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ABSTRACT

In this paper we present a new approach for binary and soft masks
used in single-channel speech separation. We present a novel ap-
proach called the sinusoidal mask (binary mask and Wiener filter)
in a sinusoidal space. Theoretical analysis is presented for the pro-
posed method, and we show that the proposed method is able to min-
imize the target speech distortion while suppressing the crosstalk to
a predetermined threshold. It is observed that compared to the STFT-
based masks, the proposed sinusoidal masks improve the separation
performance in terms of objective measures (SSNR and PESQ) and
are mostly preferred by listeners.

Index Terms— Mask-based method, mixture estimator, sinu-
soidal mask, single-channel speech separation.

1. INTRODUCTION

Speech signal processing in adverse environments has widely been
studied during recent years. Many solutions have been proposed
to improve the performance of speech enhancement systems under
highly colored noise scenarios [1, 2]. In general, when the interfer-
ing noise is non-stationary, the overall performance of the enhanced
signal is corrupted by undesired artifacts, speech distortion or resid-
ual noise in the background called musical noise [2]. In this regard,
there is a crucial need to develop an efficient speech enhancement
approach to minimize the residual noise while keeping the quality of
the enhanced speech unchanged. We here focus on single-channel
speech separation (SCSS).

Mask-based methods have predominantly been applied in many
speech enhancement [2] and separation [3]. The key idea behind any
mask method is to estimate two masks and apply them to the mixture
spectrogram to recover the speaker signals. The mask-based meth-
ods are generally categorized into two groups: binary [3–5], and
Wiener filter [6], [7]. Binary mask was applied as MAX-VQ [5])
which employs log-max mixture estimator [1] to find two binary
masks extracted from the speaker codebooks and then apply them
on the mixture. In [8] the MAX-VQ system was applied as a model-
based where the codewords are provided by taking the mean value
among the vectors trained by a clean speech dataset. According
to [8], the separation stage leads to errors while estimating masks
for the underlying speakers and the re-synthesis speech quality was
reported relatively low because of crosstalk caused by the interfering
signal [8].

The greatest asset of mask-based methods lies in its simplicity
and the fact that all that is required, is an estimate of the masks time-
frequency pattern. Although the use of a mask-based approach is
often recommended in speech enhancement [2], it is not yet optimal
for SCSS paradigm. The performance of the mask-based methods is
influenced by the non-stationarity behavior of speech segments. It is

of high interest to incorporate a model of non-stationary speech into
the binary mask or Wiener filtering frameworks. The main concern
in mask-based method is attributed to the energetic masking occur-
ring at frames where one speaker signal dominates the other. In such
a case, the speaker signals energies collide at mixture time-frequency
cells and make the signal recovery rather difficult. The mask-based
methods explicitly suggest to filter out one of the speaker as a jam-
mer signal which contradicts with the objective of an ideal separation
system targeted to recover both signals.

In this paper, we present a new mask-based method for speech
enhancement in general and in particular for SCSS. The proposed
sinusoidal mask are constructed by using sinusoidal parameters ex-
tracted from the speaker models. It balances a tradeoff between
the crosstalk suppression and the target speech distortion. Exten-
sive simulation results are conducted to evaluate the speech sepa-
ration performance for the proposed sinusoidal masks and compare
them with those obtained by predominantly used STFT masks and
VQ-based methods with STFT feature. The results show that the
proposed masks could achieve a higher performance in terms of Per-
ceptual Evaluation of Speech Quality (PESQ) as objective measure
and are mostly preferred according to the informal listening experi-
ments. The rest of the paper is organized as follows. In Section II
the problem formulation for the mask-based SCSS is reviewed. The
proposed method is presented in Section III. Section IV describes
the separation algorithm. Section V presents the simulation results.
Section VI concludes on the work.

2. MASK-BASED SPEECH SEPARATION

We now briefly review the key idea behind mask-based methods for
SCSS. The main objective here is to design two masks, either binary
or Wiener filter based, to be applied to the mixture spectrogram. The
filtered time-frequency representations are then used to recover the
individual speaker signals. Note that the binary mask aims at re-
taining the dominant time-frequency cells in a mixture spectrogram.
This is implemented by removing the interference-dominant units.
Such masking approaches are mostly unable to recover both target
and masked signals at the same time [4], [5]. On the other hand, the
Wiener filter weights each time-frequency cell of the mixture spec-
trum by taking a soft-decision according the a priori SNR [2]. There
are two deficiencies for STFT masks; 1) some portions of the weaker
speaker signal (often of high importance) is relatively masked by the
other speaker (causing speech distortion in target signal), and 2) in
some parts of the recovered speech signal (target) some portion of
the interfering speaker signal is still audible (called cross-talk). This
is similar to musical noise in speech enhancement but introduces a
more severe effect for the listeners. Furthermore, the Wiener filter
in the STFT domain is not able to recover both speaker signals with
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a high quality (especially when one of them is dominant). Hence,
we aim at generalizing the STFT-based masks to sinusoidal space to
improve the separation performance.

3. PROPOSED SINUSOIDAL MASKS

In this section, we present the sinusoidal masks aimed at recovering
the underlying speaker signals s1 and s2 according to the mixture
z = α1s1 + α2s2 where α1 and α2 are the gains.

3.1. Sinusoidal Feature Parameters

According to the sinusoidal model of speech signals, each frame of
the signal can be represented as a N × 1 time vector as

s = V
T
a , (1)

where V = [v1 . . .vM ]T is a Vandermonde matrix of M×N whose
rows are vk = [1 ejωk . . . ejωk(N−1)]T with k ∈ [1, M ] as
the sinusoidal frequency vector of dimension N × 1, ωk indicates
the frequency of the kth selected peak, N is the time window length
in samples, M is the order, and a = [a1 . . . aM ]T is a M × 1 com-
plex sinusoidal amplitude vector whose components are defined as
ak = Akejφk . The sinusoidal model used here is [9]; however si-
nusoidal parameter estimation is a bit different which is described
in [10], [11]. We simply select the peak of the highest amplitude per
Mel scale band and is characterized with triple M × 1 vectors of
amplitude, frequency and phase of the selected peaks. The decision
rule of taking the highest peak per band is similar to maximum ap-
proximation used as a minimum mean square error (MMSE) mixture
estimator for log amplitude spectra [1].

3.2. Sinusoidal Binary mask

We now consider the SCSS problem in a frame and define k as the
frequency bin index. We incorporate the selected sinusoidal peaks
within the bands to establish a sinusoidal binary mask defined as

H1(ωk) =

{
1 if A1,k ≥ A2,k

0 if A1,k < A2,k
, (2)

where ωk denotes the kth frequency component. The hard decision
making in (2) can be summarized as an on-off keying (OOK) be-
tween two states C1 the class of A1(k) and C2 in favor of A2(k). A
similar definition goes for H2(ωk) as complement of H1(ωk). The
decision rule is similar to the ideal binary mask which compares the
gain ratio of each time-frequency cell to the 0 dB local SNR [3].

3.3. Sinusoidal Wiener Filter as a Constrained Optimization

Speech enhancement with negligible perceived distortion is of high
interest. In order to achieve an ideal separation performance we need
to satisfy two requirements [2]; 1) it is required to guarantee minimal
speech distortion of the target signal, and 2) the separated signals
are required to have no portions of the other speaker signal. Without
loss of generality, we assume in the following that s1 is the target
and the other speaker is the interfering signal. We aim to find the kth
frequency bin of the sinusoidal gain function as g1(ωk) that solves
a constrained minimization problem by keeping the cross-talk of the
other speaker below a predefined threshold and minimizing the target

speech distortion. We define ε(ωk) as the separation error for the
target signal in the kth frequency bin as

ε(ωk) = (g1(ωk)− 1)S1(ωk)︸ ︷︷ ︸
εs1

(ωk)

+ g1(ωk)S2(ωk)︸ ︷︷ ︸
εs2

(ωk)

, (3)

where εs1
(ωk) is the speech distortion term for target speaker

while εs2
(ωk) is the the crosstalk term of the interfering speaker.

We define Si as a N × 1 vector containing the spectral compo-
nents of the ith underlying speakers defined as Si = F{si} =
[Si(ω1) · · ·Si(ωK)]T where K is the number of frequency points
used in calculating the DFT. The speech distortion energy for the
target signal is calculated as ε2

s1
= E{εH

s1
(ω)εs1

(ω)} and the
cross-talk energy of the other speaker is ε2

s2
= E{εH

s2
(ω)εs2

(ω)}.
We consider an optimization problem addressed as below

min
g1,μ

ε
2
s1

s.t. ε
2
s2
≤ δ . (4)

We define G1 as a N × N diagonal matrix with entries of g1(ωk)
on its diagonal. The periodogram estimation of the PSD for the
ith speaker is denoted by Psisi

defined as the Fourier transform
of the autocorrelation function, Rsisi

which is Toeplitz. Then,
the power spectrum components are the diagonal elements of
FHRsisi

F where F is the N -point Fourier transform matrix [2]
and Psisi

= diag(Psisi
(ω1), · · · , Psisi

(ωK)). By using the La-
grangian multiplier method, we are required to solve the following
constrained optimization in sinusoidal domain as

L = (G1 − I)P1(G1 − I) + μG1P2G1 , (5)

where L is a diagonal matrix whose (k, k)th element is given by
the lagrangian of L(g1(ωk), μ) calculated at the kth frequency bin,
and μ is the Lagrange multiplier as a parameter to trade off crosstalk
suppression against speech distortion. Setting ∂L

∂g1

= 0 with 0 as a
N × 1 zero vector, we obtain

(g1(ωk)− 1)Ps1s1
(ωk) + μg1(ωk)Ps2s2

(ωk) = 0 . (6)

The kth component of the sinusoidal Wiener gain is

g1(ωk) =
Ps1s1

(ωk)

Ps1s1
(ωk) + μPs2s2

(ωk)
. (7)

Since we have no access to speakers’ PSD, we replace them by the
squared spectral vectors in discrete frequency domain and we obtain

g1(ωk) =
ξk

ξk + μ
, (8)

where we define ξk =
Ps1s1

(ωk)

Ps2s2
(ωk)

as the a priori SSR computed at

sinusoidal frequency peaks. The idea is to make the noise imper-
ceptible by a proper choice of μ. In this paper we assume that the
SSR level is known a priori and we set μ = (α2

α1

)2 which is agree-
ment with the relevant discussion in chapter 6 of [2] where μ was
such chosen to minimize the speech distortion in speech dominated
frames while reducing the residual noise in noise dominated frames.
Replacing μ into (8) and taking square root from (8) we have

g1(ωk) =
α1S1(ωk)√

α1S2
1(ωk) + α2S2

2(ωk)
, (9)

which is similar to parametric Wiener filter in [2] and we call it sinu-
soidal Wiener mask. The proposed masks: sinusoidal binary in (2)
and Wiener mask in (8) are used to recover the signals.
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Fig. 1. SCSS system based on sinusoidal masks. The speaker signals
are recovered by multiplying the mixture spectrum using a mask.

4. SEPARATION ALGORITHM

The key part of a separation algorithm is to find the optimal states
of the source models of the speakers in the mixture. In this section
we present the idea on how to find these states. These states refer to
a codeword each composed of sinusoidal amplitude and frequency
vectors denoted by a = [a1 . . . aM ]T and f = [f1 . . . fM ]T , respec-
tively. These codewords found by mixture estimation will be used to
produce the sinusoidal masks. The codebooks are designed by using
split-VQ of the sinusoidal parameters [10]. In the separation stage,
two estimators are used. As our first estimator we use the optimum
mixture estimation in [12]. In [12], it was demonstrated that under
the uniformity assumption of mixture phase, the optimal estimator
for SCSS, Sz,opt(k) in the MMSE sense is

Sz,opt(ωk) = (S1(ωk) + S2(ωk))
E(γk)

π
, (10)

with γk = 4S1(ωk)S2(ωk)

S2

1
(ωk)+S2

2
(ωk)

and E(·) is the complete Elliptic integral

of the second kind given by

E(γk) = π

[
1−

γ2
k

4
−

(
1× 3

2× 4

)2 (
γ4

k

3

)
− . . .

]
. (11)

As our second method, according to the optimum mixture estimator
in (10) we replace the sinusoidal masks in (9) and we obtain

Sz,m(ωk) =
1

π
Sw(ωk)(g1(ωk) + g2(ωk))E(γk), (12)

where Sz,m(ωk) denotes the mask-based estimated mixture at the
kth frequency bin and we define Sw(ωk) =

√
S2

1(ωk) + S2
2(ωk)

as the Wiener filter mixture estimation. To include SSR levels
other than 0 dB in (12), we can consider the gain values α1 and
α2. The sinusoidal mixture estimation is accomplished by search-
ing for the optimal states of the composite sources by minimizing∑M

k=1 |Sz(ωk)− Ŝz(ωk)|2, where Ŝz(ωk) can be replaced by ei-
ther Sz,opt(ωk) in (10) or Sz,m(ωk) in (12). The solution of this
minimization problem gives two states in the split-VQ codebooks
to be used produce the masks in (9). To re-synthesize the separated
outputs the mixture phase φz is used. Using the sinusoidal binary
mask the kth frequency bin of the refiltered spectrum is

Si(ωk) = Sz(ωk)gi(ωk) i ∈ {1, 2} , (13)

where Sz(ωk) is the mixture power spectrum, Si(ωk) is the recov-
ered spectrum for the ith speaker signal and gi(ωk) is either sinu-
soidal binary mask or sinusoidal Wiener mask given by (2) and (8),
respectively. By using IDFT along with the mixture phase we get
recovered time signals of each speaker. Fig. 1 shows the block dia-
gram describing the SCSS based on the sinusoidal mask. In Fig. 1,

{k1, . . . , kM} indicate the frequency bins of sinusoidal peaks de-
fined in Section II and M is the sinusoidal model order.

According to the suppression rule of Ephraim and Malah in [13],
the proposed sinusoidal Wiener filter can be expressed as

g1(ωk) =

√
ξk

ξk + 1

S2
1(ωk) + S2

2(ωk)

S2
z (ωk)

=

√
ξk

ξk + 1

(
1 + νk

ζk

)
(14)

Similar to [13], we define ζk =
S2

z
(ωk)

S2

2
(ωk)

as the a posteriori SSR

and νk = ζk
ξk

ξk+1
as the instantaneous SSR. Then the proposed

mask given by (14) is similar to Ephraim and Malah suppression
rule already given in [13].

5. SIMULATION RESULTS

To assess the separation performance, we use the comprehensive
database in [14] consisting of 34 speakers each containing 500 ut-
terances. The sampling rate is decreased to 8 kHz from the original
25 kHz. Ten minutes of the speech signals of each speaker was used
to produce the split-VQ and STFT codebooks with a codebook size
of 2048. Twenty utterances are chosen from speakers 9 and 23 as test
signals to evaluate the separation algorithms in a speaker-dependent
scenario. The mixed signal is generated by adding the signals at
different SSR. The separation performance for each method is re-
ported in terms of PESQ [15] and segmental SNR (SSNR) [2]. The
methods included in our simulations are the sinusoidal binary mask,
sinusoidal Wiener filter and their STFT counterparts. As our bench-
mark methods, we applied algorithms similar to [4], [6], [16]. We
also include the upper-bound performance for both STFT [17] and
split-VQ [10] determining the highest performance obtainable by us-
ing the same source model if no mixture estimation error occurs. We
used window length of 32 ms along with a frame shift of 8 ms. The
codebook size for STFT and split-VQ was 2048. The number of
sinusoidals used in our simulations is 50 and the number of DFT
points in the STFT-based methods is 1024.

Fig. 2 shows the averaged PESQ scores for the separated sig-
nals obtained from their mixture1. From Fig. 2(a) it is observed that
the optimal mixture estimator in sinusoidal space given in (10) is
very close to the sinusoidal masks approximation in (12). Further-
more, by increasing the SSR level, both curves asymptotically attain
the same performance, which is determined by the split-VQ upper-
bound quantization performance [10]. Fig. 2(a) illustrates the PESQ
curves obtained by masking approaches in STFT and sinusoidal do-
main. It is observed that applying the sinusoidal Wiener mask to
the mixture improves, the separation performance compared to the
STFT-based methods. This is also validated by listening to the sep-
arated signals at different SSRs for different genders. The improve-
ment introduced by sinusoidal wiener filter over the STFT-based
mask is rather significant at low SSR. Fig. 2(b) shows the separa-
tion performance for the second speaker signal in terms of SSNR in
dB, and it is observed that employing the proposed sinusoidal masks,
either binary or Wiener filter, cause improvements in the separation
performance compared to the STFT binary mask [3–5] or Wiener
masks in [3], [6]. This improvement is significant at low SSRs. The
curves in Fig. 2(b) show that the performance obtained by the opti-
mal mixture estimator in (10) is very close to the operational upper-
bound determined by the STFT VQ. It is also observed that the pro-
posed sinusoidal masks outperform the results obtained by both op-
timal estimator in STFT domain and the STFT-based masks. The

1The mixed and separated signals of different methods are downloadable
from webpage at http://kom.aau.dk/∼pmb/IEEE ICASSP2.htm
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listening tests revealed that the re-synthesized signal quality is sig-
nificantly improved compared to those obtained by the STFT based
methods. From curves shown in Fig. 2(b) we observe that by em-
ploying the optimal estimator in (10) we reach to the operational
upper-bound performance (where we assumed that the correct in-
dices are known a priori). The results presented here are in ac-
cordance with our recent results in [17] where we showed that the
model-based speech separation in transform domain results in im-
provements over the mask-based methods especially at low SSR.

According to the listening results, as SSR level decreases the
STFT-based masks mostly lead to inferior performance. In con-
trast, the proposed sinusoidal masks achieve a superior performance
and introduce significant improvement especially at low SSRs. This
could be explained by the fact that the proposed sinusoidal mask
minimizes the mixture estimation error at sinusoidal peaks of the
mixture making a tradeoff between less crosstalk and small speech
distortion. The proposed masks retain the highest peaks per bands
and exclude other peaks mostly caused by main-lobe windowing or
low-frequency modulation effect. This strategy would exclude those
peaks vulnerable to be masked by the other speaker signal. There-
fore the method is expected to result in lower crosstalk compared to
the STFT masks.
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Fig. 2. Comparing the PESQ scores of the sinusoidal masks with the
STFT masks and VQ-STFT versus SSR∈ [−18, 18].

6. CONCLUSION

In this paper, we proposed a new sinusoidal version for both binary
mask and Wiener filter and compared their performance with their
STFT counterparts. It was observed that the proposed sinusoidal
masks could result in a significant improvement in the re-synthesized
speech quality for both the recovered signals. We presented a frame-
work to minimize the signal distortion while keeping the crosstalk
below a predefined threshold. It was demonstrated that by the pro-
posed approach, it is possible to reach the optimal performance for

SCSS in a MMSE sense. From the simulation results, It was ob-
served that, compared to the STFT masks, sinusoidal masks im-
proved the separation performance in terms of SSNR and PESQ and
were mostly preferred by informal listening tests.

We focused on speech separation scenario. As a future work, it is
highly desirable to evaluate the proposed masks in other noisy envi-
ronments including babble noise, car noise and other noise types. It
is expected that the proposed method results in improvements com-
pared to the STFT masks.
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