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THE LATTICE OF D-STRUCTURES

LISBETH FAJSTRUP

Abstract. The set of d-structures on a topological space form a lattice and
in fact a locale. There is a Galois connection between the lattice of subsets of
the space and the lattice of d-structures. Variation of the d-structures induces
change in the spaces of directed paths. Hence variation of d-structures and
variation of the “forbidden area” may be considered together via for instance
(co)homology and homotopy sequences.

1. Introduction

In directed topology, a topological space X is equipped with an extra structure,
~P ⊂ XI , the d-structure or the dipaths, a subset of the set XI of all paths from
the unit interval I satisfying certain properties 2.1. A given topological space
will support many such directed structures, and clearly, inclusion of d-structures
provides a partial order on the set of d-structures. In Thm. 3.8, we show, that
the d-structures on a fixed space form a complete distributive lattice, in fact even
a locale. A d-structure is closed, if the set of dipaths is closed as a subset of
the set of all paths with the compact open topology. Such a closed structure,
~P , has a complement ¬~P , which is also a d-structure. Hence, all paths may be
written as a (possibly countably infinite) concatenation of dipaths from ~P and

its complement, and moreover the intersection of ~P and ¬~P contains only the
constant paths.

In [5], a geometric model for concurrent computing is studied. The model is
a directed space, which in many cases may be modelled as a product of directe
graphs minus a “forbidden area”. In section 4, we take the point of view, that
the forbidden area is not removed from the space, but instead, no directed paths
(except the constant ones) enter this area. This gives a correspondence between
subsets of the space and directed structures: Given a subset F , the associated
d-structure µ(F ) is the maximal structure avoiding F . Given a d-structure, ~P

the associated forbidden area ν(~P ) is the set of points which are only intersected

by constant paths in ~P . The pair (µ, ν) is a Galois connection, see Thm. 4.4. In
Section 6, we study the n-cube with a product-d-structure. A dipath is required
to increase in a subset of the coordinates. Such structures correspond to relaxing
the order (letting time run backwards) in a subset of the processors running in
parallel. The inclusions of path spaces corresponding to the sublattice structure
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2 LISBETH FAJSTRUP

may be studied via homology-sequences of pair or triples. The relative homology
groups carry information about the effect of iteratively relaxing the orders.

2. Definitions - closed d-structures

The definitions here are not new. Most of them may be found in [8].

Definition 2.1. A d-space is a topological space X with a set of paths ~P ⊂ XI

such that

• ~P contains all constant paths.
• γ, µ ∈ ~P implies γ ⋆ µ ∈ ~P , where ⋆ is concatenation.
• If ϕ : I → I is monotone, t ≤ s⇒ ϕ(t) ≤ φ(s), and γ ∈ ~P , then γ◦ϕ ∈ ~P .

I.e., ~P is closed under monotone reparametrization and subpath.

ϕ is a di-reparametrization - not necessarily surjective.
The d-space is saturated if whenever ϕ : I → I a monotone surjection and
γ ◦ ϕ ∈ ~P , then γ ∈ ~P .

A d-map or dimap f : X → Y is a continuous map, such that if α ∈ ~P then
f ◦ α ∈ ~P (Y ).

The set of distinguished paths, ~P are called the dipaths. They are d-maps from
the ordered interval ~I to X .

For γ : I → X , we denote γ(0) the source and γ(1) the target of γ.

For subsets A,B ∈ X , let ~P (X,A,B) denote dipaths with source γ(0) ∈ A ⊆ X
and target γ(1) ∈ B ⊆ X .
~T (X, ~P ,A,B) denotes the trace space, i.e., the dipaths up to di-reparametrization.
The category of d-spaces is denoted d-Top

Example 2.2. When ~P = XI , then (X, ~P ) is a d-space with trivial d-structure.

If ~P is the constant maps, X has the discrete d-structure. Note that the d-maps
from a space with discrete d-structure are the continuous maps. The d-maps to
a space with trivial d-structure are the continuous maps.

Example 2.3. A subspace Y ⊂ X of a d-space has an induced d-structure in
the obvious way.
The productX×Y of two d-spaces has a product d-structure: γ(t) = (γ1(t), γ2(t))
is a dipath if both components are.

Example 2.4. Let I be the unit interval. Then ~I denotes I with d-structure

{γ : I → I|t1 ≤ t2 ⇒ γ(t1) ≤ γ(t2)}. The other direction,
←
I is I with d-structure

{γ : I → I|t1 ≤ t2 ⇒ γ(t1) ≥ γ(t2)}. The trivial d-structure is denoted
↔
I and

the discrete structure is Id.
These structures immediately give rise to different d-structures on the unit n-

cube such as ~Ik ×
←
I
n−k

and ~Ik ×
↔
I
n−k

.
This example is studied in detail in Section 6
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3. Lattice structure

The set of all d-structures on a topological space form a lattice under the
subset order. That lattice is complete, distributive and in fact a Heyting algebra.
We give a concrete description of the pseudo-complement.This is in general not
a complement as we show in Ex. 3.11. A d-structure ~P , which is closed as a
subset of the path space, has a complement under countable concatenation of
dipaths. Hence, in that case, any path γ ∈ XI may be written as a countable
concatenation of dipaths in ~P and ¬~P , where ¬~P ∩ ~P is the set of constant paths.

Definition 3.1. Let X be a topological space and let P(X) be the set of d-

structures on X . The lattice structure on P(X) is as follows: Let ~P , ~Q ∈ P(X)
then

• ~P ≤ ~Q if the identity map id : X → X is a d-map from (X, ~P ) to (X, ~Q).

• Meet is defined by ~P ∧ ~Q = ~P ∩ ~Q
• Join is ~P ∨ ~Q = (~P ∪ ~Q)∗, where ∗ is closure under subpath, finite con-
catenation and di-reparametrization.

Remark 3.2. Since ~P and ~Q are both closed under subpath and di-reparametrization
the closure ∗ is only needed to ensure that whenever γ ⋆ µ ∈ (~P ∪ ~Q)∗ then so
are paths like η(t) = γ(ut) for 0 ≤ t ≤ 1/u and η(t) = µ(u− ut) for 1/u ≤ t ≤ 1.
Hence, we need only close off under piecewise linear di-reparametrization. In fact,
all dipaths in ~P ∨ ~Q have the form µ1 ⋄ µ2 ⋄ · · · ⋄ µk ◦ α, where

• ξ = µ1 ⋄ µ2 ⋄ · · · ⋄ µk : [0, k] → X is defined by ξ(t) = µj(t + (j − 1)) for
t ∈ [j − 1, j].
• There is a subdivision 0 = t0 < t1 < · · · < tk = 1, s.t. α : [0, 1]→ [0, k] is

given by α(t) =
t−tj

tj−tj−1
+ j for t ∈ [tj−1, tj]

• µj ∈ ~P ∪ ~Q.

Definition 3.3. Let X be a set. A dTop-structure on X is a topology τ and a
set af dipaths ~P ∈ XI , where XI are the paths γ : I → X continuous wrt. τ .
We define a lattice structure on the dTop-structures:

• (τ, ~P ) ≤ (σ, ~Q) if the identity map id : X → X induces a d-map from

(X, τ, ~P ) to (X, σ, ~Q).

• The meet operation is (τ, ~P ) ∧ (σ, ~Q) = ((τ ∪ σ)c, ~P ∩ ~Q), where (τ ∪ σ)c

is the topology generated by τ ∪ σ.
• The join is (τ, ~P ) ∨ (σ, ~Q) = (τ ∩ σ, (~P ∪ ~Q)∗).

Denote this lattice TP(X).

Remark 3.4. The following are easy facts about the above lattices:

• The relation ≤ is inclusion for the lattice of d-structures. For dTop-
structures it is inclusion and containment: (τ, ~P ) ≤ (σ, ~Q) if ~P ⊆ ~Q and
τ ⊇ σ.
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• The top element ⊤ of P(X) is XI and the bottom ⊥ is the constant paths.
• The top element of TP(X) is the trivial topology, τ = {X, ∅} and all
maps I → X in Set. The bottom element is the discrete topology and
the constant paths.

Definition 3.5. A lattice L is

• Complete, if every non-empty subset {Lj|j ∈ J} ⊂ L has a supremum
and an infimum.
• Bounded, if there is a top and a bottom.
• Distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ L.
• A Heyting Algebra, if it is bounded and for all a ∈ L, the function da(x) =
a ∧ x has a right (or upper) adjoint. The right adjoint ga is then called
an implication and ga(y) is denoted a→ y.
• A Boolean algebra, if it is bounded, distributive and every element x has
a complement, ¬x, s.t. x ∨ ¬x = ⊤ and x ∧ ¬x = ⊥.
• A complete Heyting algebra is called a locale.

Remark 3.6. Proofs of the following properties may be found for instance in [7].

• L is a Heyting algebra if and only if every element x has a pseudo-
complement ¬x, s.t. ¬x ∧ x = ⊥ namely ¬x = (x→ ⊥).
• A Boolean algebra is a Heyting algebra.
• A Heyting algebra is Boolean if and only if ¬¬x = x for all x ∈ L

Lemma 3.7. Let X be a topological space, then P(X) is complete.

Proof. Let {~Pj|j ∈ J} ⊂ P(X). Define
∨

j∈J
~Pj = (

⋃
j∈J

~Pj)
∗ where again

()∗ is closure under finite concatenation and non-decreasing reparametrization.∧
j∈J

~Pj =
⋂

j∈J
~Pj.

�
Theorem 3.8. Let X be a topological space, then P(X) is a complete Heyting
algebra, i.e., a locale.

Proof. By [7] p.10, it suffices to check the infinite distributive law

~P ∧
∨

j∈J

~Qj =
∨

j∈J
(~P ∧ ~Qj).

Suppose γ ∈ ~P ∧∨j∈J
~Qj Then γ ∈ ~P and γ = µ1 ⋄µ2 · · · ⋄µk ◦ϕ, where µi ∈ ~Qji

and ϕ is a di-reparametrization, which may be assumed to be piecewise linear as
in Rem. 3.2. Since ~P is closed under subpaths, µi ∈ ~P , so γ ∈ ∨

j∈J(
~P ∧ ~Qj).

Now suppose γ ∈ ∨
j∈J(

~P∧ ~Qj). Then γ = µ1⋄µ2 · · ·⋄µk◦ϕ where µi ∈ ~P ∧ ~Qji.

By concatenation, γ ∈ ~P and clearly
∨

j∈J(
~P∧ ~Qj) ⊂

∨
j∈J

~Qj, so we are done. �

Corollary 3.9. For ~P , ~Q ∈ P there is an implication, ~P → ~Q. Moreover, ~P has
a pseudo-complement ¬~P such that ~P ∧ ¬~P = ~0.
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Proof. See [7] p. 24 Lemma 3.16. The point is, that ~P → ~Q or g~P (
~Q) is

∨
{~R|~P ∧ ~R ≤ ~Q}.

�
Lemma 3.10. There is a concrete description of the pseudo-complements:

¬~P = {γ ∈ XI |∀t1 ≤ t2 ∈ I : γ[t1,t2] ∈ ~P ⇒ γ([t1, t2]) = γ(t1)}.

Proof. 1) ¬~P is a d-structure: It contains the constant maps, is closed under
reparametrization, concatenation and subpath.
2) ¬~P ∧ ~P =⊥: If γ ∈ ¬~P ∩ ~P , then γ ∈ ¬~P and γ|[0,1] ∈ ~P , so clearly, γ is
constant.
3) If ~Q ∧ ~P =⊥, then ~Q ≤ ¬~P : Suppose µ /∈ ¬~P . Then there is a t1 < t2 s.t.

µ[t1,t2] ∈ ~P and not constant. If µ ∈ ~Q, then µ[t1,t2] ∈ ~Q, since ~Q is closed under

subpath. Hence µ[t1,t2] ∈ ~P ∩ ~Q and not constant, a contradiction. �
Example 3.11. The pseudo-complement is in general not a complement, hence
the locale of d-structures is not a Boolean algebra:
We give an example where ¬~P ∨ ~P 6= XI . Let X = ~I × ~I, i.e., γ ∈ ~P if
t1 ≤ t2 → γi(t1) ≤ γi(t2) for i = 1, 2. µ ∈ ¬~P if for t1 < t2 ∈ I, either µ[t1,t2] is
constant or there are a, b, t1 ≤ a ≤ b ≤ t2 s.t. µ1(a) > µ1(b) or µ2(a) > µ2(b).

An example of a curve not in ¬~P ∨ ~P is the piecewise linear graph, see Fig. 3
connecting the points (1− 1

2n
, 1
2n
) and (1− 1

2n+1
, 0) for t ∈ [1− 1

2n
, 1− 1

2n+1
], and

connecting (1 − 1
2n+1

, 0) and (1 − 1
2(n+1)

, 1
2(n+1)

) for t ∈ [1− 1
2n+1

, 1− 1
2(n+1)

] and

s.t. γ(1) = (1, 0). This saw tooth curve is not a finite concatenation of paths in
~P ∪ ¬~P . It is, however, a countable concatenation of such pieces.

Definition 3.12. A d-structure ~P is closed, if it is a closed subset of XI in the
compact-open topology.
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Theorem 3.13. Let ~P be a closed d-structure. Then (~P ∪¬~P )ω = XI where ( ~Q∪
~R)ω is the closure under countable concatenation and monotone reparametriza-
tion.

Proof. Let γ ∈ XI . For t0 ∈ I, γ|[t0,t0] is constant and hence in ~P . For all t0 ∈ I
let

at0 = inf{t ∈ I|γ[t,t0] ∈ ~P}
bt0 = sup{t ∈ I|γ[t0,t] ∈ ~P}

The sets are non-empty and since ~P is closed, at0 is a minimum and bt0 is a

maximum, so γ[at0 ,bt0 ] ∈ ~P .
If s ∈ [at0 , bt0 ], then [as, bs] = [at0 , bt0 ], but the set {[at, bt]|at < bt} is at most

countable by Lemma 3.16. Enumerate and order these s.t. ak < bk < ak+1 for

k ∈ IN. This gives the decomposition: γ[ak,bk] ∈ ~P and γ[bk,ak+1] ∈ ¬~P . �

Example 3.14. The d-structure on X = ~In is closed: Let γn be a sequence in
~P and suppose γn → γ in XI . Suppose γ 6∈ ~P . Then there are t1 < t2 s.t.
for some coordinate, i, γi(t1) > γi(t2), where γi is the i’th component function.
Suppose wlog, that i = 1 and denote γ1(tj) = xj . Let ε < x1−x2

2
and let Uj =

]xj − ε, xj + ε[×In−1. By continuity, there are δj > 0 s.t. γ([tj − δj , tj + δj]) ⊂ Uj .
Let Kj = [tj − δj , tj + δj ] and let Φ(Kj , Uj) be the open set of functions mapping
the compact set Kj to Uj. Then γ ∈ Φ(K1, U1) ∩ Φ(K2, U2) and hence there is

N ∈ IN s.t. for n ≥ N γn ∈ Φ(K1, U1)∩Φ(K2, U2), i.e., γn is not in ~P for n ≥ N .

The pseudo-complement ¬~P is not closed: Let X = ~I2 and let γn(t) = (t, 1
n
(1 −

2t)+1/2). Then γn ∈ ¬~P and limn→∞ γn is γ(t) = (t, 1/2) ∈ ~P and not constant.
Notice, that there is something to prove. The pseudo-complement is not the set
theoretic complement in XI .

Remark 3.15. Hence, a closed d-structure has a complement, if we require d-
structures to be closed under infinite concatenation. However, the complement
of a closed d-structure is in general not closed; so the lattice of closed d-structures
with infinite concatenation is not a Boolean algebra.

Lemma 3.16. Let S be a set of disjoint closed non-trivial subintervals of I. Then
S is countable.

Proof. Each element of S contains a rational number. Hence, the identity I → I
induces a surjection from a subset of the rationals to S. �

4. Galois connection

Important examples of d-structures arise in concurrency theory, see [5], namely
~In \ F , where F is a subset - the “forbidden” area. In general, the model is a

product of directed graphs minus a forbidden area. Instead of considering ~In \F
as a subset of ~In with the induced d-structure, one may consider ~In and “halt”
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the dipaths in F , i.e., only allow constant paths at points in F . Similarly, given
a d-structure, one may ask, which points are forbidden, in the sense that only
constant dipaths meet them. This gives a Galois connection between the lattice
of subsets and the lattice of dipaths. See Thm. 4.4.

Definition 4.1. Let X be a topological space. Then the set of subsets constitute
a complete lattice 2X under inclusion; with A ∨B = A ∪B and A ∧B = A ∩B.
There is a top, namely X and a bottom, ∅.
Definition 4.2. Let (X, ~P ) be a d-space. The sublattice in P of d-structures

below ~P is denoted ↓ ~P .
Let F ⊂ X . The d-structure {γ ∈ ~P |γ([0, 1]) ∩ F 6= ∅ ⇒ γ is constant }, the

dipaths avoiding F , is denoted µ(F ). µ : 2X → ~P.

For ~Q ∈↓ ~P , let ν( ~Q) = {x ∈ X| ~Q(x,−) = ~Q(−, x) = ⋆}.
Remark 4.3. ν( ~Q) is the set of points fixed under ~Q in the sense that no non-
constant dipaths run through them. The definition of ν may be extended to any
subset of ~P in an obvious way.
µ(F ) is the maximal d-structure in ↓ ~P which fixes F .

Theorem 4.4. (µ, ν) is a Galois connection:

µ : (2X , inclusion)op
→← (↓ ~P , inclusion) : ν

Proof. We have to see

(1) F1 ⊆ F2 ⇒ µ(F1) ⊇ µ(F2)

(2) ~Q1 ⊆ ~Q2 ⇒ ν( ~Q1) ⊇ ν( ~Q2)

(3) ~Q ⊆ µ(F )⇔ ν( ~Q) ⊇ F

1) and 2) establishes, that µ and ν are increasing maps. 3) Says, that (µ, ν) is
a Galois connection. This is all straight forward and left to the reader. �
Remark 4.5. If we consider a lattice as a category in the standard way - replace
all ≤ by a morphisms - then the theorem may be reformulated as : µ is a right
adjoint to ν.

In the following, we will consider µ, ν as in 4.4. Hence, the lattice structure on
2X is the opposite structure, A∧B = A∪B and A∨B = A∩B, and the d-space
is (X, ~P ).

Proposition 4.6. µ preserves arbitrary ∧ and ν preserves arbitrary ∨:
µ(

⋃

j∈J
Fj) =

∧

j∈J
µ(Fj)

and
ν(
∨

j∈J

~Qj) =
⋂

j∈J
ν( ~Qj)

for all families of Fj ∈ 2X and of ~Qj ∈↓ ~P .
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Proof. By [7] Thm. 3.2, this follows when µ, ν is a Galois connection. We give
the argument for finite families to illustrate that result in this particular case.
µ(F1∪F2) = µ(F1)∧µ(F2): Let γ ∈ ~P be non-constant. Then γ ∈ µ(F1)∪µ(F2)
if and only if γ(I)∩(F1∪F2) = ∅. Now γ(I)∩(F1∪F2) = (γ(I)∩F1)∪(γ(I)∩F2)
which is empty if and only if γ(I) ∩ F1 = ∅ and γ(I) ∩ F2 = ∅. The latter is
equivalent to γ ∈ µ(F1) ∩ µ(F2) = µ(F1) ∧ µ(F2). The constant paths are in all
d-structures.

ν( ~Q1 ∨ ~Q2) = ν( ~Q1) ∩ ν( ~Q2): Let x ∈ ν( ~Q1 ∨ ~Q2), i.e., x /∈ γ(I) for every

non-constant dipath γ = µ1 ⋆ µ2 · · · ⋆ µk ◦ α with µi ∈ ~Q1 ∪ ~Q2. Or, equivalently,
x /∈ ηi(I) for all non-constant ηi ∈ ~Q1 ∪ ~Q2. That is, ν( ~Q1 ∨ ~Q2) = ν( ~Q1 ∪ ~Q2),

where we extend ν to all subsets of ~P .
The (set theoretic) complement (ν( ~Q1) ∩ ν( ~Q2))

c = ν( ~Q1)
c ∪ ν( ~Q2)

c is {x ∈
X|∃γ ∈ ~Q1 : x ∈ γ(I) 6= {x} ∨ ∃µ ∈ ~Q2 : x ∈ µ(I) 6= {x}} = {x ∈ X|∃γ ∈
~Q1 ∪ ~Q2 : x ∈ γ(I) 6= {x}} = (ν( ~Q1 ∪ ~Q2))

c = (ν( ~Q1 ∨ ~Q2))
c. �

Proposition 4.7. µ(F1 ∩ F2) ⊃ µ(F1) ∨ µ(F2) for all Fi ⊂ X. Suppose Fi ∈ X
and X \ Fi are compact for i = 1, 2. Then µ(F1 ∩ F2) = µ(F1) ∨ µ(F2).

Proof. We tacitly assume that the paths we study are in ~P and non-constant.
µ(F1 ∩F2) ⊃ µ(F1)∨ µ(F2): Let γ ∈ µ(F1)∨ µ(F2), γ = η1 ⋆ η2 · · · ⋆ ηr ◦ α, where
ηi ∈ µ(F1)∪µ(F2). Then ηi(I)∩F1 = ∅ or ηi(I)∩F2 = ∅, so ηi(I)∩ (F1∩F2) = ∅
wherefore γ(I) ∩ (F1 ∩ F2) = ∅.

µ(F1 ∩ F2) ⊂ µ(F1) ∨ µ(F2) when X \ Fi is compact: Let γ ∈ µ(F1 ∩ F2).

Then γ−1(X \ F1) =
⊔m

i=1[ai, bi] and γ−1(X \ F2) =
⊔k

j=1[cj , dj] by compactness.

Since γ−1(F1 ∩ F2) = ∅, γ(I) ⊂ X \ (F1 ∩ F2) = X \ F1 ∪ X \ F2. I.e., I =⋃m
i=1[ai, bi] ∪

⋃k
j=1[cj, dj]. Hence γ is a finite concatenation of dipaths avoiding

F1 and dipaths avoiding F2. �

Remark 4.8. Instead of requiring X \ Fi compact, a “finite return” condition

would suffice: Fi is open and for all µ ∈ ~P , µ−1(Fi) is a finite union of open
intervals.

Proposition 4.9. For all ~Q1, ~Q2 ∈↓ ~P , ν( ~Q1 ∧ ~Q2) ⊃ ν( ~Q1) ∪ ν( ~Q2).

Proof. As in 4.4, we study the (set theoretic) complements.

(ν( ~Q1 ∧ ~Q2))
c = {x ∈ X|∃γ ∈ ~Q1 ∩ ~Q2 : γ not constant and x ∈ γ(I)}

and

(ν( ~Qi))
c = {x ∈ X|∃ηi ∈ ~Qi : ηi not constant and x ∈ ηi(I)}.

So

(ν( ~Q1))
c∩(ν( ~Q2))

c = {x ∈ X|∃η1 ∈ ~Q1, η2 ∈ ~Q2 : ηi not constant and x ∈ ηi(I)}
Hence (ν( ~Q1 ∧ ~Q2))

c ⊂ (ν( ~Q1))
c ∩ (ν( ~Q2))

c. �
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Remark 4.10. It is not obvious which condition to put on ~Qi to get an equality in
4.9. It has to do with the germs of dipaths at points. One option is to require for
all x ∈ X , either ~Qi fixes x or there is a neighborhood Ux s.t. whenever z ∈ Ux,
~Qi(x, z) = ~P (x, z) and ~Qi(z, x) = ~P (z, x). A “locally full” requirement.

Notation: For X, Y topological spaces and subsets A ⊂ X , B ⊂ Y , let
Φ(A,B) = {f : X → Y |f(A) ⊂ B}. With A is compact and B is open, the
subsets Φ(A,B) are a basis for the compact open topology.

Proposition 4.11. Let (X, ~P ) be a d-space where X is Hausdorff and ~P is closed.
Let F ⊂ X be an open subset. Then µ(F ) is closed.

Proof. Suppose γ(I) ∩ F 6= ∅. Then, since F is open, there are c < d s.t.
γ(]c, d[) ⊂ F and for c < a < b < d, we get γ([a, b]) ⊂ F . Thus γ ∈ Φ([a, b], F )
and if γn → γ, then γn ∈ Φ([a, b], F ) for n large enough, in particular, γn(I)∩F 6=
∅. We have to see, that if γ is not constant, then neither is γn for n large. This
is standard for a Hausdorff target space: Suppose x1 = γ(t1) 6= γ(t2) = x2, that
Ui is open, i = 1, 2, xi ∈ Ui and U1 ∩ U2 6= ∅. Then γ ∈ Φ(t1, U1) ∩ Φ(t2, U2) and
hence, so does γn for n large enough, i.e., γn(t1) 6= γn(t2). �

5. The paths between pairs of points

For a pair of points s, t ∈ X the dipaths ~P (X, s, t) and the sets of traces
~T (~P , s, t) depend on the d-structure ~P and ~P ≤ ~Q implies ~P (X, s, t) ⊂ ~Q(X, s, t)
and similarly for traces. This induces a map of lattices ρs,t : P → P (X, s, t).
Given a set of paths A ⊂ P (X, s, t), there is a minimal d-structure σ(A) ∈ P
containing A. The pair (ρs,t, σ) is a Galois connection.

Definition 5.1. Let s, t ∈ X , X a topological space. Let ~P ≤ ~Q. Then
~P (X, s, t) ⊂ ~Q(X, s, t) and ~T (X, ~P , s, t) ⊂ ~T (X, ~Q, s, t), so the hierarcy of d-

structures induces a partial order on P(X, s, t) = {~P (X, s, t)|~P ∈ P} and on

T(X, s, t) = {~T (X, ~P , s, t)|~P ∈ P} via inclusion.

Example 5.2. The lattice structure on the set {~P (X, s, t)|~P ∈ P} is not inherited
from the lattice of d-structures. This is easily seen from an example: Suppose
~P (X, s, t) = ~Q(X, s, t) = ∅; then the least upper bound in the lattice of sets is
~P (X, s, t) ∪ ~Q(X, s, t) = ∅. Suppose there is a point r s.t. ~P (X, s, r) 6= ∅ and
~Q(X, r, t) 6= ∅. Then ~P ∨ ~Q(X, s, t) 6= ∅, since ~P ∨ ~Q contains the union and is
closed under concatenation.

However, it is always true that ~P ∧ ~Q(X, s, t) = ~P (X, s, t) ∩ ~Q(X, s, t).

Proposition 5.3. Let ~P ≤ ~Q be d-structures on X and suppose s, t ∈ X. Then
there is an exact sequence in homology

→ Hk+1(~P (X, s, t))→ Hk+1( ~Q(X, s, t))→ Hk+1( ~Q(X, s, t), ~P (X, s, t))→
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Hk(~P (X, s, t))→ Hk( ~Q(X, s, t))→ · · ·
Proof. This is just the usual sequence for the pair ~P (X, s, t) ⊆ ~Q(X, s, t). �
Remark 5.4. Notice, that variation of the d-structure may be induced by intro-
duction of a forbidden region. Hence, the homology sequences may be used iter-
atively in adding or removing parts of the forbidden area. If F1 ⊂ F2 ⊂ · · · ⊂ F
is a filtration of the forbidden area F , then µ(F1) ≥ µ(F2) ≥ · · · ≥ µ(F ), and
there are associated sequences in homology and cohomology of path spaces.

6. A hierarchy of structures on the n-cube

The d-structures on the n-cube introduced in Ex. 2.4 give rise to a sublattice
of d-structures. For a pair of points s, t in the cube, the corresponding spaces
of directed paths ~P (In, s, t) may be compared via homology and homotopy se-
quences.
In [1] and [2], reversible computing is considered in a concurrent setting. Allow-
ing a process to reverse corresponds to relaxing the order in the corresponding

coordinate, i.e., replacing ~I with
↔
I .

Definition 6.1. ~P i1,...,ik denotes the product d-structure on In, where the j’th

interval is ~I if j /∈ {i1, . . . , ik} and
↔
I otherwise.

We restrict to the case where the i’th coordinate function of a dipath either has
to increase or has no requirements. Hence, the discrete order and the decreasing
order is not considered here.

Proposition 6.2. The d-structures ~P i1,...,ik constitute a complete bounded sub-
lattice of the full lattice of d-structures on In. The induced structure is

• ~P i1,...,ik ≤ ~P j1,...,jl if {i1, . . . , ik} ⊂ {j1, . . . , jl}
• ~P i1,...,ik ∨ ~P j1,...,jl = ~P {i1,...,ik}∪{j1,...,jl}

• ~P i1,...,ik ∧ ~P j1,...,jl = ~P {i1,...,ik}∩{j1,...,jl}

• The bottom is ⊥ = ~In = ~P ∅ and the top is ⊤ =
↔
I = ~P 1,2,...,n

Proof. An easy check. �
The following example is a combination of the hierarchy in 6.2 with the removal

of forbidden areas. The overall hierarchy of d-structures sets this in the same
framework.

Example 6.3. In [5] we introduced this example, see Fig. 6. Let F ⊂ I3 be the
union of F1 =]1, 3[×[0, 10]×]1, 3[, F2 =]4, 6[×]4, 6[×]2, 8[ and F3 =]7, 9[×[0, 10]×]7, 9[,
where I = [0, 10].

Variation of the d-structure: In ~I3 \ (F1 ∪ F3),
~P ∅(0, 1) has 4 components.

~P ∅(0, 1) ⊂ ~P k(0, 1) and the latter still has 4 components for k ∈ {1, 2, 3}. How-
ever ~P 1,3(0, 1) has infinitely many components, since we introduce loops around
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F1 and F3.

Variation of the forbidden area: By 5.1 ~P ∅(I3 \ (F1 ∪ F2 ∪ F3), 0, 1) ⊂ ~P ∅(I3 \
(F1 ∪ F3), 0, 1). The set A of paths going through [0, 1] × [0, 10] × {3} and

[9, 10]× [0, 10]×{7}, form a connected component of ~P ∅(I3 \ (F1 ∪F3), 0, 1) (the
following argument spells out an argument from [9]):

γ ∈ A⇒ γ(t) ∈ T = I3 \ {(x, y, z)|(x1 > 1 ∧ x3 < 3) ∨ (x1 < 9 ∧ x3 > 7)}
and vice versa:

γ ∈ ~P (T, 0, 1)⇒ γ ∈ A

since 0, 1 are in different components of T \ [0, 1]× [0, 10]×{3} and of T \ [9, 10]×
[0, 10]× {7}

p, q ∈ T ⇒ p ∨ q ∈ T , where p ∨ q = (max(p1, q1), max(p2, q2), max(p3, q3)).
Moreover, the line from p to p ∨ q is in T

If γ1, γ2 ∈ A, then γ1 ∨ γ2(t) = γ1(t) ∨ γ2(t) ∈ A by the above. The family
µs(t) = sγ1(t) + (1− s)γ1 ∨ γ2(t) is a path in A from γ1 to γ1 ∨ γ2 and similarly,
γ2 is connected to γ1 ∨ γ2.

Increasing the forbidden area: When we remove F2, the set of paths in T \F2 has
two components represented by γ1 : (0, 0, 0)→ (1, 0, 3)→ (10, 0, 3)→ (10, 10, 10)
and γ2 : (0, 0, 0)→ (1, 10, 3)→ (10, 10, 3)→ (10, 10, 10) (going in front or behind
F2).

Varying the d-structure: In ~P {3}(I3 \ (F1 ∪F3), 0, 1), the dipaths γ1 and γ2 are
in the same component of the path space. Connected by the family of dipaths

γs : (0, 0, 0) → (1, 0, 3) → (3, 0, 3) → (4, 0, 3 − 6s) → (10, 0, 3 − 6s) →
(10, 10, 10) for 0 ≤ s ≤ 1/3

γs : (0, 0, 0)→ (1, 30s−10, 3)→ (3, 30s−10, 3)→ (4, 30s−10, 1)→ (10, 30s−
10, 1)→ (10, 10, 10) for 1/3 ≤ s ≤ 2/3

γs : (0, 0, 0) → (1, 10, 3) → (3, 10, 3) → (4, 10, 6s − 3) → (10, 10, 6s − 3) →
(10, 10, 10) for 2/3 ≤ s ≤ 1

all paths are piecewise linear - the 6 points are connected by lines with the
parameter t in the intervals [k

5
, k+1

5
] for k = 0 . . . 4.

7. Conclusion

The hierarchy of d-structures on a fixed space X allows the comparison of
X \ F for different forbidden areas and of a variation of the directed structure
itself as in Section 6; and because of the overall framework these variations may
be combined. Relative homology appears naturally as an invariant one should
study. In particular, a calculation in the simpler cases seems to be both feasible
and relevant. Other directed invariants such as the universal dicovering spaces
[3], [4] and [6] are related via the hierarchy. This is another direction, which
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(0,0,0)

Figure 1. Three holes in a three dimensional cube. And two
directed paths.

should be explored. This may then be compared with for instance the approach
to reversible computing taken in [1] and [2].
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