10% in 3 month(s) because:

People Involved has increased at least 10%

and

University Revenue has decreased at least 10%.

The prediction has a confidence of 92%.

Click here to TARGIT the notification context,

or click here to review the Agent properties.

This means that the user will know three months ahead that something might
happen to the overall revenue, and in addition, the user knows which measures to use
as context in order to investigate what is causing the problem. At this point we say
that the sentinel has contributed with synergy in the OODA loop since it alerted the
attention very early to a problem that was most likely invisible to the user. In this
particular case for TARGIT A/S, it was surprising that the number of people involved
in the decision process could be used as an indicator, whereas it has been known
for some time that selling more training will typically make a customer expand his
solution. Intuitively, it does however make sense that the more people are involved
in a decision process, the more time it will take, and therefore less revenue will be
generated on the short-term; and vice versa. In other words, the users are now able to
react faster if future revenue is threatened based on this new knowledge.

The TARGIT BI Suite also facilitates an even more radical approach when using
sentinels. The “select all” option allows all sentinels to be scheduled as a “sentinel
swarm”. In this case the swarm will be monitoring everything that is going on in and
around the organization, and report if something occurs, that seems to threaten a crit-
ical measure. Once a warning occurs the user will then decide what to do based on
his orientation of the situation. Having a “sentinel swarm”, rather than having only
the sentinels that makes sense from a human perspective, appears to be an even more
synergic approach to facilitating a fast OODA loop.

4.6 Conclusion

In this demo we presented the sentinel concept, a scoring principle, and its imple-
mentation in the TARGIT BI Suite. In addition, we presented the algorithm and data
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warehouse setup that were prerequisites for our demo. We demonstrated a dialogue
in our implementation where users, without any prior technical knowledge, are able
to select a critical measure, a number of cubes, and a time dimension, and subse-
quently mine and schedule sentinels for early warnings. Sentinels was rated the most
interesting and promising feature of TARGIT BI Suite version 2K9 in April 2009 by
TARGIT partners representing a market footprint of 1,936 customers with more than
124,000 users. In addition, leading industry analyst, Gartner, introduced TARGIT in
their Magic Quadrant for BI Platforms in 2010 and listed sentinels as one of the key
strengths of TARGIT (Chapter 5).





Chapter 5

Implementing Sentinels in the
TARGIT BI Suite

This chapter describes the implementation of so-called sentinels in the TARGIT BI
Suite. Sentinels are a novel type of rules that can warn a user if one or more measure
changes in a multi-dimensional data cube are expected to cause a change to another
measure critical to the user. Sentinels notify users based on previous observations,
e.g., that revenue might drop within two months if an increase in customer problems
combined with a decrease in website traffic is observed. In this chapter we show
how users, without any prior technical knowledge, can mine and use sentinels in
the TARGIT BI Suite. We present in detail how sentinels are mined from data, and
how sentinels are scored. We describe in detail how the sentinel mining algorithm is
implemented in the TARGIT BI Suite, and show that our implementation is able to
discover strong and useful sentinels that could not be found when using sequential
pattern mining or correlation techniques. We demonstrate, through extensive exper-
iments, that mining and usage of sentinels is feasible with good performance for the
typical users on a real, operational data warehouse.

5.1 Introduction

Bringing data mining to the masses have been a quest by major business intelligence
(BI) vendors since the late 1990s [50]. However, a decade later this “Next Big Thing”
is yet to happen according to OLAP industry analyst Nigel Pendse, author of the
OLAP Report [50]. According to the most popular interpretation of Moore’s Law,
we can say that within a three year period the computing performance available to

67
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an organization will have increased by 400%, during the same period the amounts
of structured business data in an organization does not grow more than about 95%
(20-30% per year) according to industry analysts IDC1. This means that a significant
amount of computing capacity is available to analyzing the measures and dimensions
in any data warehouse. Therefore, there is an obvious potential to use these comput-
ing resources to allow users in an OLAP environment to use data mining for exploring
data relationships that are practically impossible to find manually.

We believe that integration of BI disciplines and usability is the key to unlock the
big potential of end user data mining that has not yet reached the business users. With
this in mind, we have implemented so-called sentinels in the commercial TARGIT BI
Suite, available to 274,000 users in 3,800 organizations world-wide.

A sentinel is a novel type of causal rule-based relationship; the concept and
formal definitions have been developed in a collaborative research project between
TARGIT A/S and Aalborg University (Chapters 2 and 3). Sentinels are discovered
through a data mining process, where changes in one or multiple source measures are
followed by changes to a target measure (typically a KPI), within a given time pe-
riod, referred to as the warning period. An example of a sentinel for a company could
be: “IF Number of Customer Problems go up and Website Traffic Volume goes down
THEN Revenue goes down within two months AND IF Number of Customer Prob-
lems go down and Website Traffic Volume goes up THEN Revenue goes up within
two months”. Such a rule will allow a BI system to notify a user to take corrective
action once there is an occurrence of, e.g., “Number of Customer Problems go up
and Website Traffic Volume goes down”. The decision maker is now able to respond
faster based on a threat to his KPI (Revenue), a threat that might be invisible to him
without sentinels. In the TARGIT BI Suite it is now possible for any user to find
such sentinels in any given context. Subsequently, it is possible to use the sentinels
to provide early warnings if critical business goals are threatened. We note that the
user only needs to know the KPI, and thus no data mining knowledge is required.

Sentinels are based on the Computer Aided Leadership & Management (CALM)
theory [36]. The idea in CALM is to take the Observation-Orientation-Decision-
Action (OODA) loop (originally pioneered by “Top Gun” fighter pilot John Boyd
in the 1950s), and integrate BI technologies to drastically increase the speed with
which a user “travels” through the OODA loop. Sentinels improve the speed of the
OODA loop’s observation and orientation phases by giving the decision maker an
early warning (faster observation) that threatens a KPI. At the same time, the sentinel
highlights the threat (faster orientation) by listing the measure changes that appears to
be “causing” it. In other words, sentinels contribute with both synergy and efficiency
for a user cycling an OODA loop.

1ComputerWorld, September 22nd, 2009, BI expert, Brian Troelsen, IDC.
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Sentinels are mined on the measures and dimensions of multiple cubes in an
OLAP database, as opposed to the “flat file” formats used by most traditional data
mining methods. Sentinels find rules that would be impossible to detect using tradi-
tional techniques such as sequential pattern mining and correlation techniques (Chap-
ter 2). As explained in detail in Section 5.6, the bi-directional sentinel rules are
stronger rules than those mined by sequential pattern and gradual rule mining. In
addition, sentinels are more specific than the relationships that can be found using
regression techniques.

In the following section, we present the in-depth motivation for sentinels along
with a real world case of sentinel application. Section 5.3 presents the implementa-
tion of sentinels in the TARGIT BI Suite, a commercial software package from the
company TARGIT A/S. In Section 5.4 we present our real-world experience with sen-
tinels in the market since their commercial availability in April 2009. In Section 5.5
we present experiments of the sentinel discovery process on large amounts of data.
Section 5.6 presents the work related related to sentinels, and Section 5.7 presents
our conclusions and proposals for future work.

5.2 Motivation & Case

The TARGIT case: The data warehouse in TARGIT A/S has been operational for
ten years, and it has been continuously adapted to the challenges of the organization.
Today, the TARGIT data warehouse is based on a Microsoft (MS) SQL Server 2008
which is used for storage and staging of operational data. Upon transformation into
cubes for different business areas, these data are made available to users through the
TARGIT BI Suite that resides on top of a number of MS Analysis Services 2008
cubes. The data warehouse contains 16 GB of data, organized in 16 cubes with 250
measures and 109 dimensions. It is “mature” in the sense that there has not been any
significant change to number of measures and dimensions over the past few years.

The data warehouse covers data from all business areas within TARGIT A/S, i.e.,
sales, development, support, and administration. Since all the data are integrated,
this means that the data warehouse covers a complete life-cycle for all TARGIT cus-
tomers, e.g., we know how much software they own, how much training they got, how
many problems they had, and which suggestions they have for the future versions of
the TARGIT software. In addition, the TARGIT data warehouse covers information
about the decision process from the showing of interest in TARGIT’s software to be-
coming a customer. Based on this information, TARGIT A/S is navigating in global
competition through a network of more than 280 partners (resellers/system integra-
tors) world-wide. In this respect, it is also possible for the partners to access part of
the data warehouse to optimize their ability to sell and support TARGIT’s software.
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(a) Start by selecting the target measure and period for warnings

(b) End by listing the sentinels that can give an early warning

Figure 5.1: Searching for sentinels in the TARGIT BI Suite



5.2 Motivation & Case 71

A user can access the data warehouse through a Windows based client that con-
nects directly to the TARGIT ANTserver, or through a browser that renders the
zero footprint client of the TARGIT NET server that then connects to the TARGIT
ANTserver to access the data (See Section 5.3).

The TARGIT case is used in the current section to demonstrate the implementa-
tion of sentinels in the TARGIT software. In addition, the “real data” performance
studies in Section 5.3 are based on this case. Finally, whenever we refer to specific
numbers of TARGIT customers, users, and partners in this chapter, these figures have
been extracted from the TARGIT data warehouse on December 17th 2010.

A few words about clicks and context: It is a big challenge to allow users to
data mine without any prior technical knowledge. For this purpose we apply ”fewest
clicks” as a quantitative approach to usability. The rationale is that minimizing the
number of interactions (clicks) the user has during the OODA loop equals reducing
the amount of training needed as well as the risk of making mistakes; and most im-
portantly, we improve the speed of the cycle. To reduce the number of clicks, we
keep track of the user’s context. The context includes the measures and the dimen-
sion levels and criteria over which they are displayed, as well as the importance of a
given measure compared to others, e.g., if a measure is analyzed on more dimension
levels or more often than others, then it is most likely important.

The context also allows the user to move very freely between the different BI dis-
ciplines, e.g., from a reporting context (characterized by a formalized layout) directly
to an analysis context (characterized by displaying the data over more dimensions)
with just one click. In other words, the user can move from the observation to the
orientation phase with just one click. Using the context, the user can search for sen-
tinels very intuitively simply by clicking “search for sentinels” whenever he finds
something interesting.

Searching for sentinels – user perspective: In Figure 5.1(a) we see the initial
dialogue for the sentinel search. The dialog has been launched from an analytical
context where the measure revenue was shown over three different dimensions: Time
(Month), Geography, and Product. We note that the system detects that revenue is
most “interesting” over monthly periods since this was the context the user was in
before. From this point it is possible to initiate the sentinel discovery process (Chap-
ter 3) or use the dialog to change the Prediction Measure, the Source Cubes, Time,
or the Criteria. By proceeding, the search will typically run for a few minutes on the
server before Figure 5.1(b) appears. The run-time is primarily influenced by the num-
ber of measures in the data warehouse as seen in the performance study in Section 5.5.
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The sentinels in Figure 5.1(b) were found in the TARGIT data warehouse. The
best sentinel is based on a combined relationship between the number of people
involved in the decision process for customer projects and the revenue of training
courses at the “TARGIT University”. The direction in which the measure changes
are related is shown by the red and green (dark and light in grey-scale) bi-directional
arrows next to each of the measures. The top sentinel shows that if the number of
people involved decrease and the TARGIT university revenue increase, both by 10%
or more, then the total revenue for TARGIT A/S is expected to increase by 10%
or more within three months. The sentinel is bi-directional and thus works in the
opposite direction as well. By scheduling this sentinel for notification, the user
will now be notified with a given frequency, typically equal to the period over which
we searched for sentinels (in this case monthly). If the combined incident of “Peo-
ple Involved” increase and “University Revenue” decrease occurs, then the user will
receive an email or notification directly on the desktop stating that:

Revenue is expected to decrease at least 10% in 3 month(s) because:

People Involved has increased at least 10%

and

University Revenue has decreased at least 10%.

The prediction has a confidence of 92%.

Click here to TARGIT the notification context,

or click here to review the Agent properties.

This means that the user will know three months ahead that something might
happen to the overall revenue, and in addition, the user knows which measures to use
as context in order to investigate what is causing the problem. At this point we say
that the sentinel has contributed with synergy in the OODA loop since it alerted the
attention very early to a problem that was most likely invisible to the user. In this
particular case for TARGIT A/S, it was surprising that the number of people involved
in the decision process could be used as an indicator, whereas it has been known
for some time that selling more training will typically make a customer expand his
solution. Intuitively, it does however make sense that the more people are involved
in a decision process, the more time it will take, and therefore less revenue will be
generated on the short-term; and vice versa. In other words, the users are now able to
react faster if future revenue is threatened based on this new knowledge.

The TARGIT BI Suite facilitates an even more radical “select all” option, that
schedules all sentinels in a “sentinel swarm”. In this case the swarm will be moni-
toring everything that is going on in and around the organization, and report if some-
thing occurs, that seems to threaten a critical measure. Once a warning occurs the



5.2 Motivation & Case 73

user will then decide what to do based on his orientation of the situation. Having a
“sentinel swarm”, rather than having only the sentinel rules that makes sense from
a human perspective, appears to be an even more synergic approach to facilitating a
fast OODA loop.

Once one or more sentinels have been scheduled for notification, and the users
start reacting upon these, the confidence of the sentinels will most likely change. The
reason is, that the user interferes with the “history” of causality, e.g., if a user success-
fully addresses the challenge posed by “People Involved” increasing and “University
Revenue” decreasing during the next three months, and thereby avoid that “Rev-
enue” decrease, then the confidence of the sentinel itself will decrease. Confidence
and other qualitative measures for sentinels are described below. From a user per-
spective it should be noted that the confidence of a sentinel is fluid, and depending
on users seeking to avoid or fulfill the “prediction” of the sentinel, confidence will
change based on the users actions. If the confidence of a sentinel changes below cer-
tain thresholds (see Section 5.3) set in the TARGIT BI Suite, the user will be notified,
but this time the sentinel will suggest that it is removed from the active notifications
list. This way the users can manage a fluid set of notifications where newly mined
sentinels are scheduled, and irrelevant sentinels are retired.

It should be noted, that a sentinel mining process does not need to be conducted
while the user is online. However, as we will see in the experiments in Section 5.5,
the sentinel mining process can many times be conducted with a few minutes as the
maximum response time. Therefore sentinel mining is also very feasible in an envi-
ronment where users want to stay online while conducting their mining processes.

Searching for sentinels – data perspective: To exemplify the sentinel mining pro-
cess that takes place, a data example is presented in Table 5.1(a) and 5.1(b), where
two subsets have been extracted from an example database. Please note that for rea-
sons of confidentiality, the example provided is not real data from the TARGIT data
warehouse. The source measures have been extracted for January 2008 to April 2009.
The target measure has been extracted for April 2008 to July 2009; in other words,
for a similar period in length starting three months later. For both source and target
measures we have calculated the cases where a measure changes 10% or more, either
up (N) or down (H), from one month to another. For easy reference, we have as-
signed short names to the measures as follows: PeoInv = “People Involved”, UniRev
= “University Revenue”, and Rev = “Revenue”.

As seen in the 16 rows in Table 5.1, the measures PeoInv and UniRev tend to
change in a combined pattern such that when PeoInv goes up, UniRev goes down,
and vice versa. This pattern in the source measures is observed 13 times, out of
15 possible. If we combine this pattern with the subsequent changes to Rev three
months later, we see that Rev changes in the same direction as UniRev in 12, out of
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(a) Source

Month PeoInv UniRev Change
2008-Jan 1 115
2008-Feb 2 115 PeoInvN
2008-Mar 2 100 UniRevH
2008-Apr 3 90 PeoInvN,UniRevH
2008-May 2 363 PeoInvH,UniRevN
2008-Jun 3 310 PeoInvN,UniRevH
2008-Jul 2 440 PeoInvH,UniRevN
2008-Aug 4 297 PeoInvN,UniRevH
2008-Sep 5 260 PeoInvN,UniRevH
2008-Oct 6 230 PeoInvN,UniRevH
2008-Nov 4 294 PeoInvH,UniRevN
2008-Dec 5 264 PeoInvN,UniRevH
2009-Jan 6 230 PeoInvN,UniRevH
2009-Feb 4 270 PeoInvH,UniRevN
2009-Mar 3 353 PeoInvH,UniRevN
2009-Apr 2 400 PeoInvH,UniRevN

(b) Target

Month Rev Change
2008-Apr 900
2008-May 1001 RevN
2008-Jun 1200 RevN
2008-Jul 750 RevH
2008-Aug 1001 RevN
2008-Sep 1100
2008-Oct 1250 RevN
2008-Nov 970 RevH
2008-Dec 850 RevH
2009-Jan 720 RevH
2009-Feb 1250 RevN
2009-Mar 930 RevH
2009-Apr 800 RevH
2009-May 1100 RevN
2009-Jun 1400 RevN
2009-Jul 1600 RevN

Table 5.1: The relationship between two source measures and a target measure

13 possible times. Another observation is that the relationship Rev and the combina-
tion of PeoInv and UniRev goes in both directions, which is a property we refer to as
bi-directionality. Intuitively, one can say that if a relationship is bi-directional, then
there is a greater chance that the relationship is causal, as opposed to a uni-directional
relationship where a pattern is observed for measure changes in one direction only.
Consider a case where revenue and staff costs increase over a period of time. This
yields the uni-directional relationship that an increase in revenue leads to an increase
in staff costs the following month; in this case a decrease in revenue will not necessar-
ily lead to a decrease in staff costs since these costs tend to be more fixed. Therefore,
bi-directional sentinels are more desirable. In the example, it is noteworthy that Rev
changes 6 times up and 6 times down in combination with PeoInv and UniRev since
this “balance” again adds to the likeliness that the relationship is indeed causal. We
say that a perfectly balanced sentinel exists in Table 5.1, where changes in PeoInv and
UniRev is able to predict changes three months later in Rev with a historical accuracy
of 92% (12 out of 13 times).

In addition to the combined relationship of the source measures, we can also ob-
serve “simple” sentinels with only one source and one target measure in Table 5.1.
However, the inverted relationship between PeoInv and Rev, as well as the relation-
ship between UniRev and Rev, each have one occurrence (the first two changes)
where Rev changes in the opposite direction of what we would expect from all other
changes. To assess the ability to predict for such sentinels we must first eliminate
its internal contradictions. In this case, it is done by simply deducting the number
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of times Rev changes in the “unexpected” direction from the number of times Rev
changes in the “expected” direction. This means that both source measures change
14 times, whereas the target measure after elimination changes only 11 times (12−1).
Therefore the simple sentinels have a poorer historical accuracy of 79% (11 out of 14
times) compared to the sentinel where the source measures were combined. On the
other hand, simpler sentinels with fewer source measures have the advantage of being
more general than very specific, overfitted sentinels with many source measures, and
therefore sentinel simplicity is also important.

Distinguishing good sentinels from others: The formal definitions of the sentinels
in TARGIT BI Suite can be found in Chapter 3. However, in order to give an intu-
itive idea of the properties that distinguishes a good sentinel rule from other rules,
we provide the following short definition for the quality of a sentinel. The sentinel,
denoted by Source  Target , is based on a set of source measures, Source, and a
target measure, Target, and we have a warning period, w, which passes between a
change in Source to a change in Target.

In Formulae 5.1 to 5.3, A is the number of times that Source changes in one direc-
tion and Target subsequently changes in the “expected” direction, minus the number
of times where Target did not change in the expected direction. B is calculated in
the same way, but for the changes to Source in the opposite direction of A. For sim-
plicity, we assume that |A| × |B| > 0 since we are only interested in bi-directional
sentinels in this implementation (see explanation for Formula 5.3 below). A gen-
eral definition of Formulae 5.2 and 5.3 can be found in Chapter 3. Balance is used
to determine the degree to which a sentinel is uni-directional (Balance=0) or com-
pletely bi-directional (Balance=1), meaning that the sentinel indicates a decrease to
the target measure exactly as many times as it indicates an increase. Conf tells us
how often, when a change in the source measure(s) occurs, the expected change in
the target measure subsequently occurs within w time.

BalanceSource Target =
4× |A| × |B|
(|A|+ |B|)2

(5.1)

ConfSource Target =
|A+B|

Number of changes to Source
(5.2)
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ScoreSource Target =

|A+B|
Highest |A+B| found in sentinels compared

× ConfSource Target

× (
1

2
+

BalanceSource Target

2
)

× (1− wp +
(1 +Maxw − w)× wp

Maxw
)

× (
1

2
+

1 +MaxSource − |Source|
MaxSource × 2

)

(5.3)

Formulae 5.1 and 5.2 each represent one quality of a sentinel, but in order to have
one single value to determine which sentinel is the best, we introduce Score as shown
in Formula 5.3. Score takes into consideration the actual number of times there is sup-
port for a sentinel compared to other sentinels in a cube (normalized into ]0, ..., 1]),
adjusted for contradictions, |A+B|, as well as the confidence, Conf, and Balance of
the sentinel. It is desirable that a sentinel has a high number of occurrences as well
as a high confidence. However, the balance of the sentinel is also important since it
allows us to identify bi-directional sentinels, since bi-directional sentinels in general
have a higher probability of being causal as opposed to coincidental. In addition, we
introduce the threshold, Maxw, which is the maximum length of the warning period,
w, we are willing to accept. The constant, wp, represents the warning penalty, i.e., the
degree to which we want to penalize sentinels with a higher w (0=no penalty, 1=full
penalty). The idea of penalizing higher values of w is relevant if a pattern is cyclic,
e.g., if the indication of a sentinel occurs every 12 months, and the relationship be-
tween the indications on the source measure(s) and the target measure is less than 12
months, then the a given sentinel with a warning period w is more desirable than the
same sentinel with a warning period w+12. We also take into consideration that it is
desirable to have shorter, general rules, meaning a low cardinality of Source. This
prevents our implementation from “overfitting” rules [45] and thus generating very
specific and therefore irrelevant rules. In other words, Formula 5.3 will yield a better
Score when as many as possible of the following conditions apply simultaneously:

• |A+B| is as high as possible, meaning that many changes in the source mea-
sures are followed by the “expected” changes in the target measure

• A and B are equal or close to equal, meaning that a bi-directional sentinel is
preferred

• w is as short as possible, meaning that sentinels with short warning periods are
preferred to sentinels with longer warning periods
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• the are as few source measures as possible, meaning that the sentinel is as
general as possible

To exemplify, the calculation of Score let us review the best sentinel shown in the
top on Figure 5.1(b). The sentinel indicates that Revenue will change at least 10%
three months after People Involved and University Revenue have changed at least
10% in accordance with the direction of the arrows. In this case it was found in
the data (Table 5.1) that a decrease in People Involved combined with an increase in
University Revenue occurred 6 times where Revenue subsequently increased. More-
over, the exact opposite scenario of an increase in People Involved combined with
a decrease in University Revenue also occurred 6 times, and here Revenue subse-
quently decreased. This gives us a completely balanced rule (Balance = 4×6×6

(6+6)2
=

144
144 = 100%) which is a sign of a highly causal relationship between the measures,
as opposed to a more coincidental relationship, e.g., if the rule had a tendency to
work only in one direction. The changes to the source measures occur one time
without the expected impact on Revenue, i.e., the change pattern on the source mea-
sures occurs in one or the other direction 13 times in total. This means that the
sentinel has a confidence of 92% (6+6

13 = 12
13 ). Using a maximum of 3 source mea-

sures allowed (MaxSource = 3), a maximum allowed warning period of 12 months
(Maxw = 12), and a warning penalty of 0.5 (Wp = 0.5) we have a Score of 0.60
(1214 × 0.92× (12 + 1

2) × (1 − 0.5 + (1+12−3)×0.5
12 ) × (12 + 1+3−2

3×2 )). In the input for
this Score it should be noted that the highest |A+ B| for any sentinel found at these
thresholds was 14.

Using Score, we can select the optimal threshold for changes (referred to as α in
Chapter 3) as well as the optimal warning period, w. In principle this is done by test-
ing all combinations of α and w, and subsequently selecting the combination where
the sentinel with the highest Score exist. However, in reality we can disregards some
combinations without testing as explained in Section 5.3. In addition to fitting these
values optimally, Score is used to rank the sentinels found in the output for the user.
The sentinels shown in Figure 5.1(b) have been ordered by their respective Score.
Furthermore, with reference to Chapter 3, Score also plays a major role in the opti-
mization techniques applied to mine the sentinels efficiently. Finally, Score assists
the casual users by providing a simple and uniform way to assess the sentinel quality.
As mentioned in Section 5.2, it is the primary goal of TARGIT to empower the ca-
sual users with powerful analytics. However, for more advanced users, it is possible
to toggle the default constants in Score and the thresholds for Balance and Conf.
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5.3 Implementation

Architecture of the TARGIT BI Suite: The TARGIT BI Suite is a client/server
based application which allows users to create reports, analysis, and dashboards
(scorecards). In addition, the application allows users to search for sentinels and
to schedule these for early warnings as explained in Section 5.2. The user con-
nects a Windows based client program to a centralized TARGIT ANTserver through
TCP/IP as shown in Figure 5.2. The TARGIT ANTserver has a number of services
that can be offered to the client; a core functionality of these is to parse and for-
ward a data query to either a cube or a relational database, and subsequently re-
turn the answer to the client. An alternative web client is also available. In this
case the browser will render a “zero footprint” instance from a TARGIT NET server
which holds the execution of the client. The TARGIT NET server will then connect

Figure 5.2: Architecture.

to the TARGIT ANTserver similarly to
the stand alone client shown in Fig-
ure 5.2. The TARGIT ANTserver is the
backbone of the application. As shown
in Figure 5.2, there are two general
services (G1,G2) and four specific ser-
vices (S1...S4) offered by the TARGIT
ANTserver:

Local Language Translation Layer
(G1) translates dimension and measure
names as well as names for files shared
among users. This layer also pro-
vides the language for the client appli-
cation. Since the client program receives
all language settings from the TARGIT
ANTserver based on the user preference
means that different users can access the
same client program on a physical PC in
different languages.

Common OLAP API (G2): This ser-
vice facilitates that the functionality of
the TARGIT ANTserver exceeds tradi-
tional MDX and SQL, e.g., the TARGIT
ANTserver can run queries across multi-
ple heterogeneous data sources and com-
bine the answers. In addition, it has ex-
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tended capabilities for handling time-dimensions dynamically, e.g., it allows criteria
such as “time must be equal to this month” and other generic time variants, e.g., This
year, previous year, previous month. Most importantly, the Common OLAP API al-
lows all other services to treat the entire set of data sources as one homogenous cube
with one unified interface.

OLAP & Reporting (S1): This service parses the incoming analytical and report-
ing queries in XML format from the client and submits them to the Common OLAP
API. The results may require post-processing for additional formatting as stated in
the XML, and upon completion the result is submitted in binary format to the client.
The binary format for the response has been selected to optimize performance.

Scheduling Service (S2): This service facilitates that some jobs can be stored and
executed at certain times. The jobs include reports and analysis as well as more gen-
eral “slideshows” and “podcasts” of the information from the databases. The service
also allows agents that monitor specific information to be scheduled, and with a pre-
defined frequency the ANTserver will verify if the premise for notification of the user
is met. If so, the user will be notified via email or directly via a special desktop noti-
fication client. One type of such agents are the sentinel agents that notify the users if
the premise of source measure changes are met.

Sentinel Engine (S3): This new service facilitates the search for sentinels once
the client dialogue on Figure 5.1(a) is completed. From this point, the SentHiRPG
algorithm (Chapter 3), described below, performs the search for sentinels. Once the
search is completed, the answer is returned to the client as seen in Figure 5.1(b),
where it is possible to submit the sentinels found to the scheduling service (S2).

Virtual File-System (S4): This service allows users to store files (reports, analy-
sis, and dashboards) in a repository where they can be shared with other users. The
service also facilitates that Windows client files are available on the zero footprint
web client through the TARGIT NET server.

The SentHiRPG Algorithm: The SentHiRPG algorithm (Chapter 3) can find so-
called generalized sentinel rules in which multiple source measures are combined
into strong, and most likely, causal relationships with a given target measure. Sen-
tHiRPG applies a novel Reduced Pattern Growth (RPG) optimization that quickly
identify which measures that are candidates for the strongest relationships. RPG is
facilitated by an intermediate optimized format called The Table of Combinations
(TC). In addition, SentHiRPG applies a hill-climbing approach to fit the best sentinel
warning period.

The Table of Combinations is an intermediate hash table that is generated in one
pass over the input data, and used for optimization. Once generated, the TC rep-
resents exactly the measure change combinations needed to mine all potential sen-
tinels. A reliable sentinel will require at least two, but typically multiple rows in the
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TC, and since we do not know which source measure changes that occur at the same
time, there is no generic sorting method that can optimize the scans further than the
reduction of data in the TC.

Reduced Pattern Growth delivers a good approximation of the top sentinel rules,
and it is much more efficient than a full pattern growth of all combinations of source
measures. The idea is to first very quickly identify the source measures that change
whenever the target measure change; at this stage we do not attempt to find out what
type of relationship the source measures have to the target measure or to each other.
For example, if we look at Table 5.1, we see that both “People Involved” and “Univer-
sity Revenue” have 13 occurrences where they change while “Revenue” also change.
In this case we say that both these source measures have an influence of 13, and we
note that there is no guarantee that a high influence will lead to a high Confidence,
Balance, or Score. However, a low influence would most likely mean a low Con-
fidence and subsequently a low Score, since the given source measure would then
change very little in combination with the target measure. Once the influence for all
source measures have been calculated, they are ranked, and a Pareto Principle is ap-
plied to select the source measures that account for a certain percentage (RPGpareto)
of the sum of all influences. For example, let us assume that we have two additional
source measures, “Staff Salaries”, representing the salaries paid to employees, and
“Product Quality”, representing the number of errors found in the products sold. The
source measure “Staff Salaries” has an influence of 2, and the source measure “Prod-
uct Quality” has an influence of 3. The sum of all influences for the four source
measures is then 13 + 13 + 3 + 2 = 31 (note that the influences are ordered de-
scendingly). If the value of RPGpareto is set to 85%, we need to identify the most
influential source measures that account at least 85% of all influence. Starting with
the highest influence observed, 13, we find that the two source measures, “People
Involved” and “University Revenue” account for 13+13

31 = 84% < RPGpareto. In
this case we need to add the influence of the second highest influential source mea-
sure to account for at least 85% of all influence, 13+13+3

31 = 94% = RPGpareto.
In this example, the process would only eliminate one out of four source measures.
However, from experiments on real-world data, we know that the influence of source
measures can be described as a power law, meaning that a few source measures have
a high influence and are thus very likely to be part of many good sentinels, whereas
the majority of source measures are not likely to be part of any good rule at all.

Having identified the most influential source measures, we grow sentinels from
these measures. Starting with 1 source measure, we add the remaining influential
source measures one at a time to create longer rules until the number of source mea-
sures equals MaxSource. During this process we only store a sentinel, and continue
to add source measures, if the added source measures translates into a higher Score.
For example, using the data in Table 5.1 we would first create two sentinels with
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only one source measure, respectively “People Involved” and “University Revenue”.
Using the calculation demonstrated in Section 5.2, both these sentinels have a Score
of 0.56 (1114 × 0.79 × (12 + 0.99

2 ) × (1 − 0.5 + (1+12−3)×0.5
12 ) × (12 + 1+3−1

3×2 )). If
we combine the two source measures into a longer rule, we have a Score of 0.60,
and thus the new longer rule will “survive”. Subsequently, we would combine this
sentinel with the remaining influential source measure, “Product Quality”, to see if
Score improved even more, and so on.

On a realistic dataset, the quality of the RPG approximation has been experimen-
tally tested to produce 100% of the top 10 sentinels, and 88% of the top 100 sentinels
that would otherwise have to be found by a full pattern growth, i.e., testing all com-
binations of source measure relationships with the target measure. The performance
cost of RPG is only 14% of the comparable cost for a full pattern growth (Chapter 3).

Hill Climbing is used to auto-fit of the warning period. This is done by identifying
the warning period, w, where the sentinel with the highest Score exists. Alternatively,
all Scores for all sentinels for a each value of w would have to be inspected to find
the sentinel with maximum Score. Using a specialized 2-step/1-step hill climbing
with two starting points, this approach only consumed 53% of the time compared to
testing all possible warning periods (Chapter 3).

The SentHiRPG algorithm can now be described as three steps:

Step 1: Build TC during one scan of the input data.
Step 2: Hill climb w to max(Score) of sentinels constructed

from TC with source measures found in RPG.
Step 3: Output sentinels for w that meet the quality thresholds.

Implementation of Sentinel Mining: The implementation of sentinel mining in
the TARGIT BI Suite consists of two parts: 1. The dialogue shown in Figures 5.1(a)
and 5.1(b) which has been implemented in the TARGIT client, and 2. the sentinel
engine in the TARGIT ANTserver (S3 in Figure 5.2). The client dialogue allows the
user to manipulate the input parameters before sending the “sentinel mining query”
to the sentinel engine. Upon completion of the mining process, the sentinel engine
will transfer the sentinels found to the dialogue presenting them. From this stage the
user can select one or more sentinels to become agents and submitted to the TARGIT
ANTserver’s scheduling service (S2 in Figure 5.2). Since the dialogue on the client
side is a simple matter of manipulating parameters and presenting output, we will
focus on the implementation of the sentinel engine in the ANTserver.

The process implemented in the sentinel engine is shown in pseudo code as the
Sentinel Mining function below. The declaration of the interface for the SentHiRPG
function is strictly aligned with the definition in Chapter 3. With this prerequisite,
sentinel mining can be described in three steps as follows:



82 Implementing Sentinels in the TARGIT BI Suite

Function: Sentinel Mining
Input: A target measure, TM, a shared time-dimension level, T, a set of cubes, Cube-
Set, a set of criteria on dimension members, SliceCriteria, and a max number of
sentinels to be returned, X.
Output: Sentinels with a given warning period, w, a threshold for indications, α, and
their respective Conf and Score.
Method: The sentinels are mined as follows:

Sub-Function: SentHiRPG
Input: A list of facts from a cube, C, ordered by (d2, d3, ..., dn, t), an offset,
o, a maximum warning period length, Maxw, a maximum number of source
measures per rule, MaxSource, a warning penalty, wp, a threshold for RPG,
RPGpareto, a threshold for indications, α, a minimum SentSupp threshold, σ,
a minimum Conf threshold, γ, and a minimum Balance threshold, β.
Output: Sentinel rules with a given warning period, Optimalw, and their re-
spective SentSupp, Conf, Balance, and Score.
Method: The algorithm is described in previous section above.

Step 1: Using the Common OLAP API, all “pure” measures from the cubes ∈
CubeSet are identified as source measures, SM, with the exception of TM. The facts
to be mined, C, are extracted with one dimension (level), T, and the measures SM
and TM for all T < current period of T . If SliceCriteria ̸= ∅ then each element
is applied as a selection criteria to the cubes where it is possible. Maxw is set to the
maximum cardinality of the children sets at the same level as T . The remaining pa-
rameters are set as follows: o = 1, MaxSource = 3, wp = 0.5, RPGpareto = 85%,
σ = 5, γ = 80%, β = 80%, and X = 200. These settings are based on practical
experiences with real world data.
Step 2: Repeat SentHiRPG for each α ∈ {10%, 15%, 20%}, all other parameters re-
main constant as set in step 1. While testing different values of α, the set of sentinels
for a given value of α, that contains the sentinel with the highest Score is stored in
memory. This set is not flushed from memory until a sentinel with a higher Score
exists in another set for a new value of α.
Step 3: Output the top X sentinels from memory to client through the Local Lan-
guage Translation Layer. If the number of sentinels < X then return all.

Step 1: We use the Common OLAP API to find all measures from all the cubes
in CubeSet selected by the user. In this context we note that a relational database
will also appear to be a cube in this context since it will have been mapped into di-
mensions and measures when it was plugged into the Common OLAP API by an
administrator of the data warehouse. The time-dimension, T, is a shared dimension
that allows the Common OLAP API to relate the measures collected to each other.
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The dialogue in the client will only present cubes for selection that include this shared
time-dimension. During the identification of all measures we seek to disregard mea-
sures that are only replicas of other base measures. If for instance a measure is calcu-
lated based on only one other measure, we will disregard the calculated measure and
stick with the “base” measure which it was based on. Logically we will also disregard
measures calculated on measures that are disregarded. By disregarding measures that
are not base, we seek to eliminate measures that do not contribute with something
new, and thereby we reduce the number of measures that needs to be mined.

We apply one general criteria on the time-dimension, T, that seeks to ensure that
we do not mine on an incomplete period. This criteria means that we will only mine
all periods prior to the one we are in, e.g., if we are currently on November 15th, we
will only be mining all data up until and including October which is the last complete
month. The same principle applies to whatever period we can think of, e.g., hour,
week, or year. In addition, we apply the additional slicing from SliceCriteria if such
has been specified. However, in this context we only apply these criteria where it is
possible since the slicing members do not need to be from shared dimensions. This
means that only cubes where it is possible to say “data must be from United States
only” gets this criteria applied. One example of this could be that revenue can be
selected for United States only, whereas the currency rate of Euros cannot. Neverthe-
less, there might be an interesting relationship between the revenue in United States
and the Euro rate anyways. Therefore we are more loose in applying these criteria
than with the strict shared time-dimension which is needed to relate and stage data
for Step 2.

Setting Maxw to the maximum cardinality found in the children sets at the same
level as T means that Maxw will never exceed the number of periods that is possi-
ble for a parent in the hierarchy of T . If T is on month level and we are currently
in November, and a complete previous year of data exists, then Maxw = 12. If no
previous year exists then Maxw = 11. In general, this means, e.g., that if we are
mining on months, Maxw 5 12, if we are mining on weeks, Maxw 5 53, and if we
are mining on minutes, Maxw 5 60. We take for granted that a time-dimension is
constructed such that this is possible since that is the implementation “best practice”
of TARGIT. The reason for limiting Maxw not to exceed the timeframe of a parent
is, that we only want to find the sentinel for warning period, w, and not for warning
periods = w + (parent timeframe × n)|n ∈ N. This would be the case if a sentinel
is cyclic over time, and we did not limit Maxw. For cyclic sentinels we prefer the
shortest warning period, w, since we attribute greater quality to sentinels based on
the “latest intelligence from the operational environment”, as opposed to a long-term
prediction pattern. In addition, a shorter warning period means that more cycles in
the OODA loop are possible based on the sentinel, and therefore an organization will
be able to react and adapt faster to its environment.
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The remaining parameters for o, MaxSource, wp, RPGpareto, σ, γ, β, and X
are silently applied by the system for most users. It is possible for expert users to
change a registration file to modify these. However, the “few click” ambitions in the
TARGIT BI Suite suggests that the system makes a “best bet” choice on behalf of
casual users. The parameters have been selected based on experiments with sentinel
mining on real world data from TARGIT A/S, NASDAQ OMX stock exchange, and
the governmental institute Danish Statistics.

Step 2: In this step, the SentHiRPG function is called with three different values of
α. The three set of sentinels mined competes with the maximum Score found in the
set, and the set that “wins” is kept in memory. The reasons for testing specifically
these three values of α is rooted in the same real world experiences as stated under
Step 1.

Step 3: This step returns the X best sentinels found along with the length of the
warning period, w, and the value of α. The sentinels found passes through the Local
Language Translation Layer in order to be localized for the user. In practice this
means that all the measures that constitute the sentinels are translated to the user’s
language. The reason for having X is to limit the load on the visual interface of
the client dialogue. It was found that a stress load of sentinels to the client would
overload the visual control, and since several hundreds (or thousands) of rules would
not contribute meaningfully to the users overview anyways, a threshold was set to
200. Based on real world experiences this threshold is rarely exceeded, and thus
most often all sentinels are returned to the client.

Computational Complexity of Sentinel Mining: When we examine the individ-
ual steps in the Sentinel Mining function, we note that the scan of the individual
cubes from CubeSet in Step 1 can be performed in time O(n), where n is the num-
ber of periods in T for which we have data. This is justified by the fact, that each
individual cube scan can be performed inO(n) under the assumption that the cube is
aggregated on T, and that each aggregated cell can be accessed through a hash-based
look-up [22]. Each of these individual cube scans produces a unique part of C that
can be mapped directly (with no index lookup) using T at a small, constant perfor-
mance overhead. The number of individual cube scans in CubeSet is also a constant,
and this constant is multiplied by n since we need to go through the entire dataset.
Since both these constants can be disregard, Step 1 can be performed in time O(n).
In Step 3, we note that the scan of the input of size n, (Step 2 output) produces an
output that is at most as large as the input, so this can be performed in timeO(n′) and
the computational complexity will be dominated by the size of the input. However,
since n′ 5 n, Step 3 can thus be disregarded.
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According to Chapter 3, SentHiRPG has a computational complexity of O(n +
c×p(q)l×kl×m) where n is the size of C, c is the number of unique facts in C (which
in this implementation is the size of T), p is the percentage of remaining source mea-
sures after RPG optimization expressed as a function of q, where q is RPGpareto, l
is MaxSource, k is the number of source measures, and m is Maxw. Repeating Sen-
tHiRPG three times in Step 2 does not change this computational complexity since
the multiplying constant can be disregarded.

Since Step 1’s computational complexity of O(n) is already included in the Sen-
tHiRPG computational complexity, we say that the entire implementation of Sen-
tinel Mining in the TARGIT BI Suite has a computational complexity of O(n+ c×
p(85%)3 × k3 ×m) with the variables defined above, with the exception of q and l
that have been replaced by the constants for RPGpareto and MaxSource in alignment
with the implementation of Step 1. The size of n = c × (k + 2), since C is a table
with |T | rows and k+2 columns (the number of source measures plus one column for
target measure and one column for the dimension T). In meaningful sentinel mining
we have that 2 << m, and we can thus disregard the constant. With this we can
simplify the computational complexity toO(c× k× (1+×p(85%)3× k2×m), and
eliminating the constant we end with a computational complexity for our implemen-
tation of O(c× p(85%)3 × k3 ×m).

With this notion, we will expect linear behavior when scaling the size of T. The
length of the period, Maxw (m), in which we fit the warning period is also expected
to scale linearly. When scaling the number of source measures (k) we will expect
the running time to rise cubically without the RPG optimization. However, since the
effect of the RPG optimization (p(85%)) is also cubic we will expect this to be an ef-
ficient countermeasure to the impact of scaling the number of source measures. This
analysis is verified in Section 5.5.

Using sentinels after discovery: Upon completion of the Sentinel Mining process,
the sentinels found will be listed in a user dialogue as shown in Figure 5.1(b). The
dialogue allows the user to select any number of the sentinels found, and to schedule
these for notification at a given frequency. The frequency defaults to the same period
as the hierarchical level of T, since it rarely makes sense to test for the existence of
the premise for a sentinel on a shorter period than it was mined for. Upon scheduling,
the sentinel is basically a traditional agent, that tests with the frequency set for the
existence of the premise for the sentinel in the most recent period of T at the level
for which it was mined. If the premise for the sentinel is found, the user is notified
by email, directly on his computer desktop, or iPhone with a message as shown in
Section 5.2.

As mentioned in Section 5.2, the confidence of a sentinel is fluid as time pro-
gresses since the user’s actions will interfere with the ”predictive power” of the sen-
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tinel. In fact, all the quality measures are variable as time progresses. However, we
choose not to reconsider Balance and Score since the causality and ranking was only
important when the user had to identify one or more relevant sentinels among oth-
ers. Now that the user has deemed a given sentinel relevant, there is no reason to
reconsider the relevancy quantitatively. There is of course the option that a user can
unschedule a sentinel manually at any time if he does not find it relevant anymore.

The sentinel prediction and confidence is shown in a notification to the user, if
confidence meets the threshold. If the confidence of a sentinel tested falls short of the
threshold, the user is notified that the sentinel is recommended to be retired as de-
scribed in Section 5.2. The retirement of a sentinel from active notification concludes
the life-cycle of a sentinel.

The cost of checking for the premises for all sentinels is linear in the number of
sentinels times the number of source measures per sentinel, since each check requires
reading two cells for each included source measure. We recall that the cube (per rec-
ommendation) is aggregated on T, and thus each aggregated cell can be accessed
through a hash-based look-up [22]. Thus, the cost of “sentinel check” is much lower
than the cost of mining sentinels, and can typically be performed in a few seconds.
This assumption is verified in Section 5.5.

5.4 Market Experiences

Sentinels was launched as a new feature in the TARGIT BI Suite version 2K9 which
was released to the market in April 2009. This first implementation was based on an
enhanced version of the algorithm described in Chapter 2. From version 2K9 SR1
(service release 1), released in November 2009, and forward, the implementation of
the algorithm from Chapter 3 is done as described in this chapter. Since most sen-
tinels are likely to be based on business data where a weekly or monthly warning
period is desired, time has simply not permitted other success stories with sentinel
usage than the internal experiences in TARGIT A/S. However, given TARGIT’s ten
years of experience with marketing software through an indirect sales model, we
know that the partners that sell and implement the TARGIT BI Suite are a trustwor-
thy source for fair initial market feedback. This feedback has been encouraging so
far, in 2009 partners that represented a market footprint of 1,936 customers with more
than 124,000 users rated sentinels the most interesting and promising feature.

In addition to TARGIT’s own surveys, leading industry analyst Gartner has re-
cently accepted TARGIT into the so-called Magic Quadrant for Business Intelligence
Platforms in 2010 [54]. The sentinel technology is specifically listed by Gartner as
one of the unique key strengths of the TARGIT:
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“The introduction of an innovative alerting solution, called Sentinels (essentially
prediction-based rules), enables an end user to react quickly to alerts for certain
indicators. Through the combination with Targit’s desktop alerts, a user gets an
early-warning notification when a predefined rule has been violated and the user can
proactively take corrective measures. This capability adds to Targit’s attractiveness
for end users.”

Even though the business impact of sentinels is expected, but not yet to be seen in
the large scale, we have learnt a few things about the user interaction with the sentinel
mining implementation. With regards to the dialogue where the sentinels found are
presented, Figure 5.1(b), it has been desired by users to see the Score for each sentinel
as a number. In the current implementation only confidence is presented as a number,
whereas Score is discretely presented as a sort order where the user knows that the
best sentinels are on top of the list. In addition, it has been desired by users to
have easy access to a visualization of the relationship between the source measures
and target measure. This can be done by allowing the user to see the measures that
constitute the sentinel presented as bar-charts alongside with the changes highlighted
(color-coded). This should of course be available with a single click with reference
to Section 5.2.

5.5 Experiments

Setup: We run our experiments directly on the data of the live TARGIT data ware-
house described in Section 5.2. Our setup is implemented across two physical servers:

1. a Quad Core Intel Xeon X3220 2.4 GHz with 8 GB RAM, 2 x 73 GB SAS
harddrives in RAID 1, running MS SQL Server 2008 cubes on a Windows
2008 64-bit operating systems.

2. an Intel Core2 Quad CPU (Q6600) 2.40GHz PC with 4GB RAM and 2 500GB
disks (7,200 RPM) running the TARGIT ANTserver on a 64Bit version of
Windows 2003 Server R2, Service Pack 2.

We run on version 2K10 of the TARGIT BI Suite (currently in development) that is
expected to launch in April 2010. A client is accessing the TARGIT ANTserver, and
this client has the following specification: Intel Core2 Dual CPU (6400) 2.13GHz
PC with 2GB RAM and 1 250GB disks (7,200 RPM) running a 32Bit version Win-
dows 7. However, it should be noted that the client did not do any processing of the
data, it simply relayed a “sentinel mining” or “sentinel check” query to the TARGIT
ANTserver on data warehouse server #2 and waited for a reply. Upon reply, the time
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Figure 5.3: Sentinel Mining Experiments

consumed was recorded. The experiments shown in Figure 5.3 and 5.3(d) represent
the average of 5 runs each, and the sequence of all the experiments is randomized.
To run queries on 10, 20, 30, ..., 140 source measures, we produce descendants of
the full data warehouse by selecting a given number of source measures randomly.
Please note that the time-scale on Figure 5.3(c) is different from all other figures.

In Section 5.3 we describe how we reduce the number of measures by consider-
ing only “base” measures in the mining process. In addition, we naturally only mine
the measures that have a relationship (a shared time-dimension). Whenever we refer
to a number of measures in the following experiments, we refer to the number of
related base measures, e.g., in the TARGIT case there are 250 measures in total, but
the largest possible number of related base measures is 154. The TARGIT data ware-
house contains data on all related base measures from January 2002 and forward,
meaning that we have 8 complete years of data, 2002 to 2009, to run our experiments
on.

Scaling Periods: In Figure 5.3(a) we scale the size of the input, i.e., the number
of periods over which we search for sentinels, on 50 measures (49 source measures
and 1 target measure), and with a fitting of the warning period over 7 days (1 week,
the duration of the parent level of the time dimension). To get the largest possible
dataset, we run the sentinel mining on the “days” level of the time hierarchy which
gives us a maximum of 2,922 periods for 8 years. We start by mining on data from
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2009 which accounts for 365 days. From this point, we add one year at the time
to increase the number of periods with either 365 or 366 days depending on the
year. The results are presented in Figure 5.3(a), and we note that the sentinel search
scales linearly from 365 to 2,922 periods as expected based on our assessment of the
computational complexity (when the other factors are kept constant). We should also
note that 2,922 periods in this context is a huge dataset, since users would normally
be operating on higher aggregated levels such as weeks or months. However, even
at this finest granularity in the TARGIT data warehouse, the linear scalability seems
to more than adequate to facilitate real world usage on a broad user scale, since the
mining on even this finest granularity can be conducted for the individual user in less
than 30 seconds (we recall that the cube data is pre-aggregated at the period(s) and
level(s)).

Scaling the fitting period: In order to scale the time frame, in which we fit the
warning period, as seen in Figure 5.3(b), we needed to tweak the default settings in
the TARGIT ANTserver to omit the built in prevention method for finding the same
cyclic sentinel multiple times as described in Section 5.3. In this experiment, we
mine sentinels on 50 measures (49 source measures and 1 target measure) on “days”
and “months” granularity respectively, and we scale the “fitting period” from 10 to
100 periods. Based on our assessment of computational complexity, we would expect
both levels on the time dimension to scale linearly (when the other factors are kept
constant). We do indeed observe a linear behavior for ”days” and ”months” when
the fitting period is within the default settings, i.e., ”days” will default to a fitting
period of either 7 or 31 periods (days), and ”months” would default to a fitting period
of 12 periods (months). However, when scaling beyond the default settings only the
scaling on the “months” level displayed a linear behavior. The “days” level seemed
linear in behavior from 10 to 50 periods, but then dropped in time consumption from
50 to 70 periods, from where it again displayed linear behavior. The reason is, that
another local maximum for Score exists close to a warning period of 70 which has
better score than a local maximum between 1 and 10. This means that our hill climb-
ing part of the SentHiRPG algorithm will have a tendency to be attracted towards the
longer warning periods once “fitting period”= 60. Such a signature suggests that the
sentinels mined on “days” are cyclic on a bi-monthly basis. However, as explained in
Section 5.3, we maintain that a shorter warning period is usually more relevant and
actionable for a user than a longer period.

Another interesting finding in Figure 5.3(b) is that, although the mining on “days”
is linear in two period-sequences, it seems to be much more costly than mining sen-
tinels on “months” when scaling the “fitting period”. When investigating this, we
found that the sentinel mining only finds two sentinel on the “days” level that actu-
ally meets the thresholds, meaning that all the time is used to process a lot of very



90 Implementing Sentinels in the TARGIT BI Suite

similar, but very poor sentinels. At the moment, the RPG optimization benefits from
the existence of influential measures in the input data, but if a lot of poor measures,
and no good measures, are input then the effect of the RPG optimization is low. Ef-
fectively, this means that we spend more time finding less and poorer sentinels. We
should note that even though the sentinel mining is not used on an optimal dimension
level from neither a performance nor quality perspective, the performance of the sys-
tem is still fair, since even the longest running query takes less than two minutes. This
is more than adequate for all users, since the user does not have to be online while
conducting the sentinel mining. In this context, we also note than when running on
the “month”, which produces more useful sentinels from a business perspective, the
longest running mining process takes less than 9 seconds.

Scaling source measures: In Figure 5.3(c) we scale the number of source measures
from 10 to 150 on a realistic sentinel mining process at the ‘months” level of the time
hierarchy. During this process the warning period is fitted over 1 year. We notice that
increasing the number of source measures is expected to have a cubic impact based
on our assessment of the computational complexity, and we have verified in the statis-
tical tool R (www.r-project.org) that the curve in Figure 5.3(c) is indeed cubic.
Although the curve seems steep, we should note that the impact of scaling the source
measures would be more than seven times higher without the effect of the RPG opti-
mization (RPG reduces the workload of combining source measures to 14% on real
data as described in Chapter 3). We attribute the efficiency of the RPG optimization
on real data to the existence of a power law in the data, where a few source measures
have strong relationships with the target measure whereas a larger number of source
measures has little or no relationship with it. From a user perspective the perfor-
mance is adequate, since the longest sentinel mining process possible in the TARGIT
data warehouse at this level took 10.5 minutes, and as we recall, the user does not
need to be online while mining. Moreover, the wait is worthwhile since the quality
of the sentinels found will benefit the user with early warnings for months to come.
We recall that once mined, the sentinel can be scheduled and “checked” (whether to
warn or not) with a given frequency, and the time consumption of a sentinel check is
less than a second in a real, operational data warehouse.

Scaling sentinels checked: In Figure 5.3(d) we scale the number of sentinels for
which we check for the existence of their respective premises. We note a complete
linear scalability when scaling to a realistic number of sentinels for a reasonably
large ”sentinel swarm” (see Section 5.2). This is consistent with what we would
expect based on our assessment of computational complexity of such a process (see
Section 5.3). We recall that our sentinel mining returned 26 possible sentinels for
Revenue in Figure 5.1(b), and thus 100 sentinels is roughly equal to scheduling four
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sentinel swarms to guard four critical measures. The cost of checking the entire
number of sentinels requires just about one minute of processing (precisely 1 minute
and 10.5 seconds), which means that a monthly follow-up on a sentinel swarm is
realistic for a large group of users.

Experiments Summary: In summary we have demonstrated that the sentinel min-
ing in the TARGIT BI Suite (with default settings) scales linear in number of periods
and length of fitting period, and it scales cubically in number of source measures.
We confirmed that the current settings in the TARGIT BI Suite are adequate to pre-
vent users from mining cyclic sentinels, and that these settings will also prevent users
from spending excessive time and system resources in doing so. Most importantly,
we have demonstrated that both mining and usage of sentinels is feasible with good
performance for the typical users on a real, operational data warehouse.

5.6 Related Work

The industry analyst Gartner is a well-known authority in the business intelligence
industry, and the Magic Quadrant analysis is by many considered the most influen-
tial description of the top international vendors. The Magic Quadrant analysis for
2010 [54] categorizes 15 vendors as either “market leaders” (7 companies), “chal-
lengers” (3 companies), or “niche players” (5 companies). The companies identified
as “market leaders” are: IBM, Oracle, Microsoft, SAS, SAP, Information Builders,
and MicroStrategy. Gartner categorizes features such as sentinels as “predictive mod-
eling and data mining”, and all “market leaders” have features within this category.
However, only SAS seems to be significantly differentiated from the other “mar-
ket leaders” in this category with a more comprehensive predictive offering since
the company originated from forecasting and predictive modeling, whereas the other
companies started as DBMS providers or as providers of reporting centric solutions.
Out of all features offered by the “market leaders” [8, 28, 34, 35, 47, 56], the algo-
rithms that to some extent resemble the functionality of sentinels are association
rules, sequential patterns, and regression techniques (see comparison below). This
also holds for the “challenger” Tibco, which is the only other noteworthy company
with “predictive modeling and data mining” features. As explained in detail below,
these competing techniques are distinctly different from the sentinel technology im-
plemented by TARGIT. Moreover, TARGIT is a new entrant in the ”niche player”
category of the Magic Quadrant, and with reference to Gartner’s statement in Sec-
tion 5.4, the sentinels of TARGIT are also perceived as a unique feature in the Magic
Quadrant analysis. In general, TARGIT is seen by Gartner as a “niche player” with
a strong foothold in the mid-market, and with a unique position in its approach to BI
usability. This is in line with the “few clicks” approach explained in Section 5.2, and
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therefore the entire concept of sentinels is unique from a market perspective.
From a scientific perspective, the idea that some actions or incidents are inter-

linked has been well explored in association rules [2]. The traditional case study
of association rules has been basket-type association rules, and significant effort has
been put into optimizing the original Apriori algorithm [3, 11]. In general, associ-
ation rule mining seeks to find co-occurrence patterns within absolute data values,
whereas our solution works on the relative changes in data. In addition, associa-
tion rule mining typically works on categorical data, i.e., dimension values, whereas
our solution works on numerical data such as measure values. Sequential pattern
mining adds to the complexity of association rules by introducing a sequence in
which actions or incidents take place [5], thus new optimization approaches have
emerged [24, 48, 49, 57]. Sequential pattern mining allows a time period to pass
between the premise and the consequent in the rule, but it remains focused on co-
occurrence patterns within absolute data values for categorical data. Furthermore,
our solution generates rules at the schema level, as opposed to the data level, using a
contradiction elimination process. The schema-level property allows us to generate
fewer, more general, rules that cannot be found with neither association rules nor
sequential pattern mining. In Chapter 2 we demonstrate why sequential pattern min-
ing does not find any meaningful rules compared to simple sentinel rule discovery,
referred to as “baseline” in Section 5.5. Compared to generalized sentinel rules, the
data level nature of sequential pattern mining means that it can neither identify bi-
directional rules that represent the “strongest” causal relationships, nor can it qualify
such relationships with a balance assessment against a threshold. The schema level
nature of generalized sentinel rules gives rise to the table of combinations (TC) and
the reduced pattern growth (RPG) optimization, and such optimization can therefore
not be offered by sequential pattern mining or other known optimizations for simpler
“market basket”-type data such as [11]. In addition to the TC and RPG optimizations,
the auto-fitting of the warning period, and the ability to combine source measures into
better sentinel rules, adds to the distance from our solution to sequential patterns.

Gradual rule mining [7,10,27,31] is a process much like association rules, where
the categorical data are created by mapping numerical data to fuzzy partitions, and
thus this technique works on numerical data similar to sentinels. However, similar
to association rules and sequential patterns, gradual rule mining does not have the
schema level property of sentinels that allows sentinel mining to create the strong
bi-directional rules.

Other approaches to interpreting the behavior of data sequences are various re-
gression [4] and correlation [26,60] techniques which attempt to describe a functional
relationship between one measure and another. In a multi-dimensional database such
regression techniques (Bellwether Analysis) can be used on historical sales data to
identify a leading indicator that can predict the global sales of a new product, for
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which only a short period of data is available [13, 14]. However, similar to gradual
rules, these techniques are also concerned with the absolute values of a measure, as
opposed to sentinels that are based on changes in the measure values. With regards to
the output, sentinels are more specific “micro-predictions”, i.e., strong rules that hold
for a subset of the data and stimulate specific actions, and are thus complementary to
these techniques. Sentinels are therefore useful for detecting incidents and generating
warnings whenever changes (that would otherwise go unnoticed) in a relevant source
measure occur (Chapter 2).

The CALM theory [36] describes how BI technologies in general, and sentinels
in particular, can be integrated in an OODA loop (Appendix A). The concept of sim-
ple sentinel rules has been described in Chapter 2, and was significantly extended
into generalized sentinel rules (Chapter 3), that allow multiple source measures to
be combined into better rules through a quality assessment that can also auto-fit the
best warning period. The user interaction in sentinel mining in the TARGIT BI Suite
is described in Chapter 4. In comparison, this chapter describes an industrial imple-
mentation of the sentinel concept from a user and data perspective. In addition, we
provide detailed description of the implementation of sentinels in a standardized soft-
ware package, and subject this software to several experiments on a real, operational
data warehouse.

5.7 Conclusion and Future Work

Motivated by the need for business users to make fast decisions, we showed how users
without any knowledge of databases and data mining were able to search, schedule
and receive warnings from sentinels. We described an implementation where little
training is needed for a user to benefit from the sentinel technology. We demon-
strated sentinel mining from both a user and a data perspective, and we specifically
demonstrated how to score the best sentinels. We described in detail how an algo-
rithm for sentinel mining was implemented in the server layer of the TARGIT BI
Suite, and how the user interaction with this layer takes place. We conducted sev-
eral experiments and showed that both mining and usage of sentinels is feasible with
good performance for the typical users on a real, operational data warehouse. Fur-
thermore, we identified the state of the art technologies in both industry and science,
and we showed that these technologies are distinctively different from sentinels, and
we pointed out where sentinels are useful when other technologies are not. In sum-
mary, we demonstrated this implementation of sentinel technology to be effective,
useful, and unique.

For future work we would like to incorporate the experiences from the market
(see Section 5.4), where an ability to visualize sentinels was desired in order to give
users an understanding of what is going on behind the scenes. Such a visualization
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will most likely assist in persuading more users to trust and thus benefit from sen-
tinels. In addition, the observations in Section 5.5 gave us an idea to remove the
source measures that have less influence than the SentSupp threshold prior to running
the RPG. This modification is expected to restore the effect of the RPG optimiza-
tion even on data without strong sentinels. Finally, we would like to induce more
flexibility by introducing intervals to replace the fixed warning period and the offset.



Chapter 6

Efficient Sentinel Mining Using
Bitmaps on Modern Processors

This chapter proposes a highly efficient bitmap-based approach for discovery of so-
called sentinels. Sentinels represent schema level relationships between changes over
time in certain measures in a multi-dimensional data cube. Sentinels notify users
based on previous observations, e.g., that revenue might drop within two months if
an increase in customer problems combined with a decrease in website traffic is ob-
served. We significantly extend prior work by representing the sentinel mining prob-
lem by bitmap operations, using bitmapped encoding of so-called indication streams.
We present a very efficient algorithm, SentBit, that is 2–3 orders of magnitude faster
than the state of the art, which can utilize CPU specific instructions and the multi-
core architectures available on modern processors. The SentBit algorithm scales effi-
ciently to very large datasets, which is verified by extensive experiments on both real
and synthetic data.

6.1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with the
challenges facing managers that operate in a world of chaos due to the globalization
of commerce and connectivity [36]; in this chaotic world, the ability to continuously
react is far more crucial for success than the ability to long-term forecast. The idea in
CALM is to take the Observation-Orientation-Decision-Action (OODA) loop (orig-
inally pioneered by “Top Gun” fighter pilot John Boyd in the 1950s), and integrate
business intelligence (BI) technologies to drastically increase the speed with which

95
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a user in an organization cycles through the OODA loop. One way to improve the
speed from observation to action is to expand the “time-horizon” by providing the
user of a BI system with warnings based on “micro-predictions” of changes to an
important measure, often called a Key Performance Indicator (KPI). A sentinel is a
causal relationship where changes in one or more source measures, are followed by
changes to a target measure (typically a KPI), within a given time period, referred to
as the warning period. We attribute higher quality to bi-directional sentinels that can
predict changes in both directions, since such a relationship intuitively is less likely
to be coincidental (see Section 6.2). An example of a sentinel for a company could
be: “IF Number of Customer Problems go up and Website Traffic goes down THEN
Revenue goes down within two months AND IF Number of Customer Problems go
down and Website Traffic goes up THEN Revenue goes up within two months”. Such
a rule will allow a BI system to notify a user to take corrective action once there is
an occurrence of, e.g., “Customer Problems go up and Website Traffic goes down”,
since he knows, based on the “micro-prediction” of the rule, that Revenue, with the
probability stated by the rule’s confidence, will go down in two months if no action
is taken.

Our contributions are as follows. First, we show how to represent the sentinel
mining problem by bitmap operations, using bitmapped encoding of so-called indi-
cation streams. Second, we present a very efficient algorithm, SentBit, that is 2–3
orders of magnitude faster than the state of the art. SentBit does not use approxima-
tion, and thus provides exact results unlike prior art. Third, we provide a number
of optimizations utilizing CPU specific instructions and the multi-core architectures
available on modern processors. Fourth, we present experiments demonstrating that
SentBit scales efficiently to very large datasets, and that sentinels are only found if
the data contains statistically significant relationships.

Compared to prior art, sentinels are mined on the measures and dimensions of
multiple cubes in an OLAP database, as opposed to the “flat file” formats used by
most traditional data mining methods. Sentinels find rules that would be impossible
to detect using traditional techniques, since sentinels operate on data changes at the
schema level as opposed to absolute data values at the data level such as associa-
tion rules [2] and sequential patterns typically do [5]. In Chapter 2 we specifically
provide a concrete, realistic example where nothing useful is found using these tech-
niques, while sentinel mining do find meaningful rules. The nature of changes at the
schema level gives rise to bitmapped encoding (Section 6.4) of indication streams
(Section 6.3), which is the prerequisite of bitmapped sentinel mining, and therefore
prior art will not be able to find the same rules. In addition, the auto-fitting of the
warning period, and the ability to combine source measures into better sentinel rules,
adds to the distance between our solution and the results and optimizations offered in
prior art such as [3, 11, 24, 46, 48, 49, 53, 57, 59].
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Gradual rule mining [7,10,27,31] is a process much like association rules, where
the categorical data are created by mapping numerical data to fuzzy partitions, and
thus this technique works on numerical data similar to sentinels. However, similar
to association rules and sequential patterns, gradual rule mining does not have the
schema level property of sentinels that allows sentinel mining to create the strong
bi-directional rules.

Other approaches to interpreting the behavior of data sequences are various re-
gression [4] and correlation [26,60] techniques which attempt to describe a functional
relationship between one measure and another. In a multi-dimensional database such
regression techniques (Bellwether Analysis) can be used on historical sales data to
identify a leading indicator that can predict the global sales of a new product, for
which only a short period of data is available [13, 14]. However, similar to gradual
rules, these techniques are also concerned with the absolute values of a measure, as
opposed to sentinels that are based on changes in the measure values. With regards to
the output, sentinels are more specific “micro-predictions”, i.e., strong rules that hold
for a subset of the data and stimulate specific actions, and are thus complementary to
these techniques. Sentinels are therefore useful for detecting incidents and generating
warnings whenever changes (that would otherwise go unnoticed) in a relevant source
measure occur (Chapter 2).

With regards to parallelization of our bitmapped sentinel mining algorithms, prior
art in other aspects of data warehousing have also applied parallelization in order to
deal with the huge volumes of data that resides in these systems [17,18]. In addition,
multi-core parallelism has been applied to gradual rule mining [31].

Sentinel mining from a user and an industry perspective has been described in
Chapters 4 and 5, and the underlying algorithms have been described in Chapters 2
and 3. In comparison, this chapter provide an algorithm using bitmaps that is 2–3
orders of magnitude faster.

The remainder of the chapter is structured as follows: The next section intuitively
presents the concept of sentinels, Section 6.3 presents the formal definition, Sec-
tion 6.4 presents the prerequisites for bitmapped sentinel mining, Section 6.5 presents
the new SentBit algorithm, and Section 6.6 presents the optimization and implemen-
tation of SentBit, Section 6.7 presents experimental results, and Section 6.8 presents
our conclusions and proposals for future work.

6.2 The Sentinel Concept

Table 6.1 is a data example for a company, where two subsets have been extracted
from a database. We have assigned short names to the measures as follows: PeoInv =
the number of people involved in the decision process for customer projects, UniRev
= the revenue of training activities, WHts = the number of human hits on the com-



98 Efficient Sentinel Mining Using Bitmaps on Modern Processors

(a) Source
Month PeoInv UniRev WHts Ind(PeoInv) Ind(UniRev) Ind(WHts)
2009-Jan 1 115 1320
2009-Feb 2 115 1310 N
2009-Mar 2 100 1490 H N
2009-Apr 3 90 987 N H H
2009-May 2 363 888 H N H
2009-Jun 3 310 1147 N H N
2009-Jul 2 440 1003 H N H
2009-Aug 4 297 1150 N H N
2009-Sep 5 260 993 N H H
2009-Oct 6 230 1110 N H N
2009-Nov 4 294 1200 H N
2009-Dec 5 264 1420 N H N
2010-Jan 6 230 1350 N H
2010-Feb 4 270 1380 H N
2010-Mar 3 353 1530 H N N
2010-Apr 2 400 1310 H N H

(b) Target
Month Rev Ind(Rev)
2009-Apr 900
2009-May 1001 N
2009-Jun 1200 N
2009-Jul 750 H
2009-Aug 1001 N
2009-Sep 1100
2009-Oct 1250 N
2009-Nov 970 H
2009-Dec 850 H
2010-Jan 720 H
2010-Feb 1250 N
2010-Mar 930 H
2010-Apr 800 H
2010-May 1100 N
2010-Jun 1400 N
2010-Jul 1600 N

Table 6.1: The relationship between two source measures and a target measure

pany’s website, and Rev = revenue for the entire company. The source measures,
PeoInv, UniRev, and WHts, in Table 6.1(a) have been extracted for January 2009 to
April 2010. The target measure, Rev, in Table 6.1(b) has been extracted for April
2009 to July 2010; a similar period in length starting three months later. We refer
to these three months as the Warning Period. We have calculated the cases where a
measure changes 10% or more, either up (N) or down (H), from one month to an-
other. We refer to each change to a measure over time as an indication, Ind.

As seen in the 16 rows in Table 6.1, the measures PeoInv and UniRev tend to
change in a combined pattern such that when PeoInv goes up, UniRev goes down,
and vice versa. This source measure pattern is observed 13 times, out of 15 pos-
sible. If we combine this pattern with the subsequent changes to Rev three months
later, we see that Rev changes in the same direction as UniRev in 12 out of 13 pos-
sible times (denoted by #ChangesToSource = 13). Another observation is that the
relationship between Rev and the combination of PeoInv and UniRev goes in both
directions, which is a property we refer to as bi-directionality. Intuitively, one can
say that if a relationship is bi-directional, then there is a greater chance that the re-
lationship is causal, as opposed to a uni-directional relationship where a pattern is
observed for measure changes in one direction only. Consider a case where revenue
and staff costs increase over a period of time. This yields the uni-directional rela-
tionship that an increase in revenue leads to an increase in staff costs the following
month; in this case a decrease in revenue will not necessarily lead to a decrease in
staff costs since these costs tend to be more fixed. Therefore, bi-directional relation-
ships are more desirable. It is also noteworthy that Rev changes 6 times up (denoted
by A = 6) and 6 times down (denoted by B = 6) in combination with PeoInv and
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UniRev since this “balance” again adds to the likeliness that the relationship is indeed
causal. In summary we can say that a sentinel exists in Table 6.1 where changes in
PeoInv and UniRev is able to warn three months ahead about changes to Rev with a
Confidence of 92% (12 out of 13 times), defined as Confidence = |A+B|

#ChangesToSource .

Balance = 4×|A|×|B|
(|A|+|B|)2 is a measure for the degree to which a sentinel is balanced, and

in this case the sentinel is perfectly balanced, meaning that Balance = 1. We note
that the bi-directional quality that can be achieved by assessing Balance, is impossi-
ble to achieve for sequential patterns since they can only represent one direction of
changes in each pattern.

In addition to the combined relationship of the source measures, we can also ob-
serve “simple” sentinels (Chapter 2) with only one source and one target measure in
Table 6.1. However, the inverted relationship between PeoInv and Rev, as well as
the relationship between UniRev and Rev, each have one occurrence (the first two
changes) where Rev changes in the opposite direction of what we would expect from
all other changes. To assess the prediction ability for such sentinels we must first
eliminate its internal contradictions. This is done by deducting the number of times
Rev changes in the “unexpected” direction from the number of times Rev changes
in the “expected” direction. This means that both source measures change 14 times,
whereas the target measure after elimination changes only 11 times (12− 1). There-
fore the simple sentinels have a poorer Confidence of 79% (5+6

14 ) and are slightly less
balanced (Balance = 4×|5|×|6|

(|5|+|6|)2 = 0.99) compared to the sentinel where the source
measures were combined. On the other hand, simpler sentinels with fewer source
measures have the advantage of being more general than very specific, potentially
overfitted, sentinels with many source measures, and therefore the simplicity of a
sentinel is also important.

6.3 Formal Definition

Let C be a multi-dimensional cube containing a set of facts,
C = {(d1, d2, ..., dn,m1,m2, ...,mp)}. The dimension values, d1, d2, ..., dn, be-
long to the dimensions D1, D2, ..., Dn, and we refer to the “dimension part” of a fact,
(d1, d2, ..., dn), as a cell. We say that a cell belongs to C, denoted by (d1, d2, ..., dn) ∈
C, when a fact (d1, d2, ..., dn,m1,m2, ...,mp) ∈ C exists. We say that a measure
value, mi, is the result of a partial function, Mi : D1 × D2 × ... × Dn ↪→ ℜ, de-
noted by, Mi(d1, d2, ..., dn) = mi, if (d1, d2, ..., dn) ∈ C and 1 5 i 5 p. We refer
to Mi as a measure. We assume, without loss of generality, that there is only one
time dimension, T , in C, and that T = D1, and subsequently t = d1. In addition,
we assume that measures M1, ...,Mp−1 are source measures, and that measure Mp

is the target measure. An indication, Ind, tells us whether a measure, Mi, changes
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by a factor of at least α over a period, o. We define Ind(Mi, t, o, d2, d3, ..., dn) when
{(t, d2, d3, ..., dn), (t+ o, d2, d3, ..., dn)} ⊆ C as shown in Formula 6.1.

Ind(Mi, t, o, d2, d3, ..., dn) =
N if

Mi(t+ o, d2, d3, ..., dn)−Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
= α

H if
Mi(t+ o, d2, d3, ..., dn)−Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
5 −α

(6.1)

We refer to N as a positive indication and to H as a negative indication. We define
a wildcard, ?, that can be either N or H. In addition, we define
the complement of an indication as follows: N = H and H = N. Furthermore, we de-
fine the inverted measure, Mi(x ) = −Mi(x ), thus all indications
Ind(Mi, t, o, d2, d3, ..., dn) = Ind(Mi, t, o, d2, d3, ..., dn).

We define an indication sequence, IndSeq, for a measure,
Mi ∈ {M1, ...,Mp,M1, ...,Mp}, as shown in Formula 6.2. Intuitively, an IndSeq
captures the indications over time for each dimension combination, (t, d2, d3, ..., dn).
In the following we use set notation for convenience, but implicitly assume that the
order of the sequence is given by the tuple (t, d2, d3, ..., dn).

IndSeq(Mi, C, o, w) =

{(t, d2, d3, ..., dn, Ind(Mi, t+ w, o, d2, d3, ..., dn)) |
{(t, d2, d3, ..., dn), (t+ w, d2, d3, ..., dn),

(t+ o+ w, d2, d3, ..., dn)} ⊆ C ∧
Ind(Mi, t+ w, o, d2, d3, ..., dn) ∈ {N,H}}

(6.2)

We define a join of two or more indication sequences, IndJoin, for a set of mea-
sures, {S1, ..., Sm} ⊆ {M1, ...,Mp,M1, ...,Mp} as shown in Formula 6.3. For-
mula 6.3 allows optional differences in time, w1, ..., wm ∈ N0, between the indi-
cation sequences joined, referred to as warning periods. Intuitively, an indication
join is an m-way semi-join where we take the left indication sequence and filter out
all indications that do not fit with the other sequences. For source measures it is typ-
ical to combine measures for the same time instance, and for target measures for a
later time instance (default wx = 0 for all wx|1 5 x 5 m). In addition, we define an
optional filter, F ∈ {N,H, ?}, that allows the resulting indication sequence to consist
of indications in one direction only (default F =?).
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IndJoin((S1[w1]), ..., (Sm[wm]), C, o[, F ]) =

{(t, d2, d3, ..., dn, Ind(S1, t+ w1, o, d2, d3, ..., dn)) |
(t, d2, d3, ..., dn, Ind(S1, t+ w1, o, d2, d3, ..., dn)) ∈

IndSeq(S1, C, o, w1) ∧
Ind(S1, t+ w1, o, d2, d3, ..., dn) = F ∧
∀ (S,w) ∈ {(S2, w2), ..., (Sm, wm)} :

(t, d2, d3, ..., dn, Ind(S1, t+ w1, o, d2, d3, ..., dn)) ∈
IndSeq(S,C, o, w)}

(6.3)

With these definitions, we can output all sentinels in the cube, C, with the offset,
o, and the warning period, w, as shown in Formula 6.4. Each sentinel is represented as
a set of source measures, Source, and a target measure, Target, and we use MaxSource
as a threshold for the maximum number of source measures we want to combine in a
sentinel. The thresholds β, γ, and σ are global and are thus not passed to Formula 6.4.

SentRules(C , o,w) = {Sourcek  Targetl |
Sourcek ⊆ {M1, ...,Mp−1,M1, ...,Mp−1} ∧
|Sourcek | 5 MaxSource ∧ Targetl ∈ {Mp,Mp} ∧
SentSupp(Sourcek , C, o) = σ ∧
ElimSupp(Sourcek ,Targetl , C, o, w,N) = 0 ∧
ElimSupp(Sourcek ,Targetl , C, o, w,H) = 0 ∧
Balance(Sourcek ,Targetl , C, o, w) = β ∧
Confidence(Sourcek ,Targetl , C, o, w) = γ}

(6.4)

The functions SentSupp (Formula 6.5), ElimSupp (Formula 6.6), Balance (For-
mula 6.7), and Confidence (Formula 6.8) used in SentRules(C , o,w) are defined as
follows:

SentSupp(Source, C, o) = |IndJoin(Source, C, o)| (6.5)

ElimSupp(Source,Target , C, o, w, F ) =

|IndJoin(Source, (Target , w), C, o, F )|
− |IndJoin(Source, (Target , w), C, o, F )|

(6.6)

Balance(Source, Target, C, o, w) =
4× |A| × |B|
(|A|+ |B|)2

where

A = ElimSupp(Source,Target , C, o, w,N)
B = ElimSupp(Source,Target , C, o, w,H)

(6.7)

Confidence(Source,Target , C, o, w) =
|A|+ |B|

SentSupp(Source, C, o)
(6.8)

Formulae 6.5 to 6.8 are based on the cardinality of indication sequences that re-
sult from joining indication sequences based on the measures in Source and Target.
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In Table 6.2 we see the individual indication sequences for the measure, PeoInv, and
the inverted measures UniRev and Rev , from Table 6.1 (first three columns). In
addition, we see the result of IndJoin(PeoInv ,UniRev , (Rev , 3), C, 1) that has a
cardinality of 12, and IndJoin(PeoInv ,UniRev , (Rev , 3), C, 1,N) with the cardi-
nality of 6. We note that o = 1 and w = 3 similar to our example in Section 6.2.
In this particular case, the cardinalities represent ElimSupp and A respectively for the
sentinel with Source = {PeoInv ,UniRev} and Target = Rev , since the cardinali-
ties of the same joins, but for Target = Rev are both 0.

A = ElimSupp(Source,Target , C, o, w,N) (Formulae 6.7 and 6.8) is the num-
ber of times that Source changes in a certain direction and Target subsequently changes
in the “expected” positive (N) direction, minus the number of times where Target
changes in the opposite direction. ElimSupp(Source,Target , C, o, w,H), denoted
by B, is calculated in the same way, but for the changes to Target in the opposite
direction of A (H). We refer to this as the contradiction elimination process, where
we essentially force a sentinel to be either Source  Target or Source  Target ,
and thereby we effectively eliminate both contradicting (same premise but different
consequent) and orthogonal (different premise but same consequent) indications in
the sentinel we are evaluating.

Formulae 6.5, 6.7, and 6.8 represent desired qualities of the sentinel: SentSupp
(Formula 6.5) tells us how often the premise of the sentinel occurs. Balance (For-
mula 6.7) is used to determine the degree to which a generalized sentinel rule is
uni-directional (Balance=0) or completely bi-directional (Balance=1), meaning that
there are exactly the same amounts of positive and negative indications on the target
measure in the data, similar to the sentinel, PeoInv ∧ UniRev  Rev , from our

IndSeq IndSeq IndSeq IndJoin IndJoin
(PeoInv , C, 1, 0) (UniRev , C, 1, 0) (Rev , C, 1, 3) (PeoInv ,UniRev , (PeoInv ,UniRev ,

(Rev , 3), C, 1) (Rev , 3), C, 1,N)
2009-Jan,N 2009-Jan,H

2009-Feb,N 2009-Feb,H
2009-Mar,N 2009-Mar,N 2009-Mar,N 2009-Mar,N 2009-Mar,N
2009-Apr,H 2009-Apr,H 2009-Apr,H 2009-Apr,H
2009-May,N 2009-May,N
2009-Jun,H 2009-Jun,H 2009-Jun,H 2009-Jun,H
2009-Jul,N 2009-Jul,N 2009-Jul,N 2009-Jul,N 2009-Jul,N
2009-Aug,N 2009-Aug,N 2009-Aug,N 2009-Aug,N 2009-Aug,N
2009-Sep,N 2009-Sep,N 2009-Sep,N 2009-Sep,N 2009-Sep,N
2009-Oct,H 2009-Oct,H 2009-Oct,H 2009-Oct,H
2009-Nov,N 2009-Nov,N 2009-Nov,N 2009-Nov,N 2009-Nov,N
2009-Dec,N 2009-Dec,N 2009-Dec,N 2009-Dec,N 2009-Dec,N
2010-Jan,H 2010-Jan,H 2010-Jan,H 2010-Jan,H
2010-Feb,H 2010-Feb,H 2010-Feb,H 2010-Feb,H
2010-Mar,H 2010-Mar,H 2010-Mar,H 2010-Mar,H

Table 6.2: Example of Indication Sequences and Joins.
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example in Section 6.2. Confidence (Formula 6.8) tells us the fraction of occurrences
where the premise occurs, and the consequent occurs within w time. We denote the
minimum threshold for SentSupp by σ, the minimum threshold for Confidence is de-
noted by γ, and the minimum threshold for Balance is denoted by β.

Aside from the individual quality measures for a sentinel in Formulae 6.5 to 6.8,
it is also desirable to have a quality measure that incorporates all these measures
into one value; this is relevant if we want to compare multiple different sentinels
to identify the best sentinel(s). For this purpose, we define Score for a sentinel,
Source  Target ∈ SentRules(C, o, w), as shown in Formula 6.9.

Score(Source,Target , C, o, w) =

(1− wp +
(1 +Maxw − w)× wp

Maxw
)

× (
1

2
+

1 +MaxSource − |Source|
MaxSource × 2

)

× ElimSupp(Source,Target , C, o, w, ?)

MaxElimSupp(C, o, w)

× Confidence(Source,Target , C, o, w)

× (
1

2
+

Balance(Source,Target , C, o, w)

2
)

(6.9)

With this definition of Score, we denote the maximal value of
ElimSupp(Source,Target , C, o, w, ?) for any sentinel, Source  Target ∈
SentRules(C, o, w), by MaxElimSupp(C, o, w). In addition, we introduce the thresh-
old, Maxw, which is the maximum length of the warning period, w, we are willing
to accept. The constant, wp, represents the warning penalty, i.e., the degree to which
we want to penalize rules with a higher w (0=no penalty, 1=full penalty). Generally,
Score incorporates a preference having high values for all quality measures (Formu-
lae 6.5 to 6.8), and having shorter sentinel rules (low |Source|) with a low, non-cyclic
warning period, w. The construction of Score is further elaborated in Chapters 3 and
5. With Score as a uniform way to assess the quality of a sentinel, we can now define
Optimalw(C,o), as shown in Formula 6.10, which is the value of w, 1 5 w 5 Maxw ,
where SentRules(C,o,w) contains the rule with the highest Score.

Optimalw(C, o) = w such that 1 5 w,w′ 5Maxw ∧
∃S ∈ SentRules(C , o,w) :

(∀w′ ̸= w : (∀S ′ ∈ SentRules(C , o,w ′) :

(Score(S) = Score(S ′))))

(6.10)

SentRulesPruned(C , o,w) = {S ∈ SentRules(C , o,w) |
̸ ∃S ′ ∈ SentRules(C , o,w) :

(Score(S ′,C , o,w) = Score(S ,C , o,w) ∧ S ′
Source ⊂ SSource)}

(6.11)

Having found the optimal w, it is also desirable to prune the generalized sentinel
rules such that we only output the best rules in terms of Score, and the shortest rules in
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SentRules RuleLen SentSupp Conf Balance Score OK
(ElimSupp) ?

PeoInv ∧UniRev  Rev 2 13 (12) 92% 1 0.71 OK
PeoInv  Rev 1 14 (11) 79% 0.99 0.66 OK
UniRev  Rev 1 14 (11) 79% 0.99 0.66 OK
PeoInv ∧WHts  Rev 2 7 (6) 86% 1 0.33 OK
PeoInv ∧UniRev ∧WHts  Rev 3 7 (6) 86% 1 0.26 OK

UniRev ∧WHts  Rev 2 8 (5) 63% 0.96 0.19 Failed
WHts  Rev 1 11 (2) 18% 1 0.03 Failed

Table 6.3: Sentinels ordered by their respective Conformance and Score.

terms of number of source measures. For this purpose, we use the SentRulesPruned
function, as shown in Formula 6.11, that eliminates rules with poor quality (lower
Score) if a shorter rule exists with at least as good a Score, and where Source is a
proper subset of Source for the longer rule.

We say that SentRulesPruned(C, o,Optimalw(C, o)) ordered by their respec-
tive Score are the best sentinels in a database, C, with the offset, o. Using the Sen-
tRulesPruned function, we note that PeoInv∧WHts  Rev and PeoInv∧UniRev∧
WHts  Rev in fourth and fifth line in Table 6.3 would be eliminated since the
shorter rules PeoInv  Rev and PeoInv ∧ UniRev  Rev have a better Score. In
other words, we do not improve the quality of these sentinels by adding the source
measure WHts to them.

We use the following notation when describing a sentinel, Source  Target ∈
SentRules(C , o,w): we write all source measures in Source and Target as one string
where the source measures are separated with∧ and the target measure separated with
 , e.g., A∧B  C. The total number of potential sentinels for the p measures in the
dataset, C, with MaxSource source measures is

∑l
x=1

(2p)!
(2p−x)! where l = MaxSource,

however by preserving the order of the source measures, and never allowing the first
source measure to be inverted, we can reduce the number of potential rules (permuta-
tions) to

∑l
x=1

(2p−1)!
l!(2p−1−x)! without loosing any sentinels from a logical perspective.

Therefore, we preserve the order of the source measures and invert measures relative
to the first source measure when describing sentinels.

If we apply Formula 6.4 to the data in Table 6.1, and use the notation above,
we get the conforming sentinels (Conformance=OK) in the first column of Table 6.3
as output when the thresholds for number of source measures, SentSupp, Balance,
and Confidence are set as follows: α = 10%, σ = 5, β = 0.8, and γ = 75%,
MaxSource = 3. Furthermore, wp = 1

2 .
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6.4 Prerequisites for Bitmapped Sentinel Mining

To mine the sentinels in a dataset, we need to test all combinations of source mea-
sures up to MaxSource in combination with the target measure and warning periods
allowed. The measure combinations include inverted measures as well. For each
sentinel, based on these combinations, we need to inspect whether it conforms with
the thresholds set for the desired sentinel qualities. To do this, we need to join (For-
mula 6.3) a number of indication sequences (Formula 6.2) and subsequently do a
number of calculations based on the cardinality of the resulting indication sequences
(Formulae 6.4 to 6.11). Bitmapped sentinel mining optimizes this process by encod-
ing all indication sequences into bitmaps, this means that indication sequence joins
can be done in a number of Boolean operations. Subsequently, the cardinality of the
resulting bitmaps can be found by counting the bits set in these bitmaps.

The SentBit algorithm first encodes the data into bitmaps, and from this point a
recursive function is initiated that grows the potential sentinels in terms of number
of source measures with respect to the order of source measures and the thresholds
set. Upon completion of the recursive function, the best sentinels can be output from
memory. Overall the SentBit algorithm can be described as follows:

Step 1: Use EncodeData and CreateBitmap to build a bitmap for each source mea-
sure, and for the target measure for each warning period allowed.
Step 2: Call TestSentinel for each combination of source measure, and target mea-
sure with a given warning period allowed. TestSentinel will call itself recursively
by adding source measures until Score does not improve, or the number of source
measures meet the maximum length desired. Whenever a sentinel is tested in Test-
Sentinel, it is stored in memory if it meets the quality thresholds.
Step 3: Output the sentinels for the warning period that includes the highest scoring
sentinel.

A bitmap used for bitmapped sentinel mining is a list of an even number of CPU
words. The SentBit algorithm presented next requires that the indication sequences
for all measures are first encoded into bitmaps of equal length in terms of number of
words. This encoding will allows us to conduct the entire sentinel mining process as a
number of Boolean operations on the bitmaps with subsequent counts of the number
of bits set. To illustrate the encoding and bitmap operations, we use the indication se-
quence for the source measure PeoInv, formally IndSeq(PeoInv , C, 1, 0), as shown
in Table 6.2.
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Bitmap(PeoInv ) aligned in two 32 bit words

PI :

bits set for positive Ind︷ ︸︸ ︷
10101011 1011000

fill of 0 bits to align with word length︷ ︸︸ ︷
0 00000000 00000000

NI : 00010100 0100111︸ ︷︷ ︸
bits set for negative Ind

0 00000000 00000000︸ ︷︷ ︸
fill of 0 bits to align with word length

As shown in Bitmap(PeoInv), the bits are set in accordance with the positive indi-
cations, PI, and the negative indications, NI. The position of the indications are given
by the order of the tuple, (t, d2, d3, ..., dn) ∈ C, thus even if there is no indication
(positive or negative), Ind(PeoInv , t, o, d2, d3, ..., dn), for a given (t, d2, d3, ..., dn),
the position will still be occupied by two unset bits for PI and NI, respectively. In our
example, there is only a total of 15 possible indications which easily fits into the 32 bit
word. In practice, however, PI and NI will most likely need multiple words allocated
to fit the number of bits equivalent to the number of (t, d2, d3, ..., dn) ∈ C. Similarly,
we have the bitmaps for the indication sequences for the source measure, UniRev, and
the target measure, Rev, formally IndSeq(Unirev , C, 1, 0) and IndSeq(Rev , C, 1, 3):

Bitmap(UniRev ) aligned in two 32 bit words
PI : 00010100 01001110 00000000 00000000

NI : 01101011 10110000 00000000 00000000

Specifically for the target measure, we create a bitmap for each warning period
we want to evaluate, i.e. 1, 2, 3, ...,Maxw , thus we denote the bitmap for Rev with a
warning period of 3 months as Bitmap(Rev3 ).

Bitmap(Rev3 ) aligned in two 32 bit words
PI : 11010100 01001110 00000000 00000000

NI : 00100011 10110000 00000000 00000000

The encoding of all measures into bitmaps is done using the EncodeData (Algo-
rithm 6.1) procedure with its subroutine CreateBitmap (Algorithm 6.2).

Algorithm 6.1 Encode all measures into bitmaps
EncodeData(a set of source measures, {S1, ..., Sp} ⊆ C, a target measure,
Target ∈ C, an offset, o, and a maximum warning period, Maxw)

1: for all S ∈ {S1, ..., Sp} do
2: CreateBitmap(S , o, 0 )
3: for w = 1 to Maxw do
4: CreateBitmap(Targetw , o,w)
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Algorithm 6.2 Create a bitmap for a measure
CreateBitmap(a measure, M ∈ C, an offset, o,

a warning period, w)
1: Allocate memory for Bitmap(M ), fill(0)
2: position ← 0
3: for all (t+ w, d2, d3, ..., dn,

t+ w + o, d2, d3, ..., dn) ∈ C do
4: if Ind(M, t+ w, o, d2, d3, ..., dn) = N then
5: set bit # (position MOD word length)

in Bitmap(M ).PI .word(position DIV word length)
6: else if Ind(M , t+ w, o, d2, d3, ..., dn) = H then
7: set bit # (position MOD word length)

in Bitmap(M ).NI .word(position DIV word length)
8: position ← position + 1

EncodeData simply takes each source measure and each w combined with the tar-
get measure and calls CreateBitmap to do the encoding. Once called, CreateBitmap
inspects all possible indications (Formula 6.1) for the measure, M , in the dataset,
C, with the offset, o for the given warning period, w. We note that for a source
measure w = 0, and for a target measure 1 5 w 5 Maxw . After encoding, the
source measures will all be aligned such that all indications that occur for a given
(t, d2, d3, ..., dn) are described by bits with the same position in either PI or NI of the
bitmaps. At the same time, these indications are have the same position as the bits
representing the target measure indications for a period, w | 1 5 w 5 Maxw , later.
This means that comparing the indications of the source measures with the target
measure indications at a given value of w can be done simply by comparing a single
bitmap for each measure.

For simplicity the following variables are, if not passed as parameters, global
constants and are thus accessible for all sub-algorithms of the SentBit algorithm: the
dataset, C, the source measures, {S1, ..., Sp} ⊆ C, the offset, o, and the thresholds,
α, β, γ, σ, Maxw, and MaxSource. We note that an inverted measure does not require
encoding a new bitmap since the “inverted” bitmap is similar to the original measure
in terms of the position of set bits in PI and NI, but the parts have been switched, e.g,
Bitmap(PeoInv).PI = Bitmap(PeoInv).NI and vice versa. Therefore, we can do
all the comparing of indications for an inverted measure simply by swapping PI with
NI.
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6.5 The SentBit Algorithm

Using the prerequisite encoding of measures into bitmaps, a bitmap is equivalent to
an indication sequence (Formula 6.2), thus a join of two indication sequences (For-
mula 6.3) can be done using an AND operation on their bitmaps since the positions
are aligned, as shown in the function BitAND (Algorithm 6.3). Using BitAND pair-
wise on the bitmaps for PeoInv , UniRev , and Rev3 (Rev for w = 3), we can create
a bitmap for IndJoin(PeoInv ,UniRev , (Rev , 3), C, 1) in Table 6.2 as follows:

Bitmap(PeoInv )
PI : 10101011 10110000 00000000 00000000

NI : 00010100 01001110 00000000 00000000

AND
Bitmap(UniRev )

PI : 01101011 10110000 00000000 00000000

NI : 00010100 01001110 00000000 00000000

}
swapped AND

Bitmap(Rev3 )
PI : 00100011 10110000 00000000 00000000

NI : 11010100 01001110 00000000 00000000

}
swapped

=
Bitmap(IndJoin(PeoInv ,UniRev , (Rev , 3), C, 1))
PI : 00100011 10110000 00000000 00000000

NI : 00010100 01001110 00000000 00000000

Algorithm 6.3 AND of two bitmaps
BitAND(bitmap A, bitmap B)

1: Allocate size(A) memory for BitAND {size in words}
2: for all wordi ∈ A do
3: BitAND .wordi ← A.wordi AND B .wordi
4: return bitmap BitAND

Algorithm 6.4 Count the bits set in a bitmap
BitCount(bitmap Bits, Parts j {PI ,NI })

1: BitCount ← 0
2: for all P ∈ Parts do
3: for all wordi ∈ Bits.P do
4: BitCount ← BitCount + PopCount(wordi)
5: return BitCount
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The final ingredient needed to assess a sentinel is the ability to count the number
of set bits in a bitmap, which is equal to the cardinality of a given indication sequence
or join. This is done using the BitCount function (Algorithm 6.4). In BitCount we
assume the availability of a Population Count (PopCount) function that counts the
number of bits set in a word, in Section 6.6 we describe three different approaches to
this task. As seen in BitCount it is an uncomplicated task to summarize the PopCount
of all words in a bitmap. BitCount also allows for a parameter, Parts, to be passed
which allows us to count the bits set in PI, NI or both.

Using the sub-algorithms, we are now able to run the sentinel mining process
using bitmaps, SentBit (Algorithm 6.5), that calls the recursive function TestSentinel
(Algorithm 6.6). The following arrays are globally available to all sub-algorithms in
order to store the mining results as the recursion progresses: SentList is a dynamic
array of (a set of measures Source, measure Target, NewScore, w); MaxElimSupp is
an array of Maxw values (Default 0).

Algorithm 6.5 SentBit: Sentinel Mining Using Bitmaps
Input: the max number of sentinels to be returned, n,

a dataset, C, a set of source measures, {S1, ..., Sp} ⊆ C, a target measure,
Target ∈ C, an offset, o, and the thresholds, α, β, γ, σ, Maxw, and MaxSource

1: EncodeData({S1, ..., Sp},Target , o,Maxw )
2: Allocate memory for SentList
3: Allocate memory for MaxElimSupp
4: for w = 1 to Maxw do
5: for x = 1 to p do
6: TestSentinel(x, ∅,Bitmap(w)AllBitsSet ,Target , w, 0)
7: return the top n sentinels from SentList for the value of w where the sentinel

with the highest NewScore exists. In the output Score ← NewScore
MaxElimSupp(w)

Upon receipt of the desired number of sentinels, n, the dataset, C, the source and
target measures, the offset, o, and the thresholds, the algorithm initiates the mining
process by encoding the relevant measures into bitmaps in line 1. SentBit allocates
memory for the output of the mining process (lines 2 and 3), and from here Test-
Sentinel (Algorithm 6.6) is initiated by intuitively adding a) a source measure to a
sentinel with b) the target measure, c) no previous source measures, d) a bitmap
with all bits set (except for the bits at the endpoint periods that are not to be eval-
uated for a given w), e) the specific warning period, and f) a Score = 0, for each
1 5 w 5 Maxw (lines 4 to 6). Upon completion of the recursive mining process, the
process of outputting maximum n sentinels found (Formula 6.11), for the value of w
where the largest Score exists (Formula 6.10), and sorted descending by Score is triv-
ial (line 7). We note that the outstanding division of NewScore by MaxElimSupp(w)
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in accordance with Formula 6.9 is done only on the maximum n sentinels output (see
explanation of the CalcScore function, Algorithm 6.7).

Algorithm 6.6 Test for adding a source measure to a sentinel
TestSentinel(source measure number AddSource,

set of measures Source, bitmap Bits,
a measure Target, w, Score)

1: for all S ∈ {SAddSource ,SAddSource} do
2: NewBits ← BitAND(Bitmap(S ),Bits)
3: if BitCount(NewBits,{PI,NI})<BitCount(Bits,{PI,NI}) then
4: NewSource ← Source ∪ S
5: for all T ∈ {Target ,Target} do
6: CalcScore(NewBits,

BitAND(Bitmap(Tw ),NewBits),
BitAND(Bitmap(Tw ),NewBits),
|NewSource|, w)

7: if NewScore>Score then
8: if SentSupp = σ ∧ Confidence = γ ∧

Balance = β then
9: Append (NewSource  T,NewScore, w) to SentList

10: if |NewSource| < MaxSource then
11: for y = AddSource + 1 to p do
12: TestSentinel(y,NewSource,NewBits,

T, w,NewScore)
13: if (A+B) > MaxElimSupp(w) then
14: MaxElimSupp(w)← (A+B)

The TestSentinel function (Algorithm 6.6) tests if adding the source measure,
SAddSource, to a given set of source measures, Source, would improve the sentinel
relationship with the target measure, Target. Since TestSentinel is recursive, we po-
tentially need the bitmap representing the source measures many times during the
recursion, and to optimize this we apply a standard dynamic programming approach
by passing the bitmap, Bits, representing the AND operation of all bitmaps for the
measures in Source. In addition, the function receives the Score for the sentinel rep-
resented by Source and Target without SAddSource . Finally, the warning period for the
sentinel, w is also passed along.

In TestSentinel, there are two options for adding the additional source measures,
namely directly, SAddSource , or inverted, SAddSource , as seen in line 1. The bitmap for
the added source measure is joined (Algorithm 6.3) with the bitmap for the existing
source measures, Bits, in line 2, and the result is evaluated to have less bits set than
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before in line 3. If the BitAND does not result in fewer bits, then the added source
measure is exactly equal to the source measures that are already in the sentinel, mean-
ing that an equally good sentinel can be created with the new source measure alone,
and thus it is irrelevant to continue with the longer sentinel at hand. We note that
sending a bitmap, Bits, will all bits set (both PI and NI) will satisfy the condition
in line 3 for the any source measure during the initial recursion call from SentBit
(Algorithm 6.5, line 6). If the added source measure did indeed reduce the number
of bits, there are again two options to create a conforming (to thresholds) sentinel:
either with Targetw or Targetw . Although there is a good chance that a sentinel will
have the same direction on the target measure even though it is made more specific
by adding a source measure, we cannot know this for sure, e.g., if adding the source
measure reduces the number of indications covered the sentinel by more than 50%.
With the two combinations of target measures, we use the function CalcScore (Algo-
rithm 6.7) to calculate and test if the Score for the new potential sentinel, NewScore,
is better than Score from its ancestor (lines 6 and 7). If this is the case, we record the
sentinel in SentList if it meets the defined thresholds (lines 8 and 9). In addition, if
the sentinel has less than MaxSource source measures it is a candidate for growing
another and better sentinel by combining it with one of the remaining source mea-
sures and TestSentinel will call itself to grow the sentinel further (lines 10 to 12).
We note that meeting the thresholds is not a criteria for growing the sentinel further;
as long as the Score is improving we have the potential for growing a sentinel that
will eventually meet the thresholds. Also, we note that we will never add a source
measure that occurred prior to SAddSource in {S1, ..., Sp} ⊆ C, this means that we
are preserving the order of the source measures, and we are thus reducing the number
of tested combinations as explained earlier in Section 6.3. Finally, when a potential
sentinel is found to improve the Score, we also test if it is a candidate to represent the
value for MaxElimSupp(C, o, w) (lines 13 and 14), and if A + B is better than the
last candidate for MaxElimSupp(C, o, w), stored in the array MaxElimSupp(w), it
is replaced with A+B.

The function CalcScore calculates the Score for a potential sentinel (excluding
division by the constant MaxElimSupp(C, o, w) as explained above). A sentinel can
be represented by a bitmap representing the AND operation of all source measure
bitmaps, SourceBits, and two bitmaps representing an AND operation of SourceBits
and the bitmaps for a target measure, TargetBits, and the opposite of this target mea-
sure, ElimBits, respectively. The term “opposite” is used deliberately since the target
measure can also be inverse, thus the opposite in this case would be the original target
measure.

As seen in lines 1 to 3, CalcScore (Algorithm 6.7) calls BitCount (Algorithm 6.4)
to identify SentSupp, A, and B, and once identified, calculating Confidence (line 4)
and Balance (line 5) is trivial. CalcScore also gets the parameter, SourceCnt, which
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Algorithm 6.7 Calculate quality measures
CalcScore(bitmap SourceBits, bitmap TargetBits,

bitmap ElimBits, SourceCnt, w )
1: SentSupp ← BitCount(SourceBits, {PI ,NI })
2: A← BitCount(TargetBits, {PI })

− BitCount(ElimBits, {PI })
3: B ← BitCount(TargetBits, {NI })

− BitCount(ElimBits, {NI })
4: Confidence ← |A|+|B|

SentSupp

5: Balance ← 4×|A|×|B|
(|A|+|B|)2

6: NewScore ← (1− wp + (1+Maxw−w)×wp
Maxw )

× (12 + 1+MaxSource−SourceCnt
MaxSource×2 )

× (A+B)× Confidence
× (12 + Balance

2 )
7: return NewScore, SentSupp, Confidence, Balance, A, B

is the number of source measures that constitutes SourceBits, and in addition it gets
w as a parameter. These values are used to calculate NewScore (line 6) which is equal
to Score (Formula 6.9) with the exception of the division by MaxElimSupp(C, o, w),
since it is constant and thus irrelevant to the ranking of sentinels. Moreover,
MaxElimSupp(C, o, w) is not known until we have inspected all sentinels in C for
a given value of o and w. Therefore, the scores output for the sentinels mined are
adjusted to comply with Formula 6.9 upon finalization of the SentBit algorithm (Al-
gorithm 6.5, line 7).

To exemplify the operations in CalcScore, we refer to the sentinel PeoInv ∧
UniRev  Rev in Table 6.3 with a warning period of 3 months that originated from
the data in Table 6.1. The prerequisite bitmaps of CalcScore are: a bitmap where
the source measure indication sequences are joined, SourceBits, a bitmap where the
source measure indication sequences and the target measure indication sequence are
joined, TargetBits, and a bitmap where the source measure indication sequences and
the target measure indication sequence in the opposite direction are joined, ElimBits.
SourceBits are given as IndJoin(PeoInv ,UniRev , C, 1):
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Bitmap(PeoInv )
PI : 10101011 10110000 00000000 00000000

NI : 00010100 01001110 00000000 00000000

AND
Bitmap(UniRev )
PI : 01101011 10110000 00000000 00000000

NI : 00010100 01001110 00000000 00000000

= SourceBits
PI : 00101011 10110000 00000000 00000000 (7 bits)

NI : 00010100 01001110 00000000 00000000 (6 bits)

TargetBits = IndJoin(SourceBits, (Rev , 3), C, 1) =
IndJoin(PeoInv ,UniRev , (Rev , 3), C, 1) as exemplified in Section 6.5,

thus:

TargetBits
PI : 00100011 10110000 00000000 00000000 (6 bits)

NI : 00010100 01001110 00000000 00000000 (6 bits)

Finally, ElimBits = IndJoin(SourceBits, (Rev , 3), C, 1) since the opposite of Rev
is Rev:

SourceBits
PI : 00101011 10110000 00000000 00000000

NI : 00010100 01001110 00000000 00000000

AND
Bitmap(Rev3 )
PI : 11010100 01001110 00000000 00000000

NI : 00100011 10110000 00000000 00000000

= ElimBits
PI : 00000000 00000000 00000000 00000000 (0 bits)

NI : 00000000 00000000 00000000 00000000 (0 bits)

Using BitCount on SourceBits, TargetBits, and ElimBits as shown in CalcScore
(Algorithm 6.7, lines 1-3), we find that SentSupp = 7+6 = 13, A = 6−0 = 6, and
B = 6−0 = 6 for the sentinel PeoInv ∧UniRev  Rev , which is of course similar
to our example in Section 6.2 on the Table 6.1 data. From this point, completing the
remaining calculations in CalcScore is trivial (lines 4-6).

This concludes the walk-through of the SentBit algorithm. In the following sec-
tion we will elaborate the different optimization options for the SentBit algorithm.
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In Section 6.7 we will demonstrate that SentBit is superior in performance compared
to prior art (Chapters 3 and 5), and in addition we will show the effect of different
optimization strategies.

6.6 Optimization and Implementation

In addition to the inherent optimization over prior art (Chapter 3) with bitmaps, we
use three different strategies to optimize the SentBit algorithm even further, namely:
pruning, dedicated processor instructions, and parallelization.

Pruning: Similar to the RPG functionality in Chapter 3 we can apply an Apriori-
style optimization by pruning the measures that will never be able to be part of a
conforming sentinel. Specifically, we know that in order for a source measure, or a
target measure for a given w, to be part of a conforming sentinel, it needs to have
at least σ indications in its indication sequence (to fulfill SentSupp = σ). Therefore,
we can simply dismiss any bitmap, Bitmap(M ), in CreateBitmap where
BitCount(Bitmap(M ), {PI ,NI }) < σ. This can be implemented simply by ap-
pending one line to CreateBitmap (Algorithm 6.2) as follows:

if BitCount(Bitmap(M ), {PI ,NI }) < σ then
Free Bitmap(M )

In addition, line 6 in SentBit (Algorithm 6.5) and line 12 in TestSentinel (Algo-
rithm 6.6) needs to verify whether the bitmap is allocated or freed, and in the latter
case skip the measure. In Section 6.7 we demonstrate the effect of pruning, and we
denote the algorithm using this optimization by “Prune”.

Dedicated processor instructions: As mentioned in conjunction with the BitCount
function in Section 6.5, there are different options for counting the number of bits set
in a CPU word (Algorithm 6.4, line 4). The instruction known as population count
(POPCNT) returns the number of bits set, and it is part of the SSE4a instruction
set available, e.g., on the Intel “Core i7” [29] and the AMD “10h” [1] processor
families. We denote the algorithm using this approach by ”PopCnt”. As an alternative
to POPCNT, we can create an array where each element holds the precalculated bit
count, e.g., an array, A, of 65536 bytes (0...65535) where the values A(0) = 0 and
A(65535) = 16. In this case, the bit count of each 16 bits in the CPU word can
be found through a single lookup. The size of the array should be limited to fit the
CPU cache, and thus with contemporary processors this approach is not feasible for
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lookups of more than 16 bits at the time. We denote the algorithm using this approach
by ”Array”. Whenever we do not use “PopCnt” or “Array”, we apply a loop equal to
the length of a CPU word that counts the number of times LSB is set when shifting
the bits right (SHR). We denote the algorithm using this approach by ”Basic” when
running without any other optimization. It should be noted that this approach is also
used in the “Prune” and “Parallel” variants. The effect of the “PopCnt” and “Array”
optimization strategies compared to “Basic” is demonstrated in Section 6.7.

Parallelization: We apply a parallelization strategy where
SentBit (Algorithm 6.5, line 6) is parallelized by sending each initial recursion for a
source measure, target measure, and warning period combination
(TestSentinel(x, ∅,Bitmap(w)AllBitsSet ,Target , w, 0)) to an available core. We de-
note the algorithm using parallelization by ”Parallel” in Section 6.7.

Best-of-Breed: the “best-of-breed” variant, denoted by “Best”, incorporates the
best optimization choice with regards to pruning, dedicated processor instructions,
and parallelization based on our experiments (Section 6.7). Specifically, the “Best”
variant combines the “Prune”, “PopCnt”, and “Parallel” optimization options.

Implementation: The algorithm variants were implemented in C++ and compiled
into a stand-alone 64-bit executable file using Microsoft Visual Studio 2010. The dif-
ferent optimizations were in-lined in the code such that no instructions were used to
select optimization method during the execution of the algorithm. In order to access
the processor specific POPCNT instruction, we used a so-called intrinsic function.

Computational Complexity: When we examine the SentBit algorithm, we note
that the computational complexity will be dominated by the encoding of bitmaps,
Algorithm 6.1, and the recursive mining process initiated in Algorithm 6.5. The
encoding of bitmaps can be performed in time O(n × (p + m)), where n is the
number of periods, p is the number of source measures, and m is Maxw. The recursive
mining process can be performed in time O( n

WL × pl ×m), where WL is the CPU
word length in bits and l is MaxSource. Therefore SentBit has a complexity ofO(n+
( n
WL × pl ×m)), since pl ×m >> p + m. Depending on whether n >> pl ×m

or not, the computational complexity will be dominated by either the encoding or the
recursive mining process. In Section 6.7 we test this assessment through extensive
experiments.
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6.7 Experiments

Setup: We run our experiments on an Intel Core i7 Quad CPU (920) 2.66GHz PC
with 12GB RAM and 2 500GB disks (7,200 RPM) running a 64Bit version of Win-
dows 2008 Server R2. We use a range of synthetic datasets and a range of real-world
datasets for the experiments. The synthetic datasets have 150 source measures and
were created using three simple random walks such that 30 source measures have
80% chance of changing α, up or down, 70 source measures have 40% chance of
changing α, up or down, and the remaining 50 source measures do not change above
α. In our experience with real-world data, having a dataset where 1

5 of the measures
change many times, whereas 1

3 of the measures have no relevant changes, is very
realistic. The target measure was aligned such that it always changed one period
later synchronized with the first source measure with many changes. This means
that there will always exist at least one sentinel with w = 1 in these data. The syn-
thetic datasets range from 100,000 to 1,000,000 rows in 100,000 row intervals, and
from 1,000,000 to 10,000,000 rows in 1,000,000 row intervals. We note that the
sizes of these datasets are huge compared to the real-world dataset. In general, we
would expect any real application of sentinels to work on significantly fewer rows
since we typically aggregate the data, e.g., into months or weeks, before mining sen-
tinels. The real-world datasets are produced from the operational data warehouse of
TARGIT A/S. Based on experience with more than 3,800 customers worldwide, we
will characterize this dataset as typical for a medium-sized company with a mature
data warehouse. The original dataset contains 241 months (20.1 years) of operational
data scattered across 148 source measures. We created descendants of the real-world
dataset from 100,015 to 999,909 rows in ≈ 100, 000 row intervals by duplication.
Descendants of the synthetic datasets are produced by selecting the source measure
“tied” to the target measure, and the remaining number of source measures randomly
to produce datasets with 10, 20, 30, ..., 150 source measures. Descendants of the
real-world datasets are produced similarly, but with all source measures selected ran-
domly. When nothing else is specified, we either use the original real-world dataset
with all 148 source measures, or the synthetic dataset with 100,000 rows and 30 ran-
domly selected source measures. We use the following algorithm settings: wp=0.5,
MaxSource=3, Pareto=85% (applies to HiRPG only), and thresholds: SentSupp=5,
Conf =0.8, Balance=0.8, and Maxw=12.

Scaling dataset size: In Figure 6.1 we validate that all variants of SentBit scales
linearly to 1,000,000 periods of synthetic and real data (when the other factors are
kept constant). In addition, we validate that the “Best” variant scales linearly to
10,000,000 periods of synthetic data. The slight synchronous variance in linearity



6.7 Experiments 117

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

S
ec

on
ds

Million periods

Basic
Prune

Parallel
Array

PopCnt
Best

(a) SentBit variants, synthetic data

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

S
ec

on
ds

Million periods

Basic
Prune

Parallel
Array

PopCnt
Best

(b) SentBit variants, real data

 1

 10

 100

 1000

 10000

 1

S
ec

on
ds

Million periods

HiRPG
Best

(c) Best vs. HiRPG, synth. data (log)

 1

 10

 100

 1000

 0.1  1  10

S
ec

on
ds

Million periods

Best

(d) Best SentBit, synthetic data (log)

Figure 6.1: Scaling dataset size

that can be observed for all variants in Figure 6.1(a) is caused by minor differences in
the randomly generated synthetic datasets. In Figures 6.1(a) and 6.1(b) we observe
each optimization option to have effect compared to the “Basic” variant with no op-
timization. We observe that “Prune” is more efficient on the synthetic data, using
only 44% of “Basic” runtime on average (Figure 6.1(a)), compared to the real data
where “Prune” used 94% of “Basic” runtime on average (Figure 6.1(b)). This could
question our assumption that 1

3 of a realistic database has no relevant changes. Nev-
ertheless, based on our experience we still maintain that in many cases this occurs,
and as observed “Prune” is efficient in both cases. In Figures 6.1(a) and 6.1(b) we see
the following performance ranking of the variants: “Basic” (slowest), “Prune”, “Par-
allel”, “Array”, ”PopCnt”, and “Best” (fastest). In particular, we see that the “Array”
optimization is very close to “PopCnt”, yet slightly less efficient. The proximity of
all graphs in Figure 6.1(b) is caused by the fact that the encoding part of the algorithm
accounts for a larger share of the total algorithm runtime. In Figure 6.1 we observe
the “Best” variant outperforming any other variant, and in Figure 6.1(c) we observe
that it is 300 times faster, and thus far superior to SentHiRPG that represent the state
of the art. In Figure 6.1(d) we observe that the linear scalability of “Best” continues
to the extreme amount of 10,000,000 periods.
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Figure 6.2: Scaling source measures

Scaling source measures: In Figure 6.2 we scale the number of source measures
from 1 to 150 on a synthetic dataset and from 10 to 148 on the real dataset. With refer-
ence to Section 6.6 we note that increasing the number of source measures is expected
to have a cubic impact based on our assessment of the computational complexity and
MaxSource=3 (when the other factors are kept constant), and we have verified in the
statistical tool R (www.r-project.org) that the curves in Figure 6.2 are indeed
cubic. Similar to scaling the dataset size, we observe that “Prune” is more efficient
on the synthetic data (Figure 6.2(a)) than on the real data (Figure 6.2(b)). In addition,
we note that the ranking in performance of the variants is similar to that observed in
Figure 6.1. We also observe again that “Best” significantly outperforms SentHiRPG
from prior art.

Scaling the fitting period: In Figure 6.3 we validate that all variants of SentBit
scales linearly when we vary the Maxw over which we fit the warning period, w (when
the other factors are kept constant). This is particularly evident in Figure 6.3(a) where
Maxw varies from 10 to 120 periods on a dataset with 100,000 periods. When scaling
Maxw from 10 to 60 periods on the real dataset in Figure 6.3(b) we see a slightly
sub-linear behavior which is due to the dataset only containing 241 periods. Since
Maxw

#Periods is much higher than for the synthetic data, the number of periods that are
excluded from the mining process becomes significant in terms of runtime. (We will,
however, still characterize the behavior when scaling Maxw as linear.) The ranking
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Figure 6.3: Scaling the fitting period

of variants and behavior of “Prune” on synthetic vs. real data is similar to what we
observed in the previous experiments. In Figures 6.3(c) and 6.3(d) we observe the
significant difference between “Best” and HiRPG, where prior art is 300 (synthetic
data) – 400 (real data) times slower than the “Best” variant of SentBit. The variation
in runtime that can be observed on HiRPG is due to a random starting point in the hill-
climb approximation that this algorithm uses for optimization. The extremely slow
gain of HiRPG on SentBit is due to the usage of hill-climb approximation which we
have chosen not to use in SentBit to ensure that it also works on non-convex functions.

Scaling MaxSource: In Figure 6.4 we scale MaxSource for the SentBit variants
on synthetic (Figure 6.4(a)) and real data (Figure 6.4(b)). As expected, the runtime
for all variants initially grows exponentially in MaxSource. However, we found that
extreme scaling of MaxSource behaves differently. The effect is particularly evident
in Figures 6.4(a) and 6.4(b) where we observe the “Array”, “PopCount”, and “Best”
variants to “even out” for MaxSource = 8. This “broken” exponential growth is due
to the weights in Score (Formula 6.9) that are effectively preventing overfitting of
rules [45], i.e., Score for the sentinels with 8 source measures is improving in much
fewer cases when adding an additional source measure when MaxSource = 9. With
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Figure 6.4: Scaling MaxSource

prior art (Chapter 3) we never observed this phenomenon since poor performance
never permitted us to run experiments for MaxSource > 6.

Qualitative Experiment: Apart from assessing the performance of SentBit, we
also verified it to provide the same sentinels as prior ar (Chapters 2 and 3). Moreover,
we found prior art to dismiss better rules where SentBit would not. Motivated by
review comments on prior papers, we have also tested the relationship between sta-
tistical significance in the data and the sentinels found. We created a range of datasets
with 100,000 to 1,000,000 periods, where all measure changes were completely ran-
dom. Therefore there will not exist any statistically significant relationships in the
data, and we would not expect SentBit to return any sentinels. We verified that Sent-
Bit did indeed not return any sentinels on these datasets, thus SentBit will only find
sentinels if statistically significant relationships exist in the data.

Experiments summary: In the experiments we observed all optimizations in Sec-
tion 6.6 to be efficient, and we found that a best-of-breed approach to create the best
combined optimization was applicable, specifically the best SentBit algorithm uses
pruning, POPCNT, and parallelization. We observed the best SentBit algorithm to
be 300 – 400 times more efficient than the state of the art. In addition, we found that
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SentBit eliminated a weakness in the sentinel mining of prior art that could potentially
lead to false positives/negatives. In general, we found SentBit to be efficient and to
behave as anticipated from our assessment of computational complexity, with the ex-
ception of the algorithm behaving better than anticipated when scaling the number of
source measures allowed in the sentinels mined due to the characteristics of the test
data. In conclusion we can say, that to mine sentinels most efficiently with SentBit,
pruning should always be applied, POPCNT and parallelization should be used when
supported by the CPU available, and “Array” is the best alternative if POPCNT is
not available. The selection of optimization can thus be done using a best-of-breed
approach based on the optimizations available.

6.8 Conclusion and Future Work

We have showed how to represent the sentinel mining problem by bitmap opera-
tions, using bitmapped encoding of so-called indication streams. We have proposed
a very efficient algorithm for bitmapped sentinel mining, SentBit, that is 2–3 orders of
magnitude faster than the state of the art. Furthermore, SentBit does not use approxi-
mation, and thus provides exact results unlike prior art. In conjunction with SentBit,
we provided a number of optimizations utilizing CPU specific instructions and the
multi-core architectures available on modern processors. Finally, we have presented
experiments demonstrating that SentBit scales efficiently to very large datasets, and
that sentinels are only found if the data contains statistically significant relationships.
We have previously demonstrated that sentinels can find strong and general rules that
would not be found by sequential pattern mining or correlation techniques (Chap-
ter 2), this obviously also holds for bitmapped sentinel mining.

For future work, a natural development would be to mine sentinels for multiple
target measures in parallel to improve performance. Secondly, we could exploit the
multi-dimensional environment by having sentinel mining fit the aggregation level on
dimensions as well as select the location and shape of the data area. Third, we would
like to induce more flexibility by introducing intervals to replace the fixed warning
period and the offset.





Chapter 7

Multidimensional Sentinel Mining
Using Bitmaps

This chapter proposes a highly efficient bitmap-based approach for discovery of so-
called multidimensional sentinels. Sentinels represent schema level relationships be-
tween changes over time in certain measures in a multidimensional data cube. Mul-
tidimensional sentinels notify users based on previous observations in subsets of the
cube, e.g., that revenue might drop within two months if an increase in customer com-
plaints in USA (drilldown into geography dimension) combined with a decrease in
the money invested in customer support for laptop computers (drilldown into product
dimension) is observed. We significantly extend prior work by allowing sentinel min-
ing to discover patterns that include the hierarchical dimensions in an OLAP cube.
We present a very efficient algorithm, SentBMD, for multidimensional sentinel min-
ing using bitmaps, that allows source measures to be progressively input during the
mining process, and that parallelizes the work over multiple cores on modern CPUs.
The SentBMD algorithm is significantly more efficient than prior art, and it scales
efficiently to very large datasets, which is verified by extensive experiments on both
real and synthetic data.

7.1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with the
challenges facing managers that operate in a world of chaos due to the globalization
of commerce and connectivity [36]; in this chaotic world, the ability to continuously
react is far more crucial for success than the ability to long-term forecast. The idea in
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CALM is to take the Observation-Orientation-Decision-Action (OODA) loop (orig-
inally pioneered by “Top Gun” fighter pilot John Boyd in the 1950s), and integrate
business intelligence (BI) technologies to drastically increase the speed with which
a user in an organization cycles through the OODA loop. One way to improve the
speed from observation to action is to expand the “time-horizon” by providing the
user of a BI system with warnings based on “micro-predictions” of changes to an
important measure, often called a Key Performance Indicator (KPI). A sentinel is a
causal relationship where changes in one or more source measures, are followed by
changes to a target measure (typically a KPI), within a given time period, referred to
as the warning period. We attribute higher quality to bi-directional sentinels that can
predict changes in both directions, since such a relationship intuitively is less likely
to be coincidental (see Section 7.2). An example of a multidimensional sentinel for
a computer company could be: “IF number of customer complaints go up in USA
and support costs go down in USA for laptop computers THEN revenue goes down
within three months AND IF number of customer complaints go down in USA and
support costs go up in USA for laptop computers THEN Revenue goes up within
three months”. Such a rule will allow a BI system to notify a user to take corrective
action once there is an occurrence of, e.g., “customer complaints go up in USA and
support costs go down in USA for laptop computers”, since he knows, based on the
“micro-prediction” of the rule, that revenue, with the probability stated by the rule’s
confidence, will go down in two months if no action is taken. One course of action
that would appear to reasonable, based on the sentinel, would be to invest more in
the support for laptop computers in USA to address the complaints. In this case it is
important to note, that an ordinary sentinel rule might not exist for all geographical
regions or all computer products, and thus the benefit of multidimensional sentinel
mining is that we uncover causal relationships that would otherwise go undetected
by ordinary sentinel mining. In Section 7.2, we elaborate on the difference between
multidimensional and ordinary sentinel mining.

Our contributions are as follows. First, we significantly extend prior work to ex-
ploit the hierarchical nature of a multi-dimensional database by allowing sentinels to
be discovered for certain dimension values for certain source measures. Second, we
present a very efficient algorithm, SentBMD, for multidimensional sentinel mining
using bitmaps, that allows source measures to be progressively input during the min-
ing process. Third, our SentBMD algorithm utilizes new CPU architectures optimally
by parallelizing the work over multiple cores and taking advantage of novel CPU in-
structions. Fourth, we demonstrate that SentBMD is more efficient than prior art even
when mining ordinary (non-multidimensional) sentinel rules. Fifth, we present ex-
periments demonstrating that SentBMD scales efficiently to very large datasets.

Compared to prior art, sentinels are mined on the measures and dimensions of
multiple cubes in an OLAP database, as opposed to the “flat file” formats used by
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most traditional data mining methods. Sentinels find rules that would be impossible
to detect using traditional techniques, since sentinels operate on data changes at the
schema level as opposed to absolute data values at the data level such as associa-
tion rules [2] and sequential patterns typically do [5]. In Chapter 2 we specifically
provide a concrete, realistic example where nothing useful is found using these tech-
niques, while sentinel mining do find meaningful rules. The nature of changes at the
schema level gives rise to bitmapped encoding (Section 7.4) of indication streams
(Section 7.3), which is the prerequisite of bitmapped sentinel mining, and there-
fore association rules and sequential pattern mining will not be able to find the same
rules. In particular, the bi-directional property of sentinels is significantly different
for quantitative applications of these techniques such as [46]. In addition, the auto-
fitting of the warning period, and the ability to combine source measures into better
sentinel rules, adds to the distance between our solution and the results and optimiza-
tions offered in prior art such as [3, 11, 24, 49, 53, 57, 59].

Gradual rule mining [7,10,27,31] is a process much like association rules, where
the categorical data are created by mapping numerical data to fuzzy partitions, and
thus this technique works on numerical data similar to sentinels. However, similar
to association rules and sequential patterns, gradual rule mining does not have the
schema level property of sentinels that allows sentinel mining to create the strong
bi-directional rules.

Other approaches to interpreting the behavior of data sequences are various re-
gression [4] and correlation [26,60] techniques which attempt to describe a functional
relationship between one measure and another. In a multi-dimensional database such
regression techniques (Bellwether Analysis) can be used on historical sales data to
identify a leading indicator that can predict the global sales of a new product, for
which only a short period of data is available [13, 14]. However, similar to gradual
rules, these techniques are also concerned with the absolute values of a measure, as
opposed to sentinels that are based on changes in the measure values. With regards to
the output, sentinels are more specific “micro-predictions”, i.e., strong rules that hold
for a subset of the data and stimulate specific actions, and are thus complementary to
these techniques. Sentinels are therefore useful for detecting incidents and generating
warnings whenever changes (that would otherwise go unnoticed) in a relevant source
measure occur (Chapter 2).

With regards to parallelization of our bitmapped sentinel mining algorithms, prior
art in other aspects of data warehousing have also applied parallelization in order to
deal with the huge volumes of data that resides in these systems [17,18]. In addition,
multi-core parallelism has been applied to gradual rule mining [31].

Sentinel mining from a user and an industry perspective has been described in
Chapters 4 and 5, and the underlying algorithms have been described in Chapters 2
and 3. Compared to the previously most efficient sentinel mining algorithm described
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(a) Source measures filtered by dimension values
Complaints Complaints Complaints Support Cost Support Cost

Month (All) (USA) (Laptop) (All) (USA,Laptop)
2009-Jan 726 225 435 750 168
2009-Feb 799 N 254 N 432 802 165
2009-Mar 720 254 492 N 767 135 H
2009-Apr 802 N 381 N 326 H 788 101 H
2009-May 743 254 H 293 H 783 363 N
2009-Jun 753 381 N 378 N 768 310 H
2009-Jul 653 H 254 H 331 H 779 440 N
2009-Aug 675 508 N 379 N 762 297 H
2009-Sep 699 635 N 328 H 781 260 H
2009-Oct 728 699 N 366 N 769 230 H
2009-Nov 668 508 H 396 785 294 N
2009-Dec 657 635 N 468 N 801 264 H
2010-Jan 818 N 762 N 445 809 230 H
2010-Feb 784 508 H 455 780 270 N
2010-Mar 706 381 H 505 N 786 353 N
2010-Apr 687 254 H 432 H 793 400 N

(b) Target measure
Revenue

Month (All)
2009-Apr 900
2009-May 1001 N
2009-Jun 1200 N
2009-Jul 750 H
2009-Aug 1001 N
2009-Sep 1100
2009-Oct 1250 N
2009-Nov 970 H
2009-Dec 850 H
2010-Jan 720 H
2010-Feb 1250 N
2010-Mar 930 H
2010-Apr 800 H
2010-May 1100 N
2010-Jun 1400 N
2010-Jul 1600 N

Table 7.1: The relationship between two filtered source and one target measure

in Chapter 6, we have extended sentinel mining with the ability to mine multidi-
mensional data. In comparison, the SentBMD algorithm is far more efficient and
needs only half of the invocations when conducting the mining process. In addition,
SentBMD loads and encodes source measure bitmaps in parallel with the mining pro-
cess and is thus even more efficient.

The remainder of the chapter is structured as follows: The next section intuitively
presents the concept of multidimensional sentinels, Section 7.3 presents the formal
definition, Section 7.4 presents the prerequisites for multidimensional sentinel min-
ing using bitmaps, Section 7.5 presents the new multidimensional SentBMD algo-
rithm, and Section 7.6 presents the optimization and implementation of SentBMD,
Section 7.7 presents experimental results, and Section 7.8 presents our conclusions
and proposals for future work.

7.2 Multidimensional Sentinels

Table 7.1 is a data example for a computer company, where two subsets have been
extracted from a database. The data has been organized multidimensionally in three
dimensions, namely, time, geography, and product. This allows us to easily access the
measures, complaints, support cost ($1,000s), and revenue ($1,000s), on a monthly
level for particular elements in the geography and product dimensions. In Table 7.1,
the two source measures have been filtered on different dimensions, i.e., the number
of complaints received from customers have been filtered by “USA” on the geograph-
ical dimension as well as by “Laptop” on the product dimension, and the support cost
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has been filtered by both “USA” and “Laptop” on their respective dimensions. In ad-
dition, both source measures have been extracted without any filter (shown as “All”).
The source measures in Table 7.1(a) have been extracted for January 2009 to April
2010. The target measure in Table 7.1(b), represents the total revenue for the com-
pany, and it has been extracted for April 2009 to July 2010; a similar period in length
starting three months later. We refer to these three months as the Warning Period.
We have calculated the cases where a measure changes 10% or more, either up (N)
or down (H), from one month to another. We refer to each change to a measure over
time as an indication, Ind.

As seen in the 16 rows in Table 7.1, the measures Complaints(USA) and Sup-
port Cost(USA,Laptop) tend to change in a combined pattern such that when Com-
plaints(USA) goes up, Support Cost(USA,Laptop) goes down, and vice versa. This
source measure pattern is observed 13 times, out of 15 possible. If we combine
this pattern with the subsequent changes to Revenue three months later, we see that
Revenue changes in the same direction as Support Cost(USA,Laptop) in 12 out of
13 possible times (denoted by #ChangesToSource = 13). Another observation is
that the relationship between Revenue and the combination of Complaints(USA) and
Support Cost(USA,Laptop) goes in both directions, which is a property we refer to
as bi-directionality. Intuitively, one can say that if a relationship is bi-directional,
then there is a greater chance that the relationship is causal, as opposed to a uni-
directional relationship where a pattern is observed for measure changes in one di-
rection only. Consider a case where revenue and staff costs increase over a period
of time. This yields the uni-directional relationship that an increase in revenue leads
to an increase in staff costs the following month; in this case a decrease in revenue
will not necessarily lead to a decrease in staff costs since these costs tend to be more
fixed. Therefore, bi-directional relationships are more desirable. It is also notewor-
thy that Revenue changes 6 times up (denoted by A = 6) and 6 times down (denoted
by B = 6) in combination with Complaints(USA) and Support Cost(USA,Laptop)
since this “balance” again adds to the likeliness that the relationship is indeed causal.
In summary we can say that a sentinel exists in Table 7.1 where changes in Com-
plaints(USA) and Support Cost(USA,Laptop) is able to warn three months ahead
about changes to Revenue with a Confidence of 92% (12 out of 13 times), defined
as Confidence = |A+B|

#ChangesToSource . Balance = 4×|A|×|B|
(|A|+|B|)2 is a measure for the

degree to which a sentinel is balanced, and in this case the sentinel is perfectly bal-
anced, meaning that Balance = 1. We note that the bi-directional quality that can be
achieved by assessing Balance, is impossible to achieve for sequential patterns since
they can only represent one direction of changes in each pattern.

In addition to the combined relationship of the source measures, we can also
observe “simple” sentinels (Chapter 2) with only one source and one target mea-
sure in Table 7.1. However, the inverted relationship between Complaints(USA) and
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Revenue, as well as the relationship between Support Cost(USA,Laptop) and Rev-
enue, each have one occurrence (the first two changes) where Revenue changes in
the opposite direction of what we would expect from all other changes. To assess
the prediction ability for such sentinels we must first eliminate its internal contra-
dictions. This is done by deducting the number of times Revenue changes in the
“unexpected” direction from the number of times Revenue changes in the “expected”
direction. This means that both source measures change 14 times, whereas the tar-
get measure after elimination changes only 11 times (12 − 1). Therefore the sim-
ple sentinels have a poorer Confidence of 79% (5+6

14 ) and are slightly less balanced
(Balance = 4×|5|×|6|

(|5|+|6|)2 = 0.99) compared to the sentinel where the source measures
were combined. On the other hand, simpler sentinels with fewer source measures
have the advantage of being more general than very specific, potentially overfitted,
sentinels with many source measures, and therefore the simplicity of a sentinel is also
important.

In Table 7.1(a), we note that the indications found when applying the filters
“USA” and “Laptop” do not translate into similar indications on the “All” level. For
example, the reason for support costs being fairly constant at the top level could be
that a fixed number of staff is employed, and that the minor fluctuations occur as
a result of these employees working overtime. However, when allocating this staff
to specific tasks, the cost is allocated accordingly and the fluctuation between tasks
will thus generate changes whereof some are indications. Specifically, we note that
any ordinary sentinel where Support Cost(All) is involved will have no indications on
the source measure(s) at all. In addition, a simple ordinary sentinel between Com-
plaints(All) and Renevue(All) has a Confidence of 50% since A = 1 and B = 1 after
elimination of contradictions. Therefore, the potential of multidimensional mining
of sentinels for different dimension values is obvious. In Section 7.4, we elaborate
further on the issue that different dimension values can have indications that may not
be reflected at the upper levels.

7.3 Formal Definition

Let C be a multidimensional cube containing a set of facts,
C = {(d1, d2, ..., dn,m1,m2, ...,mp)}. The dimension values, d1, d2, ..., dn, be-
long to the dimensions D1, D2, ..., Dn, and we refer to the “dimension part” of a fact,
(d1, d2, ..., dn), as a cell. We say that a cell belongs to C, denoted by (d1, d2, ..., dn) ∈
C, when a fact (d1, d2, ..., dn,m1,m2, ...,mp) ∈ C exists. We say that a measure
value, mi, is the result of a partial function, Mi : D1 × D2 × ... × Dn ↪→ ℜ,
denoted by, Mi(d1, d2, ..., dn) = mi, where (d1, d2, ..., dn) ∈ C and 1 5 i 5 p.
We refer to Mi as a measure. We assume, without loss of generality, that there is
only one time dimension, T ∈ C, and that T = D1, and subsequently t = d1. In
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addition, we assume that measures M1, ...,Mp−1 are source measures, and that mea-
sure Mp is the target measure. Finally, we assume that all dimension hierarchies in
Dj ∈ {D1, D2, ..., Dn} are strict, meaning that each value, d, in a dimension, Dj ,
has exactly one parent, p, with the exception of the “top” (”All”) node, ⊤j , which
has no parent. In other words, each dimension is organized as a tree, with a single
root. We denote the relationship between a child, c ∈ Dj , and a parent, p ∈ Dj , as
c ⊑ p. The relationship ⊑ forms a partial order over Dj . We use the same notation
for any ancestor, a ∈ Dj , of c, e.g., the parent of a parent, thus if additionally p ⊑ a
then c ⊑ a.

An indication, Ind, tells us whether a measure, Mi, changes by a factor of at least
α over a period, o. We define Ind(Mi, d2, d3, ..., dn, t, o) when {(t, d2, d3, ..., dn),(t+
o, d2, d3, ..., dn)} ⊆ C as follows:

Ind(Mi, d2, d3, ..., dn, t, o) =
N if

Mi(t+ o, d2, d3, ..., dn)−Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
= α

H if
Mi(t+ o, d2, d3, ..., dn)−Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
5 −α

(7.1)

We refer to N as a positive indication and to H as a negative indication. We
define a wildcard, ?, that can be either N or H. We define the complement of an
indication as follows: N = H and H = N. In addition, we define the inverted
measure, Mi(x ) = −Mi(x ), where all the indications Ind(Mi, d2, d3, ..., dn, t, o) =
Ind(Mi, d2, d3, ..., dn, t, o).

Let (C mod T ) be the cube, C, with the time dimension, T , projected away.
A filter, fik , is a cell in (C mod T ). We refer to the single top node, composed of
⊤2,⊤3, ...,⊤n for dimensions D2, D3, ..., Dn ∈ (C mod T ), as⊤ = (⊤2,⊤3, ...,⊤n).
In our example in Table 7.1(a), we have two non-time dimensions, and we use the
filters (”All”,”All”), (”USA”,“All”), (”All”,“Laptop”), and (“USA”,“Laptop”) on the
geography dimension, D2, and the product dimension, D3. We note, that the filter
(”All”,”All”) = ⊤, and that filter values can be from any level in any dimension.

We define a filtered measure, fik ◦Mi, as shown in Formula 7.2:

fik ◦Mi(t, d2, d3, ..., dn) =

Mi(t, d2, d3, ..., dn) if (d2, d3, ..., dn) = fik ,

undef otherwise

(7.2)

Thus a filtered measure is a measure in itself in the above sense, but simply re-
stricted to fewer dimension values. Specifically there can be k different filters for
each measure, where 1 5 k 5 #cells in (C mod T ). Filtered measures gives
us easy access to specific measure values, mi, for different time dimension values,
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t ∈ T , while all the other dimension values d2, d3, ..., dn are constant. We can also
pass a regular measure to a function defined for a filtered measure; in this case we
let the the “filter-part” default to ⊤, i.e, Mi = ⊤ ◦Mi. We extend our notation for
parent/child relationships to include filters. In the case where all dimension values in
a filter, fik , are ancestors of the corresponding dimension values in another filter, fil ,
we say that fil ⊑ fik .

In Table 7.1(a) we see the values for the filtered source measures Complaints(USA),
Support Cost(USA,Laptop), and Complaints(Laptop) over different time periods. In
this notation, we only write the filters that differ from ⊤j on a given dimension, and
the dimension (time, geography, or product) is given implicitly by the value. Simi-
larly, in Table 7.1(b) we see the values for the target measure, Revenue, but with no
filters. In addition to the measure values in Table 7.1, we have listed the indications
next to the last value that is part of a measure change, e.g., in Table 7.1(a), column 2,
row 2, we see that Ind(Complaints,USA, 2009 − Jan, 1month) = N (we use the
first period in an indication, t, to uniquely reference it on the time dimension).

We define an indication sequence, IndSeq, for a filtered measure, fik ◦Mi, where
Mi ∈ {M1, ...,Mp,M1, ...,Mp}, and fik ∈ (C mod T ) as shown in Formula 7.3.
Intuitively, an IndSeq captures the non-neutral indications given by the time dimen-
sion values on a filtered measure, fik ◦Mi for the cells given by its filter, fik . In the
following we use set notation for convenience, but implicitly assume that the order
of the sequence is given by the dimension values t ∈ T .

IndSeq(fik ◦Mi, C, o, w) =

{(t, Ind(Mi, t+ w, o, d2, d3, ..., dn)) |
{(t+ w, d2, d3, ..., dn), (t+ w + o, d2, d3, ..., dn)} ⊆ C

∧ (d2, d3, ..., dn) = fik

∧ Ind(Mi, t+ w, o, d2, d3, ..., dn) ∈ {N,H}}

(7.3)

In Table 7.1, we intuitively see the indication sequences as the columns consist-
ing of N and H combined with the respective period in the Month column. A
join of two or more indication sequences, IndJoin, is a set of filtered measures,
{f1k ◦S1, ..., fmk

◦Sm} ⊆ {f1k ◦M1 , ..., fpk ◦Mp , f1k ◦M1 , ..., fpk ◦Mp} as shown
in Formula 7.4.
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IndJoin((f1k ◦ S1[, w1]), ..., (fmk ◦ Sm[, wm]), C, o[, F ]) =

{(t, Ind(S1, t+ w1, o, d2, d3, ..., dn)) |
(t, Ind(S1, t+ w1, o, d2, d3, ..., dn)) ∈
IndSeq(f1j ◦ S1, C, o, w1) ∧

Ind(S1, t+ w1, o, d2, d3, ..., dn) = F ∧
∀ (fS , w) ∈ {(f2k ◦ S2, w2), ..., (fmk ◦ Sm, wm)} :

(t, Ind(S1, t+ w1, o, d2, d3, ..., dn)) ∈
IndSeq(fS , C, o, w)}

(7.4)

Formula 7.4 allows optional differences in time, w1, ..., wm ∈ N0, between the
indication sequences joined, referred to as warning periods. Intuitively, IndJoin
is an m-way semi-join where we take the left indication sequence, (t, Ind(S1, t +
w1, o, d2, d3, ..., dn)), and filter out all indications that do not fit with the other se-
quences. For source measures it is typical to combine measures for the same time
instance, and for target measures for a later time instance (default wx = 0 for all
wx|1 5 x 5 m). In addition, we define an optional indication filter, F ∈ {N,H, ?},
that allows the resulting indication sequence to consist of indications in one direction
only (default F =?). In general, we use [ ] to denote optional parameters in the equa-
tions, and we note that if an optional parameter is not passed then the parameter has
the default value stated above.

With these definitions, we can output all sentinels in the cube, C, with the offset,
o, as shown in Formula 7.5. Each sentinel is represented as a set of filtered source
measures, fSource, a target measure, Target, and a warning period, w. We use Max-
Source as a threshold for the maximum number of filtered source measures we want
to combine in a sentinel, and we use Maxw as a threshold for the maximum warning
period we are willing to accept. The thresholds α, β, γ, and σ are global and are thus
not passed to Formula 7.5.
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SentRules(C , o) = {(fSourcel  Targetr ,wq) |
fSourcel ⊆
{f1k ◦M1, ..., fp−1k ◦Mp−1, f1k ◦M1, ..., fp−1kMp−1} ∧
∀{fa ◦ S , fc ◦ S} ⊆ fSourcel : (fc ̸@ fa) ∧
|fSourcel | 5 MaxSource ∧ Targetr ∈ {Mp,Mp} ∧
1 5 wq 5 Maxw ∧
SentSupp(fSourcel , C, o) = σ ∧
ElimSupp(fSourcel ,Targetr , C, o,wq ,N) = 0 ∧
ElimSupp(fSourcel ,Targetr , C, o,wq ,H) = 0 ∧
Balance(fSourcel ,Targetr , C, o,wq) = β ∧
Confidence(fSourcel ,Targetr , C, o,wq) = γ}

(7.5)

In Formula 7.5, we exclude parents to filtered source measures that are already
“participating” in a sentinel rule. This is done to eliminate redundancy in the infor-
mation of a rule, since a parent filter does not contribute with any new information
that is describing the target measure in more detail (it only indicates that the child
behaves similar to its parent). For example, “Europe” is a parent to “Denmark” in the
geography dimension, and if a source measure is already filtered on “Denmark”, then
adding the same source measure with “Europe” as filter does not alter the restrictions
on the target measure in any way.

The functions SentSupp (Formula 7.6), ElimSupp (Formula 7.7), Balance (For-
mula 7.8), and Confidence (Formula 7.9) used in SentRules(C , o) are defined as
follows:

SentSupp(fSource, C, o) = |IndJoin(fSource, C, o)| (7.6)

ElimSupp(fSource,Target , C, o, w, F ) =

|IndJoin(fSource, (Target , w), C, o, F )|
− |IndJoin(fSource, (Target , w), C, o, F )|

(7.7)

Balance(fSource, Target, C, o, w) =
4× |A| × |B|
(|A|+ |B|)2 (7.8)

Confidence(fSource,Target , C, o, w) =

|A|+ |B|
SentSupp(fSource, C, o)

where

A = ElimSupp(fSource,Target , C, o, w,N)
B = ElimSupp(fSource,Target , C, o, w,H)

(7.9)

Formulae 7.6 to 7.9 use the cardinality of indication sequences that result from
joining indication sequences based on the measures in fSource and Target. A =
ElimSupp(fSource,Target , C, o, w,N) (Formulae 7.8 and 7.9) is the number of times
that fSource changes in a certain direction and Target subsequently changes in the
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Sentinels found Rule SentS. Conf Balance Score OK
(w = 3) Len (ElimS.) ?
Complaints(USA)

∧ inv(Support Cost(USA,Laptop)) inv(Revenue) 2 13 (12) 92% 1 0.71 OK
Complaints(USA) inv(Revenue) 1 14 (11) 79% 0.99 0.66 OK
Support Cost(USA,Laptop) Revenue 1 14 (11) 79% 0.99 0.66 OK
Complaints(USA)

∧ Complaints(Laptop) inv(Revenue) 2 7 (6) 86% 1 0.33 OK
Complaints(USA) ∧ Complaints(Laptop)

∧ inv(Support Cost(USA,Laptop)) inv(Revenue) 3 7 (6) 86% 1 0.26 OK

SupportCost(USA,Laptop)
∧inv(Complaints(Laptop)) Rev 2 8 (5) 63% 0.96 0.19 Failed

Complaints(All) inv(Rev) 1 4 (2) 50% 1 0.08 Failed
Complaints(Laptop) inv(Rev) 1 11 (2) 18% 1 0.03 Failed

Table 7.2: Sentinels ordered by their respective Score.

“expected” positive (N) direction, minus the number of times where Target changes
in the opposite direction. ElimSupp(fSource,Target , C, o, w,H), denoted by B, is
calculated in the same way, but for the changes to Target in the opposite direction of
A (H). We refer to this as the contradiction elimination process, where we essentially
force a sentinel to be either fSource  Target or fSource  Target , and thereby
we effectively eliminate both contradicting (same premise but different consequent)
and orthogonal (different premise but same consequent) indications in the sentinel
we are evaluating.

Formulae 7.6, 7.8, and 7.9 represent desired qualities of the sentinel: SentSupp
(Formula 7.6) tells us how often the premise of the sentinel occurs. Balance (For-
mula 7.8) is used to determine the degree to which a generalized sentinel rule is
uni-directional (Balance=0) or completely bi-directional (Balance=1), meaning that
there are exactly the same amounts of positive and negative indications on the target
measure in the data. Confidence (Formula 7.9) tells us the fraction of occurrences
where the premise occurs, and the consequent occurs within w time. We denote the
minimum threshold for SentSupp by σ, the minimum threshold for Confidence is de-
noted by γ, and the minimum threshold for Balance is denoted by β.

Aside from the individual quality measures for a sentinel in Formulae 7.6 to 7.9,
it is also desirable to have a quality measure that incorporates all these measures
into one value; this is relevant if we want to compare multiple different sentinels
to identify the best sentinel(s). For this purpose, we define Score for a sentinel,
(fSource  Target , w) ∈ SentRules(C, o), as shown in Formula 7.10.
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Score(fSource,Target , w, C, o) =

(1− wp +
(1 +Maxw − w)× wp

Maxw
)

× (
1

2
+

1 +MaxSource − |fSource|
MaxSource × 2

)

× ElimSupp(fSource,Target , C, o, w, ?)

MaxElimSupp(C, o, w)

× Confidence(fSource,Target , C, o, w)

× (
1

2
+

Balance(fSource,Target , C, o, w)

2
)

(7.10)

With this definition of Score, we denote the maximal value of
ElimSupp(fSource,Target , C, o, w, ?) for any sentinel, (fSource  Target , w) ∈
SentRules(C, o), by MaxElimSupp(C, o). The constant, wp, represents the warn-
ing penalty, i.e., the degree to which we want to penalize rules with a higher w (0=no
penalty, 1=full penalty). Generally, Score incorporates a preference having high val-
ues for all quality measures (Formulae 7.6 to 7.9), and having shorter sentinel rules
(low |fSource|) with a short warning period, w. The construction of Score is further
elaborated in Chapters 3 and 5.

We can now use the SentRulesPruned function, as shown in Formula 7.11, where
fSource and w for a sentinel, S ∈ SentRules(C , o), are denoted by SfSource and Sw.
Formula 7.11 eliminates rules with poor quality (lower Score) if a shorter rule exists
with at least as good a Score, and where fSource is a proper subset of fSource for
the longer rule. In addition, SentRulesPruned eliminates rules with similar source
measures, but longer warning periods, w.

SentRulesPruned(C , o) =

{S ∈ SentRules(C , o) | ̸ ∃S ′ ∈ SentRules(C , o) :

(Score(S ′,C , o) = Score(S ,C , o) ∧
(S ′

fSource ⊂ SfSource ∨
(S ′

fSource = SfSource ∧ S ′
w < Sw )))}

(7.11)

The output of SentRulesPruned(C, o,Optimalw(C, o)) ordered by their re-
spective Score are the best sentinels in a database, C, with the offset, o. In order
not to increase the number of sentinels during the mining process and in the output,
we preserve the order 1 to p for all source measures, 1 to n for the dimensions used as
filters, and 1 to j for the specific filter values. We only show specific filters in the out-
put when a filter value is different from⊤j. In addition, we use the following notation
when describing a sentinel, (fSource  Target , w) ∈ SentRulesPruned(C , o): we
write all source measures in fSource with filters in parenthesis and Target as one
string where the source measures are separated with ∧ and the target measure sepa-
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rated with , e.g., A(fA) ∧ B(fB)  C. In the output it should also be specified
which warning period, w, that applies to each sentinel.

If we apply Formulae 7.5 to 7.11 to our data example in Table 7.1, and use the no-
tation above, we get the conforming sentinels (“OK”) in the first column of Table 7.2
as output when the thresholds for number of source measures, SentSupp, Balance,
and Confidence are set as follows: MaxSource = 3, σ = 5, β = 0.8, and γ = 75%.
Furthermore, we use α = 10% and wp = 1

2 . We note that all sentinels are found with
a warning period, w = 3 (3 months), since this was the only period we mined in our
example, however, in a real dataset there will most likely be more warning periods.
We should also note in Table 7.2, row 5, that the sentinel cannot be simplified into
Complaints(USA,Laptop)∧inv(Support Cost(USA,Laptop)) inv(Revenue)
since the indication join of the indication sequences based on Complaints(USA) and
Complaints(Laptop) are not the same as the indication sequence based on Com-
plaints(USA,Laptop). Therefore, Table 7.2 represents the most simplified output pos-
sible, given our data example in Table 7.1.

7.4 Prerequisites for SentBMD

In prior art (Chapter 6) we have demonstrated how an indication sequence based on a
source or target measure, IndSeq, can be encoded into a bitmap consisting of an even
number of CPU words. This encoding also holds for a bitmap based on a filtered
measure, and thus applies to all measures used in multidimensional sentinel mining
using bitmaps. For example, the indication sequence based on the filtered measure
Complaints(USA) from Table 7.1(a), formally IndSeq(Complaints(USA), C, 1, 0),
can be encoded as follows:

Bitmap(Complaints(USA)) aligned in two 32 bit words

PI :

bits set for positive Ind︷ ︸︸ ︷
10101011 1011000

fill of 0 bits to align with word length︷ ︸︸ ︷
0 00000000 00000000

NI : 00010100 0100111︸ ︷︷ ︸
bits set for negative Ind

0 00000000 00000000︸ ︷︷ ︸
fill of 0 bits to align with word length

As shown in Bitmap(Complaints(USA)), the bits are set in accordance with the
positive indications, PI, and the negative indications, NI. The position of the indica-
tions are given by the order of the values on the time dimension, t ∈ T , thus even
if there is no indication (positive or negative), Ind(Complaints(USA), t, o), for a
given t, the position will still be occupied by two unset bits for PI and NI, respec-
tively. In our example, there is only a total of 15 possible indications which easily fits
into the 32 bit word. In practice, however, PI and NI will most likely need multiple
words allocated to fit the number of bits equivalent to the number of t ∈ T .



136 Multidimensional Sentinel Mining Using Bitmaps

In Chapter 6, we have shown that the entire sentinel mining process can be con-
ducted on bitmap-encoded measures using a series of AND operations with subse-
quent counting of the bits set. We refer to the AND operation of two bitmaps as
BitAND, and the count of bits set in a bitmap as BitCount. We have presented the
SentBit algorithm, that is a highly efficient way to conduct the sentinel mining pro-
cess on a simple dataset where a number of measures are combined with only one
time dimension. In the SentBMD algorithm we apply the lessons learned in Sent-
Bit to a true multi-dimensional environment where sentinels can combined from the
measure changes on different dimension levels. In addition, we have been able to re-
duce the number of invocations needed in the mining process, so we gain efficiency
with SentBMD even on a non-multidimensional dataset when compared to SentBit.
SentBMD is also structured in a way that allows the measures to be encoded in paral-
lel with the sentinels being mined.

In [55] it has been demonstrated that a greedy top-down approach will fail when
seeking for “interesting” dimension values, defined as those values that best explain
their parent. In Figure 7.1 we present a similar example related to the data in Ta-
ble 7.1(a), where the source measure Complaints for January and February 2009 has
been filtered at three different levels on the geography dimension, namely: All (top
level), Region, and Country. The three indications resulting from a change from Jan-
uary to February that is greater than 10% have been illustrated with N. As it can be
seen, the change in number of complaints in All is highly influenced by two changes
in USA (38% of the total change) and in Denmark (41% of the total change). How-

⊤ (All) N
2009-Jan: 726
2009-Feb: 802

USA N
2009-Jan: 225
2009-Feb: 254

��
��
��
��
��

...
��
�

Europe
2009-Jan: 252
2009-Feb: 277

Germany
2009-Jan: 121
2009-Feb: 115

��
��
��
��
��

...
Denmark N

2009-Jan: 131
2009-Feb: 162

??
??

??
??

??

Asia
2009-Jan: 249
2009-Feb: 271

??
??

??
??

??

...
??

?

Figure 7.1: Complaints filtered on the geography dimension
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ever, even though Denmark accounts for the biggest part of the change in ⊤ overall,
its parent, Europe, does not have an indication due to changes for its other children.
With this example, we demonstrate an inherent weakness of a greedy top-down ap-
proach when seeking for the filters that result in a measure having a certain number
of indications that result in a good Score. However, a greedy top-down approach is
appealing from an efficiency standpoint. In the SentBMD algorithm, we have chosen
to focus our efforts on an efficient bottom-up approach that finds all sentinels, and we
have thus suggested that a top-down approximation would be a natural next step for
future work (see Section 7.8).

With these prerequisites we can say, it will be possible to encode all filtered
source measures similar to regular source measures, and thus we can mine multi-
dimensional sentinels using bitmaps. In the next section we present the SentBMD
algorithm that is constructed using these guidelines.

7.5 The SentBMD Algorithm

The motivation for the SentBMD algorithm is obviously to be able to mine multi-
dimensional sentinels that cannot be mined with prior algorithms such as SentBit.
However, the fact that the workload in terms of the number of source measures is
much higher when mining multidimensional sentinels has also motivated us to revisit
the general approach to sentinel mining that was used in SentBit. In SentBit, the entire
number of source measures had to be encoded into bitmaps before the data could be
tested for the existence of sentinels. The disadvantage of this approach is particularly
obvious in the case where the encoding process accounts for half of the workload
(or more), as shown in Figure 7.2. In Figure 7.2, we show the workload distribution
over time for the SentBit and the SentBMD algorithms on a CPU with four cores.
The workload of encoding (E) and the workload of testing (growing) sentinels (G)
has been divided into eight equal slices. Since SentBit does not have the ability to
test the sentinels while the measures are progressively encoded, we need to encode
all measures before we can start testing the bitmaps for sentinels. Moreover, SentBit
did not have the ability to encode in parallel either. With SentBMD, the measures can
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Figure 7.2: Workload distribution for SentBit and SentBMD



138 Multidimensional Sentinel Mining Using Bitmaps

be progressively fed to the process that tests the sentinels and the encoding process
can run in parallel, and thus we are able to significantly reduce the time needed for
the entire sentinel mining process even when we are mining non-multidimensional
sentinels. Although SentBMD supports both scenarios in Figure 7.2, it should be
noted that the scenario to the right in Figure 7.2 is not realistic in most cases since
the encoding process will be constrained by access to either RAM or disk, and thus
the middle parallelization strategy has experimentally proven to be the best.

In addition to offering the parallelization strategies shown in Figure 7.2, the
SentBMD algorithm has also been restructured such that the testing of sentinels can
be done in fewer process invocations than with SentBit.
The SentBMD algorithm initiates two types of processes that run in parallel, En-
codeBlock that encodes all source measures filtered by dimension values from one or
more dimensions, and the recursive GrowSentinel function that grows the potential
sentinels in terms of the number of filtered source measures. The SentBMD algorithm
divides the total set of filtered source measures into blocks and spawns multiple in-
vocations of EncodeBlock in which the members of these blocks are encoded into
bitmaps in parallel. Upon completion of the encoding of the first block, multiple in-
vocations of GrowSentinel will test the combinations of filtered source measures that
qualify to participate in good sentinels. Each invocation of GrowSentinel will process
the encoded filtered source measures from the blocks available. Upon completion of
a block where there are sentinels that can be used for growing longer and higher scor-
ing sentinels, the state of GrowSentinel is put in a queue until more blocks of filtered
source measures become available. When the last EncodeBlock, and subsequently
all instances of GrowSentinel, complete, the best sentinels can be output from mem-
ory. Multidimensional sentinel mining using bitmaps (the SentBMD algorithm) is
illustrated in Figure 7.3.

SentBMD

Filtered Measures
(cube sliced by filters)

f1k
◦ M1

f1k
◦ M2
...

f1k
◦ Mb

...

010100111

011110101

...

010110001

EncodeBlock

EncodeBlock

EncodeBlock
...

010100111

011110101

...

010110001

...

010100111

011110101

...

010110001

Encoded Filtered Measures

GrowSentinel

GrowSentinel

GrowSentinel

...

Queue

Sentinels

1

Figure 7.3: The parallel processes in the SentBMD algorithm
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In SentBMD (Algorithm 7.1) and its sub-algorithms, the following dynamic ar-
rays are globally available to all sub-algorithms in order to store the mining results
as the recursion progresses: SentList is a dynamic array of (a set of measures Source,
measure Target, w, NewScore) and SourceList is a dynamic array that is used to ref-
erence filtered source measures. In addition, all bitmaps for encoded measures and
the value MaxElimSupp (Default 0) are also global. Each filtered source measure in
SourceList can be referenced by a lookup into an array, i.e, SourceList[x] where x is
the filtered measure number. The variable BlockNbr and the constant BlockSize are
also global. Since SentList, SourceList, MaxElimSupp, and BlockNbr can be updated
by multiple parallel invocations, we apply a semaphore to control access to the struc-
tures.

Upon receipt of the desired number of sentinels, n, the dataset, C, the source and
target measures, the offset, o, and the thresholds, the algorithm initiates the mining
process by encoding the target measures into bitmaps (line 1). In line 2, SentBMD
allocates memory for the output of the mining process and the filtered source mea-
sure lookup (In Section 7.7, we present results that allows us to estimate the expected
memory needed). In lines 3 to 7, filtered source measures to be encoded are added
to the SourceList structure, i.e., all source measures filtered by non-time dimension
values that have no more ancestors than HierarchyDepth on the path to the root, ⊤j .
It is important to note that the order in which filtered source measures are encoded
and passed to the GrowSentinel function (Algorithm 7.4) is irrelevant for the output
of SentBMD given the AND operation to which the filtered measures are subjected.
However, we ensure that the different measures are spread as much as possible by
having the loop with the source measures at the bottom (line 6). This reduces the
chance that GetMeasures will return a large sequence where most filtered measures
are based on the same measure, and thus have a higher chance of being excluded by
GrowSentinel due to their parent relationship (Algorithm 7.4, line 15). We note from
our example in Figure 7.1, that setting HierarchyDepth = 1 would mean, that only
the values “All”, “USA”, “Europe”, and “Asia” would be used as filters on the geog-
raphy dimension. Similarly, setting HierarchyDepth = 0 would mean that we get
no multi-dimensionality (same as no filters) in our sentinel mining process, and its
results will thus be similar to those produced with the SentBit algorithm from Chap-
ter 6. Given the number of members in SourceList, we spawn a number of invocations
of EncodeBlock (Algorithm 7.2) in accordance with the BlockSize constant (lines 8
and 9). Once a given source measure is encoded by EncodeBlock (Algorithm 7.2), its
bitmap is allocated and thus globally available to all other sub-algorithms.

In SentBMD (Algorithm 7.1) line 10 we prepare to test the sentinels by setting the
first block to be tested, BlockNbr, to zero as well as setting the queue for GrowSen-
tinel states to empty. In SentBMD, line 11, we use the GetMeasures sub-function
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Algorithm 7.1 SentBMD: Multi-dim. sentinel mining w/bitmaps
SentBMD(the max number of sentinels to be returned, n,

a dataset, C,
a set of source measures, {S1, ..., Sp} ⊆ C,
a target measure, Target ∈ C,
the BlockSize,
an offset, o,
the thresholds, α, β, γ, σ, Maxw, MaxSource, and HierarchyDepth)

1: Encode Targetw for all w ∈ {1 , ...,Maxw}
2: Allocate memory for SentList and SourceList
3: for all D ∈ C where D ̸= T do
4: for all ancestors, a ∈ D, where number of ancestors above a are less than or

equal to HierarchyDepth do
5: for all d ⊑ a do
6: for all S ∈ {S1, ..., Sp} do
7: SourceList ← SourceList ∪ S (d)

8: for all b ∈ {0, ..., ⌊ |SourceList |BlockSize ⌋} do
9: Spawn EncodeBlock(b,BlockSize)

10: SentQ = ∅
11: for all BlockNbr ∈ {0, ..., ⌊ |SourceList |BlockSize ⌋}

where GetMeasures(BlockNbr) ̸= ∅ do
12: for all AddSource ∈ DataBlock do
13: SentQ ← SentQ ∪

(AddSource, ∅,BitmapAllBitsSet ,Target , {1, ...,Maxw}, 0)
14: for all Q ∈ SentQ : (x < BlockNbr × BlockSize) do
15: Spawn GrowSentinel(Q)
16: SentQ ← SentQ mod Q
17: return the top n sentinels from SentList in the output Score ← NewScore

MaxElimSupp

Algorithm 7.2 EncodeBlock: Encode a block of source measures
EncodeBlock(The block number to be encoded, b)

1: for all S ∈ {SourceList [b × BlockSize], ...,
SourceList [((b + 1 )× BlockSize)− 1 ]} do

2: Encode S into bitmap
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(Algorithm 7.3) to read the blocks of filtered source measures as they become avail-
able.

Algorithm 7.3 GetMeasures: Gets a filtered source measure block
GetMeasures(the block number to be read, b)

1: DataBlock ← ∅, x← 0, successful← true
2: while x < BlockSize ∧ successful do
3: a ← (b × BlockSize) + x
4: if SourceList[a] is allocated then
5: DataBlock ← DataBlock ∪ a
6: else
7: if EncodeBlock still running then
8: Wait for SourceList[a] to be allocated
9: DataBlock ← DataBlock ∪ a

10: else
11: successful← false
12: x← x+ 1
13: return DataBlock

In GetMeasures (Algorithm 7.3) we simply test whether the bitmaps for all fil-
tered source measures in a block are allocated, if this is not the case, and an invocation
of EncodeBlock is still running, then GetMeasures will wait for the respective bitmap
to be allocated (line 8). If a bitmap is not allocated and no invocation of EncodeBlock
is running, then there are no more bitmaps left to encode, and GetMeasure will termi-
nate unsuccessfully (line 11) with a DataBlock that has less members than BlockSize.
This will only happen for the last block that is encoded.
In SentBMD (Algorithm 7.1), newly available blocks of filtered source measures are
processed as they become available by intuitively adding a) the filtered source mea-
sure to a sentinel with b) no previous source measures, c) a bitmap with all bits set, d)
the target measure, and e) a Score = 0 to the queue, SentQ (Algorithm 7.1, lines 12
to 13). In addition to the new members added to SentQ with the receipt of a new
DataBlock, SentQ also holds queued invocations of GrowSentinel that were previ-
ously halted due to a lack of bitmap encoded measures (see detailed description of
GrowSentinel below). In lines 14 to 16, all new and halted members in SentQ are
each used to spawn an invocation of GrowSentinel, and subsequently removed from
the queue. The process of spawning GrowSentinel from SentQ is repeated (lines 11
to 16) until all filtered source measures have been encoded and attempted “grown”
(The parallelism in the mining process is illustrated in Figure 7.3). Upon completion
of the recursive and parallel mining process, the process of outputting maximum n
sentinels found (Formula 7.11), sorted descending by Score, is trivial (line 17). We
note that the outstanding division of NewScore by MaxElimSupp in accordance with
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Formula 7.10 is done only on the maximum n sentinels output (see explanation of
the CalcScore function, Algorithm 7.5).

The GrowSentinel function (Algorithm 7.4) tests if adding the filtered source
measure, SourceList[AddSource], to a given set of filtered source measures, Source,
would improve the sentinel relationship with the target measure, Target. Since
GrowSentinel is recursive, we potentially need the bitmap representing the filtered
source measures many times during the recursion, and to optimize this we apply a
standard dynamic programming approach by passing the bitmap, Bits, representing
the AND operation of all bitmaps for the measures in Source. In addition, the func-
tion receives the Score for the sentinel represented by Source and Target without the
added SourceList[AddSource].

In GrowSentinel, there are two options for adding the additional filtered source
measure, namely directly, SourceList [AddSource], or inverted,
SourceList [AddSource], as seen in line 1. The bitmap for the added source mea-
sure is joined (AND’ed) with the bitmap for the existing source measures, Bits, in
line 2, and the result is checked to see if it has less bits set than before in line 3 (the
BitAND and BitCount functions are described in Section 7.4). If the BitAND does
not result in fewer bits, then the added source measure is exactly equal to the source
measures that are already in the sentinel, meaning that an equally good sentinel can
be created with the new source measure alone (this sentinel will be discovered in a
later invocation), and thus it is irrelevant to continue with the longer sentinel at hand.
We note that sending a bitmap, Bits, will all bits set (both PI and NI) will satisfy the
condition in line 3 for the any source measure during the initial invocation call from
SentBMD (Algorithm 7.1, line 13). If the new source measure did indeed reduce the
number of bits, we add it to the set of filtered source measures representing a new
potential sentinel (line 4). In addition, we set the collection of warning periods where
the added source measure improved the Score to ∅.

We can now test if the reduced number of bits translates into a better Score for
either Target or Target for any w where 1 5 w 5 Maxw (lines 5 to 6), and we
note that the CalcScore function (Algorithm 7.5) will return which version of the
target measure has the highest score along with NewScore. In this regard, we note
that there is a good chance that a sentinel will have the same direction on the target
measure even though it is made more specific by adding an additional filtered source
measure, but we cannot know this for sure, e.g., if adding the filtered source mea-
sure reduces the number of indications covered the sentinel by more than 50%. If
NewScore for the new potential sentinel is better than Score from its ancestor (line 7),
we record the sentinel in SentList if it meets the defined thresholds (lines 8 and 9),
and we also update MaxElimSupp if necessary (lines 10 and 11). If the sentinel has
less than MaxSource filtered source measures and it improved Score for at least one
warning period, w, (line 13) it is a candidate for growing a longer sentinel with a
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Algorithm 7.4 GrowSentinel: Add a filtered measure to a sentinel
GrowSentinel(filtered source measure number AddSource,

set of filtered measures Source, bitmap Bits,
a measure Target, a warning period set W , Score)

1: for all S ∈ {SourceList [AddSource],
SourceList [AddSource]} do

2: NewBits ← BitAND(Bitmap(S ),Bits)
3: if BitCount(NewBits,{PI,NI})<BitCount(Bits,{PI,NI}) then
4: NewSource ← Source ∪ S, NewW = ∅
5: for all w ∈W do
6: CalcScore(BitAND(NewBits,Bitmap(w)AllBitsSet),

BitAND(Bitmap(Targetw ),NewBits),
BitAND(Bitmap(Targetw ),NewBits),
Target , |NewSource|, w)

7: if NewScore>Score then
8: if SentSupp = σ ∧ Confidence = γ ∧

Balance = β then
9: SentList ← SentList ∪

(NewSource  BestTarget , w,NewScore)
10: if (A+B) > MaxElimSupp then
11: MaxElimSupp ← (A+B)
12: NewW ← NewW ∪ w
13: if |NewSource| < MaxSource ∧ NewW ̸= ∅ then
14: for x = AddSource + 1 to |SourceList | do
15: if ∀S ∈ NewSource :

(S ̸@ SourceList [x ]) then
16: if x < BlockNbr × BlockSize then
17: GrowSentinel(x,NewSource,NewBits,

Target ,NewW ,NewScore)
18: else
19: SentQ ← SentQ ∪ (x,NewSource,

NewBits,Target ,NewW ,NewScore)
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better Score by combining it with one of the remaining filtered source measures in
SourceList. For the remaining filtered source measures in SourceList that are not in a
parent relationship with measures already included, and that are available (allocated),
GrowSentinel will call itself to grow the sentinel further (lines 14 to 17). If a filtered
source measure is not allocated, but otherwise qualified, the GrowSentinel will add
its state to the queue, SentQ, and terminate (line 18 and 19). We note that meeting
the thresholds is not a criteria for growing the sentinel further; as long as the Score is
improving we have the potential for growing a sentinel that will eventually meet the
thresholds. Also, we note that we will never add a source measure that occurred prior
to AddSource in SourceList, this means that we are preserving the order of the source
measures, and we are thus reducing the number of tested combinations.

Algorithm 7.5 CalcScore: Find best Target and calculate Score
CalcScore(bitmap SourceBits, bitmap TargetBits,

bitmap ElimBits, a measure Target, SourceCnt, w)
1: A← BitCount(TargetBits, {PI })

− BitCount(ElimBits, {PI })
2: B ← BitCount(TargetBits, {NI })

− BitCount(ElimBits, {NI })
3: if A×B = 0 ∧ |A+B| > 0 then
4: if A > 0 ∨B > 0 then
5: BestTarget ← Target
6: else
7: BestTarget ← Target , A← −A,B ← −B
8: SentSupp ← BitCount(SourceBits, {PI ,NI })
9: Confidence ← |A|+|B|

SentSupp

10: Balance ← 4×|A|×|B|
(|A|+|B|)2

11: NewScore ← (1− wp + (1+Maxw−w)×wp
Maxw )

× (12 + 1+MaxSource−SourceCnt
MaxSource×2 )

× (A+B)× Confidence
× (12 + Balance

2 )
12: else
13: NewScore ← 0
14: return BestTarget, NewScore, SentSupp, Confidence,

Balance, A, B

The function CalcScore calculates the Score (Formula 7.10) for a potential sen-
tinel (excluding division by the constant MaxElimSupp as explained above). A
sentinel can be represented by a bitmap resulting from the AND operation of all
source measure bitmaps, SourceBits, and two bitmaps representing an AND opera-
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tion of SourceBits and the bitmaps for a target measure, TargetBits, and the opposite
of this target measure, ElimBits, respectively (Chapter 6). The term “opposite” is
used deliberately since the target measure can also be inverse, thus the opposite in
this case would be the original target measure. CalcScore (Algorithm 7.5) calls Bit-
Count (elaborated in Chapter 6) to identify A and B (lines 1 to 2). We test to see
that A and B have the same sign (line 3), because this is a prerequisite to fulfill-
ing the criteria that A = 0 ∧ B = 0 from Formula 7.5 (A and B are defined in
Formula 7.9). Furthermore, we test that at least one of them is different from zero
since this is a prerequisite for getting a sentinel that complies with the thresholds.
Subsequently we test whether the sign is negative or positive (line 4), this allows us
decide whether NewSource  Target or NewSource  Target is a valid sentinel
(lines 4-7), since A and B are the same values but with opposite signs for these two
sentinels. If NewSource  Target is the valid sentinel, the sign of A and B is
changed to positive (line 7). Simply changing the sign of A and B when Target is
the best target measure, BestTarget, allows us to reduce the number of sentinels tested
to almost half compared to prior art (Chapter 6) where NewSource  Target and
NewSource  Target were tested separately. Once we have decided on the proper
direction of Target, it is trivial to complete the calculations of SentSupp (Formula 7.6),
Confidence (Formula 7.9), and Balance (Formula 7.8) in lines 8 to 10. These values
are used to calculate NewScore (line 11) which is equal to Score (Formula 7.10) with
the exception of the division by MaxElimSupp(C, o, w), since it is constant and
thus irrelevant to the ranking of sentinels. Moreover, MaxElimSupp(C, o, w) is not
known until we have inspected all sentinels in C. Therefore, the scores output for the
sentinels mined are adjusted to comply with Formula 7.10 upon finalization of the
SentBMD algorithm (Algorithm 7.1, line 8).

This concludes the walk-through of the SentBMD algorithm. In Section 7.7 we
demonstrate that not only is SentBMD able to mine sentinels that cannot be found
with prior art, it is also two to three times more efficient than prior art when mining
regular sentinels.

7.6 Implementation

The SentBMD algorithm was implemented in C++ and compiled into a stand-alone
64-bit executable file using Microsoft Visual Studio 2010. We apply an Apriori-
style optimization by pruning the measures that will never be able to be part of a
conforming sentinel. Specifically, we know that in order for a source measure, or
a target measure for a given w, to be part of a conforming sentinel, it needs to
have at least σ indications in its indication sequence (to fulfill SentSupp = σ).
Therefore, we can simply dismiss any bitmap for a filtered source measure where
BitCount(Bitmap(SourceList [AddSource]), {PI ,NI }) < σ by not appending it
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from SourceList in Algorithm 7.4, lines 14 to 19. In multidimensional sentinel min-
ing in particular we would expect that a large number of filtered measures can be
pruned since we operate at a much finer granularity than for regular sentinels.

Based on prior art we have found that the most efficient way to count the bits set
in a bitmap with our BitCount function is by exploiting the instruction known as pop-
ulation count (POPCNT) returns the number of bits set, and it is part of the SSE4a
instruction set available, e.g., on the Intel “Core i7” and the AMD “10h” processor
families (Chapter 6). In order to access this processor specific POPCNT instruction,
we used a so-called intrinsic function.

With regards to parallelization, we set up a threshold for the number of invo-
cations (one per core) of EncodeBlock that are spawned from SentBMD in parallel
(Algorithm 7.1, line 9), and the remaining cores available are used for spawning the
invocations of GrowSentinel (Algorithm 7.1, line 15). This threshold will allow us
to control the balance between the resources used for loading and encoding, and the
resources used for testing sentinels while the EncodeBlock invocations are running
(See Section 7.7 for recommended setting). In this regard, we note that the algo-
rithm does not require the blocks to arrive in sequence, and thus we can focus on
creating workload balance between load/encode and sentinel test. In addition, the
GrowSentinel invocations that are retrieved from the queue, SentQ, can vary in work-
load because some are closer to finalization than others, and thus we spawn these in
groups of 5 to each core (rather than dedicate a core for each invocation) to ensure a
proper workload for each spawn.

Computational Complexity: When we examine the SentBMD algorithm, we note
that the worst case computational complexity will be dominated by the encoding of
bitmaps in EncodeBlock (Algorithm 7.2), and the recursive mining process using
GrowSentinel (Algorithm 7.4). All invocations of EncodeBlock can be performed
in time O(n × p × q), where n is the number of periods, p is the number of source
measures, and q is the total number of dimension values except for the time dimension
values (n). The recursive mining process can be performed in time O( n

WL × (p ×
q)l ×m), where WL is the CPU word length in bits, l is MaxSource, and m is Maxw.
Therefore SentBMD has a worst case complexity of O(n + ( n

WL × (p × q)l ×m)),
since (p× q)l >> (p× q). By stressing this complexity as a worst case scenario, we
recognize that the recursive growth based on Score is dependent on the data mined,
and as seen in Section 7.7, the data can indeed influence the actual time consumption.
Depending on whether n >> (p × q)l × m or not, the computational complexity
will be dominated by either the encoding or the recursive mining process. We also
note, that the parallelization will only alter the constant factors, and thus not the O-
complexity, since the number of CPU cores is a small constant. In Section 7.7 we test
this assessment through extensive experiments.
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7.7 Experiments

Setup: We run our experiments on an Intel Core i7 Quad CPU (920) 2.66GHz PC
with 24GB RAM and 2 500GB disks (7,200 RPM) running a 64Bit version of Win-
dows 2008 Server R2 (operating system) and a 64Bit version of Microsoft Analysis
Services 2008 R2 (multidimensional database server). We use a range of synthetic
datasets and a range of real-world datasets for the experiments. The synthetic datasets
have 150 source measures and were created using three simple random walks such
that 30 source measures have 80% chance of changing α, up or down, 70 source
measures have 40% chance of changing α, up or down, and the remaining 50 source
measures do not change above α. In our experience with real-world data, having
a dataset where 1

5 of the measures change many times, whereas 1
3 of the measures

have no relevant changes, is very realistic. The target measure was aligned such that
it always changed one period later synchronized with the first source measure with
many changes. This means that there will always exist at least one sentinel with
w = 1 in these data. The synthetic datasets range from 100,000 to 1,000,000 rows
in 100,000 row intervals. We note that the sizes of these datasets are huge com-
pared to the real-world dataset. In general, we would expect any real application of
sentinels to work on significantly fewer rows since we typically aggregate the data,
e.g., into months or weeks, before mining sentinels. The real-world datasets are pro-
duced from the operational data warehouse of TARGIT A/S. Based on experience
with more than 3,800 customers worldwide, we will characterize this dataset as typi-
cal for a medium-sized company with a mature data warehouse. The original dataset
contains 241 months (20.1 years) of operational data across 148 source measures.
We created descendants of the real-world dataset from 100,015 to 999,909 rows in
≈ 100, 000 row intervals by duplication. Descendants of the synthetic datasets are
produced by selecting the source measure “tied” to the target measure, and the re-
maining number of source measures randomly to produce datasets with 10, 20, 30,
..., 150 source measures. Descendants of the real-world datasets are produced simi-
larly, but with all source measures selected randomly.

The multidimensional datasets have been creates by projecting two dimensions
into the real and the synthetic datasets. The two dimensions have 11 (⊤ + 10 values)
and 21 (⊤ + 20 values) values respectively. For each dimension combinations, a num-
ber of records from the respective source (synthetic or real) is appended in accordance
with the desired size of the dimension. We have created the sizes of the dimensions
such that they abide to a power law, specifically, the first member accounts for 20%
of all rows in a given multidimensional dataset, second member accounts for 20% of
the remaining rows (16% of the total), and so forth. The fact that power laws typi-
cally exists in real data has been observed in our previous work (Chapter 3), and to
our best of knowledge this is the most realistic projection of the dimensions. In this
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regard, it should be noted that the term “real data” is used about the dataset originat-
ing from TARGIT A/S although the dimensions have been synthetically induced in
the multidimensional versions of this dataset. The multidimensional datasets range
from 100,000 to 1,000,000 rows in 100,000 row intervals.

When nothing else is specified, we either use the 100,000 rows version of the
real-world dataset with all 148 source measures, or the synthetic dataset with 100,000
rows with all 150 source measures. We use the following algorithm settings:
BlockSize = # source measures

# cores allocated to EncodeBloch , wp=0.5, MaxSource=3 or 2 (3 for “flat”
datasets, 2 for multidimensional datasets), and thresholds: SentSupp=5, Conf =0.8,
Balance=0.8, and Maxw=60.

As mentioned in Section 7.6, SentBMD has been implemented with an option
to control the balance between the number of cores used for spawning EncodeBlock
and GrowSentinel respectively. In our experiments we set this balance to 50/50, i.e.,
4 cores for spawning each of these invocation types while one or more EncodeBlock
invocations are running.

Scaling dataset size: In Figure 7.4, we validate that SentBMD scales linearly to
1,000,000 periods of synthetic (Figure 7.4(a)) and real data (Figure 7.4(b)), and that
it is more efficient than the SentBit algorithm from prior art. We note that scaling to
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Figure 7.4: Scaling dataset size
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1,000,000 periods with 150 measures means that we are operating on a data cube with
150,000,000 measure values. On the flat datasets in Figures 7.4(a) and 7.4(b), we ob-
serve an almost straight line when scaling the dataset size for SentBMD, whereas
SentBit has slightly more variation in its linear behavior. We attribute this variation
to the fact that the loading from the multidimensional database server represents a
greater part of the total runtime for SentBit (see Figure 7.2), and as we will observe
in other experiments, greater variations will occur whenever the runtime is domi-
nated by (the loading from) the multidimensional database server. When running on
both comparable flat datasets, we observe SentBMD to 2.5 times faster than Sent-
Bit. In Figure 7.4(c) we observe linear behavior for SentBMD on multidimensional
data. Based on our analysis of computational complexity, we will expect SentBMD to
scale linearly on multidimensional data since multidimensionality adds to the num-
ber of source measures which is constant during the experiments in Figure 7.4 (and
the other factors are also kept constant). This also explains the comparing of run-
time between the flat and the multidimensional datasets, where MaxSource is set to 3
and 2 respectively. For example, the runtime for SentBMD on flat synthetic data for
1,000,000 periods and 150 source measures is ≈ 2, 000 seconds, whereas on multi-
dimensional data the runtime is ≈ 6, 000 seconds. With the two added dimensions,
we have (11+21+(11× 21))× 150 = 263× 150 = 39, 450 source measures when
running on the multidimensional data. With reference to Section 7.6, we note that
increasing the number of source measures is expected to have a squared impact in the
multidimensional experiments (MaxSource=2) and a cubic impact on the flat datasets
(MaxSource=3) (see also the scaling of source measures below). Therefore, we would
expect the runtime on a multidimensional dataset to be at least 1.75 = 1502×263

1503
times

higher compared to a flat dataset. As seen when comparing Figures 7.4(a) and 7.4(c),
the runtime is ≈ 3 times longer on the multidimensional data, and since the number
of cells loaded in both cases is equal, we attribute the remaining overhead to the fact
that more sentinels are found and grown in the case where we have multidimensional
data. This challenge is particularly evident in Figure 7.4(d) where we scale the mul-
tidimensional version of the real dataset. Here we experienced SentBMD running out
of physical memory when scaling the number of periods beyond 900,000. The algo-
rithm had 20GB RAM available, and thus we observe that the linear behavior ends
as the operating systems start swapping the RAM to disk. The reason for only expe-
riencing physical memory overflow on the multidimensional real data is attributed to
the existence of more sentinels on the lower dimensional levels in the real data. To
put this into perspective, we recall that a real dataset in a real environment, e.g., the
TARGIT case, will be mined on months or weeks, meaning that the 900,000 periods
that can fit into RAM is an extreme figure compared to the 241 periods (months) in
the original dataset. In summary we can say that SentBMD scales linearly one both
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flat and multidimensional data, and that it is significantly more efficient than SentBit
from prior art.

Scaling source measures: In Figures 7.5(a) and 7.5(b) we scale the number of
source measures from 1 to 150 on a flat synthetic dataset and from 10 to 148 on a
flat real dataset. With reference to Section 7.6 we note that increasing the number of
source measures is expected to have a cubic impact, based on our assessment of the
computational complexity for MaxSource=3 (and the other factors are also kept con-
stant), and we have verified in the statistical tool R (www.r-project.org) that
the curves for SentBit are indeed cubic. However, when fitting the comparable figures
for SentBMD in R, we found that these were scaling quadratically (while at a quick
glance appearing to scale linearly). Similarly, when scaling SendBMD on the multi-
dimensional data in Figures 7.5(c) and 7.5(d) while using MaxSource=2, we observe
behavior close to linear which is also verified in R. We attribute this improvement
by a factor n−1 in actual runtime complexity over prior art to the optimizations we
have made in the GrowSentinel (Algorithm 7.4) and the CalcScore (Algorithm 7.5)
functions (See Section 7.5). Aside from the significant difference in scalability, we
observe SentBMD to be 1.7–2.5 times faster than SentBit when running on all mea-
sures.
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Scaling the fitting period: In Figure 7.6 we scale the number of periods over which
we fit the warning periods for the sentinels. On the comparable flat synthetic (Fig-
ure 7.6(a)) and real (Figure 7.6(b)) datasets we observe SentBMD to run 2–4 times
faster than SentBit. We also note that SentBit scales linearly (with a tendency not to
scale linearly on extreme fitting periods) whereas SentBMD is constant when scaling
the fitting period. We even see that SentBMD excels when the fitting period is scaled
to the extreme. We attribute the high efficiency on larger fitting periods to the novel
approach to testing warning periods in SentBMD. In SentBMD, the warning periods
are “grown” along with the sentinel (See Algorithm 7.4) whereas SentBit uses a naı̈ve
approach and tests all possible warning periods. On the multidimensional data, Fig-
ures 7.6(c) and 7.6(d) we also observe the SentBMD algorithm to behave close to
constant when scaling the fitting period.
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Figure 7.6: Scaling the fitting period

Scaling MaxSource: In Figure 7.7 we scale MaxSource for SentBit and SentBMD
on the comparable flat synthetic (Figure 7.7(a)) and real (Figure 7.7(b)) datasets. As
expected, we verified that the runtime for both algorithms grows exponentially in
MaxSource. However, we note that SentBMD is faster by a factor of n−1 on the
real data. This observation is in line with our previous observations when scal-
ing the number of source measures. Scaling MaxSource on the multidimensional
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Figure 7.7: Scaling MaxSource

data proved challenging since SentBMD ran out of memory on 100,000 periods for
MaxSource > 2. This was due to a huge number of intermediate rules during the
mining. We compensated by reducing dataset sizes to 1,000 periods, which allowed
us to run SentBMD with MaxSource ∈ {1, 2, 3} for synthetic (Figure 7.7(c)) and
real (Figure 7.7(d)) data. Again, we observe the expected exponential behavior with
reference to Section 7.6.

Experiments summary: In the experiments we observed the SentBMD algorithm
to be significantly more efficient than the SentBit algorithm on comparable flat syn-
thetic and real datasets. In addition, we observed SentBMD to meet our expectations
with regards to our assessment of the worst case computational complexity. In the
cases of scaling either the number of source measures or MaxSource, the SentBMD
efficiency even beat our expectations by a factor of n−1 on the experiment data. In
our experiments we have used data volumes that are much larger than one would
expect in real world scenarios; and thus we believe that SentBMD in its current
form will be able to conduct multidimensional sentinel mining in most cases aris-
ing from the real world. We did, however, run out of RAM in some experiments
and as stated in Section 7.8 we suggest some approaches to address this issue for
future work. Prior to conducting the experiments in this section, we conducted ex-
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periments to fit the optimal BlockSize. Our findings showed that the optimal setting
to be BlockSize = # source measures

# cores allocated to EncodeBloch on the configuration used in these ex-
periments, i.e., distributing the encoding evenly to the available cores. We also tested
the latest Microsoft PowerPivot in a Microsoft SharePoint as an alternative data store
for our experiments, but we found that using the Microsoft Analysis Server delivered
20% faster load times of data to our algorithms. The configuration in our experiments
thus represents the most optimal conditions we have been able to identify.

7.8 Conclusion and Future Work

This chapter significantly extended prior work to exploit the hierarchical nature of
multi-dimensional databases by allowing sentinels to be discovered for certain di-
mension values for certain source measures. The proposed SentBMD algorithm can
mine novel multidimensional sentinels using bitmaps, and it allows source measures
to be progressively input during the mining process. In addition, the SentBMD al-
gorithm utilizes new CPU architectures optimally by parallelizing the work over
multiple cores and taking advantage of novel CPU instructions. We demonstrated
that SentBMD is significantly more efficient than prior art even when mining ordi-
nary (non-multidimensional) sentinel rules. Finally, we demonstrated that SentBMD
scales efficiently to very large multidimensional datasets. It has previously been
demonstrated that sentinels can find strong and general rules that would not be found
by sequential pattern mining or correlation techniques (Chapter 2), this obviously
also holds for multidimensional sentinel mining.

For future work, a top-down approach trading approximation for improved effi-
ciency and less memory consumption should be explored. Furthermore, exploring
the opportunities for compressing the bitmaps of encoded measures could reduce the
memory consumption for SentBMD when mining datasets over many periods.





Chapter 8

Summary of Conclusions and
Future Research Directions

This chapter summarizes the conclusions and directions for future work presented in
Chapters 2–7, and Appendix A.

8.1 Summary of Results

This thesis introduced the novel concept of so-called sentinels, that can be used to ex-
pand the window of opportunity for an organization to act based on changes in the en-
vironment in which it operates. Sentinels are mined on multidimensional data in three
forms: First, Regular sentinels represent one source measure to one target measure
relationships. Secondly, Generalized sentinels represent multiple source measures’
relationships to one target measure. Third, Multidimensional sentinels represent gen-
eralized sentinels that hold for a subset of the data in a multidimensional data cube.
Sentinels in all three forms were formally presented, including measures that can be
used to assess the quality of a sentinel as well as for optimization and sorting pur-
poses. Four different algorithms for sentinel mining were presented: SQL-based for
regular sentinel discovery, SentHiRPG and SentBit for generalized sentinel discov-
ery, and SentBMD for multidimensional sentinel discovery. Aside from expanding
the capabilities of the algorithms, the work demonstrated a significant progression in
the efficiency of sentinel mining, where the latest bitmapped algorithms, SentBit and
SentBMD, are 3–4 orders of magnitude faster than the first SQL-based algorithm.
This work also led to the industrial implementation of sentinel mining in the com-
mercial software TARGIT BI Suite, which attracted the attention of leading industry
analysts. In summary, the work in this thesis has demonstrated sentinel mining to be
useful and unique. In the following, we go through each of the presented chapters
and summarize the most important results.

155
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Chapter 2 presented the first approach to discovering regular sentinels in a multi-
dimensional database using an SQL-based algorithm. The chapter introduced the
sentinel concept as a way to to expand the window of opportunity for an organi-
zation to act based on changes in the environment in which it operates. Formally,
regular sentinels were defined at the schema level in a database, which means that
they are more general than data level rules and thus are more general and cleansed
for contradictions, and thus easy to interpret. In particular with regards to contra-
dictions within a rule, this chapter presented an approach for eliminations of these.
The chapter demonstrated a straight forward SQL-based algorithm for discovery of
regular sentinels, and it was demonstrated that it scales linearly on large volumes of
both synthetic and real-world data. From a qualitative perspective, it was demon-
strated that sentinel rules with relevance for decision making can be extracted from
real-world data. Furthermore, the possibility for automatic fitting of both warning
and observation periods was highlighted. With regards to novelty, it was specifically
demonstrated that sentinel rules are different from sequential pattern mining, since
sentinel rules operate at the schema level and use a contradiction elimination process
to generate fewer, more general rules. Furthermore, it was demonstrated that sentinel
rules are complementary to correlation techniques, in that they could discover strong
relationships between a smaller subset within a dataset; a relationship that would
otherwise be “hidden in the average” using correlation techniques alone.

Chapter 3 proposed a significant generalization of the regular sentinels from the
previous chapter. The chapter extended the concepts from Chapter 2 to allow mul-
tiple source measures to be combined in a relationship with a target measure. The
chapter also introduced two novel quality measures Balance and Score that can as-
sist in describing the degree of bi-directionality of a sentinel as well as the overall
quality of a sentinel. The desirability of bi-directionality vs. uni-directionality was
highlighted in the chapter. The algorithm, SentHiRPG, for generalized sentinel dis-
covery was presented, which used Score for optimization in order to auto-fit the best
warning period for the sentinel. In addition, the SentHiRPG algorithm was opti-
mized with the introduction of a novel table of combinations (TC) and a reduced
pattern growth (RPG) approach. Given a target measure, the SentHiRPG algorithm
could autonomously find the best warning period and output the best sentinels from
this. It was demonstrated that the basic version of SentHiRPG could produce more
than ten times improvement in performance over the SQL-based algorithm. In addi-
tion, the effect of RPG was demonstrated by scaling the number of source measures
where a behavior close to linearly was observed when combining large sets of source
measures. Similarly, the hill-climbing optimization was demonstrated to be efficient
when fitting the warning period over large period intervals. Finally, it was demon-
strated that the SentHiRPG algorithm scales linearly on large volumes of both real
and synthetic data.
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Chapter 4 presented a demonstration of the user experience when mining sen-
tinels in the TARGIT BI Suite version 2K10. It was demonstrated that sentinel min-
ing could be done with few clicks in the TARGIT BI Suite, and thus little training and
instruction is needed for a common user to be able to benefit from the technology.
The reason for this usability is in part, that the underlying SentHiRPG algorithm is
able to utilize the quality measure, Score, as well as optimizations from the previous
chapter to autonomously assess the quality of the sentinels on behalf of the user. An-
other part of the user experience is defined by the so-called “few clicks” mindset, that
surrounds any feature implemented in the TARGIT BI Suite. The demonstration thus
highlighted the integrated experience, that resulted in sentinels being rated the most
interesting and promising feature of TARGIT BI Suite version 2K9 in April 2009 by
TARGIT partners representing a market footprint of 1,936 customers with more than
124,000 users. In addition, leading industry analyst, Gartner, introduced TARGIT
in their Magic Quadrant for BI Platforms in 2010 and listed sentinels as one of the
key strengths of TARGIT. Specifically, the demonstration in this chapter showed the
dialogue flow where users, without any prior technical knowledge, are able to select
a critical measure, a number of cubes, and a time dimension, and subsequently mine
and schedule sentinels for early warnings. In addition, data warehouse setup that was
a prerequisite for the demonstration was also presented.

Chapter 5 described the underlying technology that is presented in Chapter 4,
and it describes the underlying implementation that has been done in the TARGIT
BI Suite version 2K10 in order to provide the users with sentinel mining. The intu-
itive presentation of the sentinel concept from the previous chapter was elaborated
and exemplified both a data and a user perspective. The architecture of the TARGIT
BI Suite was described in detail, and the interfaces that are involved in sentinel min-
ing were identified. Specifically, the dialogues between the TARGIT client and the
TARGIT ANTserver were described. Furthermore, the TARGIT ANTserver com-
ponent was described layer by layer. The SentHiRPG algorithm was also described
in the context of the implementation. The feedback from both TARGIT customers
as well as industry analysts was described, and the indications were that sentinels
were useful and unique. In the context of the TARGIT BI Suite, sentinel mining was
tested on a real-world operational data warehouse located in TARGIT A/S, and it
was demonstrated through extensive experiments, that mining and usage of sentinels
is feasible with good performance for the typical users on a real, operational data
warehouse. Finally, a survey of competing companies in the business intelligence
field in Gartner’s Magic Quadrant 2010 was conducted, and the conclusion of this
survey supported that sentinels are indeed unique in the market.

Chapter 6 demonstrated how the sentinel mining problem could be expressed as
bitmap operations. The encoding of measure changes into bitmaps, so-called indi-
cation streams, was the prerequisite for mining sentinels using indication joins and
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subsequently counting the number of bits set in the resulting bitmaps. The efficient
algorithm for bitmapped sentinel mining, SentBit, had the ability to benefit from both
parallelization as well as dedicated processor instructions for counting set bits. This
means that SentBit is capable of benefitting from the multi-core architectures and
instruction sets available on modern processors. The fully optimized SentBit algo-
rithm proved to be 2–3 orders of magnitude faster than the SentHiRPG algorithm
from Chapter 3, and thus 3–4 orders of magnitude faster than the SQL-based algo-
rithm. Particularly in comparison to the SentHiRPG algorithm, it should be noted
that SentBit does not use any approximation, and thus provides exact results unlike
SentHiRPG. It was demonstrated through extensive experiments that that the SentBit
algorithm scales scales efficiently to very large datasets of both real and synthetic
data. Another important aspect in this chapter was the experiment supporting that
sentinels are generally only found in a dataset if the data contains statistically sig-
nificant relationships, this was demonstrated by creating a completely randomized
dataset on which it was tested that sentinel mining did not find any rules as opposed
to the other datasets mined.

Chapter 7 extended the formal definitions of generalized sentinels into multidi-
mensional sentinels by introducing so-called filtered measures. Based on the for-
mal definition, the chapter presented the SentBMD algorithm for multidimensional
sentinel mining which significantly extended the bitmapped sentinel mining known
described in previous chapter. The SentBMD algorithm was able to exploit the hier-
archical nature of multi-dimensional databases and thus discover sentinels that hold
for certain dimension values for certain source measures. Similarly to the SentBit
algorithm, SentBMD was able to benefit from the novel CPU instructions available
on modern processors. However, with regards to parallelization, SentBMD was sig-
nificantly more advanced since it allowed source measures to be progressively in-
put during the mining process. The progressive input meant that the encoding of
source measures could be be done in parallel with the mining process of already
encoded measures, and thus the SentBMD algorithm could utilize new multi-core
CPU architectures efficiently. It was demonstrated that SentBMD was significantly
more efficient than SentBit from previous chapter, even when mining ordinary (non-
multidimensional) sentinel rules. In this context it should be noted that the SentBMD
algorithm is also structured more efficiently then SentBit with regards to testing dif-
ferent measure relationships for sentinels, and thus SentBMD will also be more effi-
cient even when there is no possibility to parallelize on a multi-core CPU. In general,
it was demonstrated that the SentBMD scaled efficiently to very large multidimen-
sional datasets of both real and synthetic data.

Appendix A explained in more detail how sentinels are linked to the CALM phi-
losophy, and how it uses the Observation-Orientation-Decision-Action (OODA) con-
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cept as a mean to identify three new desired technologies in business intelligence
applications that improve the speed and quality in the decision making processes.

The thesis has thus formally presented a novel concept of sentinel mining in pro-
gressively more advanced forms, namely: regular sentinel mining, generalized sen-
tinel mining, and multidimensional sentinel mining. The process of sentinel mining
has also been demonstrated in more intuitive forms, such that non-technical read-
ers will be able to comprehend the concept. The value of sentinel mining has been
theoretically justified to benefit users in reacting faster whenever patterns occur that
could indicate that a critical measure might be influenced within a given time frame.
It has been demonstrated that the benefits of sentinels cannot be achieved by prior
art such as association rule mining, sequential pattern mining, gradual rule mining,
correlation, and regression techniques. In particular, the bi-directional property of
sentinels is relevant, since it strengthens the support criterion of a rule relationship
to make it reflect changes in two directions rather than only one. This also includes
the elimination process that penalizes relationships that have conflicting support “in-
side the rule”. Bi-directional sentinels are thus more likely to represent strong causal
rule relationships between measures in a multidimensional database. Another aspect
of sentinels is that they represent rules that hold for subsets of the data mined, this
means that the rules can pick up relationships that would go undetected when using
approaches such as regression or correlation that are efficient for identifying overall
trends. In this context, we should recall that the primary objective for sentinels is
to warn about possible influences on a critical measure, and thus sentinels are not
intended to reveal an “universal truth”. The ability to identify relationships that hold
for smaller subsets is highly relevant in a real-world operational environment, since
it is much more likely that these subset-relationships can be influenced by a user,
as opposed to influencing global trends. The thought is that sentinels will create a
much more aware type of organization that continuously seek to be proactive when
interacting with the world around it.

The thesis provided four algorithms that each represent a step in the direction of
the efficient bitmap-based SentBMD algorithm that can discover both generalized and
multidimensional sentinels. Two of these algorithms have subsequently been applied
in industry applications and deployed to real-world users. The latest TARGIT BI
Suite version 2K10 SR1 uses the bitmapped algorithm described in Chapter 6. The
industrial application of sentinels have been positively recognized by both customers
and industrial analysts, and it seems that sentinel mining could finally deliver to the
promise of end-user data mining that has been an industrial challenge for more than
a decade in the business intelligence industry.
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8.2 Research Directions

Several directions for future work remain for the work presented in this thesis. As
mentioned in Chapter 7, an opportunity for improved efficiency and less memory con-
sumption by applying approximation should be explored. The approximation should
exploit the multi-dimensional environment in a top-down approach where only di-
mensions levels that are likely to be filters in good sentinels are selected. Such an
approach could rely on the quality measures introduced in Chapter 3 in order to deter-
mine the improvement in quality when “expanding” a given dimension level. Using
such an approach would allow the sentinel mining algorithm to autonomously deter-
mine the location and shape of the data areas used for filters. Such an approach could
significantly reduce the number of filters that need to be tested, and thus it will have
a good potential for significant performance improvements compared to the current
exhaustive search in SentBMD where all filters are tested.

Another aspect that would be interesting to investigate is the memory consump-
tion for SentBMD when mining datasets over many periods. In Chapter 7, we expe-
rienced that SentBMD memory consumption became an issue in multi-dimensional
sentinel mining since the number of intermediate rules increases significantly. One
strategy to overcome this issue could be to demand more in order to allow a sentinel
to grow than simply an improved Score, e.g., setting a threshold for minimum Score
during this process as well. Another strategy could be to compress the bitmaps that
reside in memory by using run length encoding (RLE) or similar, e.g., PLWAH [16].
Other future work, in this context, could also seek to overcome the memory con-
sumption issue by running sentinel mining on systems optimized for optimal usage
of external memory, e.g., systems that combine RAM and solid state drives (SSD) as
opposed to RAM and disk.

With regards to the capabilities of the sentinel mining algorithms in this thesis,
there is an opportunity for future work to extend the algorithms to allow for more
target measures to be mined in parallel, perhaps even to consider all measures to be
both source and target measures. In such an algorithm, all relationships could be
mined and subsequently navigated for greater organizational insight in addition to
the warning capabilities of the existing sentinels. Another way to extend the sentinel
mining capabilities could be to allow the warning period to be less strict, e.g., an
interval, “less than,” or “greater than.”

Aside from seeking more efficiency in the mining process, it would also be in-
teresting to conduct a qualitative study in which the differences in relevant results
from sentinel mining and other techniques are compared and evaluated, e.g., sequen-
tial pattern mining, gradual rule mining, bellwether analysis, and various correlation
techniques.
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Finally, as suggested in Chapter 5, the ability to visualize the sentinels found
could be explored. For future organizational success with sentinels, there is a need
for users to understand the meaning of the sentinels found. Such an understanding
is likely to arise from an interactive ability to visualize sentinels. In this context, a
study of actual sentinel usage in the real world would be valuable to see if sentinel
mining do indeed deliver to the promise of valuable end-user data mining.
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Appendix A

Improving Business Intelligence
Speed and Quality through the
OODA Concept

For the past few decades, a lot of focus has been put on the immediate data ware-
housing challenges of obtaining and storing the data needed for business purposes, in
a manner so that it can be accessed with a reasonable performance [61], and although
a number of applications have emerged in the OLAP space, there has been little the-
orizing about the management challenge of turning stored data into meaningful and
valuable decisions, with perhaps the exception of Kimball’s ”Analytical Cycle” that
suggests a specific way to conduct a business analysis [30].

The framework proposed as part of the Computer Aided Leadership & Manage-
ment (CALM) thesis [36] can assist with a heuristic approach to applying the tech-
nologies available at any given time, to the challenges faced by leaders and managers;
moreover this framework can assist in uncovering new areas for future research that
will benefit organizations in the years to come.

The idea is to take the Observation-Orientation-Decision-Action (OODA) loop,
which was originally pioneered by Top Gun fighter pilot John Boyd in the 1950s [32],
and group and categorize the available business intelligence technologies according
to their role in the four processes in the OODA loop, namely:

Observation - in this phase we use technology to look at the data with an expec-
tation of what it should be, e.g. through dashboards, reports and agents.

Orientation - in this phase we look at the data in different ways depending on
what it shows, e.g. through analysis, data mining and simulation. Typically this
phase is initiated after something in the observation phase has proven to be different
from what we expected.
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Concept

Decision - this phase is currently undertaken primarily by human intelligence,
but the results found in the Data Warehouse can be evaluated against other external
or internal -typically unstructured- data.

Action - based on the decision made, we seek to implement the course of action
chosen, either through the IT infrastructure as a business process in a Service Ori-
ented Architecture or as communication such as blog, email, phone, or plain face-to-
face communication. Any organization and its purpose can be described as a number
of OODA loops that are continuously cycled by users and conform to one or more
Key Performance Indicator’s (KPI’s) that define their success. However, it should be
noted that the more OODA loops that exists, the more the organization is continu-
ously adapting to its environment; and the faster the users are able to cycle through
the OODA loop, the more competitive the organization will be in correcting problems
and seizing opportunities to improve performance.

If we accept the business benefits for an organization of its users cycling through
multiple OODA loops with as high speed as possible, we need to perform research
into technologies that bridge all the technologies mentioned in the OODA technology
breakdown above. Based on this, the suggestion for three new research directions in
the business intelligence area is:

First, technologies that reduce the number of user interactions needed to cycle
through an OODA loop. Perhaps we can learn from the specialist systems already
existing in airline autopilots and Anti-lock Brake System (ABS) to create smart gen-
eral systems, that in addition to be operated, can be customized by business users to
allow computers to significantly reduce the number of human interactions, e.g. clicks,
and thus the time spent cycling the OODA loop. In some cases such systems would
ideally operate autonomously, and thereby allow users to focus on processes where
computers are less advantageous. This would create true human/computer synergy
rather than simple collaboration.

Secondly, having established a number of OODA loops with a number of KPI’s
assigned, we might provide the users with technologies that can help them iden-
tify patterns that can act as ”sentinels”. These sentinels, causal or not, are ideally
measures that can give early warnings about a later influence on a business critical
measure. One can intuitively imagine that the number of actual sales visits at a given
time might impact the revenue at some later time, or perhaps the company’s footprint
on a number of blogs might indicate something about product quality. The aim here
should be to provide the business users with technologies that automatically identify
measures that qualify for sentinels in order to find the best, perhaps less intuitive
sentinels.

Finally, we could consider running Business Process Intelligence on the entire
system of OODA loops. If we measure the time spent in an OODA cycle, and we can
assess the “quality” in the sense of our ability to conform to the KPI’s assigned to



171

the OODA loop, we can begin to rank the OODA loops depending on their speed and
quality. If for instance an OODA loop is improving in both speed and quality, we have
most likely automatically identified an area in which the organization experiences
“Flow” [15], in other words, the organization is doing something better and better
with less and less effort. On the other hand, if an OODA loop is not improving in
terms of speed, quality or both, the management can easily identify this area. On
a broader scale, such an OODA assessment of an organization might be a valuable
quantitative tool for talent and core competency management, and it might give upper
management valuable information on where to invest or to divest. What is needed to
give this kind of strategic advantage is technology, that can assess speed and quality
of OODA loops in a general purpose business intelligence solution, but to get to a
point where we can measure the OODA performance, we first need to manage our
business intelligence technologies according to the OODA concept.

Hopefully, these three examples have illustrated the power of the OODA concept,
which covers the idea to combine OODA loops with KPI’s to render an organization
agile and competitive using business intelligence. As new technologies are emerging,
they can easily be categorized and evaluated for their business impact by measuring
their effect on an OODA loop’s speed and quality, and furthermore this framework
can assist us identifying new areas for research simply by looking at the gaps and
bottlenecks in the OODA loops.





Appendix B

Summary in Danish / Dansk
resumé

Denne afhandling introducerer et nyt koncept: sentinel-regler (sentinels). Sentinels
repræsenterer sammenhænge i data, typisk mellem data i en virksomheds ydre miljø
og virksomhedens forretningskritiske processer. Formålet med sentinels er at advare
forretningsbrugere om potentielle forandringer i deres nøgletal (Key Performance
Indicators eller KPI’er) og derved gøre det muligt at korrigere deres handlinger, før
ændringerne bliver en realitet. Ideen bag sentinels er beskrevet i Computer Aided
Leadership & Management (CALM) filosofien, der omhandler en måde, hvorpå man
i en virksomhed kan opnå en højere beslutningshastighed i en kaotisk verden. I denne
afhandling er sentinels blevet til virkelighed, og således kan almindelige brugere på
alle niveauer i organisationen drage nytte af advarsler fra sentinels.

Helt konkret er sentinels regelforhold på skemaniveau i en multidimensionel
datakube. Disse forhold repræsenterer forandringer over tid på bestemte målepunkter,
som efterfølges af en forandring i et andet vigtigt brugerdefineret målepunkt, typisk
en KPI. En vigtig egenskab ved sentinels er bidirektionalitet, hvilket betyder, at foran-
dringsforholdet også gælder for den komplementære retning. Dette betyder nem-
lig, at en bidirektionel sentinel har større chance for at være kausal end at være til-
fældig. Sentinels kan variere i kompleksitet afhængig af antallet af målepunkter, der
er inkluderet i reglen: Almindelige sentinels repræsenterer forhold, hvor ændringer i
ét målepunkt fører til forandringer i et andet inden for en given tidsperiode. Gener-
aliserede sentinels repræsenterer forhold mellem forandringer på flere målepunkter,
som fører til forandringer på et andet målepunkt inden for en given tidsramme. Mul-
tidimensionelle sentinels kombinerer skema- og dataniveauerne, hvilket betyder, at
hver målepunktsforandring i reglen kan gælde for enten hele eller dele af kuben. En
generaliseret sentinel kan f.eks. advisere brugere om, at omsætningen sandsynligvis
vil falde inden for to måneder, hvis der sker en forøgelse af de problemer, kunderne
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oplever, kombineret med, at man observerer en nedgang i webtrafikken. En multidi-
mensionel sentinel kan derimod advare disse brugere om, at omsætningen sandsyn-
ligvis vil falde inden for to måneder, hvis der sker en forøgelse af kundeklager i
USA (såkaldt drilldown på den geografiske dimension), kombineret med, at man ob-
serverer en nedgang i det beløb, som investeres i kundesupport til bærbare computere
(drilldown på produktdimentionen).

Det arbejde, som ledte frem til denne afhandling, udviklede sig fra algoritmer
til opdagelse af almindelige sentinels, over algoritmer til opdagelse af generaliserede
sentinels og endte med algoritmer til opdagelse af multidimensionelle sentinels med
flere kilder og målepunkter. Derudover blev algoritmerne i stand til automatisk at
finde de bedste advarselsperioder til en given sentinel. Udover at udvide algorit-
mernes kapabilitet, så skete der også en betydelig forøgelse af effektiviteten under
opdagelsen af sentinels. De nyeste bitmap-baserede algoritmer, som også drager nytte
af moderne CPU’er, er 3–4 størrelsesordner hurtigere end den første SQL-baserede
sentinel-algoritme. Dette arbejde ledte også til implementering af sentinels i for-
retningssoftwaren TARGIT BI Suite, hvilket har fanget førende brancheanalytikeres
interesse. Kort sagt har arbejdet i denne afhandling udviklet opdagelse af sentinels
fra teoretisk idé til konkrete, effektive algoritmer, og arbejdet har ydermere vist, at
sentinels er både nyttige og unikke.


