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ABSTRACT
We consider the problem of estimating the fundamental fre-
quency of periodic signals such as audio and speech. A
novel estimation method based on polynomial rooting of the
harmonic MUltiple SIgnal Classification (HMUSIC) is pre-
sented. By applying polynomial rooting, we obtain two sig-
nificant improvements compared to HMUSIC. First, by us-
ing the proposed method we can obtain an estimate of the
fundamental frequency without doing a grid search like in
HMUSIC. This is due to that the fundamental frequency is
estimated as the argument of the root lying closest to the unit
circle. Second, we obtain a higher spectral resolution com-
pared to HMUSIC which is a property of polynomial root-
ing methods. Our simulation results show that the proposed
method is applicable to real-life signals, and that we in most
cases obtain a higher spectral resolution than HMUSIC.

1. INTRODUCTION

In many signal processing applications, it is of great impor-
tance to estimate the fundamental frequency. A specific ex-
ample is in audio and speech processing. For example, the
fundamental frequency is needed in parametric coding of au-
dio and speech using a harmonic sinusoidal model. Also,
many music information retrieval applications, such as au-
tomatic music transcription and musical genre classification,
rely on the knowledge of the fundamental frequency. Within
the last couple of decades, the problem of estimating the
fundamental frequency has attracted considerable attention.
This has resulted in numerous different fundamental fre-
quency estimators. For a few examples of such estimators,
we refer to [1–5].

Following, we define the fundamental frequency estima-
tion problem. Consider a harmonic signal buried in white
Gaussian noise w(n), for n = 0, . . . ,N−1,

x(n) =
L

∑
l=1

αle jω0ln +w(n) , (1)

where L is the model order and αl = Ale jφl is the complex
amplitude of the lth sinusoid with Al > 0 and φl being the real
amplitude and the phase, respectively. In this paper, we will
assume that the model order is known, hence, the problem
at hand is to estimate the unknown fundamental frequency
ω0. While not considered in this paper, we refer the reader
to [6] for few examples on how the model order could be
estimated. In many existing methods for fundamental fre-
quency estimation, the estimator is based on a grid search
over a set of candidate fundamental frequencies [7]. This
can be problematic for several reasons. For example, it can

be hard to choose the resolution of the grid since the width of
the peaks in the cost-function relies on, the sample size, the
method, the signal-to-noise ratio (SNR), the source spacing
(in multi-source scenarios), etc. Another issue is the compu-
ational complexity. Naturally, the computational complexity
depends on the resolution of the grid. That is, if the peaks are
narrow or if high-resolution is required, it is necessary to use
a fine grid which of course increases the computational com-
plexity. The problem of choosing the right grid can, to some
extend, be relieved by introducing a gradient search. To alle-
viate the abovementioned issues, we consider the problem of
obtaining an estimate of the fundamental frequency without
having to do a grid search.

It was shown in [8] that the MUltiple SIgnal Classifi-
cation (MUSIC) estimation criterion [9, 10] can be used to
obtain a high-resolution estimate of the fundamental fre-
quency. The resulting estimator, refered to as Harmonic MU-
SIC (HMUSIC), was shown to have a good statistical perfor-
mance. In this paper, we propose an estimator which is a
relaxation of the HMUSIC cost-function from the unit circle
onto the whole complex plane. That is, the proposed estima-
tor evaluates the HMUSIC cost-function using a polynomial
rooting method which can be seen as a generalization of the
original root MUSIC method [11]. Using polynomial root-
ing has two signficant advantages. First, it gives an increased
spectral resolution in multi-source scenarios and, second, it
will give an estimate of the fundamental frequency without
using a grid search. For more on the performance of the MU-
SIC and root MUSIC algorithms see, e.g., [12, 13]. Through
simulations we investigate the performance of the proposed
method on real-life signals. Also, using synthetic data we
evaluate the proposed estimator in Monte-Carlo simulations,
and we compare the result with both the performance of
the HMUSIC estimator and the Cramér-Rao Lower Bound
(CRLB).

The rest of the paper is organized as follows. In Section
2, we make a brief introduction to the HMUSIC estimation
method and we describe the proposed method. In Section
3, we evalute the performance of the proposed using both
qualitative and quantitative measurements. Finally, Section
4 concludes on our work.

2. PROPOSED METHODS

In this section, we present the fundamental theory behind the
HMUSIC estimator [8] and we present the proposed estima-
tor. Consider a signal of the form (1) from which we take
M consecutive samples. The samples is then used to form a



signal vector

x(n) = [x(n) x(n−1) · · · x(n−M+1)]T , (2)

where (·)T denotes the transpose. If we then assume that the
phases of the harmonics are independent and uniformly dis-
tributed in the interval (−π;π], we can write the covariance
matrix R ∈ CM×M as [14]

R = E
{
x(n)xH(n)

}
(3)

= APAH +σ
2
wI , (4)

where E{·} and (·)H denotes the expectation and the conju-
gate transpose, respectively, σ2

w is the noise variance and I is
the M×M identity matrix. The matrix P is a diagonal matrix
containing the squared real amplitudes, i.e.,

P = diag
([

A2
1 · · · A2

L

])
, (5)

and A ∈ CM×L is a full-rank Vandermonde matrix

A = [a(ω0) · · · a(Lω0)] , (6)

with a(ω) =
[
1 e− jω · · · e− jω(M−1)

]T . Note that since
we assume a harmonic model, the Vandermonde matrix A
is only dependend on a single frequency, namely the funda-
mental frequency. Let us then define

R = UΛUH , (7)

as the eigenvalue decomposition (EVD) of the covariance
matrix. The matrix U = [u1 · · · uM] then contains the
M orthonormal eigenvectors of R and Λ is a diagonal ma-
trix containing the corresponding eigenvalues, λk. Note that
λ1 ≥ λ2 ≥ . . . ≥ λM . It is well known that the L most sig-
nificant eigenvectors will span the signal subspace while the
noise subspace is spanned by the M − L least significant
eigenvectors. That is, the noise subspace is spanned by G
defined as

G = [uL+1 · · · uM] . (8)

We know that range(A) = range(S) where S =
[u1 · · · uL] spans the signal subspace. Also, we
know that the signal subspace is orthogonal to the noise
subspace which allows us to write

AHG = 0 . (9)

The covariance matrix, however, is most often not available
in practice. Therefore, we will replace the covariance ma-
trix in the above expression by the sample covariance matrix
defined as

R̂ =
1

N−M+1

N−1

∑
n=M−1

x(n)xH(n) . (10)

Due to estimation errors, A will not be exactly orthogonal
to G. Therefore, in HMUSIC, the fundamental frequency is
found by

ω̂0 = arg max
ω0∈Ω0

1
‖AHG‖2

F
(11)

= arg max
ω0∈Ω0

1
Tr
{
AHGGHA

}︸ ︷︷ ︸
J(ω0)

, (12)

with Tr{·} and ‖ · ‖F denoting the trace and the Frobenius
norm, respectively, and Ω0 is the set of candidate fundamen-
tal frequencies. Notice, that the HMUSIC criterion can be
seen as an approximation to the angle between subspaces
[15]. The minimization is done over the set Ω0, i.e., the res-
olution of the estimate depends on the cardinality of Ω0. The
resolution can, however, be refined by performing a gradient
search after a coarse estimate has been obtained.

Instead, we will now present how the cost-function can
be evaluated using a rooting method. This has both the ad-
vantage of obtaining a solution without doing a grid search
and an increased spectral resolution. Let us define a new ma-
trix C = GGH and rewrite the cost-function J(ω0) by using
the definition of the trace

J(ω0) =
1

Tr{AHCA}
(13)

=
1

∑
L
l=1 aH(lω0)Ca(lω0)

. (14)

As mentioned previously, the expression in the denomina-
tor will have no solutions when equated with zero. How-
ever, if we instead replace e jω in a(ω) with the variable
z= |z|e j arg(z), we can expect that denominator will have some
solutions when equated with zero. That is, we can write

1
J(z)

=
L

∑
l=1

aT (z−l)Ca(zl) (15)

=
L

∑
l=1

M−1

∑
k=−(M−1)

ckzlk (16)

=
L

∑
l=1

pl(z) = p(z) = 0, (17)

where pl(z) is the lth polynomial and ck is the sum of entries
of C along the kth diagonal, i.e.,

ck = ∑
m−n=l

Amn . (18)

The expression in (17) will only be zero when all of the in-
dividual polynomials pl(z) for l = 1, . . . ,L is equal to zero.
This can be proven by the fact that C = GGH is Her-
mitian and thereby positive semi-definite. Positive semi-
definiteness implies that

xHCx≥ 0 , ∀x , (19)

which proves our statement. Therefore, we can conclude that
p(z) has a root close on the unit circle only when ω̂0 ap-
proaches ω0. This will only be fulfilled when M→ ∞ which
implies that N→ ∞

lim
N→∞

p(z) = 0
∣∣∣
z=e jω0

⇔ lim
N→∞

J(z) = ∞

∣∣∣
z=e jω0

. (20)

In reality, the roots of the polynomial will not lie exactly on
the unit circle since we have a limited number of samples.
Instead, if N and M are sufficiently large, we can assume
that the root lying closest to the unit circle will correspond
to the largest peak of the HMUSIC pseudospectra. This is
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Figure 1: An example of a HMUSIC cost-function transformed into polar coordinates. The point (0,0) in the right-hand plot
corresponds to J(ω0) = 0 while the whole unit circle corresponds to J(ω0) = ∞. Note that ◦ denotes a root of p(z).

also illustrated in Fig. 1 which shows an example of a HMU-
SIC cost-function and its related roots. The fundamental fre-
quency can therefore be estimated as the angle of the root r̂
being closest to the unit circle, i.e.,

ω̂0 = ∠r̂ . (21)

Notice, however, that the roots come in complex conjugate
pairs so we only consider the roots within the unit circle.

3. EXPERIMENTAL RESULTS

This section contains the experimental results obtained
during evaluation of the proposed method. First, we investi-
gate the performance of the proposed method on a real-life
signal. The signal used in this experiment, was a trumpet
signal sampled at 8,820 Hz. In Fig. 2, the spectrogram of
the trumpet signal is shown. We divided the trumpet signal
into blocks of length N = 160 overlapping each other by
50 %. The fundamental frequency was estimated from each
block with M = 65 and by assuming that L = 7. The results
are depicted in Fig. 2. In the end of the signal, the proposed
estimator seems to give erroneous estimates, however, it can
also be seen that the model order in this part of the signal
is rather five than seven. Except from the parts where there
is a missmatch between the assumed model order and the
true model order, the proposed estimator obtains estimates
close to the true fundamental frequency. This verifies that
the proposed estimator is applicable to real-life signals.

Also, we have conducted a series of Monte-Carlo simu-
lations evaluating the statistical performance of the proposed
method compared to both the original HMUSIC estimator
and the CRLB [16]. In the first of these simulations, we eval-
uated the estimation performance with respect to the choice
of M for N being fixed to 80. The signal used in this simula-
tion, was a synthetic signal composed by L = 3 harmonically
related complex sinusoids each with unit amplitudes with a
fundamental frequency of 189.44 Hz. Complex white Gaus-
sian noise was added to the signal such that the SNR

SNR = 10log10
∑

L
l=1 A2

l
σ2

w
, (22)

was 20 dB. Furthermore, the signal was sampled at fs =
2 kHz. We then conducted 500 Monte-Carlo trials for each

Figure 2: A spectrogram of a trumpet signal sampled at 8,820
Hz (top) and fundamental frequency estimates obtained us-
ing root HMUSIC (bottom).

different M where we estimated the fundamental frequency.
Also, for each different M we calculated the mean squared
estimation error (MSE) defined as

MSE =
1
S

S

∑
s=1

(
ω0− ω̂

(s)
0

)2
, (23)

with ω0 and ω̂
(s)
0 being the true fundamental frequency and

its estimate in the sth Monte-Carlo trial, respectively, and S
is the number of Monte-Carlo trials. The resulting MSEs
for both root HMUSIC and MUSIC from this Monte-Carlo
simulation are shown in Fig. 3 together with the CRLB. We
calculated the CRLB by using the asymptotic expression in
[8]

CRLB(ω0) =
6σ2

w

N(N2−1)∑
L
l=1 A2

l l2
. (24)

The first observation from the first Monte-Carlo simulation
is, that both root HMUSIC and HMUSIC shows similar per-
formance independently on the choice of M. Below M = 10
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Figure 3: Plot of the asymptotic CRLB and the MSE of root
HMUSIC and HMUSIC as a function of M.
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Figure 4: Plot of the asymptotic CRLB and the MSE of root
HMUSIC and HMUSIC as a function of the SNR.

we see some thresholding behaviour for both methods. Also,
we note that both methods are following but not reaching the
CRLB as it was also reported in [8]. In another Monte-Carlo
simulation, we evaluated the performance of root HMUSIC
and HMUSIC with respect to the SNR. The parameters N,
ω0, L and fs had the same values as in the previous Monte-
Carlo simulation while M was fixed to bN

3 c. We then ran 500
Monte-Carlo trials for each different SNR, and the results are
depicted in Fig. 4 in terms of the MSE. We note that for high
SNRs, the two methods show the same performance while
for low SNRs root HMUSIC seems to perform slightly better
than HMUSIC. Thresholding behaviour is observed around
an SNR of 0 dB for this particular setup.

Also, we evaluated the performance with respect to the
fundamental frequency. In this Monte-Carlo simulation, N =
60 samples with a sampling frequency of fs = 2 kHz of a syn-
thetic signal having L = 3 sinusoids with unit amplitudes was
used. Complex white Gaussian noise was added such that
the SNR was 40 dB. Again, M was chosen to bN

3 c. We ran
500 trials for each different fundamental frequency, and the
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Figure 5: Plot of the asymptotic CRLB and the MSE of root
HMUSIC and HMUSIC as a function of the fundamental fre-
quency.
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Figure 6: Plot of the asymptotic CRLB for the one source in
white Gaussian noise scenario and the MSE of root HMUSIC
and HMUSIC as a function of the fundamental frequency fre-
quency spacing in a two-source scenario.

results are depicted in Fig. 5. Notice that for low fundamen-
tal frequencies, the proposed method shows a better perfor-
mance compared to HMUSIC. This is also expected, since it
has been reported that rooting methods have a better spectral
resolution than spectral methods [11]. In the final Monte-
Carlo simulation, we evaluated the performance of both root
HMUSIC and HMUSIC in a two-source scenario. The sam-
ple length in this experiment was N = 120, M was 40 and the
sampling frequency was fs = 2 kHz. We generated the sig-
nal such that it was composed by two harmonic signals each
with L = 2. The fundamental frequency of one of the har-
monic signals was fixed to 114.79 Hz while the fundamental
frequency of the other harmonic signal was varied. Further-
more, the SNR with respect to one harmonic signal was set to
40 dB. We ran 500 trials for each different fundamental fre-
quency of the second harmonic source, and the outcome of
this Monte-Carlo simulations is shown in Fig. 6. Using this



particular setup, it can be seen that at low frequency spac-
ings (< 30 Hz), both methods show the same poor perfor-
mance since they cannot resolve the sources. However, for
higher frequency spacings (> 30 Hz), the proposed method
shows a better performance compared to HMUSIC. In this
simulation, the performance of both methods are relatively
far away from the CRLB which is partly explained by the
fact, that the CRLB is derived for a single source scenario
with white noise.

4. CONCLUSION

In this paper, we considered the fundamental frequency es-
timation problem. We proposed a new estimation method
which is based on polynomial rooting of the known HMU-
SIC estimator. This has two significant advantages: 1)
using the proposed method we obtain an estimate of the
fundamental frequency without having to do a grid search
and 2) using polynomial rooting we obtain a better spec-
tral resolution compared to HMUSIC. We evaluated the pro-
posed method using simulations. First, we showed that the
proposed method is applicable to real-life signals, by us-
ing the root HMUSIC to correctly estimate the fundamen-
tal frequency. Second, we performed a series of statistical
measurements on the proposed method. These simulations
showed, that in many cases root HMUSIC will have a simi-
lar performance as HMUSIC. However, in multi-source sce-
narios with closely-spaced sources, the simulations showed
that for most fundamental frequency spacings the proposed
root HMUSIC method outperforms HMUSIC. This was also
expected due to the properties of polynomial rooting meth-
ods. Like the HMUSIC method, the root HMUSIC method
follows, but do not reach, the CRLB in good conditions.
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