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The geodynamic approach - problem or possibility? 

1!11rgen S. Steenfelt 
Aalborg University, Denmark 

Lars Bo Ibsen 
Aalborg University, Denmark 

SYNOPSIS: The Danish National Lecture - The Geodynamic approach - problem or possibility? -
mirrors the authors involvement in projects and research focusing on the impact of the geodynamic 
approach. The lecture discusses the why and how of some of the geotechnical anomalies and the 
differences in traditional static and dynamic approach. Examples of current projects with geody
namic focus are briefly presented together with the available equipment and methodology. The role 
of interplay with other geodisciplines and the possibilities in the geodynamic approach conclude the 
lecture. 

I. INTRODUCTION 

The topic for this lecture was dictated by recent 
experience with design of very large structures 
and the research focus of the Aalborg Univer
sity Geotechnical Engineering Group. In both 
cases attention has been drawn to the impact on 
design and importance of dynamics (Figure I). 

Traditionally, the special cases - the excepti
ons or anomalies - have anracted most of the 
attention in geotechnical engineering. Examples 
are (indicating reality/generality in italics) 

• plane strain problems • 3D problems 
• undrained conditions • some degree of 

drainage 
• axisymrnetric testing • 3D conditions 
• strain controlled testing • load controlled 

reality 
• normally consolidated conditions • some 

degree of overconsolidation 
• static loading conditions • dynamic loading 

This bias is understandable as the special cases 
often allow a more direct approach and are die 
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tated by the possibilities offered il) terms of 
analytical solutions, test equipment and numer
ical tools. 

However, this bias may also have been re
sponsible for some of the anomalies discovered 
when comparing reality with prediction. 

In the real world the special cases are at best 
permissible approximations and at worst, cases 
clouding the understanding of the physical phe
nomena responsible for the observed behavi
our. 

Fig. 1 Dynamic wave loading, Amalft, Italy 

STEENFELT & IBSEN 



2 THE GEODYNAMIC APPROACH - PROBLEM OR POSSIBILITY? 

In recent years is has been realised that geo
dynamics is not a special case of loading to be 
considered for earthquake engineering or for 
vibrating machinery, but rather the fundamental 
loading case. Static loading is the special case, 
albeit a very appropriate approximation for a 
large number of situations. 

However, the important point is that if the 
dynamic nature of the loading is disregarded the 
underlying mechanisms and the fundamental 
soil response may easily be misinterpreted. 

As an example consider the discrepancy 
between the modulus of elasticity found by dy
namic tests and traditional static laboratory 
tests. When analysed correctly, it turns out that 
there is no difference, but rather a difference in 
strain levels, i.e. a demonstration of the diffe
rence between small and large strain problems. 

2. WHY ANOMALIES? 

There are a number of reasons for the wide 
spread acceptance of the anomalies. Very often 
the simplification embedded in the anomaly 
allows for a direct approach or is directed by 
the shortcomings in capabilities of 3D analyti
cal or numerical analysis and testing. Impor
tantly, experience has proven some of the 
anomalies to be viable approximations, whereas 
other cases merely reflect traditional approach 
or mere ignorance. 

Thus, we need to check on the use of the 
special cases- the anomalies: 

• Is there some reason for the embedded ap
proximation in terms of availability, or cost 
and time limitation? 

• Can the approximation be checked, i.e. are 
full scale experimental or numerical evi
dence at hand? 

• Is the underlying physical nature of the pro
blem understood and reflected in the ap
proximation at hand? 

• Could the general case in fact be considered? 

Before we can answer these questions satis
factorily we may have a problem in terms of 
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safety and economy of the structure resulting in 
our design approach. 

3 SOIL DYNAMICS 

The origin of soil dynamics is clearly in earth
quake engineering (see Figure 2), which 
prompts the need for understanding the behavi
our and role of soil masses during earthquake 
shaking. 

Fig. 2 The earthquake engineering problem 
(after Gazetas, 1987) 

Here the forces of inertia play a decisive role 
for both action and resistance. However, there 
is a smooth transition from dynamic to static 
type problems and the static solution rriay serve 
as a viable reference point, in the least as a me
ans to linking existing design experience to the 
more complex geodynamic approach. 

In contrast to structural dynamics, however, 
soil dynamic problems involve semi-infinite 
geometries and masses continuous in two or 
three directions. 

Examples of applications of soil dynamics 
are: 

• Geotechnical earthquake engineering (see 
Figure 3). 

• Vibration induced by machine foundations. 
• Wave-induced oscillation of offshore struc

tures (see Figure 4 ). 
• Impact loading (ship or ice collision with 

bridge piers). 
• Effects of explosions. 
• Traffic and rail induced vibrations (important 

with the surge in infrastructures in Europe 
and the advent of high speed trains). 
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Fig. 3 San Francisco earthquake 1989. Collap
sed two-storey highway (Photo: N.K. Ovesen) 

• Pile-driving induced settlements and vibrati
ons. 

• Densification by vibratory or impact loading. 
• Geophysical soil exploration (probably one 

of the most promising areas of positive use 

of soil dynamics). 

4 . SOIL DYNAMICS VERSUS MECHANICS 

Some of the distinct differences between pro
blems clearly involving soil dynamics and the 
traditional soil mechanics are listed in Table 1. 

The geotechnically important case of cyclic 
loading may be considered as an intermediary 
problem. 

The ultimate case of static loading may be 

Table 1. Differences in dynamic and static approach 

seen as the pyramid where the load is almost 
constant over millennia (see Figure 5), whereas 
the deterrent display in Abha, Saudi Arabia 
(Figure 6) may serve as a reminder of the very 
different nature of dynamic or impact loading. 

Fig 4. Artists view of Troll p/atfonn (courtesy 
NGI) 

Item Soil dynamics Soil mechanics 

Boundary load.ing Variation with time No variation or monotonic 

Boundary stresses and strains Of cyclic nature Monotonic 

Spatial distribution of stresses Governed by wave equati- Governed by equilibrium equations 
and strains ons 

Inelastic-hysteretic behaviour Key importance Often disregarded 

Determination of loading Integral part of solution A priori given 
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Fig. 5 View of the Pyramids at Giza, Egypt 

Fig. 6 A warning display of crashed cars, 
Abha, Saudi Arabia 

Off.shore wave toadlng 

~,(!;··: 
~" 

. §3 

Pavement loading 

Machine loading 

VitHatory to01cring 
during construction 

Fig. 7 Examples of significant cyclic/dynamic 
loading (after O'Rei/ly and Brown, 1991) 

5. GEODYNAMIC PROJECTS AT AAU 

Some of the projects currently being investiga
ted by the Geotechnical Engineering Group at 
Aalborg University may illustrate e lements in 
the geodynamic approach. 

As described previously, and shown in Fig
ure 7, a number of structures are experienc;ing 
significant cyclic/dynamic loading. To provide 
a safe and economic design for these structures 
it is of prime importance to establish relevant 
soil parameters for the use in the dynamic ana
lyses. 

Fig. 8 Schematic view of AAU dynamic triaxial set-up 
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To qualify and quantify the effect of the dy
namic loading dynamic element tests play a 
major role. Here we resort to some of the ano
malies mentioned in Section I in order to gain 
sufficient control over test conditions to be able 
to isolate significant effects of the cy
clic/dynamic loading. 

5.1 Example 1: Dynamic element testing 
The AAU dynamic triaxial apparatus is shown 
schematically in Figure 8. 

The triaxial set-up, presently taking 70x70 
mm cylindrical specimens, is load- or strain 
controlled, using a hydraulically operated load 
piston. The range of possible strain rates is 
from 0 to 100,000 % per hour. Impact loading 
may thus be investigated. For research purpo
ses sinusoidal, triangular or square loading 
sequences are used, but the set-up allows pre
recorded load sequences (from real structures) 
to be applied, i.e. the effect of load parcels in-

o) 

b) 

Undrolned 

H=D 

c, 

.~ 
c , 

'· 

-

c) 

' · 

d) 

'• 
Drained 

H=D 

volved in storms or the like may be investiga
ted. 

Based on the long-term Danish experience 
with static loading triaxial test set-ups a height/
diameter ratio of one and smooth pressure 
heads are maintained for the dynamic set-up as 
the type of testing and equipment play a major 
role on the soil parameters produced. 

In element testing it is extremely important 
that the test conditions are well defined and 
hence, ideally the strain conditions should be as 
close to homogenous as possible. This is only 
obtained when a height/diameter ratio of I and 
smooth pressure heads are used. 

The differences in results for specimens with 
height/diameter ratios of 2 and 1 are illustrated 
in Figure 9 for static loading. Undrained tests 
with H=2D deviate considerably from H=D 
undrained behaviour as they show pronounced 
peak behaviour and lower (and even mislead
ing) undrained strength values. 

~ 

.~ 
c . 

Undroined - H=2D 

Fig. 9 Schematic illustration of differences in behaviour of undrained tests on H=D and H=2D 
specimens (after l bsen, 1993a) 
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o) b) c) 

Fig. JO Results of drained CD tests on dense sand for H=D specimens at different confining pressu
res. CL indicates Characteristic Line (after Jbsen, 1994) 

a) b) 

q' kPa q kPa 

3000 Common stress pat 3000 

2000 2000 

1000 1000 

~. 

0 0 
0 200 400 600 BOO 1000 kPa 0 2 3 4 5 6 7 % 

Fig. ll Results of undrained CU •• 0 -tests on H=D specimens of Lund 0 sand with la=0.78 (after 
Jbsen, I 994) 

So far the research in the dynamic triaxial set
up has focused on examining the behaviour of 
sand. Static drained CD-tests (see Figure I 0) 
and undrained CU •• 0-tests (see Figure 11) 
serve as backbone tests for dynamic testing. 
They provide information on the position of the 
Characteristic Line, CL, separating the regimes 
of contraction and dilation or regimes with po
sitive and negative pore pressure build-up and 
limits the regime of permissible stresses (cf. 
Figures 10, 11). 

It shou\d be noted that more recent research 
indicates that the Characteristic Line may be 
stress-path dependent and hence, not unique. 
In static undrained tests, conducted as CU •• 0 -

tests, failure is not observed, but the stress 
paths tend to follow a common stress path at 
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increasing stress level (not valid for very high 
pressures where grain crushing plays an im
portant role). 

The dynamic tests are carried out as CU
tests as cu •• o·testing only works at lower 
strain rates. For the tests in Figure 12 no back 
pressure was applied, and hence the develop
ment in deviator stress q is limited by u ~ - !00 
kPa in the pore water. This is observed as a 
transition from the common stress path to the 
drained failure condition. 

Figure 13 shows the results of a series of 
dynamic triaxial tests with strain rates ranging 
from 40 - I 0,000% per hour. 

No rate effect on the dynamic strength is ob
served for this strain range (but an effect on the 
stress-strain behaviour is seen in Figure J3b). 
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Fig. 12 Results of undrained dynamic CU triaxialtests on H=D specimens of Baskarp I 5 sand with 

la= 0.78 at a strain rate of 1000 %/hour (after Jbsen, 1995) 

q' [kPa] l q' [kPa] •) 
J. 

1 4%/h 

1800 
Drained fai lure~ 

' 
1800 10000%/h 

3 100 %/h 
CL-line 

/ 

CU-test / 

900 ~ cC u=o - t••t 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ cr'3 [kPa] E1 [%) 

0 0 
0 500-- 0 5 "10 

Fig. I 3 Results of dynamic CU tests on H=D specimens of Baskarp 15 sand at la= 0.8 at different 
strain rates. Note, that the static test, 4%/h, is carried out as a CU •• 0 - test! (after lbsen, 1995) 
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f • 

Fig. 14 Storebadt sliding problem for anchor blocks on clay till (after Steenfelt, 1992) 

0.5 f---+--t--t---t---t--1 
HN 

···~I 
'' t-rf--f-n,...c +--+----1--l 

1· I •• . , 
0.1 1.0 10000 

DispiDcement rate 6 (mmlh} 

Fig. 15 Variation of sliding capacity HN with 
displacement rate 8 for Storeb.xlt sliding tests 
(after Steenfelt, 1992) 

This is in sharp contrast to the findings in clay 
where a strain rate dependence of some 5 -
I 0% per Jog cycle of time increase is reported 
in literature. This was confirmed at AAU for 
triaxial tests on clay till for the Storebrelt Link 
Project and by the investigation of the sliding 
problem for Storebrelt bridge piers and anchor 
blocks (see Figure 14). 

However, as seen in Figure 15 a trough
shaped dependence of sliding capacity HN (or 
stress ratio -r/cr) on sliding rate 8 was found 
for the sliding tests. 
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This exemplifies that the undrained state in the 
field is most likely a misnomer and that we 
must be very careful when comparing labora
tory element tests and field or full scale tests. 

The degree of confinement is most likely 
the decisive parameter. A complete confine
ment can be obtained in the laboratory allow
ing undrained conditions, but this will in 
practice never be possible in the field. 

Dynamic capacity of bridge piers on limestone 
In I 996 the question of dynamic capacity for 
ship impact was a hot issue for bridge piers 
and pylons of the 0resund Link bridge 
founded in Copenhagen Limestone. The char
acteristics of the limestone are shown briefly 
in Figure I 6. Preliminary sliding tests on 
chalk with roughly the same characteristics as 
unlithified limestone (HI) show a rate de
pendence on sliding capacity, but qualitative 
different from clay till behaviour. 

Due to much higher hydraulic conductivity 
of the limestone the test set-up could not pro
vide the extremely high strain rates to truly 
mimic the dynamic loading. 

5.2 Example 2: Fatigue model for sand 
With a clear link to the design of offshore 
structures (f. inst. Figure 17) a Jot of effort 
has been channelled into establishing a 
"fatigue" model for sand. 

AGEPR9809 
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* Strength model- 0resund Link 
Predominant soil/rock type for foundation 
works, dredging, and reclamation 

• Silty to sandy limestone 
• strongly varying induratlon 
• flint as continuous layers or nodules 
• strongly varying matrix strength 

• Strength 
• Uhlithlfied lime (H1 c RO) cr.= 0.25 • 1 MP a 
• Flint (HS ~ R5-R6) o.= 100 • 400 MPa 

Fig. 16 Characteristic of Copenhagen Limestone and sample retrieval at Lemacken, Sweden 

Fig. 17 Offshore gravity platform 

At the same time the research aimed at eluci
dating and qualifying the risk of liquefaction 
associated with cyclic/dynamic loading in gene· 
ral. 

Figure I 8 shows an example of a cyclic 
triaxial test on sand with H=D. It shows, in 
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contrast to H=2D type testing, that a stable state 
rather than liquefaction is obtained. 

Based on a large number of tests with diffe
rent cyclic load parcels, as shown in Figure I 9, 
the existence of a Cyclic Stable Line - a state 
boundary line- was established. 

When the stress path reaches the cyclic 
stable line, the mean normal effective stress 
remains constant independent of the number of 
load cycles. 

kPa q ' q' 

80 

0 

kPa C,% 
% 

-

2 
t I I I I 

i I J.-- .. J 

i %! 
/PI I 

0 I I I 
100 ,.. cycles 100 '" cyqles 

Fig. 18 Cyclic triaxial tests on H=D specimens 
of Lund 0 sand, In = 0. 78 showing pore pres
sure build-up (after Ibsen, 1994) 
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Fig. 19 Effective stress paths for cyclic tests 
on H=D specimens of Lund 0 sand, 10 = 0. 78. 
N indicates the number of cycles in the load 
parcel (after Jbsen, 1994) 

a) 
q' 

b) 
q' 

p' 

c) 
q' 

The tests have further led to the formulation of 
a cyclic degradation theory (H=D tests) which 
allows prediction of the behaviour of each soil 
element depending on the average shear stress 
level, the cyclic shear stress, and the number of 
cycles (cf. Figure 20). . 

The different, simplified stress conditions 
experienced by different soil elements beneath 
an offshore foundation are shown in Figure 21 
together with the different types of outcome 
from the cyclic degradation model. 

In general, application of these findings in
dicate that the cyclic loading may in fact result 
in increased safety level as exemplified by 
Figure 22, where negative pore pressure 
changes result during undrained conditions 
below an offshore foundation during a short 
storm period. 

p' 

p' 

Fig. 20 Phenomena associated with cyclic wuirained triaxial tests on H=D specimens of sand. (a) 
Cyclic liquefaction; (b) Pore pressure build-up; (c) Stabilisation; (d) instant stabilisation (after l bsen, 
1994) 
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However, dissipation of pore pressures still 
needs to be added to the model to reflect real 
behaviour. 

Fig. 21 Simplified stress conditions under 
foundation subjected to cyclic loading (after 
lbsen, 1993b) 

m - 100 _, 
lOO m 

-20 -25 

- 50 - 50 

Level - 7S -75 (m] 

-lOO -lOO 

-12~ -J25 

- 100 -75 -oo . - 2$ 25 00 75 100 

Fig. 22 Pore pressure changes due to cyclic 
loading of an offshore foundation (after Jbsen, 
1993b) 

5.3 Example 3: Impact loads on foundations 
and caisson breakwaters 
Figure 23 shows a typical cross section of a 
caisson breakwater on rubble mound. 

In the design of such a break water the im
pact load is crucial and the key question is: 
How much will the caisson move? 

A study has been initiated where the dyna
mic capacity of foundations is found based on 
well known static failure mechanisms (on the 
basis of the theory of plasticity) but with full 
account of the forces of inertia in the work equ
ation. Furthermore, the load-time characteris
tics, seen in Figure 24, are taken into account. 
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As a result the dynamic calculation for impact 
loading can provide the horizontal movement of 
the caisson with due account of the stain rate 
dependent increases in undrained shear strength 
for foundations on clay profiles. 

The research is part of a current EU funded 
MAST programme (Marine Science and Tech
nology). 

Fig. 23 Schematic cross section of caisson 
breakwater on rubble mound 

300 
Fdyn 

fkN/m] 

200 

5 10 l [s) 

Fig. 24 Load-time characteristics for wave im
pact on a caisson breakwater on clay (after 
Jbsen & Jakobsen, 1997) 

6. EQUIPMENT AND METHODOLOGY 

With the advent of cheaper and more powerful 
computers, data acquisition units and signal 
processors, it has been possible to develop 
laboratory and field test equipment to provide 
soil parameters for design using the geodyna
mic approach. 
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Fig. 25 Resonant column set-up at MU 

· Fig. 26 Large scale triaxial set-up at MU (250 
mm H=D specimens) 

Fig. 27 Dynamic model set-up at MU 
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As examples we now have access to: 

Laboratory tests 
• Resonant column (cf. Figure 25) or wave 

propagation tests, using bender elements in 
triaxial test set-ups, providing dynamic pa
rameters at small strains (up to I 0-4) 

• Cyclic load-deformation tests, i.e. triaxial 
tests (cf. Figure 26), simple shear tests, tor
sional shear tests providing medium to large 
strain parameters 

• Model test set-ups (cf. Figure 27). These 
support truly dynamic testing and allow stu
dies of mechanisms and serve as verification 
tools for element testing at relevant strain 
levels. 

Field tests 
• Geophysical borehole logging tools 
• Seismic surveying equipment for profiling 

on land as well as on water 
• Surface wave techniques for profiling of 

elastic parameters 
• Static insitu tests combined with seis;ruc 

actuators and sensors (f.inst. CPT with 
seismic cone). 

7 . INTERPLAY WITH OTHER GEODJSCI
PLINES 

In the pursuit of solutions using the geodyna
mic approach it is important not to loose sight 
of the other geodisciplines. 

• Geostatics serve as an important link to 
"well-winnowed experience" of traditional 
design 

• Geology and Engineering geology are prere
quisites in order to establish and understand 
geological models and serve as a guide to 
proper application of test results 

• Geophysics allow us to draw on matured 
methodologies, solutions and measuring and 
interpretation techniques. 
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We have to respect the geological setting which 
may pose challenges, advantages or dire pro
blems. This depends on our ability to under
stand, respect and harness the powerful forces 
of Mother Nature (cf. Figures 28, 29). 

Fig. 28 Utilisation of the geological setting of 
Iceland. Nesjavellir geothermal powerplant near 
historic Thingvellir 

Fig. 29 The dire result of the presence of quick 
clay, Tuve Sweden. 

8. POSSffiiLITIES? 

In conclusion the problems associated with the 
geodynamic approach are vastly outweighed by 
the possibilities offered. 

The reasons are that 
• modern laboratory and field testing equip

ment show great promise in quantification of 
dynamic properties of soils 

AGEPR 9809 

• the numerical tools are maturing for handling 
dynamic aspects of both loading and resis
tance under 3D conditions 

However, at the same time it is important to 
realise that 
• proper soil-structure interaction is a must as 

de-coupling of dynamics in the structure and 
the soil may lead to unsafe or uneconomical 
solutions. 

We must try not to treat our profession in a 
hand-to-mouth fashion (cf. Figure 30) but pay 
due respect to the dynamic nature of our envi
ronment - without doing away with well proven 
sound procedures. 
. Geodynamics do present us with problems 

and challenges but we are rewarded with a suite 
of possibilities for better understanding of soil 
behaviour and improved design of our struc
tures. 

Fig. 30 A traditional Saudi Arabian supper us
ing only the right hand and the mouth 
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