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LIST OF COMMON ABBREVIATIONS AND DEFINITIONS 
 

 

NWR  Nociceptive withdrawal reflex 

RRF  Reflex receptive field 

QST  Quantitative sensory tests 

Pdt  Pain detection threshold 

Ptt  Pain tolerance threshold 

TA  Tibialis anterior muscle 

VAS  Visual analogue scale 

BDI  Beck depression inventory  

STAI  State – Trait anxiety inventory 

SF 36  Short-Form 36 questionnaire 

AUC  Area under the curve 

 

Pain “Unpleasant sensory and emotional experience associated 

with actual or potential tissue damage, ore described in 

terms of such damage” 

Central hypersensitivity  An increase in the excitability of neurons within the central 

nervous system, so that non-painful or low-intensity 

painful stimulation are able to induce pain or exaggerated 

pain, respectively 

Psychophysical pain tests Tests that are based on subjective verbal response to a 

painful stimulus 

Electrophysiological pain tests Tests that are based on electrophysiological responses to a 

painful stimulus 

QST Term that includes psychophysical and electrophysiological 

pain tests 

Temporal summation  Increased pain perception during repeated stimulation at 

constant intensity  

Reflex receptive field Cutaneous area from which a nociceptive stimulus can 

evoke a reflex in a given muscle  
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1. INTRODUCION 
 

 

1.1. EXPERIMENTAL PAIN RESEARCH 

Understanding mechanisms of pain is one of the most challenging tasks in clinical 

practice. Experimental pain research has given a very high contribution to the 

current understanding of pain mechanisms in humans. 

The basic principle in human experimental pain research is to activate the 

nociceptive system by a well-defined stimulus and then record and quantify the 

evoked response. The general term that defines this methodology is quantitative 

sensory pain testing. The response is usually of verbal or electrophysiological 

character. Quantification of verbal responses to painful stimuli is also denoted as 

psychophysical pain research. Examples of electrophysiological responses include 

the nociceptive withdrawal reflex (NWR) and electroencephalographic recordings 

after nociceptive stimulation.  

 

1.2. PAIN AND CENTRAL HYPERSENSITIVITY 

Prolonged afferent nociceptive input induces an increase in the excitability of 

central sensory neurons and plasticity changes that are responsible for a state of 

hyperexcitability of the central nervous system (central hypersensitivity) (Woolf and 

Salter, 2000). The hyperexcitable central nervous system amplifies the nociceptive 

signal, thereby producing an exaggerated pain response even in the presence of 

limited tissue damage.  

There is evidence that localized tissue damage leads to a state of hyperexcitability 

that is not confined to the neural structures connected to the site of the lesion, but 

involves the whole spinal cord and the supraspinal centers (Samad et al., 2001; 

Suzuki et al., 2002). This phenomenon may be at least partially responsible for a 

widespread hypersensitivity to peripheral stimulation, with pain being experienced 

in response to stimulation of tissues that are distant from the site of injury. 
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1.3.  ASSESSMENT OF CENTRAL HYPERSENSITIVITY IN PATIENTS 

Central hypersensitivity can be investigated in humans by quantitative sensory 

tests (Klein et al., 2005; Curatolo et al., 2006). Using these methods, central 

hypersensitivity has been detected in different chronic musculoskeletal pain 

syndromes (Curatolo et al., 2006). For instance, patients with chronic low back pain 

display increased pain sensitivity and enlargement of the areas of referred pain 

after stimulation of tissues around and at distance from the site of pain (i.e. the leg 

or the thumb) (Giesecke et al., 2004; Laursen et al., 2005; O'Neill et al., 2007), 

suggesting that widespread central hypersensitivity is associated with this painful 

condition. 

An investigation that evaluated patients after a whiplash injury in the acute phase 

and 6 months after injury found that those patients with persistent moderate or 

severe symptoms at 6 months had displayed, soon after injury, widespread 

hypersensitivity (Sterling et al., 2003). Therefore, the presence of central 

hypersensitivity may be an indicator of negative prognosis. An acute peripheral 

lesion may induce plasticity changes leading to central hypersensitivity in a subset 

of individuals. Such hypersensitivity would facilitate the transition from acute to 

chronic pain and disability.  

In human pain research a reflex withdrawal reaction can be elicited by 

transcutaneous electrical stimulation of a sensory peripheral nerve and the 

electromyographic response may be recorded from the flexor and extensor 

muscles.  Elicited nociceptive withdrawal reflex (NWR) is a poly-synaptic spinal 

nociceptive reflex, and represents the mechanism of a response in both ipsilateral 

and contralateral muscle groups for withdrawing an extremity in order to avoid 

further tissue damage (Sherrington, 1910). The process is initiated by the 

nociceptive input, but elaboration takes place within the spinal cord. Additional 

afferent input, descending activity, and the excitability of the neurons in this 

pathway modulate the generation of the spinal nociceptive reflex. 

The NWR and its modulation have been widely used in experimental (Hagbarth, 

1960; Kugelberg et al., 1960; Willer and Bathien, 1977; Arendt-Nielsen et al., 

2000; Andersen, 2007) and pharmacologic studies (Willer and Bathien, 1977; 
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Willer, 1985; Arendt-Nielsen et al., 1990; Petersen-Felix et al., 1995; Curatolo et 

al., 1997; Petersen-Felix et al., 1998; Piguet et al., 1998; Escher et al., 2007) as a 

noninvasive neurophysiologic tool to objectively assess spinal nociceptive 

processing. 

A phenomenon linked to hypersensitivity is reorganization at the spinal cord level 

that is manifested by changes in receptive field areas. The receptive field is the size 

of peripheral tissue that is innervated by a single spinal neuron. An expansion of 

the receptive fields of individual dorsal horn neurons following peripheral injury has 

been documented early (McMahon and Wall, 1984) and confirmed in muscle pain: 

an expansion of the cell population of the dorsal horn that could be excited by input 

from the inflamed muscle was observed (Hoheisel et al., 1994). The activation of 

silent synapses leads to the convergence of input from more than one source to the 

same neurons. These events are likely determinants of hyperalgesia at areas 

outside the injured region (secondary hyperalgesia) and enlargement of the pain 

areas, a clinically relevant phenomenon. So far no established method to assess 

nociceptive receptive fields in humans was available. 

 

1.4. AIMS OF PH.D. PROJECT 

Despite the increasing application in clinical research, the usefulness and 

implementation of quantitative sensory testing in clinical practice as diagnostic tools 

remains very limited. One important reason is the lack of normative data sets from 

large population of pain-free individuals. In this respect, knowledge of reference 

values of the quantitative sensory tests in the normal population is essential to 

provide clinically useful information on the excitability of central nervous system in 

individual patients. Furthermore, the concept of expansion of receptive fields did 

not find applications in clinical research because of the lack of methods to study 

this mechanism in humans. 

 

The aims of these PhD project were: 

1) To establish a model to assess nociceptive reflex receptive field in humans. 
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2) To determine the reference values of spinal nociceptive reflexes and of the 

area of the reflex receptive fields (RRF). 

3) To determine the reference values of psychophysical measures of nociception, 

i.e. pain thresholds to electrical, mechanical and thermal stimuli, and 

withdrawal time for the cold pressor test. 

4) To analyze how demographic, psychological and health-related variables 

influence the quantitative sensory tests in pain-free subjects.  

5) To test the hypothesis that patients with chronic pain display enlarged reflex 

receptive fields compared to pain-free subjects. 

 

The ultimate aim was to provide tools for an application of advanced methods for 

pain assessment in clinical practice, whereby disturbances in central pain processes 

are to be detected in individual patients. 

 

 

  



 

  

13 

2. METHODS USED IN THE EXPERIMENTAL STUDIES 

 

 

2.1. PAIN FREE SUBJECTS AND CHRONIC PAIN PATIENTS 

To determine reference values of psychophysical and electrophysiological measures 

of nociception and to analyze the influence of demographic, psychological and 

health-related data on QST and reflex parameters, 300 pain-free subjects 

participated in study II and III.  

In study I, thirty pain-free male subjects (18-35 years) taken from the 

aforementioned cohort of 300 pain-free subjects and one 39 years old male subject 

with complete spinal cord injury (SCI) at level T11 were investigated. 

Finally, in study IV 20 chronic pain patients with endometriosis and 25 pain-free 

female subjects (age matched sample taken from 300 pain-free subjects) were 

analysed.   

 

2.2. DEMOGRAPHIC DATA, PSYCHOLOGICAL AND HEALTH-RELATED 

VARIABLES (II-IV) 

In the studies II-IV, Beck Depression Inventory (BDI), State-Trait-Anxiety-

Inventory (STAI), Catastrophizing Scale of the Coping Strategies Questionnaire and 

Short-Form 36 (SF-36) were used to measure the psychological and health related 

parameters. Demographic data, i.e. gender, age, height, weight and body mass 

index (BMI) were recorded. These data were used both for descriptive purposes and 

as explanatory variables for the reference values of QST. 

The BDI is a 21-item self-report measure assessing affective, cognitive and somatic 

symptoms of depression. Higher scores indicate higher levels of depressive 

symptoms (Beck et al., 1996). 

The STAI is a 40-item self-report questionnaire designed to assess symptoms of 

anxiety. It consists of two independent scales: a state anxiety scale and a trait 

anxiety scale, each with 20 items, leading to a score between 20 and 80. Higher 
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scores indicate greater levels of anxiety. The state and trait scales explore anxiety 

as a current emotional state and as a personality trait, respectively (Spielberger et 

al., 1979; Laux et al., 1981). 

The 6-item catastrophizing scale of the CSQ was used to assess pain 

catastrophizing cognitions (Rosenstiel and Keefe, 1983). The subscale score is the 

mean of all 6 items, and higher scores indicate higher degrees of pain 

catastrophizing. 

The SF-36 questionnaire is a self-administered, 36-item questionnaire that 

measures health-related functions in eight domains: physical functioning (PF), role 

limitations due to physical problems (RP), bodily pain (BP), vitality (VT), general 

health perceptions (GH), social functioning (SF), role limitations due to emotional 

problems (RE) and mental health (MH). These eight domains were grouped into two 

health dimension scales: physical (PF, RP, BP, VT) and mental (SF, GH, RE, MH) 

(Ware and Sherbourne, 1992). The total score was also calculated. Each scale 

ranges from 0 (lowest level of functioning) to 100 (highest level) (Ware et al., 

1993).  

 

2.3. ELECTROPHYSIOLOGICAL TESTS (I, II, IV) 

In studies I, II and IV, the electrophysiological tests were the main outcomes. 

However, the studies evaluated also the subjective pain thresholds to the electrical 

stimuli applied (psychophysical responses). In order to simplify the description of 

the methodology, these psychophysical responses are described in this chapter. 

 

2.3.1. SINGLE ELECTRICAL STIMULATION 

Electrical stimulation was performed through surface electrodes placed caudal to 

the lateral malleolus, at the innervation area of the sural nerve (Banic et al., 2004). 

A 25 ms train-of-five square-wave impulses, each lasting 1 ms, was delivered by a 

computer-controlled constant current stimulator (University of Aalborg, Denmark). 

The stimulation train is perceived as a single stimulus. Electromyographic (EMG) 
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reflex responses to electrical stimulation were recorded from the middle of the 

biceps femoris and the rectus femoris muscles (Ag/AgCl-electrodes). 

The current intensity was increased from 1 mA in steps of 0.5 mA until: 1) a reflex 

with an amplitude exceeding 20 μV for at least 10 ms in the 70-150 ms post-

stimulation interval was detected (single stimulus reflex threshold); and 2) a pain 

sensation was evoked (single stimulus pain threshold). The program delivered the 

impulses at random time intervals (between 8 and 12 s), so that the subject was 

not aware of when the stimulus was applied.  

 

2.3.2. REPEATED ELECTRICAL STIMULATION (TEMPORAL SUMMATION) 

The stimulus burst used for single stimulus was repeated five times with a 

frequency of 2 Hz, at constant intensity (Arendt-Nielsen et al., 1994). EMG 

recordings were similar as for single stimulation. The current intensity of the five 

constant stimuli was increased from 1 mA in steps of 0.5 mA until: 1) an increase 

in the amplitude of the last two or three reflexes above a fixed limit of 20 μV for at 

least 10 ms in the 70-150 ms post-stimulation interval was observed (temporal 

summation reflex threshold); and 2) the subjects felt pain during the last 2 to 3 of 

the 5 electrical bursts (temporal summation pain threshold). 

 

2.3.3. REFLEX RECEPTIVE FIELDS 

To evaluate reflex receptive fields (RRF), a procedure, which is widely described in 

chapter 3, was employed. Ten surface electrodes (15 × 15 mm, type 700, Ambu 

A/S, Denmark) were mounted on the sole of the foot (see fig 1). A common anode 

(50 × 90 mm electrode, type Synapse, Ambu A/S, Denmark) was placed on the 

dorsum of the foot. A computer-controlled electrical relay delivered a stimulus to 

one of the 10 electrodes in a randomized sequence and double-blind manner. Each 

stimulus consisted of a constant current pulse train of five individual 1 ms pulses 

delivered at 200 Hz (Stimulator Noxitest IES 230, University of Aalborg, Denmark). 

This train of stimuli is felt as single stimulus. 
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The EMG was recorded with surface electrodes (type 720, Ambu A/S, Denmark) 

over the belly of the tibialis anterior muscle with an inter-electrode distance of 2 

cm. The EMG signals were amplified (up to 50 000 times), filtered (5–500 Hz, 2nd 

order), sampled (2000 Hz), displayed on the computer screen, and stored on 

computer disk. The EMG signals were stored from 200 ms before stimulation until 

1000 ms after stimulation onset. 

 

 
Fig. 1. The general method for determining reflex receptive fields is depicted. A. Reflex responses were evoked 
by distributed electrical stimulation on the sole of the foot using surface electrodes. A common electrode was 
placed on the dorsum of the foot. The reflex responses were recorded by surface EMG. B. Four stimuli were 
delivered at all sites in randomized sequence, and the EMG signals were averaged for every stimulation site. 
The reflex size was quantified in the 60-180 ms time interval (indicated by the middle and right vertical lines). 
Stimulus onset is also indicated by the left vertical line. C. The reflex size detected at the ten electrodes is 
interpolated and extrapolated demanding that the curve fitting to pass through the actual recordings at the 
specific electrode positions (see method section for the interpolation technique). D. The two-dimensional 
interpolation map is then superimposed onto a map of the foot for depicting the reflex sensitivity in a particular 
muscle. The position of the electrodes is illustrated by white circles. 

 

First, the pain thresholds were determined for each of the 10 stimulation sites. 

Then a stimulus intensity equal to 1.5 times higher that the individual pain 

threshold was delivered. The EMG responses for each stimulation site were 

recorded from the tibialis anterior muscle. The perceived pain intensity was rated 

on a 10 cm electronic visual analogue scale (VAS) (Aalborg University, Denmark), 
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whereby 0 = no pain and 10 = the worst pain imaginable. Each electrical stimulus 

was scored by the subject and stored on the computer. 

The area of the RRF was calculated using the procedure presented above in data 

analyses. It is expressed as the area of the foot from which a reflex from a given 

muscle can be elicited. The volume of the RRF was calculated by integration of the 

EMG activity in the identified RRF area by calibrating to a standard foot size of 

25×10 cm and expressed as µV*mm². 

Chemical activation of the nociceptors by capsaicin (the pungent extract of chilli-

pepper) has been used in study I to induce an experimental state of clinical 

hyperalgesia. The chemonociceptor was supposed to respond vigorously to 

capsaicin and thereby induce (and maintain) the state of central sensitization. 10µg 

capsaicin dissolved in a volume of 10µl was injected into the flexor digitorum brevis 

muscle via the sole of the foot (Fig. 9).  

 

2.3.4. EMG RECORDINGS 

The electromyogram (EMG) was recorded with surface electrodes (type 720, Ambu 

A/S, Denmark) over the belly of the tibialis anterior (TA) muscle with an inter-

electrode distance of 2 cm. Before attachment of the electrodes, the skin was 

lightly abraded and cleaned with isopropyl alcohol. The EMG signals were amplified 

(up to 50 000 times), filtered (5–500 Hz, 2nd order), sampled (2000 Hz), displayed 

on the computer screen, and stored on computer disk. The EMG signals were stored 

from 200 ms before stimulation until 1000 ms after stimulation onset. 

 

2.4. PSYCHOPHYSICAL TESTS (III) 

2.4.1. PRESSURE PAIN STIMULATION 

Pain detection and tolerance thresholds were measured with an electronic pressure 

algometer (Somedic, Sweden) using a probe with 1 cm2 surface. The pressure was 

increased from 0 at a rate of 30 kPa/s to a maximum pressure of 1000 kPa. Pain 

detection threshold was defined as the point at which the pressure sensation turned 
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to pain. Pain tolerance threshold was defined as the point at which the subject felt 

the pain as intolerable. The subjects were instructed to press a button when these 

points were reached. The algometer displayed the pressure intensity at which the 

button was pressed. If the subjects did not press the button at 1000 kPa, this value 

was considered as threshold. 

The test was performed at three locations, in a randomized order: 1) in the middle 

of a horizontal line drawn between the posterior border of the acromion and the 

spinous process of the 7th cervical vertebra (suprascapular) 2) in the middle of a 

horizontal line drawn between the upper border of the iliac crest and the 

corresponding spinous process (low back); 3) the center of the pulp of the 

ipsilateral 2nd toe (toe). 

 

2.4.2. THERMAL PAIN STIMULATION – HEAT AND COLD 

Thermal stimulation is a natural modality to activate warm and cold receptors and 

nociceptors in the skin. Thermal polymodal nociceptors are innervated by both Ad- 

and C-afferents (Meyer et al. 1994). In the present study (III) activation of the 

thermal nociceptors was achieved by contact thermodes. A contact peltier-based 

thermode of the dimensions 30x30 mm of thermo-sensory stimulator (Medoc TSA-

II; Medoc Ltd, Ramat Yishai, Israel) was used in III for estimating the heat and cold 

pain thresholds. 

To estimate heat pain thresholds, the temperature of the thermode was 

continuously increased from 30 ºC to a maximum of 50.5 ºC at a rate of 1.5 ºC/s.  

To estimate cold pain thresholds, the temperature of the thermode was 

continuously decreased from 30 ºC to a minimum of 0 ºC at a rate of 1.5 ºC/sec. 

Pain detection and tolerance threshold were defined as for pressure stimulation. 

Once the threshold was detected, the temperature of the probe returned to 

baseline. 

The test was performed at 3 locations, in a randomized order: 1) in the middle of a 

horizontal line drawn between the posterior border of the acromion and the spinous 

process of the 7th cervical vertebra (suprascapular); 2) in the middle of a 

horizontal line drawn between the upper border of the iliac crest and the 
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corresponding spinous process (low back); 3) the lateral aspect of the leg, midway 

between the knee and the lateral malleolus (leg).  

 

2.4.3. COLD PRESSOR TEST (ICE WATER STIMULATION) 

The hand was immersed in ice saturated water (0.7±0.1 °C) for a maximum of 2 

minutes. The subject was instructed to withdraw the hand when they felt the pain 

as intolerable and the time of hand immersion was recorded. If the hand was not 

withdrawn at 2 minutes, this time was recorded for data analyses. Perceived pain 

intensity was continuously rated with an electronic visual analogue scale (scaled 

from 0 – no pain to 100 mm – intolerable pain) and the recorded by computer. The 

area under the pain intensity/time curve was determined. If the hand was 

withdrawn before the end of the 2 minutes, the pain intensity was considered to be 

maximal until the end of the period. 

 

2.5. DATA ANALYSIS 

2.5.1. METHOD TO DETERMINE REFLEX RECEPTIVE FIELD PARAMETERS (I) 

To analyse data in paper I, the size of the reflexes were quantified by the root 

mean square (RMS) amplitude of the individual reflexes. The reflex sizes for each 

stimulation position were averaged. The RMS was calculated in the 80-180 ms post-

stimulus window (Andersen, 2007). In order to illustrate the reflex receptive field, 

two-dimensional interpolation was calculated of the grand mean reflex size (mean 

of all subjects and all stimuli) for all stimulation sites using a custom made Matlab 

program. To be able to perform statistical analysis on the measured RRF, a number 

of features were extracted but only from the interpolated image (see fig. 2) to 

avoid basing the findings on extrapolated values. The interpolated image is the part 

of the image encompassed by the electrodes whereas the extrapolated values refer 

to the fringe of the image, i.e. the edges of the foot not covered by the electrodes. 

The features were designed to quantify the size and location of the RRF. The area of 

the RRF was assessed in a two step procedure. First, the fraction of the interpolated 

image with a Z-score higher than 2.58 (corresponding to a α-level of 0.01) based 
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on the pre-stimulus EMG activity was determined. The Z-score is calculated for 

each pixel in the image by subtracting mean pre-stimulus EMG activity and 

subsequently dividing by the standard deviation of the pre-stimulus activity. The 

distribution of the pre-stimulus activity (mean and standard deviation) was 

determined from all sweeps. This threshold corresponds to likelihood for significant 

EMG activity of 99%. However, often an increase in the EMG tone is seen in 

response to the stimulus which is not equal to a significant reflex activity. Hence, 

the standard deviation of the identified map with Z-scores above 2.58 was 

calculated. The RRF area was subsequently defined as that fraction of the sole of 

the foot with EMG activity higher than peak EMG minus 2 times the calculated 

standard deviation as illustrated in fig. 2. 

 

 

Fig. 2. A. Illustration of the mean reflex receptive field of the 30 healthy volunteers. This RRF includes both 
interpolated and extrapolated values. In particular the extrapolated values must be treated with caution. The 
determination of the RRF size in every individual volunteer was therefore only based on the interpolated values 
(illustrated in B). C. The border of the RRF is outlined by the white line (see methods section for details). The 
black line illustrates the part of the RRF with EMG level higher than the pre-stimulus EMG level (P<0.001). 

 

The volume (RRF area × reflex size) of the RRF was calculated by integration of the 

EMG activity in the identified RRF area by calibrating to a standard foot size of 

25×10 cm (Andersen et al., 2001). The location of the peak of the interpolated EMG 

was identified and marked in the interpolated image, see fig. 3. In addition the 

Center of Gravity (CoG) was calculated for the identified RRF and indicated on the 
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RRF. The CoG was included in case the distribution of the RRF is skewed and hence 

the peak is not located near the center of the RRF. The CoG is calculated as the 

cumulative sum of the reflex size (pixel value) multiplied by the distance and 

subsequently divided by the cumulative reflex size. Both peak and CoG were 

calculated with reference to the top left corner of the image (arbitrary). The 

location of these values is expressed as percentage of the width/length of the 

image relative to the top left corner (fig. 3). 

Onset latency was detected using the same method as used in (Andersen et al., 

2001). In short, the onset latencies were determined by the first signal component 

5 times larger than the background noise for a period of more than 7 ms with the 

constraint that no component earlier than 60 ms was detected. The background 

noise was calculated by the RMS of the pre-stimulus.  

 

2.5.2. QUANTIFICATION OF REFERENCE VALUES (II/III) 

In order to analyse the effect of the independent variables on the quantitative 

sensory tests (electrophysiological and psychophysical), backward stepwise multiple 

regression analyses were conducted on each test.  

The multiple regression analyses were performed on the following 

electrophysiological dependent variables: single stimulus reflex threshold, single 

stimulus pain threshold, temporal summation reflex threshold, temporal summation 

pain threshold, area of RRF and volume of RRF. For the psychophysical tests, the 

individual tests for each sensory modality (pressure, heat, cold) were summarized 

by the principal component of the standardized measurement variables. For 

instance, pressure pain threshold was analyzed as a single dependent variable by 

pooling pain detection and pain tolerance thresholds at the three body sites (6 

variables).  

Because a very high proportion of subjects had normal health status, BDI, STAI, 

catastrophizing and SF-36 were not analyzed as continuous variables but were 

dichotomized as described below. The cut off values for each of these variables 

were chosen to best distinguish normal from abnormal values for this specific 

sample. In all the regressions, the following independent (explanatory) variables 
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were analyzed: gender, age, gender-age interaction, BMI, body side of testing 

(right vs. left and dominant vs. non-dominant), BDI (cut off 11), STAI state scale 

(cut off 35), STAI trait scale (cut off 35), catastrophizing (cut off 3), SF-36 physical 

dimension (cut off 90), SF-36 mental dimension (cut off 90) and SF-36 total score 

(cut off 90). Concerning body side, the regression analyses for the psychophysical 

tests were more significant when right vs. left was used, whereas for the 

electrophysiological test the regressions were more significant when dominant vs. 

non-dominant was used. 

A P value < 0.05 was considered as significant. In the final regression models all 

the variables with a P<0.1 were included in order to provide information on the 

variables that were only marginally statistically insignificant. 

In paper II (electrical pain tests), the confidence intervals were calculated and 

presented as reference values. In paper III (mechanical and thermal pain), the 

method to determine the reference values was further developed. Namely, quantile 

regression analyses were conducted on each sensory test in order to set up 

reference values for assessing central hypersensitivity. The 5th, 10th and 25th 

percentiles for each test were estimated with bootstrapped standard errors (1’000 

replications for each estimation). The percentiles were first estimated for the whole 

sample, and then stratified by gender and age. The age groups were 18 – 49 and 

50 – 80 years. We defined two groups for ages in order to have an adequate 

sample size for a precise estimation of the reference values.  

 

2.5.3. COMPARING RRF OF CHRONIC PAIN PATIENTS AND PAIN-FREE SUBJECTS (IV) 

The main endpoint according to the study hypothesis was the assessment of reflex 

receptive fields. Secondary endpoints were subjective pain thresholds and 

parameters of spinal cord nociceptive excitability (nociceptive withdrawal reflexes 

to single and repeated electrical stimulation). 

To calculate the sample size in the absence of data on the quantitative meaning of 

expansion of receptive fields, we chose a value of one third of the expected mean 

area of the reflex receptive field as the minimum difference between patients and 

controls. At the time of study plan, pilot experiments of a running study on healthy 
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volunteers yielded a mean area of 0.432 (fraction of foot sole) and a standard 

deviation of 0.145. The target difference was therefore 0.432 / 3 = 0.144. Setting 

α = 0.05 and β = 0.8, and using the standard deviation of 0.145, a significant 

difference of 0.144 in reflex receptive field area among groups would be detected 

by a sample size of 17 subjects per group. To minimize the likelihood of insufficient 

power due to unexpected higher variability, we decided to study 20 patients and to 

select as many as possible (but least 20) control subjects from the above described 

cohort of pain-free volunteers. This resulted in 25 control subjects as described 

above. 

RRF areas between groups were compared using the unpaired t test (for normally 

distributed data). Pain and reflex thresholds to single and repeated electrical 

stimulation were compared between groups by the Mann-Whitney rank sum test 

(for non-normally distributed data). P-values < 0.05 were considered as significant. 
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3. RESULTS 

 

3.1. DEMOGRAPHICAL AND PSYCHOLOGICAL CHARACTERISTICS OF PAIN-FREE 

SUBJECTS 

Table 1 shows the demographic, psychological and health-related data of the 300 

pain-free individuals.  

 

 
Tab. 1. Demographic, psychological and health-related variables. For gender, 148 females and 152 males were 
studied. Scale Bodily Pain of SF-36 was excluded from one female subject because of menstrual pain (visual 
analogue scale: 8) three weeks before test. SD: standard deviation. CI: confidence interval. BMI: body-mass 
index. BDI: Beck Depression Inventory. STAI: State Trait Anxiety Inventory. CSQ: Coping Strategies 
Questionnaire. SF: short-form.  

 

3.2. MODEL FOR THE ASSESSMENT OF REFLEX RECEPTIVE FIELDS (I) 

3.2.1. Quantification of RRF 

The reflex receptive fields could be determined in all 30 participants. The stimulus 

intensity needed for detecting the pain threshold depended strongly on stimulation 

site. The pain thresholds followed roughly skin thickness as the stimulus intensities 

needed to quantify the RRF were highest in areas with thick skin (heel and central 

pads). Thus stimulation on the heel needed 111% higher stimulus intensities than 
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in the arch of the foot. The mean pain intensity evoked by the electrical stimuli was 

4.3±2.2 but with lower VAS ratings on the heel (RM ANOVA P<0.001, site 9 and 10 

compared to all other sites, P<0.05) despite higher stimulus intensities. 

The RRF detected for the TA muscle exhibited highest reflex sensitivity in the arch 

of the foot and distal towards the hallux (fig. 2). The mean area of the RRF covered 

a 0.57±0.06 fraction of the foot while the mean RRF volume was 0.46±0.08 

mm2×µV.  

 

 
Fig. 3. The median location of the peak RRF (white) and the center of gravity (black) depicted on the mean RRF 
of the 30 healthy volunteers. The 25% and 75% quartiles are illustrated.  

 

The peak of the RRF was located between stimulation sites four and five (figs. 2 

and 3) with coordinates of 31.8, 47.0 (percentage of the width, percentage of the 

length of the image). In fig. 3, the variation in location of the peak is depicted. The 

center of gravity is located a bit more lateral on the image (47.8 by 54.4, also 

percentages of the width and length, respectively), see fig. 5. The onset latency 

was shortest in the arch of the foot (80.5±1.4 ms, site 4) compared to reflexes 

detected at the lateral forefoot (91.7±3.8 ms, site 3) and heel (83.4±2.2 ms, site 

10). Further, onset latencies were detected in 26/30 volunteers at site 4 while only 

in 18/30 at site 3. ANOVA analysis was not possible because the number of 

detected latencies varied.  
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3.2.2. MODULATION OF RRF BY CAPSAICIN 

Injection of capsaicin in the flexor digitorum brevis in one SCI subject resulted in 

expansion of the RRF (from 0.33 to 0.75 of the foot) and a shift of the location of 

the peak towards the injection site while the center of gravity did not move . The 

capsaicin injection itself evoked brief, tonic reflexes/shaking lasting no more than 

30 s.  After sixty minutes, the size of the RRF area was still large (0.66), i.e. larger 

than the baseline recording (0.33). The CoG did not move after the capsaicin 

injection as the RRF covered a large part of the sole of the foot. In addition, 

variation in RRF volume reflects the capsaicin injection, i.e. 0.04 mm2×µV, 0.13 

mm2×µV, and 0.07 mm2×µV before, during and after the pause. 

 

3.3. REFERENCE VALUES OF PAIN TESTS 

3.3.1. ELECTROPHYSIOLOGICAL TESTS (II) 

Consistent with the description of the methods, this section includes also the 

psychophysical assessments for the electrical pain tests, since they have been 

studied in paper II. 

Descriptive statistics of demographic, psychological and health-related data for the 

300 subjects are presented in table 1. The different levels of CI across the pain 

tests revealed very modest differences. Hence, the 80%, 90% and 95% CI for 

electrical single stimulation pain detection for the 300 subjects were 10.7-11.2, 

10.7-11.2 and 10.6-11.3 mA, respectively. The same result was observed for the 

other variables. Consistent with most of the medical literature, we chose the 95% 

CI as a guide for the reference values. 

Descriptive statistics and regression models for the tests analyzed are presented in 

tab. 2-4.  

For single stimulus thresholds, age and BDI were significant predictors of pain 

threshold, whereas body side significantly predicted reflex threshold (tab. 4). BMI 

had a P value of 0.064 for reflex threshold (tab. 2). The regression models for 

temporal summation pain and reflex threshold were virtually identical: age was the 
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only significant predictor; BMI, SF-36 physical and mental dimensions had a P value 

of less than 0.1 (tab. 3). 

 

 
Tab.2. Regression model for single stimulus pain and reflex threshold, including only the predictors with P<0.1. 
Pain threshold: R-squared = 0.08, Root MSE = 2.86. Reflex threshold: R-squared = 0.03, Root MSE = 3.67. 
SE: standard error. CI: confidence interval. BDI: Beck Depression Inventory. . BMI: body-mass index. 

 

 

Tab.3. Regression models for temporal summation pain and reflex thresholds, including only the predictors 
with P<0.1. R-squared = 0.06, Root MSE = 2.13 for both regressions. 

 

 

Tab. 4. Regression models of reflex receptive field area and volume for the muscle tibialis anterior, including 
only the predictors with P<0.1. Area: R-squared = 0.07, Root MSE = 0.27. Volume: R-squared = 0.06, Root 
MSE = 0.49. 
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Tab. 5. Descriptive statistics for single and repeated (temporal summation) electrical stimulation in mA. 
Descriptive statistics for reflex receptive field area (proportion of foot area) and volume (µV*mm²) of the 
tibialis anterior muscle. 
 

The RRF could be measured in all 300 participants. The pain thresholds varied 

strongly depending on the stimulation site and were higher at areas with the 

thickest skin, i.e. the heel and central pads (data not presented). Descriptive 

statistics and reference values of RRF area and volume are presented in tab. 5. Age 

and the total score of SF-36 were significant predictors of RRF area, while the STAI 

state scale had a P value of 0.086 (tab. 6). For volume, age was a significant 

predictor, whereas the mental health dimension of the SF-36 had a P value of 0.075 

(tab. 4). 

 

3.3.2. PSYCHOPHYSICAL TESTS (III) 

Regression models for the tests analyzed are shown in table 6. Gender, the 

gender–age interaction, the SF-36 total score and the physical health dimension of 

the SF-36 were significant predictors of pressure pain thresholds. Catastrophizing 

had a p value of 0.084. 

Gender, age and body side were found to be significantly related to heat pain 

thresholds. The gender–age interaction had a p value of 0.077.  Gender, age, 

gender–age interaction, BMI and SF-36 physical health dimension were significant 

predictors of cold pain thresholds. 

The reference values for the tests analyzed are shown in tab. 7. The estimates for 

the pain thresholds to cold are not presented, because most of the observed 

measurements had the value of zero. This was the result of the cut off of 0°C, the 

lower limit allowed by the device. As a result, a precise estimation of the percentiles 

was not possible. The interaction of gender with age for pressure pain is illustrated 

in fig. 4. Gender displayed a p value of 0.068 for hand withdrawal time and 0.017 

for area under the curve, with no other significant parameter for the cold pressor 

test.  
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Tab. 6. Principal component regression models for pressure, heat, and cold pressor test. Only the predictors 
with p<0.1 are included. Pressure: R-squared = 0.22, Root mean square = 1.65. Heat: R-squared = 0.08, Root 
mean square = 1.82. Cold: R-squared = 0.10, Cold pressor: R-squared = 0.01, Root mean square = 22.20. SE: 
heteroskedasticity-robust standard error. CI: confidence interval. SF Physical: SF physical dimension. SF total: 
SF total score. BMI: body-mass index. 
 

 
Fig. 4. Interaction gender – age for pressure pain detection and tolerance threshold. Mean and SD are 
presented. 



 

 

 
 
Tab. 7. Reference values of pain thresholds for pressure and heat stimulation, and cold pressor test. The normal values for heat pain thresholds refer to the right 
side and for the left side the values should be corrected by the regression coefficient -0.5489. (Toe- 2nd toe, Back – low back, Scap- Suprascapular region. AUC – 
area under the curve; p5 – 5th percentile (0.05 quantile), p10 – 10th percentile (0.10 quantile), p25 – 25th percentile (0.25 quantile), p75 – 75th percentile (0.75 
quantile), p80 – 80th percentile (0.80 quantile), p95 – 95th percentile (0.95 quantile).  



 

 

3.4. REFLEX RECEPTIVE FIELDS IN CHRONIC PAIN PATIENTS WITH 

ENDOMETRIOSIS (IV) 

The descriptive variables in the two groups, patients and controls, are presented in 

tab. 8. Compared with the pain-free subjects, the group of patients displayed 

higher scores for depression, anxiety and catastrophizing, as well as lower scores of 

SF-36 parameters. This was expected and is consistent with findings of previous 

studies on chronic pain patients (Banic et al., 2004; Herren-Gerber et al., 2004; 

Laursen et al., 2005). The two groups were comparable for all the other descriptive 

variables. 

 
Tab. 8. Demographic, psychological and health-related variables of chronic pain patients with endometriosis 
and healthy subjects. 
 
 

 
Tab. 9. Area of reflex receptive fields and thresholds after single and repeated (temporal summation) electrical 
stimulation. 
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Fig. 5. Mean reflex receptive fields (RRF) for controls (left) and endometriosis patients (right).  The white dots 
indicate the stimulation sites. The black line represents the contour of the RRF area. The colours indicate the 
reflex amplitude. P=0.008 for the RRF area. 

 

Patients were characterized by larger RRF areas than pain-free subjects (main 

endpoint of the study). This is reflected by the enlargement of the area of the foot 

sole from which a nociceptive reflex in the tibialis anterior muscle can be elicited 

(box plots of fig. 6 and black line of fig. 5). Furthermore, the reflex amplitude was 

higher in patients than in pain-free subjects, as shown in the colour map of fig. 5. 

 

 
Fig. 6. Area of nociceptive withdrawal reflex receptive fields, expressed as fraction of the sole of the foot from 
which a reflex in the tibialis anterior muscle was elicited. Data are presented as median, 10th, 25th, 75th and 90th 
percentiles. The black dots represent the values that lie outside the 10th and 90th percentiles. P=0.008. 
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Concerning the secondary endpoints, the subjective pain threshold and the 

threshold to evoke a nociceptive reflex after a single electrical stimulus were lower 

in patients, compared to the pain-free subjects (tab, 9 and fig. 7). The same was 

observed with repeated electrical stimulation evoking temporal summation: both 

the threshold to induce the subjective feeling of increasing pain sensation and the 

threshold that evokes a nociceptive reflex during repeated stimulation were lower in 

patients, compared to the pain-free subjects (tab. 9 and fig 8). 

 

  
Fig 7. Pain (left) and nociceptive reflex (right) thresholds for single electrical stimulation. Data are presented as 
median, 10th, 25th, 75th and 90th percentiles. The black dots represent the values that lie outside the 10th and 
90th percentiles. For the pain threshold of the control group (bottom graph), median and 25th percentile 
overlap. P<0.001. 
 
 
 
 
 

  
 
Fig. 8. Pain (left) and nociceptive reflex (right) thresholds for repeated electrical stimulation (5 stimuli at 2 Hz). 
Data are presented as median, 10th, 25th, 75th and 90th percentiles. The black dots represent the values that lie 
outside the 10th and 90th percentiles. P<0.001.  
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4. DISCUSSION 

 

4.1. QUANTIFICATION OF REFLEX RECEPTIVE FIELDS (I) 

A method for quantifying reflex receptive fields was developed, based on non-

invasive measures of the nociceptive withdrawal reflex in humans. The paper 

describes both laboratory procedures and data analysis methods for extracting 

relevant parameters describing the RRF size and location allowing relevant 

statistical analysis. Such quantitative methods are needed for assessing the 

excitability of the spinal nociceptive system in relation to experimental and chronic 

pain studies and also for assessing efficacy of new centrally acting compounds.   

 

4.1.1. STIMULATION METHOD 

Nociceptive withdrawal reflexes have been elicited by electrical stimulation in many 

human experimental pain studies (Hugon, 1973;Willer, 1977;Petersen-Felix et al., 

1996;Andersen, 2007;France et al., 2007). This is a very efficient stimulus for 

evoking withdrawal reflexes even though it is non-natural. Heat stimulation has 

been attempted but the level needed for evoking spinal reflexes in an experimental 

setting is often associated with mild tissue damage (reddening) and large reflex 

variability (Andersen et al., 2006). Care must be taken with positioning of the 

stimulating electrodes in order to avoid stimulation of nerve trunks and ensure that 

very local sensations are evoked. Stimulation of nerve trunks activates axons 

innervating large areas and hence might cover both excitatory and inhibitory reflex 

receptive fields (Weng and Schouenborg, 1996;Sonnenborg et al., 2000) resulting 

in ambiguous assessments of the RRF. Habituation is often seen with electrical 

stimulation (Dimitrijevic et al., 1972) but by constantly changing the stimulation 

site the problem is minimised (Fuhrer, 1973;Carstens and Ansley, 1993). Blinding 

of the subjects as to position and timing of the next stimulation improves the 

quality of the recordings as the subject has less chance of modulating the 

withdrawal voluntarily.  
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A critical methodological aspect is detection of the pain thresholds as this is the 

method for ensuring even input to the spinal cord irrespective of stimulation site. 

Often subjects find that the quality of the sensations evoked at the different sites 

varies, which is probably related to skin thickness. Hence, stimulation at the heel is 

less sharp compared to stimulation in the arch of the foot, most likely due to larger 

spread of the current through thick epidermal layers. There is a strong correlation 

between electrode impedance and pain thresholds (Andersen et al., 2004). 

Furthermore, it is imperative to familiarise the volunteer before assessing the pain 

thresholds to avoid gradual adaptation to the electrical stimulations. Randomisation 

in the sequence the pain thresholds are detected is important and further direct 

comparisons between a ‘control’ site (site 5) helps to ensure that the intensity of 

the stimuli is comparable across stimulation sites. The lower VAS ratings at the heel 

could be explained by the less sharp quality of the electrical stimuli. Furthermore, 

the pain intensity stimulus-response curves might very well be less steep at skin 

sites with thick epidermal layers so multiplying the stimulus intensity at all sites 

with a fixed factor is not optimal. A future alternative could be to evoke the reflexes 

at stimulus intensities that produce similar pain intensity scores for all stimulation 

sites.  

 

4.1.2. RRF ESTIMATION TECHNIQUE 

The interpolation method applied in the present paper is based on non-uniformly 

based data points in two dimensions, i.e. the location of the electrodes is according 

to anatomical landmarks and not in a uniform grid. The interpolation surface-map is 

further constrained to go through the actual recordings (see fig. 1) at the ten 

electrodes sites and is based on an inverse distance weighting method (Shepard, 

1968;Sandwell, 1987) for interpolation implemented in Matlab. One important 

precaution is not to base any further statistical analysis on the extrapolated values, 

as steep gradients towards the border of the interpolated map (fig. 2) will result in 

biomechanically distorted values in the extrapolated regions. The surface-map is 

then modulated onto a binary image of a foot in Matlab to derive the images (see 

fig. 1 for the assessment procedure). 
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Fig. 9. Modulation of RRF by an intramuscular injection of capsaicin into the flexor digitorum brevis muscles. 
The RRF before, during and after (60 min) intramuscular injection of capsaicin in a single subject with complete 
spinal cord injury are illustrated. The detected RRF areas, peak reflex response, and CoG are illustrated. The 
injection site is depicted by the syringe. During muscle pain, the RRF area expanded and the peak reflex 
response moved towards the injection site. After a break of 60 min where the nociceptive activity from the 
flexor digitorum brevis muscle most likely vanished, the RRF almost returned to baseline values. The CoG 
showed a marginal posterior move immediately after capsaicin injection and returned near to a pre-injection 
location after the muscle nociceptive afferent activity ceased.  

 

From the surface-map the RRF is extracted based on estimations of the level and 

variability of the background EMG activity prior to the stimulus. The area of the RRF 

is then calculated via statistical evaluation of the part of the surface map with 

significant EMG activity. Hence, the present method is more robust than a method 

based on simple, fixed thresholds (Andersen et al., 2001). Two other features to 

describe the location of the RRF are suggested in the present paper, the location of 

the peak of the RRF and the center of gravity of the detected RRF. Based on the 

observations in the capsaicin experiment, the peak of the RRF seems to be more 

sensitive to describe changes in the location of the RRF (fig. 9). The RRF of the 

tibialis anterior muscle in spinal cord injured subjects covers a large fraction of the 

sole of the foot compared to spinal intact volunteers (Andersen et al., 2004), and 

therefore the main change observed with the capsaicin injection is within the RRF. 

This suggests that the RRF volume and location of the peak appear to be the most 

sensitive measures.  

The shape and position of the detected RRF depicted in fig. 3 resembles previous 

reports (Andersen et al., 1999;Andersen et al., 2001) based on substantially lower 
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samples. This is also the situation for the distribution of the onset latencies (fig. 4), 

with gradually longer onset latencies toward the border of the RRF (Andersen et al., 

1999), which is also in agreement with observations in rats (Schouenborg and 

Kalliomäki, 1990). These similarities with previous findings suggest that the RRF 

may be a stable measure from experiment to experiment. 

 

4.1.2 THE RRF AS A QUANTITATIVE MEASURE OF CENTRAL HYPERSENSITIVITY IN HUMANS 

Widely accepted experimental models of spinal central sensitisation in humans are 

all based on psychophysical measures of cutaneous allodynia, hyperalgesia or 

referred pain associated with experimental induction of pain in deep structures 

(Klein et al., 2005). In contrast, even robust noxious conditioning stimuli leading to 

accepted psychophysical signs of central sensitisation have very limited effects on 

the nociceptive withdrawal reflex. Topical capsaicin has been shown to produce 

enhanced reflexes, but only while the volunteers perceived ongoing pain from the 

treated skin site (Grönross and Pertovaara, 1993) or when concurrent pain was 

evoked from the skin sites with allodynia/hyperalgesia (Andersen et al., 1995).  

Deep pain evoked by i.m. injection of hypertonic saline had only marginal effects on 

withdrawal reflex sizes (Andersen et al., 2000). This lack of evidence for central 

manifestations might be related to minor changes in reflex gain associated with the 

humans models despite the substantial changes in reflex excitability in animal 

models (Woolf, 1983;Xu et al., 1995;Tabo et al., 1998;Harris and Clarke, 2003). 

Alternatively, it could also be related to insufficient sensitivity of the reflex methods 

developed for human studies. 

In chronic musculoskeletal pain patients, lower withdrawal reflex thresholds have 

been identified (Desmeules et al., 2003;Banic et al., 2004). Expansion of receptive 

field size is accepted as one of the most robust measures of central sensitisation in 

animal models (Cook et al., 1987;Hoheisel and Mense, 1989;Dubner, 1991).  The 

encoding of the spinal reflex receptive fields is assumed to involve dorsal horn 

neurons located in deep lamina. Hence, wide dynamic range (WDR) neurons with 

receptive fields resembling the RRF for specific muscles have been identified 

(Schouenborg et al., 1995) which therefore are putative encoders of the RRF. These 
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neurons do not have ascending collaterals indicating they are spinal reflex pathway 

interneurons. WDR neurons in the same part of the dorsal horn show prolonged 

firing following repetitive stimulation of C fibres (wind-up) (Schouenborg and 

Sjölund, 1983) and the firing is linked to gradual increases in withdrawal reflexes 

(You et al., 2003). Wind-up is closely associated with central sensitisation and 

hence assessment of RRF in humans could provide a unique and robust view of 

spinal nociceptive processing in human subjects. The participants tolerated the 

electrical stimulation well which was also the case in a similar study in chronic pain 

patients (Banic et al., 2004).  

Intramuscular injection of capsaicin has been shown to produce signs of central 

sensitisation in human volunteers in the form of referred pain (Witting et al., 2000). 

The pain evoked by capsaicin lasted 38±5 minutes in the latter experiment for a 

dose of 100 µg in a volume of 1 ml injected into the brachioradial muscle. However, 

injection into the same foot muscle as in the present experiment (flexor digitorum 

brevis) did not modulate the RRF (Andersen, 2007) despite robust pain for ten 

minutes (average VAS rating above 3 on a 0-10 scale). This might be related to 

descending inhibition triggered by the capsaicin injection, and hence the pilot 

findings presented in this paper were obtained from a volunteer with complete 

spinal cord injury. Recordings from more subjects are clearly needed to decisively 

determine if descending modulation is a key factor controlling the reflex pathway 

excitability in experimental chronic pain models or not. In animal models, the reflex 

excitability is substantially increased in spinal models compared to spinal intact 

animals (Carstens and Douglass, 1995;Gozariu et al., 1997;Clarke et al., 2002), in 

particular during central sensitisation (Harris and Clarke, 2003). The expansion of 

receptive fields of dorsal horn nociceptive neurons is further highly dependent on 

descending activity (Laird and Cervero, 1990;Yu and Mense, 1990;Schouenborg, 

2002). The RRF in human spinal cord injured subjects is expanded compared to 

spinally intact subjects, indicating that descending control is essential for 

maintaining biomechanically functionally relevant RRF (Andersen et al., 2004).  
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4.1.3 CONCLUSIONS (I) 

Paper I described a new method for acquiring and quantifying reflex receptive fields 

in humans based on electrical stimuli presented to several electrode sites in random 

order. The detected reflex EMG responses were interpolated and modulated onto an 

image of a foot. From the interpolated image, a number of features were extracted 

to quantify the size and location of the RRF. The assessment of the RRF may 

become an important method for evaluating mechanisms of central sensitisation in 

chronic pain patients.  

 

4.2 REFERENCE VALUES OF QUANTITATIVE SENSORY TESTS (II-III)  

Reflex responses to single stimuli, assessment of temporal summation and of the 

size of receptive fields reflect mechanisms of spinal nociception that have great 

importance in the pathophysiology of pain states (Woolf and Salter, 2000; D'Mello 

and Dickenson, 2008). Therefore, their evaluation may provide relevant information 

on the nociceptive system not only for research purposes, but also in individual 

patients. The present project defined normative data in a large pain-free population 

that can be used as reference values when the nociceptive system is explored in 

individual patients (95% CI, table 2), provided that exactly the identical 

assessment procedures that we described are used. 

The threshold for evoking reflexes was higher than the pain threshold after single 

stimulus (table 7). Previous studies have found identical thresholds (Willer, 1977; 

Chan and Dallaire, 1989), while in other studies the reflex threshold was lower than 

the pain threshold  (Bromm and Treede, 1980; Micalos et al., 2008). This is 

probably related to different test sites and/or different definitions of the reflex 

threshold (Rhudy and France, 2007). In paper II, a demand of fairly long lasting 

EMG burst might explain the relatively higher reflex thresholds to single electrical 

stimulation. On the other hand, the pain and reflex thresholds to repeated electrical 

stimulation were almost identical, in agreement with previous observations (Banic 

et al., 2004). 



 

  

40 

For mechanical and thermal psychophysical tests (paper III), the different levels of 

quantile analyses, i.e. 5th, 10th and 25th percentiles, represent the limits to 

categorize patients with lower pain thresholds as hypersensitive. The same applies 

to the 75th, 90th and 95th percentiles to categorize patients with higher thresholds 

as hyposensitive. As for the electrical pain tests (paper II), the normative data 

provided in paper III can be used as reference values when alterations in pain 

sensitivity is explored in individual patients. The most straightforward application is 

the use of the lower bounds of the percentiles to assess central pain 

hypersensitivity. In this respect, the choice of 5th, 10th or 25th percentile as cut off 

for normal values (table 4) depends on how conservative the estimation should be 

for each particular patient. Choosing the 5th percentile would categorize few 

patients as having central hypersensitivity, whereas using 10th or 25th percentile 

increases the number of patients who would be identified as having central 

sensitization. While values below the 5th percentile can be considered as abnormal 

with a high confidence, increasing degrees of caution are required for values that 

lye above the 5th and below the 25th percentile. In cervical or low back pain, 

regional and generalized central sensitization can be assessed by applying the 

stimuli at the cervical/low back region and the lower extremity, respectively. 

Less evident applications arise from the use of the upper bounds of the percentiles, 

whereby patients whose values are higher than the 75th, 90th or 95th percentiles 

would be categorized as pain-hyposensitive. In neuropathic pain conditions, 

abnormally high pain thresholds can be a sign of nerve damage. In other chronic 

pain conditions the incidence and meaning of hyposensitivity to mechanical and 

thermal painful stimuli are at present unclear. 

 

4.3 INFLUENCE OF DEMOGRAPHIC VARIABLES  

4.3.2 GENDER, AGE AND INTERACTION OF GENDER WITH AGE 

Previous investigations have shown that pain thresholds are lower in women than in 

men across various stimulus modalities (Chesterton et al., 2003a; Ge et al., 2004). 
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The influence of age seems to be strongly dependent on the stimulus modality 

(Gibson and Farrell, 2004; Lautenbacher et al., 2005). However, the influence of 

age on pain sensitivity is still controversial and the mechanisms underlying the 

correlation are poorly understood. So far, the interaction of gender with age was 

not investigated.  

In paper II, gender was not a predictor of any outcome measure, whereas age was 

related with different assessment modalities (tables 2-4). In previous 

investigations, the nociceptive reflex threshold to single stimulus was either not 

affected by gender (Willer, 1990) or lower in women than in men (France and 

Suchowiecki, 1999). The temporal summation reflex threshold was slightly lower in 

women than in men (Serrao et al., 2004). Unlike these investigations, the finding 

on the lack of gender effect resulted from the analysis of a large sample size and 

was consistent across the different tests, suggesting that electrical tests are 

probably insensitive to gender differences. 

When the tests are used for clinical purposes, not only the statistical significance 

but also the quantitative impacts of the explanatory variables are important. The 

quantitative impact is determined by the regression coefficients (tables 2-4 and 6) 

and provide indications on the magnitude of clinical relevance of the correlations. 

The highest quantitative impact was observed for age with the single stimulus pain 

threshold, with a correlation coefficient of 0.0463. This means that for an increase 

in 10 years of age the threshold increases by 0.463 mA, i.e. by 4.2% in relation to 

the mean value of the threshold. For the temporal summation assessments, the 

correlation was negative, but the quantitative impact was negligible: for an increase 

in 10 years of age the threshold increases by 0.183 and 0.184 mA for pain and 

reflex thresholds, respectively. The same negligible quantitative impact was 

observed for area and volume of RRF. The generally low quantitative influence of 

age on the assessments probably explains the inconsistent findings of previous 

investigations on the nociceptive reflex, which were conducted on smaller sample 

sizes and did not cover the whole range of age (Sandrini et al., 2005). A less 

efficient endogenous inhibitory control has been detected in elderly compared with 

young subjects, which may partly explain the increased pain sensitivity that we 

found with single stimulus pain threshold (Edwards et al., 2003). For practical 
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purposes, we suggest that the confidence intervals presented in table 5 are used as 

reference values independent of age. 

In paper III, women displayed lower pressure and thermal pain thresholds than 

men, although the influence of gender decreased with increasing age (Figure 4). 

Previous investigations on the influence of gender on pressure pain thresholds 

found either lower pain thresholds in women than in men (Otto and Dougher, 1985; 

Buchanan and Midgley, 1987; Fischer, 1987; Brennum et al., 1989; Jensen et al., 

1992; Riley et al., 1998; Fillingim, 2000; Chesterton et al., 2003b) or no 

differences between genders (Sandrini et al., 1994; Isselee et al., 1997). Findings 

in paper III are consistent with the results of thermal tests of most studies 

conducted on healthy subjects (Arendt-Nielsen and Bjerring, 1988; Feine et al., 

1991; Fillingim et al., 1998; Sheffield et al., 2000). Data on age are quite 

contradictory, suggesting that pain sensitivity increases, decreases or remains 

unchanged with age (Gibson and Helme, 2001).  

The most challenging finding in paper III is that the difference in pain sensitivity 

between men and women may disappear or be quantitatively modest for older age 

groups. This challenges the general view that women are generally more pain 

sensitive than men. Previous studies on this subject were probably limited by the 

fact that mostly young subjects were investigated (Ellermeier and Westphal, 1995; 

Chesterton et al., 2003b; Fillingim et al., 2005; Komiyama and De Laat, 2005; 

Garcia et al., 2007).  

Gender differences in pain have been attributed to many factors, including gonadal 

hormones (Riley et al., 1999; Fillingim, 2000; Fillingim and Ness, 2000; Craft, 

2007; Li et al., 2009; Mensah-Nyagan et al., 2009) and differences in central pain 

modulation (Staud et al., 2003; Martin, 2009; Mensah-Nyagan et al., 2009). A 

recent meta-analysis (Martin, 2009) concluded that fluctuations of ovarian 

hormones in the course of the menstrual cycle may be associated with a mild to 

moderate effect on pain response. Of 19 studies, seven studies reported decreased 

pain thresholds during late-luteal or early-follicular phases (hormonal milieu of low 

and declining serum concentrations of estrogen and progesterone); five studies 

reported decreased pain thresholds during the late follicular and early luteal phases 

(hormonal milieu of high serum estrogen concentrations and rising progesterone 
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concentrations); The other studies analyzed in the review found no differences 

between the phases of the menstrual cycle.  

Post-menopause is characterised by low serum concentration of estrogens and very 

low serum concentration or lack of progesterone. Thus, the higher pain thresholds 

that we observed in older ages may be supported indirectly by the studies that 

found a correlation between high pain thresholds and low hormonal level during the 

menstrual cycle (Hapidou and De Catanzaro, 1988; Bajaj et al., 2001; Drobek et 

al., 2002). On the other hand, the studies showing lower thresholds during low 

serum concentration of estrogen do not support the view that hormonal changes 

account for the interaction of gender with age that was observed on this project 

(Rao et al., 1987; Fillingim et al., 1997; Isselee et al., 2001; Gazerani et al., 2005).   

Further studies explained the gender differences as the result of differences in 

central pain modulation, with females having less effective central inhibitory 

mechanisms than men (Staud et al., 2003; Ge et al., 2007; Martin, 2009; Mensah-

Nyagan et al., 2009).  

 

4.3.3 BMI AND BODY SIDE 

In paper III, BMI influenced the cold pain thresholds (table 6). The correlation 

coefficient was -0.1768, implying a reduction in pain threshold (i.e. lower pain 

sensitivity) with increasing BMI. For instance, an increase in BMI by 5 results in a 

decrease in the cold pain threshold by 0.88 °C. This suggests that studies using 

cold pain thresholds should take into consideration the BMI, e.g. when comparing 

groups. 

The body side was related significantly with reflex threshold to single stimulus. 

Measurements on the dominant side had a threshold lower than on the non-

dominant side by 0.9696 mA, i.e. 6.0% lower in relation to the mean value of the 

threshold. A study on non-nociceptive reflexes revealed no side differences, but 

because only 11 subjects were investigated the study probably did not have 

sufficient power to detect differences (Sakamoto et al., 2006). We are not aware of 

studies analyzing the effect of body side on nociceptive reflex parameters. In the 

absence of such investigations, explanations for our finding remain speculative. 

Differences in sensory and motor conduction velocities of peripheral nerves 
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between dominant and non-dominant arm have been documented (Colak et al., 

2004): it can be postulated that the preferential use of the dominant limb may lead 

to a subclinical sensitization that is reflected by lowered reflex thresholds. A further 

possible explaining factor is the greater strength and muscle mass of the dominant 

side, leading perhaps to a lower activation threshold of the muscles. 

In paper III, the body side was related significantly with heat pain thresholds. 

Measurements on the left body side had a threshold lower than on the right side by 

0.5489 °C (table 6). A previous study on reference values of quantitative sensory 

tests (Rolke et al., 2006) found no significant left-right differences for heat pain 

threshold. We do not find a clear reason for this discrepancy. Perhaps a possible 

explanation is the different rate of temperature increase during testing (1.5 °C/s 

and 1.0 °C/s in the present and Rolke et al 2006, respectively). Our finding 

suggests that caution should be taken when one side is used as control for the 

other side, as it is often the case in clinical studies.  

 

4.4 INFLUENCE OF PSYCHOLOGICAL AND HEALTH-RELATED VARIABLES 

The analyses on psychological and health-related parameters should be evaluated 

under the consideration that we studied almost only healthy subjects. Only a small 

number of them displayed disturbances in the investigated dimensions, so that the 

variables had to be dichotomized in order to measure their potential role. This 

implies that the effects of the variable under consideration are only significant 

beyond a critical threshold of the psychological and health-related parameters. 

The importance of depression in pain syndromes is well-known, but it is still unclear 

whether depression is a determinant or a cause of pain (Angst et al., 2008). There 

are few and inconsistent data on the influence of depressive symptoms on pain 

thresholds. 

In paper II, BDI was a predictor only of the single stimulus electrical pain threshold, 

with a correlation coefficient of -2.5943. This means that subjects with depression 

scores ≥11 having an estimated pain thresholds 2.5943 lower than those subjects 

with scores <11. This reflects a 23.8% decrease in relation to the mean value of 

the threshold. The fact that depression affected only a subjective pain threshold 
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and not the reflex assessments suggests that pure spinal nociceptive processes 

may be independent of the influence of depression. The same can be said for the 

subjective pain threshold to repeated stimulation (temporal summation), which was 

not affected. This model may therefore reflect spinal integrative mechanisms, 

rather than supraspinal pain processing. In an early study on chronic pain patients, 

BDI was not related to any experimental pain modality including the nociceptive 

reflex (Boureau et al., 1991). 

In previous studies, depression as assessed by the BDI affected pressure (Petzke et 

al., 2003) and heat pain (de Zwaan et al., 1996). Findings in paper III showed that 

depression levels did not affect the experimental pain measures, which is in 

accordance with previous studies on healthy volunteers (Klauenberg et al., 2008) 

and chronic pain patients (Skevington, 1983; Boureau et al., 1991). However, other  

studies on pain-free subjects found either increased (Adler and Gattaz, 1993; 

Lautenbacher et al., 1994) or decreased pain thresholds with increasing depression 

levels (Chiu et al., 2005). While some investigations on chronic pain patients 

indicated that depressed subjects have higher pain thresholds than non depressed 

controls (Adler and Gattaz, 1993; Lautenbacher et al., 1994; Dickens et al., 2003; 

Bar et al., 2005), other studies found that pain thresholds are reduced in 

depression (Frank et al., 1988; Summers et al., 1988; Chiu et al., 2005) 

The relation between catastrophizing and pain has been studied using different pain 

modalities and in different patient groups, including mixed chronic pain (Sullivan 

and D'Eon, 1990), low back pain (Flor et al., 1993), rheumatoid arthritis (Keefe et 

al., 1989), and whiplash injuries (Sullivan et al., 2002). Those studies found that 

catastrophizing is associated with increased pain. This project found that 

catastrophizing did not affect any quantitative sensory test in pain-free subjects. 

Possibly, the influence of catastrophizing on pain is not accompanied by enhanced 

pain sensitivity as assessed by thermal, mechanical and electrical pain tests. Our 

findings confirm the lack of correlation between catastrophizing and nociceptive 

reflex threshold in both healthy volunteers (France et al., 2002; Rhudy et al., 2007) 

and patients with neck pain after whiplash injury (Sterling et al., 2008).  

In a previous study, inducing anxiety experimentally in healthy volunteers 

decreased heat pain thresholds. In contrast, anxiety did not affect the nociceptive 
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reflex threshold after single electrical stimulation (French et al., 2005). In an early 

study, anxiety influenced electrical pain tolerance, but not pain detection threshold 

(Robin et al., 1987). In papers II and III, state and trait scales of STAI were not 

significantly correlated with any test, indicating   that anxiety is not a relevant 

contributor of quantitative sensory tests in pain-free subjects. 

There is a lack of investigations to correlate parameters of the SF-36 or similar 

scales with pain thresholds. In this project, the only statistical significance for 

electrophysiological tests (II) among the different SF-36 parameters was observed 

on the area of the RRF for mental health. The correlation was negative, reflecting a 

decrease in pain sensitivity for scores ≥90: the RRF area decreases by 0.0577, 

which represents 17.5% of the mean value of RRF area. This finding suggests a 

possible modest influence of general health status on spinal nociceptive processes, 

but the fact that only one parameter was affected render an interpretation of this 

result difficult. For the psychophysical tests, the only statistical significance was 

observed on the pressure and cold thresholds for physical health and on pressure 

for total scale of SF-36. However, descriptive analyses revealed only very modest 

quantitative impacts of these variables on the pain thresholds. 

Overall, we found only limited influence of the different variables analyzed on the 

quantitative sensory tests. This was particularly true for the electrophysiological 

pain tests (paper II). The limited influence of the predictors on the electrical tests 

that we analyzed can be considered in two ways. The lack of effect of factors that 

are known to influence pain sensitivity, such as gender or certain psychological 

factors indicates that such electrical tests explore only part of the complex sensory 

and affective experience of pain. On the other hand, the relative robustness of the 

tests may be used advantageously when the influence of confounding parameters is 

unwanted. This may be the case for pharmacological studies conducted on small 

samples, in which it may be difficult to control for confounding factors. In a clinical 

setting, the evaluation of nociceptive processes that are unaffected by demographic 

and psychological factors may be useful in different situations: for instance, to 

make inferences on central plasticity processes leading to generalized central 

hypersensitivity, independent of the influences of higher cognitive and affective 

components. 
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4.5 CONCLUSIONS (II/III) 

Reference values of parameters related to the spinal nociceptive reflex, electrical 

pain thresholds (paper II), pressure, heat and cold pain stimuli (paper III) were 

determined. These data can be used to detect central hypersensitivity in individual 

patients. 

Demographic, psychological and health-related factors have modest influences on 

psychophysical electrical tests and nociceptive spinal reflexes. For most 

psychophysical tests, the values must be stratified according to gender and age. In 

general, women displayed lower pain thresholds than men. However, the influence 

of gender decreased with increasing age, with no or minimal gender difference in 

elderly subjects. These interactions depended on the type of painful stimulus 

applied. 

The findings are expected to provide tools for the application of quantitative 

sensory tests in clinical practice and for a better use of the models in clinical 

research. 

 

4.6 EXPANSION OF REFLEX RECEPTIVE FIELDS IN CHRONIC PAIN PATIENTS 

(IV) 

 

Previous animal and human studies using the withdrawal reflex paradigm indicated 

that the reflex is organized in a modular fashion: each muscle or synergistic muscle 

group has a well-defined coetaneous receptive field, the reflex receptive field (RRF) 

(Schouenborg and Kalliomaki, 1990; Andersen et al., 1999). Nociceptive input 

applied to that area evokes a withdrawal reflex in the muscle, while stimulation 

outside the area has no effect (Sonnenborg et al., 2000). The reflex receptive field 

is probably encoded by wide-dynamic range (WDR) neurons located in the deep 

dorsal horn (Schouenborg et al., 1995). Receptive field expansion has been 

demonstrated in WDR projection neurons in this part of the dorsal horn (Dubner, 

1991). The present project provides the first evidence that a chronic human pain 

condition is associated with expansion of nociceptive reflex receptive fields. 
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4.6.2 NWR AND PAIN THRESHOLDS  

The reflex threshold after application of a single electrical stimulus was lower in 

patients than in controls (see tab. 9 and fig. 7). Because the site of stimulation is 

outside the area of pain, this finding indicates that patients display generalized 

spinal cord hypersensitivity. Accordingly, the reflex threshold after application of 

repeated electrical stimulation was lower in patients than in controls (see tab. 9 und 

fig. 8), indicating generalized facilitated temporal summation. Temporal summation 

probably reflects neuronal integration processes that can lead to neuronal 

hyperexcitability (Price, 1972; Arendt-Nielsen et al., 1994). The results on single 

and repeated electrical stimulation are consistent with observations in chronic neck 

pain and fibromyalgia patients (Desmeules et al., 2003; Banic et al., 2004). 

 

4.6.3 ENLARGED AREAS OF RRF IN CHRONIC PAIN 

The enlarged area of RRF observed (tab. 9, fig. 5-6) indicates that such a 

generalized spinal cord hyperexcitability is associated with an expansion of the 

nociceptive receptive fields in the spinal cord. This suggests that the modular 

organization of the pathways responsible for the nociceptive withdrawal reflex may 

undergo reorganization under pathological conditions. 

Expansion of receptive fields following tissue damage has been observed by several 

animal investigations. For instance, appearance of new receptive fields of spinal 

cord neurons could be induced by intramuscular injection of bradykinin in rats, 

suggesting that silent synaptic connections within the spinal cord are activated 

(Hoheisel et al., 1993). However, this phenomenon has been investigated in 

regions of the spinal cord that correspond to the site of tissue damage. In contrast, 

finding in paper IV demonstrated that expansion of receptive fields occurs at an 

area far distant from the site of expected tissue damage. To date, animal research 

provides only indirect support to explain this finding. An early investigation found 

that blocking descending pathways by cooling the thoracic spinal cord of cats 

produced expansion of receptive fields at L7 level, suggesting that such widespread 

expansion of receptive fields may result from changes in descending modulation 

(Zieglgansberger and Herz, 1971). Later investigations showed that peripheral 
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inflammation can lead to widespread spinal cord hyperexcitability via activation of 

descending facilitatory pathways that involve the spinal 5-HT3 receptor (Suzuki et 

al., 2002). Tissue damage has been shown to produce generalized expression of 

COX-2 in the spinal cord, mediated by the humoral release of inflammatory 

mediators from the damaged tissue (Samad et al., 2001). 

The above data from animal experiments suggest that humoral factors and/or 

changes in descending modulatory influences may play a role in the widespread 

expansion of receptive fields that we observed. However, the results of human 

studies on descending modulation are not univocal. In a study on healthy 

volunteers, rapid and slow distension of the rectum induced facilitation and 

inhibition of the nociceptive reflex, respectively (Bouhassira et al., 1998). The 

former finding would support the hypothesis that clinical pain arising from visceral 

structures, in our case from the pelvis, can lead to widespread spinal cord 

hypersensitivity. On the other hand, inhibition of the nociceptive reflex by slow 

distension of the rectum indicates that spinal hyperexcitability can undergo 

heterotopic inhibition via descending modulation. 

A well-known method to study endogenous modulation in humans is the 

assessment of diffuse noxious inhibitory control: under normal conditions, pain 

after application of a test nociceptive stimulus is attenuated by the application of an 

additional “conditioning” noxious stimulus to a remote body region, reflecting 

diffuse endogenous inhibition (Chitour et al., 1982; Ge et al., 2004). A study that 

applied this model to neuropathic pain patients revealed a complex picture: the 

effect of conditioning stimuli on spinal nociception depended on the type of stimulus 

applied and the pathophysiological mechanisms underlying the pain condition 

(Bouhassira et al., 2003). A study investigating the efficacy of coping skills training 

in patients with arthritis of the knee found an increase in nociceptive reflex 

threshold, suggesting that spinal nociceptive reflexes may be influenced by 

descending modulation (Emery et al., 2006). On the other hand, techniques to 

induce expectancy-mediated analgesia reduced subjective pain, but not nociceptive 

reflex thresholds in patients with fibromyalgia (Goffaux et al., 2009).  

Noteworthy, the few available human studies have used different methods of 

assessing descending modulation and have been conducted on patients with 
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different types of pain conditions. This renders the interpretation of the data 

difficult. Based on the available literature, spinal cord hypersensitivity that leads to 

generalized expansion of nociceptive receptive fields may be the result of multiple 

factors, including tissue damage via neural and humoral mediators, as well as 

influences from higher centres mediated by descending pathways. The present 

project will hopefully stimulate further research on the determinants of this 

phenomenon in pain patients. 

 

4.6.4 CONCLUSIONS (IV) 

Paper IV provided the first evidence for widespread expansion of spinal nociceptive 

receptive fields in a human chronic pain condition. This finding contributes to 

elucidate the mechanisms that underlie central hypersensitivity in chronic pain. 

Reverting the expansion of nociceptive receptive fields may become a target of 

clinical research. 
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5. SUMMARY 

 

The aims of this project were: 1) to establish a new method to quantify reflex 

receptive fields in humans; 2) to determine the reference values of psychophysical 

and electrophysiological pain tests; and 3) to study whether widespread expansion 

of receptive fields is present in chronic pain patients.  

In paper I, a method for quantifying nociceptive withdrawal reflex receptive fields 

(RRF) in pain-free subjects and patients was described. Electrical stimuli were 

applied to the sole of the foot evoking reflexes in the tibialis anterior muscle.  The 

method is based on random stimulations presented in a blinded sequence to the ten 

stimulation sites. A set of features describing the size and location of the RRF was 

presented based on statistical analysis of the sensitivity map within every subject. 

The features include RRF area, volume, peak location and center of gravity.  

Reference values of parameters related to the spinal nociceptive reflex, electrical 

pain (paper II), pressure, heat and cold pain stimuli (paper III) were determined. 

This allows their clinical application for assessing central hyperexcitability in 

individual patients. In paper II, age had a statistically and quantitatively significant 

influence on the subjective pain threshold to single electrical stimuli. Depression 

had a negative impact on the subjective pain threshold to single electrical stimuli. 

All the other factors had either no statistically significant influence or a 

quantitatively insignificant impact of the electrical tests. Thus, the electrical pain 

tests, and in particular the reflex assessments, explore aspects of sensitization 

processes that are largely independent of demographic characteristics, cognitive 

and affective factors. 

In paper III gender, age and/or the interaction of age with gender were the only 

variables that consistently affected the pain measures. Women were more pain 

sensitive than men. However, the influence of gender decreased with increasing 

age. The data indicate that the reference values of these tests have to be stratified 

by gender and age. 

In paper IV, patients with chronic endometriosis pelvic pain displayed a larger area 

of RRF, compared with pain-free subjects. Pain and reflex thresholds after sural 



 

  

52 

nerve stimulation (secondary endpoints) were significantly lower in patients than in 

controls. 

In conclusion, the present project provided data for an application of advanced pain 

assessments to detect aspects of central hypersensitivity in individual patients. 

Furthermore, it detected for the first time widespread expansion of nociceptive 

receptive fields in chronic pain patients. This phenomenon may underlie central 

hypersensitivity in human chronic pain conditions and may become a target for the 

development of future therapeutic interventions. 
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6. DANSK SAMMENFATNING 

 

Formålet med dette project var at: 1) udvikle en ny metode to at måle refleks 

receptive felter hos menesker; 2) bestemme referenceværdier for psykofysiske og 

elektrofysiologiske smertetests; 3) udforske om patienter med kroniske smerter har 

en udtalt udvidelse af deres refleks receptive arealer. 

I artikel I. beskrives en metode til at kvantificere nociceptive afværge receptive 

refleks arealer (reflex receptive fields: RRF) hos frivillige forsøgspersoner og 

patienter. Elektriske stimuli, som udløser reflekser i tibialis anterior musklen, blev 

apliceret  via 10 elektroder placeret under foden. Stimuli blev apliceret i en blindet 

og randomiseret rækkefølge via alle 10 elektroder. Baseret på en statistisk analyse 

af sensiviteten indenfor stimulations området af de enkelte individer, kunne en 

række deskriptive egenskaber, som beskriver størrelsen og lokalisationen af RRF 

bestemmes. Disse egenskaber omfatter RRF arealet, RRF volumen, lokalisationen af 

den største refleks i RRF og placeringen af RRF’s tyngdepunkt Referenceværdier for 

disse parametre relateret til den spinale nociceptive refleks (artikel II) og til 

smertefulde tryk, varme og kulde stimuli (artikel III) blev bestemt. Derved kan 

disse parametre bruges klinisk til at bedømme graden af central sensibilisering hos 

individuelle patienter. I artikel II viste alderen sig at have en statistisk og 

kvantitativ signifikant indflydelse på den subjektive smertetærskel for enkelte 

elektriske stimuli. Derimod havde depression en negativ inflydelse. Alle andre 

faktorer havde enten ingen statistisk signifikant  inflydelse eller en kvantitativ 

ubetydelig indflydelse på smerten induceret af elektrisk stimulation. Således viser 

det sig, at de elektriske smertetests, og specielt refleks bestemmelser, kan 

udforske aspekter af sensibiliseringsprocesser, som stort set er uafhængige af 

demografiske karakteristika og af kognitive og affektive faktorer. 

I artikel III viste køn, alder og/eller interaktionen alder med køn sig at være de 

eneste variable som konsistent havde en indflydelse på smertemålinger. Kvinder 

viste større sensitivitet for smerter end mænd, men  forskellen aftog med stigende 

alder. Resultaterne antyder, at referenceværdierne bør stratifiseres after alder og 

køn. 
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Artikel IV viste, at patienter med kroniske endometriose betingede bækkensmerter 

havde større RRF arealer sammenlignet med smertefrie kvinder. Smerte- og 

reflekstærskler efter stimulation af nervus suralis var signifikant lavere hos 

smertepatienter end hos de raske kontrolpersoner. 

Sammenfattende etablerede dette projekt metoder og data, som muliggør en 

avanceret bedømmelse af visse aspekter af central sensibilisering hos individuelle 

smerte patienter. Desuden demonstrerede projektet for første gang en udvidelse af 

nociptive refleks receptive arealer hos kroniske smertepatienter. Dette er 

sandsynligvis en vigtig komponent i den centrale hypersensitivitet hos patienter 

med kroniske smerter. Dette kan blive et mål for udviklingen af fremtidige 

therapeutiske interventioner.  
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