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SEPARATION OF MIXED PHASE SIGNALS BY ZEROS OF THE Z-TRANSFORM
- A REFORMULATION OF COMPLEX CEPSTRUM BASED SEPARATION BY CAUSALITY

C.F. Pedersen, O. Andersen, P. Dalsgaard

Department of Electronic Systems, Aalborg University, Aalborg, Denmark
{cfp,0a,pd}les.aau.dk

ABSTRACT

In recent studies, a non-parametric speech waveform repre-
sentation (rep.) based on zeros of the z-transform (ZZT) has
been proposed. The ZZT rep. has successfully been applied
in separating mixed phase signals, e.g. pitch-synchronously
windowed speech, into min/max phase by using the unit cir-
cle as discriminant. As the ZZT rep. is obtained by factor-
ization of the z-transform, relations to the complex cepstrum
(CC) exist. The present paper interrelates the ZZT rep. with
the CC via factorization of the z-transform, and demonstrates
that unit circle discrimination of a ZZT rep. can be formu-
lated as a CC based separation by causality. A numerical
experiment supplements theory by separating a range of LF
glottal flow waveforms into their opening and closing phase
constituents. Further, randomized mixed phase sequences are
separated. As the CC based separation also can be obtained
via FFT it has a lower time and space complexity than the
77T based counterpart.

Index Terms— Zeros of the z-transform, complex cep-
strum, mixed phase separation

1. INTRODUCTION

Production of human speech is commonly considered as ei-
ther quasi-periodic or randomized sources of energy, i.e. air-
flow through the glottis in the larynx, modulated by a time-
varying filter function determined by the shape of the suprala-
ryngeal vocal tract; this model, referred to as the source-filter
model, is often attributed to [1]. Separation of the source and
filter components in voiced speech has been a subject of study
for several years in the speech science community. A preva-
lent separation method, that dates back about fourty years, is
by homomorphic deconvolution via complex cepstrum (CC)
[2, 3, 4]; cf. [5] for a survey of CC analysis techniques and
application domains.

Recently, a non-parametric speech waveform representa-
tion (rep.) based on zeros of the z-transform (ZZT) has been
proposed [6]. The ZZT rep. has successfully been applied
in separating mixed (mix) phase signals into minimum (min)
and maximum (max) phase, e.g. separation of source and fil-
ter components in pitch-synchronously windowed speech, by
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using the unit circle (UC) in the complex plane as discrimi-
nant [6]. A tight relation between the ZZT rep. and the CC
exist as they both can be obtained by factorization of the z-
transform [6, 7].

The present paper demonstrates the relationship between
the ZZT rep. and the CC via factorization of the z-transform,
and demonstrates that UC discrimination of a ZZT rep. can
be formulated as CC based separation by causality. The two
separation methods are denoted ZSM and CSMy,, (ZZT/CC
based mix phase signal separation method); subscript fac in-
dicates the CC is obtained by factorization. Thereby, the re-
cently proposed ZSM is interrelated with a well-known and
developed body of theory.

To supplement the analysis, a numerical experiment is
conducted. Employing the ZSM and CSMy (subscript fft de-
notes that the CC is obtained by FFT), a range of glottal flow
waveforms, generated by the Liljencrants-Fant (LF) glottal
flow model (GFM), are separated; a LF GFM sequence is
mix phase, the opening part is max and the closing part is
min phase [8]. Also, a range of randomized mixed phase se-
quences are separated. The CSMgg has a lower time and space
complexity than the ZSM; this is supplemented by measuring
running times and memory usage during the experiments.

The remainder of this paper is organized as follows. The
relationship between the ZSM and CSM,. is demonstrated in
section 2, and in section 3 mix phase separation is exempli-
fied by a numerical experiment. The results are presented in
section 4, and in section 5 the results are discussed along with
future perspectives.

2. SEPARATION OF MIXED PHASE SIGNALS

In this section, the ZSM and CSMy,. are established and in-
terrelated. First, the concepts of min, max and mix phase
sequences are defined.

2.1. Minimum, maximum and mixed phase signals

A signal is min, max or mix phase if its z-transform is min,
max or mix phase respectively. This leads, by factorization of
the z-transform polynomial, to the following definition.
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Definition 1 Min, max, and mix phase polynomials
Denote the zeros of the complex polynomial

— —-n Lo HZ;%(Z B Zm)
X(z) = anz = =y , T #0
n=0

by z1, 22, ..., zp € €\ {0}, then X (2) is

min phase if |zp| <1,
max phase if |z,| > 1, and
mix phase if  3i,j |z <1A |z >1

where m,i,j € [1; M]

2.2. Zeros of the z-transform based separation (ZSM)

The ZZT rep. is defined as an all-zero rep. of the z-transform
of a signal sequence, i.e.

Definition 2 Zeros of the z-transform

The zeros of the z-transform of a sequence (x,,) 71:[:_01 C Rare
defined as z1, za, ...,z € ©\ {0} such that

X(z) =N wpz " = 0for1 <i < M.

n=0

Factorization of the z-transform yields (cf. def. 1)

M, M;
X(Z) _ Lo Hm:l(z — Zoﬁm) Hm,:l(z — Zi,m)

iy 2.1

Provided z( # 0.

Hence, the ZZT is an unordered sequence of the zeros of
the assumed polynomial function in the numerator deducted
by any poles, i.e. zeros at zero in this case, as these lead to
an undefined z-transform. The min/max phase separation is
done by separating the zeros inside the UC, |z; ,,,| < 1, from
those outside, |z, ,,| > 1 (cf. def. 1).

2.3. Complex cepstrum based separation (CSMg,, )

The complex cepstrum is defined as

Definition 3 Complex cepstrum [4, chap. 12]
The complex cepstrum, (Z,,) C R, of (z»,) C R is defined as

() = F~{tog. [ F{(zn)}] }

1 4 ) .
=5 loge[X (€")])e*™™ dw

—T

Where F{(z,)} = X(e) = > xp,e ™" is the
discrete-time Fourier transform, F~1{ X (e™)} = (x,) =
= |7 X(e™)e™™ dw is the inverse ditto, and loge(z) =
loge|z| + i arg(z) is the complex logarithm where arg(z) is
the continuous phase function.

By expressing the z-transform as in (2.1), the CC can be
computed by factorization of the z-transform polynomial; this
method circumvents phase unwrapping [4, chap. 12] [7].
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M.
e - mi Z?m n, n> 07
(Zn) = Zle ;; / (22)
Zm:l Zo,m/n7 n < 0

Where z; ,,, are zeros inside the UC and z, ,,, are zeros out-
side. For completeness, (&) = In|A| for n = 0.

Hence, the min/max phase separation is achieved by
causality of the CC. The CC is causal, i.e. (Z,) = 0 for
n < 0, iff (z,,) is min phase. Equivalently, the CC is anti-
causal, i.e. (&,) = 0 forn > 0, iff (x,,) is max phase.

Finally, by comparing (2.1) and (2.2) the relationship be-
tween the ZSM and the CSMg,. can be established. In both
methods, zeros within the UC explain min phase signals and
zeros outside the UC explain max phase signals.

3. NUMERICAL EXPERIMENT

The experiment is to compare time and space complexity, run-
ning time, and memory usage of the ZSM and CSMy . The
dataset of mix phase sequences, on which to execute the al-
gorithms, is divided in two halves; one half is LF GFM se-
quences as the origin of the study is source-filter separation
and one half is, to generalize the experiment, randomized se-
quences constructed by convolving min and max phase se-
quences. Further, the latter allow easy verification of the sep-
aration by reconstructing the min/max phase constituents.

3.1. Data material
3.1.1. LF Glottal flow sequences

The LF GFM is defined by the derivative of the glottal flow;

Definition 4 Liljencrants-Fant glottal flow model [9]

eo(t) = Epe*tsin(wyt), to <t <t
ect) = L= (em<Ute) —emeliemte)) - p, <t <t
es(t) =0, te<t<T

Where ¢,(t), e.(t) and e (t) are the opening, closing and
shut parts respectively. The LF GFM is used to generate 1000
mix phase sequences; e, (t) is max and e.(t) is min phase [8].
Possible sequences with zeros on the UC are removed. The
following LF-GFM parameter variations are allowed.

to =0, t. = 0.01
t, € [0.23;0.72]t, te € [0.30;0.80]¢,
tq €[0.0004;0.2523]t,, E.=1

The parameter ranges - each sampled ten times equidis-
tantly - span the predominant varieties of normal speech qual-
ity [8]. Typical sampling frequencies in speech rep.s are in
[4;24]k H z; in this experimement ¢, = 0.01, thus the range
of coefficient sequence lengths are N € [40; 240]; however,
this is expanded to N € [40;539] to illustrate the asymp-
totic behaviour of ZSM and CSMy, . With 500 elements in
[40; 539] two different sequences per length exist.



3.1.2. Randomized sequences

Th. 1 is employed to supplement the data material.

Theorem 1 Enestrom-Kakeya [10]

N
If pla,z) = Zanz” with ag > a1 > ... > ayn > 0,

n=0

then all the zeros of p(a, z) lie outside the open unit disk.
Conversely, if any > an—1 > ... > ag > 0, then all the zeros
of p(a, z) lie in the closed unit disc.

For max phase sequence generation, i.e. ag > a3 > ... >
ay > Oallin R, let ay = 1, ay_1—; = an_; + r for
1 € [0; N — 1] and r ~ U]0, 1]. The continuous uniform dis-
tribution is denoted by ¢/. Equivalently, min phase sequences
are generated by reversing the coefficient ordering. 1000 min
and 1000 max phase sequences are generated; possible se-
quences with zeros on the UC are removed. The min/max
phase sequences - same lengths +1 - are convolved to obtain
mix phase sequences of lenghts N € [40;539]; again, two
different sequences per length exist.

3.2. Comparison of time complexity and running time

The drawback of the ZSM is time complexity of factoriz-
ing high-degree polynomials; the Matlab® function roots()
estimates eigenvalues of a polynomial’s companion matrix
in time O(n®) [11]. In the remainder, Matlab©® function
names are set with typewriter typeface. CSMyy is based
on FFT, IFFT, phase-unwrapping, and the real logarithm;
fft(),ifft() € O(n log n) [12] and unwrap(), log() €
O(n). Combined, this yields an asymptotic time complex-
ity for CSM¢ of O(n log n) as FFT and IFFT dominates.
Evidently, the time complexity of CSMyy is lower than ZSM.

Fig. 1 illustrates running times (measured with tic/toc)
of ZSM and CSMy; as functions of input sequence length dur-
ing two consecutive executions of ZSM and CSMg; on the
dataset. As four different sequences, two from each dataset,
with the same length exist, the average running time per
sequence length is reported. By visual inspection, practice
illustrate theory. The sudden jump and offset (persistent
through ten additional tests) in the ZSM curve at 2° pertain
presumably to the eig () implementation.

3.3. Comparison of space complexity and memory usage

The function roots () has a space complexity of O(n?)
[11]. The CSMy; core functions £ft(), ifft(), unwrap()
and log() are all in O(1), i.e. the space needed per function
is constant wrt. input sequence length. For ££t() and 1fft()
in-place algorithms keep space complexity constant, e.g. [12,
13]. Combined, this yields a constant space complexity for
CSMg which is lower than the complexity of ZSM.
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Fig. 1. Running times in two consecutive executions of

CSMg (upper) and ZSM (lower) on the dataset.

Measuring memory usage is deceptive when memory
management is handled automatically; in this experiment
Matlab® determines allocation timing/quantity and poten-
tial time-space-tradeoffs. When executing a function, the
function and its context is pushed into memory, so bare con-
sumption of ZSM and CSMg cannot be isolated. However, it
is still interesting, from a practical point of view, to illustrate
and exemplify the memory used by Matlab® during execu-
tion of the algorithms; this is done in Fig. 2 where memory is
measured with memstats. As in section 3.2 the average per
sequence length is found.

1 wu ¥ 7 T \\VFJ 1= =

0.5 1

Memory [MB]

ol . . . . . . . . .
50 100 150 200 250 300 350 400 450 500

Sequence length, N

=)
>
e
g

2 T
Q
2 LN

50 100 150 200 250 300 350 400 450 500
Sequence length, N

Fig. 2. Memory usage in two consecutive executions of

CSMgs; (upper) and ZSM (lower) on the dataset.

By visual inspection, ZSM uses on average more memory



than CSMg¢ which to some degree support theory; especially
for one of the runs, the usage is constant for CSMg . The
asymptotic behaviour is not expressed.

4. RESULTS

A recent mixed phase separation method, ZSM (cf. (2.1)),
based on zeros of the z-transform has been interrelated to a
well established method, CSMg,. (cf. (2.2)), based on com-
plex cepstrum causality. It is demonstrated that both methods
rely on z-transform factorization and the distribution of zeros
on either side of the UC in the complex plane; zeros within
the UC explain the min phase signal component and zeros
outside the UC explain the max phase component.

Further, the ZSM and CSMg; have been compared the-
oretically wrt. time and space complexity (cf. section 3.2
and 3.3 respectively) and practically wrt. running time (cf.
fig. 1) and memory usage (cf. fig. 2). It is shown that the
CSMy; outperforms ZSM in both time and space complex-
ity; this is underpinned by the running time experiment and
to some degree by the memory usage experiment.

5. DISCUSSION

As the ZZT rep. rely on factorization of the z-transform, time
complexity impede real time operation in continuous source-
filter separation. To alleviate the burden, it would be relevant
to investigate methods for re-estimation of zeros based on co-
efficient pertubations, i.e. utilize a-priori knowledge about
coefficients.

Table 1 summarizes pros/cons - based on the results from
this paper and related literature - for the ZSM and CSMgg .

Alg. Pros Cons
S  No phase unwrapping In time O(n?)
& No aliasing In space O(n?)
No zeros must be on UC
£ Intime O(nlogn) Phase unwrapping
;J In space O(1) Aliasing
@)

Table 1. Pros and cons of ZSM and CSMy; .
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