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Decomposition of Variance for Spatial Cox Processes

Abdollah Jalilian‡ Yongtao Guan§ Rasmus Waagepetersen¶

Abstract

Spatial Cox point processes is a natural framework for quantifying the various
sources of variation governing the spatial distribution of rain forest trees. We in-
troduce a general criterion for variance decomposition for spatial Cox processes and
apply it to specific Cox process models with additive or log linear random intensity
functions. We moreover consider a new and flexible class of pair correlation function
models given in terms of Matérn covariance functions. The proposed methodology is
applied to point pattern data sets of locations of tropical rain forest trees.

Keywords additive random intensity, composite likelihood, Cox process, Matérn covari-
ance function, pair correlation function, variance component.

1 Introduction

The spatial distributions of tropical rain forest trees are influenced by many factors includ-
ing e.g. spatially varying environmental conditions, seed dispersal, infectious diseases, and
gap creation by hurricanes. One natural question is, loosely speaking, ‘how much of the
variation’ in the spatial distribution of a tropical rain forest tree species can be attributed
to each of these factors? In this paper we study methods for addressing this question with
a particular focus on the contribution of the environment.

The most fundamental summaries of variation are the variances of counts of trees
in bounded regions. A generalized linear mixed model (GLMM) for such counts, with
a variance component for each of the sources of variation, might be a starting point for
decomposing the variance. However, with this approach one loses the fine-scale information
contained in extensive tropical rain forest data sets which include locations of individual
trees and not just numbers of trees in certain regions (e.g. Condit, 1998). Moreover,
conclusions obtained from a fitted GLMM may in general be strongly dependent on the
sizes and shapes of the regions used to create the count data.
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A more natural and flexible approach is to model the individual tree locations as a
spatial point process (e.g. Møller and Waagepetersen, 2004) and then derive summaries of
variation from a fitted spatial point process model. With this approach one can compute
variances and covariances of counts in arbitrary regions and therefore recover all summaries
that would be obtained from a GLMM approach. In particular, Cox processes (e.g. Møller
and Waagepetersen, 2004) provide a useful framework for integrating different sources of
variation.

This paper introduces a general criterion for decomposition of variance for Cox pro-
cesses. The criterion is applied to specific Cox process models with either additive or
log linear random intensity functions. The additive model is appealing in the context of
variance decomposition but has not been well studied in the point process literature. For
either model, the resulting variance decomposition depends on the assumed pair correla-
tion function which characterizes the spatial correlation in the Cox process. It is therefore
important to have a wide class of pair correlation functions to choose from. To this end
we consider a new class of shot-noise Cox processes with flexible Matérn pair correlation
functions. These functions are closely related to their widely used counterparts in geo-
statistics and hence serve as a bridge to further connect the theories of geostatistics and
point processes.

1.1 A tropical rain forest data example

Waagepetersen and Guan (2009) fitted so-called inhomogeneous Thomas processes to lo-
cations of three tree species, namely Acalypha diversifolia (528 trees), Lonchocarpus hep-
taphyllus (836 trees), and Capparis frondosa (3299 trees) that were alive in 1995 in the
1000 m by 500 m Barro Colorado Island plot (Condit et al., 1996; Condit, 1998; Hubbell
and Foster, 1983). The significant covariates in the fitted Thomas models were elevation
and potassium for Acalypha and Capparis and nitrogen and phosphorous for Lonchocarpus.
The point patterns of tree locations and the covariate potassium are shown in Figure 1.
In Section 6 we extend the analysis in Waagepetersen and Guan (2009) by studying de-
composition of variance for these data sets. We moreover employ a much broader class
of Cox processes than the inhomogeneous Thomas processes used in Waagepetersen and
Guan (2009).

2 Background on spatial point processes

LetX be a point process observed on S ⊆ R2 and letN(B), for any bounded B ⊆ S, denote
the number of points in X ∩B. The first- and second-order moments of the counts N(B)
are determined by the intensity function ρ and the second-order product density ρ(2) of X
which are functions defined on S and S × S, respectively (see Møller and Waagepetersen,
2004). More precisely,

EN(B) =

∫

B

ρ(u)du
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Figure 1: Locations of Acalypha (top left), Lonchocarpus (top right), and Capparis trees
(bottom left) and image of interpolated potassium content in the surface soil (bottom
right).

and

EN(A)N(B) =

∫

A∩B
ρ(u)du+

∫

A

∫

B

ρ(2)(u, v)dudv

for bounded A,B ⊆ S. The pair correlation function g is given by g(u, v) = ρ(2)(u, v)/[ρ(u)ρ(v)].
For a Poisson process, the counts in disjoint regions are independent and Poisson dis-

tributed. A Cox process is driven by a random intensity function Λ =
{
Λ(u) : u ∈ S

}
.

Conditional on Λ = λ, the Cox process becomes a Poisson process with intensity function
λ. For a Cox process, ρ(u) = EΛ(u) and ρ(2)(u, v) = E[Λ(u)Λ(v)].

3 Decomposition of variance

To quantify the various sources of variation in a spatial point pattern we consider the
contribution of each source to the total variation of a count N(B) for a region B. According
to the previous section,

VarN(B) =

∫

B

ρ(u)du+

∫

B

∫

B

ρ(u)ρ(v)[g(u, v)− 1]dudv. (1)

The first term on the right-hand side of (1) is the variance of N(B) for a Poisson process
with intensity function ρ(·). The second term is the increase (or decrease) in variance due
to possible attraction (or repulsion) between points corresponding to g > 1 (or g < 1).
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For a Cox process X driven by a random intensity function Λ, we can decompose a
count N(B) as N(B) = I|Λ(B) + N̂|Λ(B) where

N̂|Λ(B) = E[N(B)|Λ)] =
∫

B

Λ(u)du

is the minimum mean square error predictor of N(B) given Λ and I|Λ(B) = N(B)−N̂|Λ(B)
is an innovation process in the terminology of Baddeley et al. (2005). Then I|Λ(B) and

N̂|Λ(B) are uncorrelated processes with

EI|Λ(B) = 0, Cov[I|Λ(A), I|Λ(B)] =

∫

A∩B
ρ(u)du

and

Cov[N̂|Λ(A), N̂|Λ(B)] =

∫

A

∫

B

ρ(u)ρ(v)[g(u, v)− 1]dudv

since Cov[Λ(u),Λ(v)] = ρ(u)ρ(v)[g(u, v)− 1]. The process I|Λ may be viewed as a ‘nugget’
process in geostatistical terminology since I|Λ(A) and I|Λ(B) are uncorrelated when A and
B are disjoint. The spatially correlated sources of variation causing the extra-Poisson
variance in (1) enters via N̂|Λ.

In Section 4 we model Λ in terms of a random covariate process Z. To quantify how
much of the spatially structured variation is due to Z we further decompose N̂|Λ(B) =

I|Λ,Z(B) + N̂|Λ,Z into uncorrelated components

N̂|Λ,Z = E[N̂|Λ(B)|Z] =
∫

B

E[Λ(u)|Z]du

and

I|Λ,Z(B) = N̂|Λ(B)− N̂|Λ,Z(B) =

∫

B

{
Λ(u)− E[Λ(u)|Z]

}
du.

If all random variation in Λ is due to Z then VarI|Λ,Z(B) = 0. Further, VarN̂|Λ,Z(B) = 0
if Λ is independent of Z. The quantity

R2(B) =
VarN̂|Λ,Z(B)

VarN̂|Λ(B)
=

Var
∫
B
E[Λ(u)|Z]du

Var[
∫
B
Λ(u)du]

(2)

thus describes the proportion of the variance of
∫
B
Λ(u)du explained by Z. For sufficiently

small B, R2(B) may be approximated by

R2 =
VarE[Λ(uB)|Z]

VarΛ(uB)
, uB ∈ B (3)

which in the stationary case does not depend on B. The quantity R2 can also be viewed
as an analogue of the R2 statistic for linear regression. To see this connection, we define
the expected ‘sums of squares’

SSR = E
∫

S

I2R(u)du, SSE = E
∫

S

I2E(u)du
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and
SST = SSR + SSE

where IR(u) = Λ̂|Z(u) − ρ(u), IE(u) = Λ(u)− Λ̂|Z(u), and Λ̂|Z(u) = E[Λ(u)|Z]. Then, in
the case of a stationary random intensity function Λ, the ratio SSR/SST (known as R2

for linear regression) coincides with (3). We discuss our R2 criterion in relation to specific
models in Section 4.

4 Models for rain forest data

Let X be the process that generates the point pattern of locations for a particular tree
species. We assume that X is a Cox process driven by a random intensity function Λ
where Λ depends on a stationary process Z =

{
Z(u) : u ∈ S

}
, Z(u) = [Z1(u), . . . , Zp(u)],

of p observed covariates and a non-negative process Λ0 =
{
Λ0(u) : u ∈ S

}
representing

unobserved sources of variation. We assume that Λ depends on Z through Z̃ =
{
β0 +

β1:pZ(u)
T
}
u∈S for some parameter β = (β0, β1:p) = (β0, β1, . . . , βp) ∈ Rp+1 and that Z̃ and

Λ0 are independent second-order stationary processes.
We further let ρ0 = EΛ0(u) and g0(u− v) = E[Λ0(u)Λ0(v)]/ρ

2
0. Then ρ0 and g0 become

respectively the intensity and the pair correlation function of a Cox process driven by the
random intensity function Λ0. Note that

g0(u− v) = c0(u− v)/ρ20 + 1 (4)

where c0 is the covariance function for Λ0. Moreover σ2
0 = Var[Λ0(u)] is equal to ρ

2
0[g0(0)−

1]. In Section 4.3 we discuss parametric models for g0 or equivalently c0.
To quantify how much variation is due to Z, it is appropriate to model Z as a random

field. However, since Z is observed, it is often convenient to base parameter estimation on
X|Z where Z is then treated as a fixed quantity, see Section 5.

4.1 An additive model

Variance decomposition is straightforward for the following additive model:

Λ(u) = Z̃(u) + Λ0(u) = β0 + β1:pZ(u)
T + Λ0(u). (5)

Thus, X can be considered as a superposition of two independent Cox processes with
random intensity functions Z̃(u) and Λ0. A drawback of this model is that Λ is not positive
for all values of β and Z. This is probably why (5) has not attracted much interest in the
point process literature; Best et al. (2000) is one notable exception. In Section 4.2 we
discuss an alternative log linear model for which positivity of Λ is guaranteed.

Conditional on Z, the intensity function of X becomes

ρ(u|Z; β) = ρ0 + β0 + β1:pZ(u)
T.

5



In practice, a negative estimate of the intensity function may be obtained. This did,
however, not happen in our data examples (Section 6).

Further, given Z, the second-order product density and the pair correlation function
become

ρ(2)(u, v|Z; β) = ρ(u|Z; β)ρ(v|Z; β) + c0(u− v)

and g(u, v|Z; β) = 1 + c0(u− v)/[ρ(u|Z; β)ρ(v|Z; β)].
For (5) we obtain a straightforward decomposition of the variance of Λ(u) into the sum

of σ2
Z̃
= VarZ̃(u) and σ2

0 = VarΛ0(u). Hence (3) becomes

R2 =
σ2
Z̃

σ2
Z̃
+ σ2

0

.

4.2 A log linear model

The multiplicative log linear random intensity function

Λ(u) = exp[Z̃(u) + log Λ0(u)] = Λ0(u) exp[β0 + β1:pZ(u)
T] (6)

is always non-negative. This model has an appealing interpretation in terms of location
dependent thinning (Waagepetersen, 2007) where X is obtained by independent thinning
of a Cox process driven by Λ0 and the probability of retaining a point at u is proportional
to exp[Z̃(u)]. Hence in the tropical rain forest context, the covariates may be regarded as
influencing the survival of plants in a stationary process of seedlings.

4.2.1 Intensity and pair correlation

Without loss of generality we assume in case of (6) that ρ0 = EΛ0(u) = 1. Conditional on
Z, the intensity function of X is

ρ(u|Z; β) = E[Λ(u)|Z] = exp[Z̃(u)],

the pair correlation function g(u− v|Z) = g0(u− v) coincides with g0, and

ρ(2)(u, v|Z) = ρ(u|Z; β)ρ(v|Z; β) + ρ(u|Z; β)ρ(v|Z; β)c0(u− v).

Unconditionally, the intensity and the pair correlation function become

ρ(u) = ρexp Z̃ = E exp[Z̃(u)] and g(u− v) = g0(u− v)gexp Z̃(u− v)

where ρexp Z̃ and gexp Z̃ are the intensity and the pair correlation function of a Cox process

with random intensity function exp[Z̃(·)].
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4.2.2 Decomposition of variance

For a Cox process with random intensity function (6),

Var[Λ(u)] = σ2
exp Z̃

+ σ2
0

[
σ2
exp Z̃

+ ρ2
exp Z̃

]

where
σ2
exp Z̃

= VarE[Λ(u)|Z] = Var exp[Z̃(u)].

According to (3), R2 becomes

R2 =
σ2
exp Z̃

σ2
exp Z̃

+ σ2
0

[
σ2
exp Z̃

+ ρ2
exp Z̃

] =
gexp Z̃(0)− 1

gexp Z̃(0)g0(0)− 1
.

A related approach is to consider the proportion of variance of log Λ explained by Z̃.
If both Z̃ and log Λ0 are Gaussian then (Møller et al., 1998)

Var log Λ(u) = VarZ̃(u) + Var log Λ0(u) = log g0(0) + log gexp Z̃(0).

The proportion of variance for log Λ explained by Z then becomes

log gexp Z̃(0)

log g0(0) + log gexp Z̃(0)

which is related to R2 by the approximation log(x) ≈ x− 1.

4.3 Models for c0

Our estimation procedure in Section 5 requires the specification of parametric models for
the intensity function and the second-order product density of X|Z. Hence it remains to
specify a parametric model for the covariance function c0 of Λ0 or equivalently (cf. (4))
the pair correlation function g0. Below we consider covariance functions c0 obtained from
explicit constructions of non-negative random fields.

A log Gaussian random field (Møller et al., 1998) obtained by exponentiating a Gaussian
random field Y is one type of non-negative random field with covariance function of a known
form

c0(u− v) = ρ20 exp[c(u− v)]− ρ20 (7)

where c(u− v) = Cov[Y (u), Y (v)].
Another popular construction of non-negative random fields are shot-noise fields given

by sums of positive kernel functions scaled by a parameter α > 0 and centered around points
of a homogeneous Poisson point process with intensity κ > 0. The resulting covariance
function becomes

c0(h) = κα2

∫

R2

k(u)k(u+ h)du. (8)

7



Any absolutely integrable covariance function in fact has a representation of the form (8)
(see e.g. page 65 and 489 in Chilès and Delfiner, 1999) but it is not always easy to determine
the function k. The random intensity function of a modified Thomas process is obtained
when k is a Gaussian density with standard deviation ω in which case c0 is a Gaussian
covariance function

c0(h) = σ2
0 exp

[
− (‖h‖/η)2

]
(9)

where σ2
0 = κα2/(πη2) and η = 2ω.

In the next Section 4.3.1 we consider a more flexible class of Bessel shot-noise fields
where the kernel k is given in terms of a Bessel function and the corresponding class of
covariance functions is the so-called Matérn class. In addition, we in Section 4.3.2 consider
covariance functions obtained when k is a Cauchy density.

4.3.1 Bessel shot-noise fields and Matérn pair correlation functions

Consider the Bessel probability density function

k(u) =
1

π2ν′+1η2Γ(ν ′ + 1)
(‖u‖/η)ν′Kν′(‖u‖/η), η > 0, ν ′ > −1/2 (10)

where Kν′ is a modified Bessel function of the second kind (McKay, 1932; Nadarajah and
Gupta, 2006). According to (8) and Table 1 on page 30 in Matérn (1986), the covariance
function for the corresponding shot-noise field becomes

c0(h) = σ2
0

(‖h‖/η)νKν(‖h‖/η)
2ν−1Γ(ν)

, ν = 2ν ′ + 1, σ2
0 > 0. (11)

A covariance function of this form is commonly known as a Matérn covariance function
(e.g. Stein, 1999). Since (10) is symmetric, the integral term in (8) represents the density
function of the sum of two independent random vectors with common density function
k. Thus (11) divided by κα2 is a probability density of the form (10) and hence σ2

0 =
κα2/(4πη2ν).

The resulting Matérn pair correlation function is

g0(u) = 1 + σ2
0

(‖h‖/η)νKν(‖h‖/η)
2ν−1Γ(ν)ρ20

where ρ0 = κα. The smoothness parameter ν controls the shape of the pair correlation
function and gives additional flexibility in the modeling. For instance, ν = 1/2 yields the
exponential model

g0(u) = 1 + σ2
0 exp(−‖h‖/η)/ρ20 (12)

which offers more slowly decaying correlations than the Thomas pair correlation function
obtained with (9). Note that the Gaussian covariance function (9) may be viewed as a
limiting case of a Matérn covariance function when ν → ∞ (Stein, 1999, page 50).
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4.3.2 Cauchy covariance function

Another model for a slowly decaying pair correlation function is obtained with

c0(u) = σ2
0

[
1 + (‖u‖/η)2

]−3/2
(13)

where the kernel k is of Cauchy type (see Table 1, page 30 in Matérn, 1986)

k(u) =
1

2πω2

[
1 + (‖u‖/ω)2

]−3/2
,

σ2
0 = κα2/(2πη2), and η = 2ω. This covariance function is a special case of the Cauchy

covariance function σ2
[
1 + (‖u‖/η)2

]−ν
which is absolutely integrable for ν > 1. However,

we do not know the kernel function k for which the general Cauchy covariance function
has a representation of the form (8).

5 Parameter estimation

In practice we consider a parametric model c0(·;ψ) for the covariance function of Λ0 where
c0 could for instance be the Matérn covariance function (11) with ψ = (σ2

0, η, ν). Given
(X,Z) observed within W , we then obtain a plug-in estimate for R2 in (3) after estimating
the three parameters β, ψ, and σ2

Z̃
(or σ2

exp Z̃
).

5.1 Composite likelihood estimation

The inference about β and ψ is based on X|Z. The regression parameter β can be
estimated by the first-order composite log likelihood function (CL1) (Schoenberg, 2005;
Waagepetersen, 2007)

CL1(β) =
∑

u∈X
log ρ(u|Z; β)−

∫

W

ρ(u|Z; β)du (14)

which is formally equivalent to the log likelihood function of a Poisson process with intensity
function ρ(·|Z; β). The Berman-Turner quadrature scheme can be used to approximate the
integral in (14) both for the log linear and the additive model, see e.g. Baddeley and Turner
(2000).

For a Cox process specified by the log linear random intensity function (6) one may
subsequently estimate ψ using minimum contrast estimation based on the K-function, see
Waagepetersen (2007) and Waagepetersen and Guan (2009). However, for the additive
model the K-function is not well-defined since the pair correlation function is not transla-
tion invariant (Baddeley et al., 2000). As suggested by Guan (2006) and Waagepetersen
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(2007), ψ can instead be estimated using a second-order composite likelihood function

CL2(ψ|β) =
6=∑

u,v∈X
h(u, v) log ρ(2)(u, v|Z; β, ψ)

−
∫∫

W 2

h(u, v)ρ(2)(u, v|Z; β, ψ)dudv (15)

based on the second-order product density where h is a weight function, see e.g. (17) and
(18) below. The integral term in (15) can also be approximated by a variant of the Berman-
Turner scheme. The second-order composite likelihood can be evaluated for both the log
linear model and the additive model and the maximized CL2 can be used as a criterion for
model selection, see Section 6.

Instead of maximizing the right-hand side of (15) with respect to both β and ψ, a com-
putationally simpler approach is to obtain β̂ by maximizing (14) and then ψ̂ by maximizing
CL2(·|β̂). Moreover, an equivalent version of CL2(ψ|β̂) is given by

CL∗
2(ψ|β̂) =

6=∑

u,v∈X
h(u, v) log g(u, v|Z; β̂, ψ)

−
∫∫

W 2

h(u, v)Cov[Λ(u),Λ(v)|Z; β̂, ψ]dudv (16)

which is obtained from CL2(ψ|β̂) by subtracting the second-order composite likelihood
of a Poisson process with intensity function ρ(·|Z; β̂). More stable convergence results
were obtained using (16) instead of (15) when using a standard implementation of the
Nelder-Mead algorithm for maximizing the second-order composite likelihood.

In simulation studies and applications to real data we discovered that the second-order
composite likelihood estimates can be quite sensitive to the accuracy of the Berman-Turner
quadrature scheme used to approximate the double integral in (16). This is especially the
case when c0 is steep at zero like for (11) with a small ν or small η. Regarding the weight
function h,

h(u, v) = 1[‖u− v‖ ≤ t]/[πt2] (17)

is the standard choice which ensures that only t-close pairs of points are used in the
composite likelihood. In the data example in Section 6 we also considered

h(u, v) = 1[‖u− v‖ ≤ t]/[πt2ρ(u|Z, β̂)ρ(u|Z, β̂)]. (18)

For log linear models, this h implies a simplification of the double integral since the intensity
function is eliminated from the integrand.
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5.2 Estimation of environmental variances

In practice Z is observed on a grid G = {ui}i=1,...,M covering W . Since we assume that Z
is a stationary process, simple estimators of σ2

Z̃
and σ2

exp Z̃
are given by

σ̂2
Z̃
=

1

M

∑

u∈G

[̂̃
Z(u)− ρ̂Z̃

]2
(19)

and

σ̂2
exp Z̃

=
1

M

∑

u∈G

{
exp

[̂̃
Z(u)

]
− ρ̂exp Z̃

}2

(20)

where

ρ̂Z̃ =
1

M

∑

u∈G

̂̃
Z(u), ρ̂exp Z̃ =

1

M

∑

u∈G
exp

[̂̃
Z(u)

]
, (21)

and
̂̃
Z(u) = β̂Z(u)T.
As a theoretical sanity check we discuss the joint asymptotic properties of the composite

likelihood estimates and (19)-(21) in the Appendix. The asymptotic results seem less useful
from a practical point of view due to the non-linear dependence of R2 on the parameters.
Also we expect slow convergence to normality of (19)-(21).

5.3 Further approaches to non-parametric estimation

Suppose we divide the observation window into quadrats Bi, i = 1, . . . ,M , of identical size.

Then we may estimate the denominator of (2) with B = B1 simply as ̂VarN(B) − |B|ρ̂
where ̂VarN(B) =

∑M
i=1[N(Bi) − |B|ρ̂]2/M and ρ̂ = N(W )/|W |. A problem with this

approach is that ̂VarN(B) − |B|ρ̂ may be negative. If we choose the Bi so small that

Ni(B) becomes binary, then indeed ̂VarN(B)− |B|ρ̂ = −(|B|ρ̂)2 < 0.
In the case of the log linear model it is possible to estimate the pair correlation function

g0(·) = g(·|Z) and hence σ2
0 = g0(0)− 1 non-parametrically (Baddeley et al., 2000) but the

non-parametric estimate is not reliable for small distances due to bias and large variability,
see e.g. Chapter 4 in Møller and Waagepetersen (2004). It is, however, still useful for model
assessment, see Section 6.

6 Decomposition of variance for tropical rain forest

data example

In this section we return to the data example in Section 1.1. Waagepetersen and Guan
(2009) fitted inhomogeneous Thomas models with random intensity functions of the form
(6) and a Gaussian covariance function (9) for Λ0. Using the same covariates as in
Waagepetersen and Guan (2009), we fit for each of the species the additive model (5) and

11



the log linear model (6) with c0 being the Gaussian covariance function (9), the Matérn
covariance function (11), and the Cauchy covariance function (13). Note that these co-
variance functions have very distinct behaviors both at the origin and in the tails, see also
Figure 3. We also consider a covariance function of the form (7) where Y is a Gaussian
random field with a Matérn covariance function. We denote this covariance function LG-
Matérn since it corresponds to the case of a log Gaussian random intensity function Λ0. In
this case σ2

0 = exp[VarY (u)]− 1. As measures of fit for these models, we use the maximal
values of the composite likelihoods CL1 and CL2.

Regarding the weight function h we tried both (17) and (18) with t = 125 in (15). The
integrals in the composite likelihoods CL1 and CL2 were approximated using a Berman-
Turner quadrature scheme consisting of data points and 200 × 100 dummy points over
the observation window W = [0, 1000]× [0, 500]. The ranking of the models according to
CL2 did not depend on the choice of h-function (except for a single swap of ranks between
Cauchy and Matérn in case of the additive model for Lonchocarpus). However, for the
log linear models we in general obtained somewhat smaller estimates of σ2

0 with (17) than
with (18) and vice versa for the additive models. According to a model check for the best
fitting log linear models (see below) the estimates obtained with (18) gave the best fit. In
the following we restrict attention to the results obtained with (18). Table 1 shows the
parameter estimates, the maximal composite likelihood values, and the estimated R2 for
each species and model.

Considering first β1:2 for each species, the regression parameters have similar signs and
relative magnitudes for the log linear model and the additive model. However, the maximal
first-order composite likelihood CL1 is always largest for the log linear model. The fitted
Z̃ are shown in Figure 2 for each species.

Considering CL2 and comparing log linear and additive models for each species, the
log linear models always yield the largest CL2 values. Regarding the choice of covariance
function, the best fit for Acalypha is obtained with the Cauchy covariance function while for
Lonchocarpus and Capparis, the LG-Matérn covariance function performs better, followed
by the Matérn covariance function. Both for the log linear and the additive models, the
smallest CL2 is obtained with the Gaussian covariance function. This suggests that the
fast decaying pair correlation function obtained with the Gaussian covariance function is
not suitable for the tropical rain forest data. For the additive model, the LG-Matérn and
the Matérn covariance functions are almost identical because in this case σ̂2

0 is small and
exp(x)− 1 ≈ x when x ≈ 0.

Regarding R2, the estimates vary considerably across models. However, the overall
qualititative conclusion is stable: the contribution of the environment is smallest for Aca-
lypha and largest for Capparis. This may be linked to the different modes of seed dispersal
of the species, see Waagepetersen and Guan (2009). The R2 obtained with the best fitting
models are 0.01, 0.06, and 0.11 for Acalypha, Lonchocarpus, and Capparis.

The fitted covariance functions for the log linear models and for all species are shown in
Figure 3. For all species, the Gaussian covariance function differ much from the other three
covariance functions both a the origin and in the tail. For Lonchocarpus and Capparis,
the fitted Matérn and LG-Matérn covariance functions appear rather similar.
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Table 1: Estimates of β, ψ and R2 and maximal values of the composite likelihoods CL1

and CL2. For each species, the first four rows in the last three columns correspond to
the log linear model with Gaussian, Cauchy, Matérn and LG-Matérn covariance functions.
The next four rows are for the additive model with the same covariance models. For LG-
Matérn, abusing notation, ψ̂ denotes the parameter estimate for the covariance function
of the Gaussian field Y . In the first column, the estimate ρ̂ is given by N(W )/|W |. The
second column also shows estimates of σ̂2

expZ̃
and σ̂2

Z̃
.

Species β̂1:2 / CL1(β̂) ψ̂ = (σ̂2
0, η̂, ν̂) CL2(ψ̂|β̂)− C R2

a
(0.02, 0.005)

(13.7, 4.4, ∞) 27438.39 0.01
(11.9, 4.9, −) 28744.97 0.01

-4117.7 (8.5, 4.7, 0.69) 28507.05 0.01
Acalypha σ̂2

expZ̃
= 0.13× 10−6 (2.4, 5.6, 1.02) 28675.13 0.01

(15.5, 4.9)×10−6 (11.6×10−6, 4.1, ∞) 0 0.01
(8.1×10−6, 5.2, −) 1724.32 0.01

ρ̂ = 1056×10−6 -4119.7 (6.1×10−6, 5.8, 0.56) 1128.50 0.02
C = −6291053.0 σ̂2

Z̃
= 0.11× 10−6 (6.1×10−6, 5.8, 0.56) 1128.50 0.02

(-0.03, -0.16)
(1.1, 28.4, ∞) 82006.98 0.11
(1.8, 18.4, −) 82174.76 0.07

-6117.6 (2.0, 14.0, 0.65) 82326.85 0.06
Lonchocarpus σ̂2

expZ̃
= 0.45× 10−6 (1.1, 14.8, 0.86) 82344.08 0.06

(-38.2, -193.3)×10−6 (1.5×10−6, 36.6, ∞) 0 0.17
(2.1×10−6, 27.4, −) 934.78 0.12

ρ̂ = 1672×10−6 -6121.9 (2.8×10−6, 23.1, 0.41) 702.26 0.09
C = −6168628.5 σ̂2

Z̃
= 0.29× 10−6 (2.8×10−6, 23.1, 0.41) 702.26 0.09

(0.03, 0.004)
(0.25, 69.8, ∞) 5012.70 0.28
(0.43, 43.1, −) 5223.48 0.18

-19693.0 (0.76, 48.2, 0.22) 5342.78 0.11
Capparis σ̂2

expZ̃
= 4.84× 10−6 (0.59, 49.7, 0.26) 5361.99 0.11

(193.2, 24.8)×10−6 (10.0×10−6, 70.2, ∞) 0 0.29
(15.0×10−6, 48.7, −) 285.51 0.21

ρ̂ = 6598×10−6 -19700.1 (28.8×10−6, 51.6, 0.21) 466.02 0.12
C = −5089810.54 σ̂2

Z̃
= 4.06× 10−6 (28.8×10−6, 51.6, 0.21) 466.02 0.12
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Figure 2: The fitted regression term,
̂̃
Z, for Acalypha under the additive model and the

log linear model (top left and right), and for Lonchocarpus and Capparis under the log
linear model (bottom left and right).
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Figure 3: The various fitted covariance functions c0 in case of the log linear model for
Acalypha (left), Lonchocarpus (middle), and Capparis (right).

We used the non-parametric estimate of the g0-function (mentioned in Section 5.3) as
a summary statistic for model assessment and computed pointwise 90% confidence bands
for this statistic using simulations from the best fitting log linear models according to CL2.
The non-parametric estimates of c0(·) = g0(·)− 1 and 90% pointwise confidence bands are
shown in Figure 4 and do not provide evidence against the fitted models.
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Figure 4: Non-parametric estimates of c0 (solid line) and 90% pointwise confidence bands
(gray area) obtained from 100 simulations under best fitting models. The red dashed line
shows mean of simulated non-parametric estimates and the blue dotted line shows the
parametric estimate of c0. Left: Acalypha, middle: Lonchocarpus, and right: Capparis.

7 Discussion

In this paper we introduced a method for decomposing variance for spatial Cox processes.
As can be seen from our data analysis, the results can be sensitive to the choice of the pair
correlation function. Fortunately, the flexible class of Matérn and Cauchy pair correlation
functions allow us to compare results from a wide range of pair correlation functions. We
can then report results obtained with the best fitting model according to the second-order
composite likelihood criterion.

Concerning the second-order composite likelihood estimation, further studies regarding
numerical implementation and choice of h-function seem needed. For the Matérn model,
the joint estimation of (σ2

0, η, ν) is computationally demanding and simulation studies
indicate that the statistical properties of the estimates can be poor. For routine use,
a more feasible approach is to maximize only with respect to σ2

0 and η for each ν in a
moderate collection of ν values.

The Thomas process has enjoyed much popularity in the point process literature. How-
ever, at least for the tropical rain forest data considered in this paper, it seems inferior to
models with a more slowly decaying pair correlation function. For all the data examples
considered, the log linear model provided a better fit than the additive model. This is per-
haps not so surprising since the log linear model has an appealing interpretation in terms of
survival of seedlings. On the other hand, variance decomposition is more straightforward
for the additive model than for the log linear model.

Our proposed variance decomposition procedure assumes a stationary random environ-
ment. This may e.g. not be tenable for Acalypha because the fitted Z̃ in W shows a trend
from right to left. Although this does not necessarily invalidate the stationarity assump-
tion on Z̃, it at least implies that W may be too small to allow a precise estimate of the
variance for Z̃. Further research is required to handle the case where Z̃ is not stationary
but perhaps satisfies a weaker assumption of intrinsic stationarity.
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A Asymptotic properties of parameter estimates

In this appendix we discuss asymptotic properties of the parameter estimates given in Sec-
tion 5. To do this we consider an increasing sequence of observation windows Wn ⊂ R2 and
let Gn =Wn∩Z2 be an increasing sequence of sampling grids for Z. We moreover let θ̂n =
(β̂n, ψ̂n) denote the vector of composite likelihood estimates and (σ̂2

Z̃,n
, σ̂2

exp Z̃,n
, ρ̂Z̃,n, ρ̂exp Z̃,n)
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the parameter estimates (19)-(21) obtained from Xn = X ∩ Wn and Zn = {Z(u)}u∈Gn.
We may view θ̂n as a solution of an unbiased estimating equation un(θ) = 0 where un is
obtained by concatenating the gradients of the log composite likelihoods evaluated over
Wn.

Under appropriate conditions, |Wn|1/2(θ̂n − θ∗)Jn(θ̂n)Σ
−1/2
n has the same asymptotic

N(0, I) distribution as |Wn|−1/2un(θ
∗)Σ−1/2

n where Jn(θ) = −|Wn|−1dun(θ)/dθ
T, θ∗ denotes

the ‘true’ value of θ, and Σn is the covariance matrix of |Wn|−1/2un(θ
∗). For details we

refer to Waagepetersen and Guan (2009) which contains a thorough asymptotic study of
a two-step procedure based on the first-order composite likelihood and minimum contrast
estimation using the K-function. If we assume further that Z is a suitably mixing random
field (e.g. Guyon, 1991), then Jn(θ̂n) and Σn (which can be viewed as spatial averages)
converge to fixed matrices J and Σ.

From mixing of Z we moreover obtain the central limit theorem (Bolthausen, 1982;

Guyon, 1991)M
1/2
n (f̄ ∗

n−µf) → N(0,Σf ) for estimators f̄ ∗
n of the form f̄ ∗

n =M−1
n

∑
u∈Gn

f [Z̃∗(u)]

where f = (f1, . . . , fq) is a vector function, Z̃∗(u) = β∗Z(u)T, Mn is the cardinality of Gn,

µf = Ef [Z̃∗(0)] and Σf is the asymptotic variance matrix of M
1/2
n f̄ ∗

n. By the unbiasedness
of un given Z it follows that

Cov[f̄ ∗
n, un(θ

∗)] = ECov[f̄ ∗
n , un(θ

∗)|Z] + Cov{E[f̄ ∗
n|Z],E[un(θ∗)|Z]} = 0.

Thus, |Wn|1/2(θ̂n − θ∗) and M1/2
n (f̄ ∗

n − µf) are asymptotically zero-mean normal and inde-
pendent with covariance matrices (JT)−1ΣJ−1 and Σf .

Finally (σ̂2
Z̃,n
, σ̂2

exp Z̃,n
, ρ̂Z̃,n, ρ̂exp Z̃,n) can be expressed in terms of ˆ̄fn =M−1

n

∑
u∈Gn

f [
̂̃
Zn(u)]

for a vector function f involving squares and exponentials. Recalling
̂̃
Zn(u) = β̂nZ(u)

T and

using a Taylor expansion of gu(β) = f [βZ(u)T] around β∗ we obtain that M
1/2
n ( ˆ̄fn − µf)

has the same asymptotic distribution as

M1/2
n (f̄ ∗

n − µf) + |Wn|1/2(β̂n − β∗)E
{
Z(0)Tf ′[Z̃∗(0)]

}

where f ′(z) is the vector of derivatives dfi(z)/dz. Thus we also obtain asymptotic normal-
ity for (σ̂2

Z̃,n
, σ̂2

exp Z̃,n
, ρ̂Z̃,n, ρ̂exp Z̃,n).
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