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ABSTRACT
In this paper, we consider Bayesian interpolation and pa-
rameter estimation in a dynamic sinusoidal model. This
model is more flexible than the static sinusoidal model since
it enables the amplitudes and phases of the sinusoids to be
time-varying. For the dynamic sinusoidal model, we derive
a Bayesian inference scheme for the missing observations,
hidden states and model parameters of the dynamic model.
The inference scheme is based on a Markov chain Monte
Carlo method known as Gibbs sampler. We illustrate the
performance of the inference scheme to the application of
packet-loss concealment of lost audio and speech packets.

1. INTRODUCTION

Interpolation of missing, corrupted and future samples in sig-
nal waveforms is an important task in several applications.
For example, speech and audio signals are often transmit-
ted over packet-based networks in which packets may be
lost, delayed or corrupted. If the contents of neighbouring
packets are correlated, the erroneous packets can be approx-
imately reconstructed by using suitable interpolation tech-
niques. The simplest interpolation techniques employ sig-
nal repetition [1] and signal stretching [2], whereas more
advanced interpolation techniques are based on filter bank
methods such as GAPES and MAPES [3], and signal mod-
elling such as autoregressive models [4, 5], hidden Markov
models [6], and sinusoidal models [7]. An integral part of
the techniques based on signal modelling is the estimation of
the signal parameters. Given estimates of these parameters,
the interpolation task is simply a question of simulating data
from the model. In this paper, we develop an interpolation
and parameter estimation scheme by assuming a dynamic si-
nusoidal model for an observed signal segment. This model
can be written as a linear Gaussian time-invariant state space
model given by

yn = bTsn + wn (observation equation)
sn+1 = Asn + vn (state equation)

(1)

where n = 1, . . . , N label the uniform sampled data in time,
and

b = [1 0 · · · 1 0]
T (2)

A = diag(A1, · · · ,Al, · · ·AL) (3)

Al = exp(−γl)
[
cosωl sinωl
− sinωl cosωl

]
, (4)

with ωl ∈ [0, π] and γl > 0 denoting the (angular) frequency,
and the log-damping coefficient of the l’th sinusoid, respec-
tively. Further, sn is the state vector, and vn and wn are
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white Gaussian state and observation noise sequences with
covariance matrix Q and variance σ2

w, respectively. We also
assume a Gaussian prior for the initial state vector s1 with
mean vector µ and covariance matrix P . For a non-zero
state covariance matrix, the dynamic sinusoidal model in (1)
is able to model non-stationary tonal signals such as a wide
range of speech and audio signal segments. We are here con-
cerned with the problem of performing interpolation and pa-
rameter estimation in the model in (1) from a Bayesian per-
spective which offer some conceptual advantages to classical
statistics (see, e.g., [8]). For example, the Bayesian approach
offers a standardised way of dealing with nuisance parame-
ters and signal interpolation [4]. The downside of using the
Bayesian methods is that they struggle with practical prob-
lems such as evaluation of high-dimensional and intractable
integrals. Although various developments in Markov chain
Monte Carlo (MCMC) methods (see, e.g., [9]) in recent years
have overcome these problems to a great extend, the meth-
ods still remain very computational intensive.

Within the field of econometrics, the dynamic sinusoidal
model in (1) is well-known and referred to as the stochastic
cyclical model [10]. Two slightly different stochastic cyclical
models were given a fully Bayesian treatment using MCMC
inference techniques in [11] and [12]. Neither of these, how-
ever, considered the case where some observations are miss-
ing. In the audio and speech processing field, the dynamic
sinusoidal model has also been considered by Cemgil et al. in
[13, 14, 15]. However, they considered the frequency param-
eter as a discrete random variable and based their inference
on approximate variational Bayesian methods.

In this paper, we extend the above work by developing
an inference scheme for the dynamic sinusoidal model based
on MCMC inference techniques. We consider the frequency
parameter as a continuous random variable and allow some
of the observations to be missing. To achieve this, we develop
a Gibbs sampling scheme. The output of this sampler can be
used for forming histograms of the unknown parameters of
interest. These histograms have the desirable property that
they converge to the probability distribution of these un-
known parameters when the number of generated samples is
increased, and they therefore enable us to extract statistical
features for the model parameters as well as for performing
the interpolation of the missing observations. It should be
noted that although this inference scheme can be used for
estimating parameters of signals with no missing observa-
tions, the primary focus of this paper is on the application
of reconstructing missing observations from signal segments
which are assumed to have been generated by a dynamic
sinusoidal model.

The paper is organised as follows. In Sec. 2, we formalise
the problem by setting up the Bayesian framework. This en-
ables us in Sec. 3 to develop the interpolation and inference
scheme. In Sec. 4, we illustrate the performance of the inter-



polating scheme by use of simulations, and Sec. 5 concludes
this paper.

2. PROBLEM FORMULATION

In the Bayesian approach, all variables of the model in (1)
are random variables, and we partition them as

Observations: y = [y1, y2, · · · , yN ]
T

Latent variables: S = [s1, s2, · · · , sN ]

Model parameters: θ = {ω,γ, q, σ2
w}

where ω, γ and q are L-dimensional vectors consisting of
the L frequencies, the L log-damping parameters and the
L state noise variances, respectively. The nth state vector
sn =

[
sTn,1, · · · , sTn,L

]T consists of L two-dimensional state
vectors pertaining to the L sinusoids. Conditioned on the
previous state vector, each of these L two-dimensional state
vectors has isotropic covariance matrix qlI2, where I2 is the
2×2 identity matrix, so thatQ = diag(q)⊗I2 where ⊗ is the
Kronecker product. We also assume that R of the elements in
y are missing or corrupted, and that we know their indices
I ⊂ {1, . . . , N}. Using this set of indices, we define the
vectors ym , yI and yo , y\I containing the R missing
or corrupted observations and the N −R valid observations,
respectively. The notation (·)\∗ denotes ’without element ∗’.

The primary objective of this paper is to recover ym
from yo. This can be achieved in various ways, e.g., by us-
ing MAP/MMSE estimate w.r.t. the posterior distribution
p(ym|yo) or by drawing a sample from p(ym|yo). The MAP-
based interpolation produces the most probable interpolants.
For audio and speech signals, however, MAP/MMSE-based
interpolation tends to produce over-smoothed interpolants in
the sense that they do not agree with the stochastic part of
the valid observations [16]. A more typical interpolant can
be obtained by drawing a single sample from p(ym|yo) [4].
The posterior distribution for the missing samples given the
valid samples is given by

p(ym|yo) =

∫
p(ym|SI , σ2

w)p(S,θ|yo)dSdθ . (5)

We are not able to draw a sample directly from p(ym|yo)
since we are not able to integrate the nuisance parameters
S and θ out analytically. However, we can obtain a sam-
ple from p(ym|yo) by taking a single sample from the joint
posterior distribution p(ym,S,θ|yo) and simply ignore the
generated values for S and θ. From the observation equa-
tion of (1), we know the distribution of p(ym|SI , σ2

w), so the
only problem left is computing p(S,θ|yo). This distribution
is by Bayes’ theorem given by

p(S,θ|yo) =
p(yo,S\1|s1,θ)p(s1,θ)

p(yo)
(6)

where p(yo,S\1|s1,θ), p(s1,θ) and p(yo) are referred to as
the likelihood, the prior and the model evidence, respectively.
Under the above assumption, the likelihood can be factored
as

p(yo,S\1|s1,θ) =p(yo|S\I , σ2
w)

×
N−1∏
n=1

L∏
l=1

p(sn+1,l|sn,l, ql, ωl, γl) (7)

which from (1) is seen to be a product of normal distribu-

tions. For the prior distribution, we assume the factorisation

p(s1,θ) = p(s1)p(ω)p(γ)p(q)p(σ
2
w)

= p(s1)

[
L∏
l=1

p(ωl)p(γl)p(ql)

]
p(σ2

w) (8)

where p(s1) has a normal distribution N (s1;µ,P ), p(ωl) has
a uniform distribution U(ωl; 0, π), p(γl) has an exponential
distribution Exp(γl;λl), and p(σ2

w) and p(ql) have inverse
gamma distributions IG(σ2

w;αw, βw) and IG(ql;αv,l, βv,l).
The model evidence p(yo) is independent of S and θ and
is therefore a mere scale factor which can be ignored in the
inference stage.

3. INFERENCE SCHEME

In the Bayesian framework, all statistical inference is based
on the posterior distribution over the unknown variables or
a marginal posterior distribution over some of these. As de-
rived in the previous section, we have to generate samples
from p(S,θ|yo) in order to be able to do this. Unfortunately,
this distribution has a very complicated form, and we are
therefore not able to sample directly from it. We therefore
have to resort to other sampling techniques in order to enable
statistical inference based on this distribution. One of the
simplest and most popular numerical sampling techniques is
the Gibbs sampler [17] which is an MCMC-based algorithm
and suitable for this task. The Gibbs sampler draws samples
from a multivariate distribution, say p(x) = p(x1, . . . ,xK),
by breaking it into a number of conditional distributions
p(xk|x\k) of smaller dimensionality from which samples are
obtained in an alternating pattern. Specifically, for the τ ’s
iteration, we sample for k = 1, . . . ,K from

x
[τ+1]
k ∼ p(xk|x[τ+1]

1 , . . . ,x
[τ+1]
k−1 ,x

[τ ]
k+1, . . . ,x

[τ ]
K ) . (9)

After an initial burn-in time during which the sampling
scheme converges, the samples obtained from sampling these
lower dimensional conditional distributions can be regarded
as samples from the joint posterior distribution. In this pa-
per, the posterior distribution p(S,θ|yo) is broken into the
two conditional distributions given by

States: p(S|θ,yo) (10)
Model parameters: p(θ|S,yo) (11)

The selected grouping of variables in (10) and (11) leads to
a set of conditional distributions which are fairly easy to
sample from. In the next sections, we derive the particular
form of these conditional distributions.

3.1 States
The conditional state distribution in (10) can be shown to
be a multivariate Gaussian distribution. However, the di-
mension of this distribution is 2LN × 1 which would render
direct sampling from it infeasible for most applications. In-
stead, we use the simulation smoother [18], which is an ef-
ficient sampling scheme using standard Kalman smoothing,
for drawing samples from (10). Since some of the observa-
tions are missing, we have to modify the simulation smoother
slightly. This is easily done by skipping the update step of
the build-in Kalman filter for these observations.

3.2 Model Parameters
Since the model parameter of the observation equation, σ2

w,
and the L sets of model parameters of the state equa-
tion, (ωl, γl, ql), are mutually independent conditioned on



the states S, we can factor (11) as

p(θ|S,yo) =

[
L∏
l=1

p(ωl, γl, ql|S)
]
p(σ2

w|S,yo) . (12)

Thus, sampling from the conditional distribution in (11) can
be done by sampling the L + 1 conditional distributions on
the right side of (12) independently.

3.2.1 Frequency, Log-damping and State Noise Variance
To our knowledge, it is not possible to sample directly from
the conditional distribution p(ωl, γl, ql|S). A Gibbs sampling
scheme is also not straight-forward since it suffers from poor
mixing and since the l’th log-damping coefficient conditioned
on the l’th frequency parameter and state noise variance has
a non-standard distribution. In order to improve mixing of
the parameters and lower the overall computational com-
plexity, we therefore propose sampling from p(ωl, γl, ql|S)
by use of a Metropolis-Hastings (MH) sampler [19]. In the
MH sampler, samples generated from the desired posterior
distribution, say p(x), which we know up to some normalis-
ing constant Z with p(x) = p̃(x)/Z, are generated by use of
a user-defined proposal distribution q(x|x[τ ]), where x[τ ] is
the τth generated sample. In general, p(x) 6= q(x|x[τ ]) so a
proposed sample x′ ∼ q(x|x[τ ]) is only accepted as a sample
from p(x) with probability

α(x[τ ],x′) = min

[
1,

p̃(x′)q(x[τ ]|x′)
p̃(x[τ ])q(x′|x[τ ])

]
. (13)

Otherwise, the previous accepted sample is retained, i.e.,
x[τ+1] = x[τ ].

For p(ωl, γl, ql|S), the proposal samples (ω′l, γ
′
l , q
′
l) are

generated in two simple steps: First, we generate a sample
for the mean and variance of a bivariate normal-scaled in-
verse gamma distribution with isotropic covariance matrix.
This is done by sampling from

q′l ∼ IG(αql , βql) (14)

τ ′l ∼ IG(αql , 1/2) (15)

a′l =
[
a′1,l a′2,l

]T ∼ N (µa,l, 2βqlτ
′
lσ

2
a,lI2) (16)

where we have defined

ϕl ,
[
sT2,l sT3,l · · · sTN,l

]T (17)

φl ,
[
sT1,l sT2,l · · · sTN−1,l

]T (18)

φ̃l ,
[
(s⊥1,l)

T (s⊥2,l)
T · · · (s⊥N−1,l)

T
]T (19)

Φl ,
[
φl φ̃l

]
(20)

σ2
a,l , (φTl φl)

−1 (21)

µa,l , σ2
a,lΦ

T
l ϕl (22)

αql , αv,l +N − 1 (23)

βql , βv,l + (ϕTl ϕl − σ−2
a,lµ

T
a,lµa,l)/2 , (24)

and s⊥n,l is obtained by a 90◦ clockwise rotation of sn,l. Sec-
ond, we transform a′l into (ω′l, γ

′
l) by the relations

ω′l = arctan(a′2,l/a
′
1,l) (25)

γ′l = − ln
(
a′Tl a

′
l

)
/2 . (26)

1. Select hyperparameters and initialise the Gibbs sampler.
2. Repeat for k = 0, 1, 2, . . . ,K

(a) S[k+1] ∼ p(S|θ[k],yo) (simulation smoother)
(b) Repeat for l = 1, 2, . . . , L

i. q′l ∼ IG(α[τ ]
ql , β

[τ ]
ql )

ii. τ ′l ∼ IG(α[τ ]
ql , 1/2)

iii. a′l ∼ N (µ
[τ ]
a,l, 2β

[τ ]
ql τ
′
lσ

2
a,l

[τ ]
I2)

iv. ω′l = arctan(a′2,l/a
′
1,l)

v. γ′l = − ln
(
a′Tl a

′
l

)
/2

vi. ul = U(0, 1)
vii. if ul ≤ α

(
(ω

[τ ]
l , γ

[τ ]
l , q

[τ ]
l ), (ω′l, γ

′
l , q
′
l)
)

• (ω
[k+1]
l , γ

[k+1]
l , q

[k+1]
l ) = (ω′l, γ

′
l , q
′
l)

else
• (ω

[k+1]
l , γ

[k+1]
l , q

[k+1]
l ) = (ω

[τ ]
l , γ

[τ ]
l , q

[τ ]
l )

(c) σ2
w

[k+1] ∼ IG(α[τ ]

σ2
w
, β

[τ ]

σ2
w
)

Table 1: Summary of proposed Gibbs sampler for generating
samples from p(S,θ|yo).

Then, if a′2,l ≥ 0, the proposal samples (ω′l, γ
′
l , q
′
l) are ac-

cepted as samples from p(ωl, γl, ql|S) with probability

α
(
(ω

[τ ]
l ,γ

[τ ]
l , q

[τ ]
l ), (ω′l, γ

′
l , q
′
l)
)

= min
[
1, exp

{
(λl − 2)(γ

[τ ]
l − γ′l)

}]
. (27)

Otherwise, the previous values (ω
[τ ]
l , γ

[τ ]
l , q

[τ ]
l ) are retained.

Notice that if the rate parameter λl of the prior for γl is
equal to two, α = 1 for any γ′l . The details of the derivation
of this sampling scheme can be found in [20].

3.2.2 Observation Noise Variance
By Bayes’ theorem, we can write p(σ2

w|S,yo) as

p(σ2
w|S,yo) ∝ p(yo|S\I , σ2

w)p(σ
2
w) (28)

where p(yo|S\I , σ2
w) is the likelihood of the observation

equation in (1) and p(σ2
w) is the prior distribution for σ2

w.
Since p(yo|S\I , σ2

w) = N (ST\Ib, σ
2
wIN−R) and p(σ2

w) =

IG(αw, βw), the posterior distribution p(σ2
w|S\I ,yo) is an

inverse gamma distribution, IG(σ2
w;ασ2

w
, βσ2

w
), with param-

eters

ασ2
w
= αw +N/2 (29)

βσ2
w
= βw +

1

2
(yo − ST\Ib)T (yo − ST\Ib) . (30)

3.3 Summary of Inference Scheme
Table 1 summarises our proposed Gibbs sampler for generat-
ing samples from p(S,θ|yo). The computational complexity
of the algorithm is fairly high primarily due to the generation
of the states by the simulation smoother. In our implementa-
tion with N = 600 observations and L = 6 sinusoids, it takes
approximately 40 ms for generating a state sample S[τ ]. This
corresponds to nearly 97 % of the time consumption of one
iteration of the Gibbs sampler. For the application of in-
terpolation, we only need a single sample for the states and
model parameters from the invariant distribution of the un-
derlying Markov chain of the sampler. Once these have been
generated, we may perform the interpolation by simulating
from the observation equation of (1). Therefore, the com-
putational complexity of the algorithm heavily depends on
proper initialisation and the convergence speed of the chain.
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Figure 1: Plot (a) shows the six traces for the frequencies each consisting of 10,000 samples. Plot (b) shows the spectrogram
for the complete speech signal whereas plot (c) shows the periodogram for the section indicated in plot (b). The time series
corresponding to this section is shown in plot (d) with the middle section of 25 ms audio missing. The plot also shows the
result of the interpolation in terms of the 95 % credible interval, a sample from the marginal posterior distribution p(ym|yo)
and the true missing observations (dashed).

4. SIMULATIONS

We consider the problem of reconstructing missing or cor-
rupted packets on a packet-based network. First, we illus-
trate the reconstruction process and, second, we present the
results of a small-scale listening test.

4.1 Speech Signal Reconstruction
We used a snapshot from a speech signal (see Fig. 1.d) con-
sisting of N = 600 samples corresponding to 75 ms of speech
at a sampling frequency of 8000 kHz. The speech signal is
generated by a female voice uttering, "Why were you away a
year, Roy?" and its spectrogram in shown in Fig. 1.b. The
periodogram of the 75 ms speech signal segment is shown in
Fig. 1.c. Prior to running the Gibbs sampler, we removed
the middle section thus emulating a lost audio packet of 25
ms. For the setup of the Gibbs sampler, we assumed L = 6
sinusoidal components, and we selected the hyperparameters
such that the prior distributions were diffuse. The initial val-
ues for the frequency and the observation noise variance were
computed by using a matching pursuit algorithm. The initial
values for the log-damping coefficients and the state noise co-
variances were somewhat heuristically set to 0 and σ2

w
[0]
/10,

respectively. Fig. 1 shows the main results of the simula-
tion. Fig. 1.a shows the six traces of samples obtained for
the frequency parameters. After a burn-in length of approx-
imately 1000 samples the underlying Markov chain seems to
have converged to the true posterior distribution for the fre-

quencies. Inference for the frequency parameters can thus be
based on histograms formed by the the last approximately
9000 samples. In a similar way, histograms for the remaining
model parameters can be formed. Fig. 1.d shows a typical
sample obtained for the missing observations compared to
the true signal. Notice, that unlike maximum likelihood-
and EM-restoration techniques, the noise is also modelled
when performing the interpolation in the Bayesian frame-
work. Fig. 1.d also shows an estimate of the 95 % credible
interval for the missing observations.

4.2 Listening Test
We conducted a small-scale MUSHRA listening test [21, 22]
to evaluate the performance of the interpolation scheme. In
addition to the speech signal, we also used an excerpt from a
trumpet signal. Both of these signals were partitioned in 25
ms packets and transmitted through four artificial channels
where packets were lost independently with probabilities of
5 %, 10 %, 20 % and 30 %, respectively. On the receiver
side, we applied our proposed interpolation scheme to the
missing packets. For every gap of one or more consecutive
missing packets, we used the valid packet before and after
the gap as in Fig. 1. We compared the interpolant (A) from
p(ym|yo) against the MMSE interpolant (B) E{ym|yo} and
the interpolant (C) from p(ym|yo,θ

MAP). The MMSE and
MAP estimates were computed from the last 9000 generated
samples from the Gibbs sampler. For the anchor signal, we
used zeros for the interpolation. Fig. 2 shows the results ob-



Ref. Anchor A B C
0

20

40

60

80

100

(a) Trumpet Signal

Ref. Anchor A B C

(b) Speech Signal

5 %

10 %

20 %

30 %

Figure 2: Mean and 95 % confidence intervals for the MUSHRA listening test. The reference signal was transmitted through
four artificial channels with independent packet-loss probabilities of 5 %, 10 %, 20 % and 30 %, respectively. For the anchor
signal, the missing packets were interpolated with zeros while the interpolation for A, B and C were based on p(ym|yo),
E{ym|yo} and p(ym|yo,θ

MAP), respectively.

tained by applying the statistical analysis suggested in [21] to
the scores given by ten listeners. The listening test clearly
revealed that reconstructing missing packets of the highly
tonal and fairly stationary trumpet signal was much more
successful than for the speech signal. The results also re-
vealed that the interpolation based on E{ym|yo} performed
better than the other methods.

5. CONCLUSION

Based on a Gibbs sampler, we have presented a Bayesian in-
ference scheme for the missing observations, the states and
the model parameters of a dynamic sinusoidal model. This
model is able to model some non-stationary signal segments
which are often encountered in music or speech signal pro-
cessing. In the simulations, we demonstrated that the al-
gorithm can be used for interpolation of audio and speech
signals. This is an integral part of many signal process-
ing applications such as packet-loss concealment, pitch- and
time-scale modification. Additionally, the inference scheme
can also be used for making inference about the unknown
model parameters of the dynamic sinusoidal model.
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