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Abstract

This thesis deals with the problem of multiuser decoding in the presence
of unknown channel parameters in the uplink of code-division multiple
access (CDMA) systems. Inspirited by the variational Bayesian expectation-
maximization algorithm, a theoretical framework that uses a divergence
minimization (DM) criterion is derived. The DM method provides a uni-
fied approach to jointly design the main components of an iterative CDMA
receiver: channel weight estimator, noise variance inverse estimator, mul-
tiuser detector and decoders. In the DM method, the Kullback Leibler
(KL) divergence between a postulated auxiliary distribution and the orig-
inal joint posterior distribution of the unknown parameters is defined and
minimized in an iterative fashion. Compared to most heuristic approaches
proposed in the literature, the advantage of this systematic approach is
threefold: the components of the iterative receiver are optimized globally;
the sequence of estimated auxiliary distributions is always guaranteed to
converge in KL divergence; and the messages that are passed between the
different components are derived within the framework.

In this thesis, we have selected two auxiliary distributions to design
two receiver structures with different performances and complexities. The
first receiver (DM3) performs joint-user channel weight estimation, noise
variance inverse estimation, successive interference cancellation and single-
user decoding in an iterative fashion. The second receiver structure (DM5)
is similar to the first one except that it performs separate-user channel
weight estimation, which results in a lower complexity.

The receiver structures derived within the DM framework differ from
nowadays published related structures in the following characteristics: 1)
The means and variances of the modulation symbols fed into the inter-
ference cancellation component are computed base on posterior distribu-
tions. This is in contrast to the previously published interference cancella-
tion schemes using extrinsic values, as motivated by applying belief propa-
gation on factor graphs. 2) The noise variance inverse estimator takes into
account the uncertainty on the symbol estimates and the channel weight
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estimates; thus, not only thermal noise but also residual interference are
estimated. The noise variance inverse estimator is a novel alternative
to the traditional instantaneous LMMSE filter applied after interference
cancellation to remove the residual interference in current state-of-the-
art solutions. 3) Single-user decoding employing the BCJR algorithm is
a natural outcome from the derivation within the DM framework. Thus,
the resulting iterative receiver with soft symbol feedback has a guaranteed
convergence in KL divergence.

The DM receivers are compared to a start-of-the-art receiver. It is
shown by means of Monte Carlo simulations, that in low load regime, the
DM3 and state-of-the-art receivers have very similar bit-error-rate perfor-
mance. In high load regime, however, the former receiver outperforms
the latter even in the scenario where the state-of-the-art receiver knows
the noise variance, while this information is not available to the DM3 re-
ceiver. As expected, the DM3 receiver outperforms the DM5 receiver in
high load regime: the latter receiver supports fewer users than the former
at the same signal-to-noise ratio.

vi



Resumeé

Denne afhandling omhandler dekoding af flere brugere i uplink code-
division multiple access (CDMA) systemer under antagelse af ukendte
kanalparamtre. Til lgsning af dette problem udledes pa baggrund af
den variationelle Bayesianske expectation-maximization algoritme en teo-
retisk metode kaldet divergens minimering (DM). DM-metoden ggr det
muligt at opna et samlet optimeringsmal for designet af hovedkomponen-
terne i en CDMA modtager: kanalkoefficient estimation, invers stgjvari-
ans estimation, flerbruger detektion samt kanaldekodning. I DM-metoden
minimeres Kullback Leibler (KL) divergensen mellem en postuleret fordel-
ing og den korrekte simultanfordeling for de ukendte paramtre ved hjelp
af en iterativ procedure. Sammenlignet med de fleste andre heuristiske
metoder foreslaet i litteraturen har denne systematiske metode tre fordele:
komponenterne i den iterative modtager optimeres samlet; den iterative
optimering er garanteret at konvergere i KL divergensen; og beskederne
der udveksles mellem komponenterne kan udledes direkte som en del af
metoden.

I denne afhandling undersgges to fordelinger til design af modtager-
strukturer med forskellig ydeevne og implementeringskompleksitet. Den
fgrste modtagerstruktur (DM3) udfgrer iterativ flerbruger kanalestima-
tion, invers stgjvarians estimation, succetiv interferensfjernelse samt enkelt-
bruger dekodning. Den anden modtagerstruktur udledt fra DM metoden
(DM5) er magen til den fgrste bortset fra at den udfgrer separat enkelt-
bruger kanalestimation, hvilket resulterer i en lavere kompleksitet.

Modtagerstrukturerne udledt fra DM metoden udskiller sig fra andre
relaterede offentliggjorte strukturer pa disse punkter: 1) Middelverdi og
varians af modulationssymbolerne som benyttes i komponenten til inter-
ferensfjernelse beregnes pa baggrund af posteriorfordelinger. Dette stir i
kontrast til tidligere offentliggjorte resultater for interferensfjernelse, som
er baseret pa extrinsicfordelinger motiveret af belief propagation pa fak-
torgrafer. 2) Estimationen af den inverse stgjvarians medtager usikker-
heden pa symbolestimaterne og kanalkoefficienterne; dermed tages der
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hejde for bade termisk stgj samt residualinterferens. Den inverse stgjvari-
ans estimation er et nyt alternativ til det LMMSE filter der traditionelt an-
vendes efter interferensfjernelse i de bedste nuverende lgsninger til at un-
dertrykke evt. resterende interferens. 3) Enkeltbruger dekodning baseret
pa BCJR algoritmen er et naturligt resultat som kommer direkte ud af DM
metoden. Den resulterende iterative modtagerstruktur med soft-symbol
feedback er derfor garanteret at konvergere malt i KL divergensen.

De foreslaede DM modtagerstrukturer sammenlignes med en af de
bedste eksisterende lgsninger. Det illustreres ved hjalp af Monte Carlo
simuleringer at nar systembelastningen er lav opnar DM3 modtageren
samme bitfejlsandsynlighed som andre af de bedste eksisterende Igsninger.
Nar systembelastningen er hgj opnar DM3 modtageren derimod bedre re-
sultater end andre Igsninger, selv nar konkurrerende lgsninger antages at
kende stgjvariansen og dette ikke er tilfeeldet for DM3 modtageren. Som
forventet er DM3 modtageren bedre end DM5 modtageren nir system-
belastningen er stor; den sidstnevnte kan understgtte feerre brugere end
den fgrstnaevnte ved et givent signalstgjforhold.
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Chapter 1

Introduction

With the increasing demand for high data rates in wireless communication
systems, the essential technologies that are employed in these systems are
experiencing rapid evolution. The development of the cellular communi-
cations started with the global system for mobile communications (GSM)
(2G) which paved later the path to general packet radio service (GPRS)
system and enhanced data rates for GSM evolution (EDGE)(2.5G), all
of which are based on time-division multiple access (TDMA). Recently,
networks based on code-division multiple access (CDMA), wideband
CDMA (WCDMA) or time-division synchronous CDMA (TD-SCDMA) (3G)
and their evolution high speed downlink packet access (HSDPA) (3.5G),
have become more and more commercially mature. Lately, the orthogonal
frequency division multiplexing (OFDM) based long term evolution (LTE)
(3.9G) system has been selected by the 3rd generation partnership
project (3GPP) as the international standard of next generation wireless
communications.

There are many ways to improve date rates in communication systems.
Some researchers focus on network level studies, aiming at improving
the overall capacity of the cellular network. Another parallel approach
is to conduct link level studies, i.e., search for improvements in the
performance at link level. This approach can be based on either joint
transmitter and receiver study or on receiver study only.

In this thesis, I only consider the link level performance improvement
arising from using more advanced receiver architectures. More specifi-
cally, the scope of the thesis is to investigate more efficient algorithms for
channel parameter estimation and user data decoding in CDMA receivers.
Here the term channel parameters include the channel weights and the
noise covariance matrix. As a result, a holistic systematic variational
Bayesian approach — divergence minimization (DM) — is formulated and



1. Introduction

its application to the design of CDMA receivers is presented.

Even though this thesis deals with the problem of multiuser decoding
in presence of unknown channels in CDMA systems, the results and the
methodology used to solve this problem can be generalized to other
applications that involve both error-control coding and multiple-access
signaling. For example, the methods and the insights presented in the
thesis can be applied to the problem of multiuser MIMO decoding in
OFDM systems.

1.1 Background

The optimal solution to the problem of multiuser decoding in CDMA
systems can be obtained by maximizing the posterior distribution of
the code symbols given the observations or maximizing the likelihood
function of the code symbols when the codewords are equiprobable.
Maximum likelihood (ML) decoding of coded CDMA was first suggested
in [21], where it was shown that the computational complexity of the
decoding process grows exponentially with the product of the number of
active users and the effective code constraint length. This complexity is
prohibitive for any practical implementations. Therefore, much work has
been devoted to search for suboptimal solutions.

1.1.1 Iterative Multiuser Decoding

Conventionally, the optimal multiuser decoder is replaced by a mul-
tiuser detector followed by a bank of single-user decoders. The multiuser
detector and the single-user decoders operate in a sequential manner.
One decade ago, the discovery of turbo codes and the turbo decoding
method [7] has lead the design of multiuser decoders into a new era: the
turbo era. Inspired by the decoding of serial concatenated interleaved
codes, the most popular suboptimal approaches so far have been based
on the so-called canonical iterative turbo multiuser decoding algorithm
[50]. These schemes iterate between a soft-input soft-output (SISO) mul-
tiuser detector, which ignores coding constraints and individual posterior
distribution decoders, which ignore residual multiuser interference. The
attribute "soft" means that, instead of hard decisions on the symbols, the
distributions or other quantities describing the state of knowledge of the
symbols are used as tentative decisions over the iterations.

The task of the multiuser detector is to separate the users’ signals in
the received signal. Multiuser detection schemes for uncoded data have
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been intensively studied in [57]. Some of the methods in [57] can be
extended to accept soft inputs and provide soft outputs.

The optimal SISO multiuser detector is the so-called multiuser poste-
rior distribution detector. The output of this detector are the marginals of
the joint posterior distribution of all transmitted symbols computed while
neglecting the code constraints, i.e., the code symbols are assumed to be
independent. Iterative multiuser decoders that exchange soft information
between the SISO multiuser posterior distribution detector and the single-
user decoders are proposed in [45, 51]. However, the complexity of the
multiuser posterior distribution detector is still exponential in the number
of users. Thus, an abundance of suboptimal multiuser detectors have been
studied for implementation in iterative multiuser decoders.

One family of suboptimal multiuser detectors applies linear filtering
to remove MAI. The linear filter can be the matched filter, the linear
minimum mean square error (LMMSE) filter or the least square (LS) (also
known as zero forcing (ZF)) filter. These linear filters are applied to the
received signal to separate the signals of individual users. The posterior
distributions of the code symbols are computed based on the output of
the linear filters, usually under the assumption that these outputs are
Gaussian distributed. To calculate the LMMSE or the LS filter coefficients,
a matrix of a size equal to the number of users, K, needs to be inverted.
The complexity of the matrix inversion, in this case, is of the order
O(K3), which is very high for any practical use. Furthermore, this family
of detectors is not able to accept soft information of other users from
previous iterations. Thus, these detectors cannot be extended to be SISO
multiuser detectors.

Another family of suboptimal multiuser detectors is based on linear
interference cancellation (IC). These detectors use some kind of tentative
decisions on the code symbols of some of or all other users to calculate
the interference signal for the user of interest and then suppress this signal
from the received signal. The IC can be performed for all users at the same
time, a process called parallel IC, or sequentially for each user, a process
called successive IC. The interference cancellation can be performed only
once per user or several times for each user to improve the detection
accuracy. When the symbols of the same user are updated more than
once, i.e., the symbols are estimated iteratively, the detectors are called
iterative detectors. Iterative multiuser detectors were intensively studied
in [18, 17, 16, 48]. In these works the hard decisions on the code symbols
are fed back when calculating the MAI. These iterative multiuser detectors
achieve performance similar to that of the previously discussed linear
multiuser detectors, with complexity of the order O(Kmpy), where mpax
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is the maximum number of iterations [50]. One of the big advantages of
the IC schemes is that they can easily accept soft information as input,
e.g., the posterior distributions of the code symbols. This feature of the IC
schemes makes iterative multiuser decoders exchanging soft information
between an IC block and a bank of single-user decoders very popular.

Low complex receiver structures based on intuitive arguments have
also been proposed as a tractable alternative to the receivers that iterate
between the posterior distribution multiuser detector and the single-user
decoders. As already mentioned, IC structures are well integrated in
iterative joint multiuser decoding [2, 3, 46]. To further remove the
residual interference due to the errors in the estimation of the soft
symbols, LMMSE filtering was subsequently proposed in [58, 20, 10]. The
resulting structure is linear IC followed by instantaneous LMMSE filtering
[58]. Such a structure provides better performance at the expense of an
increased complexity. This approach was justified based on probabilistic
data association (PDA) arguments in [55, 56, 54]. Another method
to improve the bit-error-rate performance of IC structure considers the
correlation between the IC outputs in two consecutive iterations [15].

Multiuser decoding becomes more complicated when the channel
parameters, e.g., channel weights and noise variance., need to be
estimated. In this case, the optimal solution is to formulate the joint
posterior distribution of the channel parameters and code symbols,
marginalize this distribution with respect to the channel parameters and
finally, apply a maximum a posteriori (MAP) method to the posterior
probability of the code symbols.

The schemes suggested in [34, 41, 59, 1, 42] are based on a
pre-conceived structure consisting of a channel estimator, a multiuser
interference cancellation detector and a bank of single-user channel
decoders. The iterative structure composed of these three components
makes sense intuitively, but lacks a formal justification.

1.1.2 Theoretical Frameworks for Iterative Receiver Design

In very recent years, a few formal optimization frameworks have been
applied to systematic design of iterative multiuser decoders. The ultimate
goal of these frameworks is to approximate the posterior distribution
of code symbols in such a way that the marginalization of the joint
posterior distribution of the channel parameters and code symbols is easy
to compute and the posterior distribution of the code symbols is easy to
maximize.
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Factor Graphs and Belief Propagation The joint posterior distribution
of the channel parameters and code symbols can be represented on a
factor graph. The marginalization with respect to either the channel
parameters or the code symbols can be performed on the factor graph.
When the factor graph has no cycle, the belief propagation (BP) algorithm
can be used to obtain the exact marginal posterior distributions. However,
for the problem of multiuser decoding the factor graph has cycles; thus,
using the BP algorithm on this graph results in approximations of the
marginal posterior distributions of the code symbols. The canonical
decoders [45, 51] have been recognized to be approximations of the BP
algorithm [39] applied to the factor graph for coded CDMA [9]. The
graph related to the multiuser posterior distribution detector and the
graph related to the single-user posterior distribution decoders appear
to be two connected regions on the factor graph [9]. By passing extrinsic
values between the detection and the decoding regions, the approximated
marginal posterior distributions of the code symbols can be obtained.
Thus the BP algorithm on factor graph provides justification for the
canonical decoder structure. Usually for a large number of users (high
system load), the BP algorithm is too complex for calculating the messages
in the multiuser detection region on factor graph. The receiver structures
[2, 58, 20] simplify the calculation of messages in the multiuser detection
region.

EM and Related Methods The traditional expectation-maximization
(EM) method and the space-alternating generalized EM (SAGE) method
have been applied for many years to approximate the MAP or ML esti-
mates. The sequence of likelihoods of the updated estimates computed in
the EM algorithm is guaranteed to be non-decreasing over the iterations.
Some degree of rigorous justification has been obtained by applying the
EM and SAGE frameworks to the receiver design. In the applications
of the EM and SAGE to CDMA receivers, the channel weights can be
estimated either in the expectation (E)-step or the maximization (M)-step.
When the channel weights are estimated in the E-step, as in [35, 37, 38],
the resulting algorithms perform hard decisions due to the maximization
of the cost function calculated in the E-step. When the channel is
estimated in the M-step, as in [34], the E-step provides soft decisions
on the code symbols. However, the complexity in this case is the same as
that of the optimal multiuser decoder. Thus, some approximations have
to be performed here to reduce the complexity. In conclusion, it is not
possible to formally use soft symbols instead of the hard decisions with a
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reasonable complexity within the rigorous EM/SAGE framework. The soft
symbol versions of EM and SAGE are therefore based on modifications,
violating the original framework in order to accommodate soft symbols
[11, 28, 26]. As a consequence, none of these formal design frameworks
can incorporate posterior distribution decoding as part of the rigorous
optimization process.

Variational Inference Inference methods [32, 31] were proposed to
approximate the joint posterior distribution of all unknown variables
in a stochastic model. In contrast to the EM-like frameworks, which
compute point estimates, the variational inference methods estimate the
marginal posterior distributions of unknown variables. Approximations
of the unknown distributions are computed by minimizing a variational
free energy over the iterations. The variational free energy iteratively
converges to a local minimum. The variational free energy is equivalent to
the Kullback-Leibler (KL) divergence (also called information divergence
or cross entropy). The KL divergence measures the similarity between
a postulated auxiliary distribution and the desired joint posterior dis-
tribution. The resulting distribution minimizing the KL divergence also
minimizes the variational free energy.

One approach of variational inference is based on the Bethe ap-
proximation. Yedidia et. al. [8] showed that, when the Bethe
approximation for the variational free energy is considered, the zero-
gradient points of the Bethe free energy are the stationary points of the
BP algorithm [60, 61] applied to the corresponding factor graph. The
Bethe free energy, however, is not a convex function of the marginal
posterior distribution. Thus, the zero-gradient points are not guaranteed
to minimize the variational free energy. In the problem of multiuser
decoding in CDMA, the Bethe approximation can be applied for free
energy minimization. However, as a result, the messages from the
multiuser posterior distribution detector require the computation of the
joint posterior distribution for the uncoded case which is intractable
complexity-wise [9, 54, 56]. Further simplifications of the message
computation were introduced in [54, 56], leading to messages being
determined by a chip-based cancellation structure similar to the schemes
proposed in [55].

When the postulated auxiliary distribution is restricted to distribu-
tions that can be factorized, the minimization of the variational free
energy becomes particularly tractable. This is the so-called mean-
field approximation. A generalized framework is obtained based on
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variational Bayesian inference, which was proposed by Attias in [4] for
model selection. Beal subsequently introduced the concept of complete
data (known from the EM algorithm [14]) into the variational Bayesian
framework to formulate the variational Bayesian EM (VBEM) algorithm
in [6]. This variational Bayesian framework can be seen as an extension
of the variational inference and the variational EM (VEM) algorithm
proposed in [47]. The EM and SAGE algorithms, representing a formal
optimization framework in their own rights, were shown to be special
cases of the VEM/VBEM algorithms. For single-user MIMO systems,
Christensen et al. proposed an iterative receiver based on the VBEM
algorithm for data and channel parameter estimation [12]. In [43] the
BP algorithm was applied to message passing in coded CDMA, where
multiuser detection is based on the variational inference framework.
Based on particular postulated auxiliary distributions, the structures in
[2] and [58] were formally justified as solutions to variational energy
minimization (equivalent to divergence minimization) approach.

In summary, two intuitive design principles have been studied: mini-
mization of the Bethe free energy (or BP algorithms) and minimization of
the variational free energy based on mean-field approximations. These
principles can be used to justify the pre-conceived iterative receiver
structures.

1.2 Outline of the Thesis

Motivated by the lack of a formal optimization framework for handling
soft symbol processing and inspired by the development of the VBEM
algorithm [6], this thesis proposes and develops such a design framework,
the so-called divergence minimization (DM) method, based on the KL
divergence.

First let us clarify some terminology used for the rest of the thesis. The
channel parameters include the channel weights and the noise variance
or noise covariance matrix. Channel weight estimation is referred
to estimation of the channel weights. The noise estimators perform
estimation of the noise variance inverse or the inverse of noise covariance
matrix.

The joint posterior distribution of the channel parameters and code
symbols is approximated with an auxiliary distribution which fulfills
some pre-defined constraint. The KL divergence between these two
distributions is minimized over the iterations in the iterative DM scheme.
As for the VBEM framework, the auxiliary distribution is constrained to
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some class of factorizable distributions. Depending on the selected fac-
torizations of the auxiliary distribution, iterative receivers with different
structures are obtained within the framework.

In the thesis we have selected two different factorizations of the
auxiliary distribution. Receiver I, derived based on the first factor-
ization, performs joint-user channel weight estimation, noise variance
inverse estimation, successive interference cancellation and single-user
decoding. Receiver II, obtained with the second factorization, is very
similar to Receiver I, except that it performs separate-user channel
weight estimation, instead of joint-user channel weight estimation. The
thesis provides a rigorous derivation of the iterative structure for every
choice of the factorization of the auxiliary distribution within the DM
framework. It shall be noted that as a natural result from this derivation,
posterior distribution based soft symbols are passed between the single-
user decoders, the interference cancellation and the channel weight
estimation components.

Our holistic approach is different from the approaches aiming at
optimizing a pre-conceived structure, as suggested in [34, 41, 59]. Our
resulting receiver has the same structural form as receivers previously
suggested in literature. This result once again justifies the “well-
established” pre-conceived structure that exchanges soft information
among the channel parameter estimator, the multiuser detector and the
single-user decoders. In addition to the justification of the structure, the
type of the soft information is also theoretically justified. Receiver I is less
complex and it achieves slightly better performance than the state-of-the-
art structure suggested in [59].

1.3 Major Contributions of the Thesis

The main contribution in this thesis is to formalize a systematic, holistic
framework for designing advanced iterative receivers that perform chan-
nel parameter estimation and multiuser decoding. The application of the
framework to the design of CDMA receivers has the following remarkable
advantages:

e The developed framework is based entirely on divergence minimiza-
tion. It updates the auxiliary distribution to obtain a closer ap-
proximation to the desired posterior distribution at every iteration.
No prior assumption is made regarding the receiver structure. The
factorization constraint on the auxiliary distribution is the only prior
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constraint required for applying the formal optimization framework.
It determines the structure of the resulting receiver.

e The complexity of the resulting receiver can be adjusted by means
of the degree of the selected factorization. In general, the deeper
the level of factorization of the auxiliary distribution, the lower the
complexity; however, at the cost of a performance loss. For example,
the DM receiver with joint-user channel weight estimation outper-
forms the receiver with separate-user channel weight estimation.
However, the former is more complex than the latter.

e The DM provides a formal optimization framework since the se-
quence of the divergences between the auxiliary distributions re-
turned by the iterative structures and the true posterior distribution
is non-decreasing over the iterations. Finally, the estimated auxiliary
distribution typically converges to an approximation to the true
posterior distribution.

e As a practical outcome of the formal optimization framework,
we obtain iterative algorithms that perform joint channel weight
estimation and decoding of coded CDMA, taking into account all
the first and the second central moments of the unknown variables
as well as the imposed code constraints.

The new proposed receivers provide new insights into iterative ad-

vanced multiuser decoding with parameter estimation:

e So far, when BP algorithm is applied on the factor graph, the
extrinsic values shall be used for updating the messages [9]. Within
the DM framework, this is not the case. As a result of applying the
DM method, the posterior distributions of the code symbols, rather
than the extrinsic values, are forwarded by the single-user posterior
distribution decoders to the channel estimator, the estimator of the
inverse of noise covariance matrix and the IC device, which in turn
forwards extrinsic values to the single-user posterior distribution
decoders.

e The residual interference after IC is implicitly handled in the
estimation of the inverse of the noise covariance matrix. This again
results directly from applying the formal DM framework. This
noise estimator is an alternative solution to the commonly used
LMMSE filter for residual interference mitigation after interference
cancellation applied in other receivers proposed in the literature.

e The inference process includes the covariance matrices of the
auxiliary distributions. In this way, the accuracy of the channel
weight estimates and the code symbol estimates are taken into
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account. Therefore, the DM receiver is a generalization of many
receivers published in the literature, which make use of point
estimates for these quantities and therefore discard the quality or
accuracy of the estimates during the iterations.

Finally, in the DM receivers the divergence between the auxiliary
distribution and the target posterior distribution is guaranteed to
converge. Previously suggested receiver structures that use soft-
decision code symbols do not enjoy any guaranteed convergence

property.
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1.4 Organization of the Thesis

The remainder of the thesis is organized as follows: In Chapter 2 we
discuss the basic concepts of the DM approach and its relationship to
the VBEM, the EM and the SAGE algorithms. The system model for a
synchronous CDMA system operating in flat fading channels is described
in Chapter 3. In Chapter 4 we apply the DM algorithm with the
first factorization constraint on the auxiliary distribution to derive the
first receiver for the scenario described in Chapter 3. The resulting
receiver performs joint-user channel weight estimation, noise covariance
matrix inverse estimation, successive interference cancellation and single-
user decoding. Its structure is compared to that of the state-of-the-
art receiver [59]. The performance of both receivers are compared by
means of Monte Carlo simulations. The receiver performing separate-user
channel weight estimation generated based on the second constraint on
the auxiliary distribution is derived and its performance is investigated in
Chapter 5. Summary and conclusions are given in Chapter 6.
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Chapter 2

A Variational Bayesian
Framework — Divergence
Minimization

This chapter provides a self-contained introduction to the variational
Bayesian framework and the so-called divergence minimization (DM)
method. The DM method is a simple, efficient and general method for
solving estimation problems in the presence of nuisance parameters.

2.1 Parameter Estimation in the Presence of Nuisance
Parameters

In a stochastic model, the variables to be estimated are called the
parameters of interest. The other unknown variables are called the
nuisance parameters'. Usually, in order to estimate the parameters of
interest based on a set of observations, the nuisance parameters are either
estimated or integrated out.

Let 6 be the vector containing all the parameters of interest and n
denote the vector of all nuisance parameters in a stochastic model. The
parameters of interest and the nuisance parameters can be continuous
variables or discrete variables or of both (mixed) types. In the rest
of the thesis, we assume that all parameters in the stochastic model
are continuous at the first place. The difference in the formulation
arising from considering discrete variables will be pointed out only when
necessary.

In statistical inference, a nuisance parameter is a random variable which is
fundamental to the probabilistic model, but which is not of particular interest in itself.

13
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Finding the estimate of & which minimizes the error probability given
the observation r is equivalent to maximizing the posterior distribution
p(@|r), i.e., computing

Oniap = max p(o|r). (2.1)

Eq. (2.1) is the expression of the so-called MAP estimator of the parame-
ters of interest 6.

When a model contains nuisance parameters, the MAP estimation
of the parameter vector 6 should be conducted in three steps: I) The
joint posterior distribution of all unknown random variables (including
both the parameters of interest and the nuisance parameters) given the
observation r, p(@,n|r), shall be obtained first; II) Marginalization over
the nuisance parameters is performed to obtain the posterior distribution
of the parameters of interest only. Mathematically, this step can be written
as

p(6Ir) = f dnp(6, i) 2.2

I1I) Finally, the maximization step in (2.1) is conducted.

Both marginalization and maximization usually require extensive
computational efforts. A variational Bayesian approach is introduced in
the next section to iteratively approximate the joint posterior distribution
p(@,n|r). As a by-product, this approach provides an approximation of
the posterior marginal distribution of the parameters of interest, p(6|r) as
well. Compared to the same operation in (2.1), the maximization of the
approximated distribution is much more simplified.

2.2 Divergence Minimization

Dating back to 18" century, Euler, Lagrange and others developed the
calculus of variations, which is the core of the variational approaches.
Recently in 1999, a variational approach was applied to the Bayesian
framework for model selection in [32, 4]. A stochastic model is defined
by certain parameters (including both the parameters of interest and the
nuisance parameters) and by the dependence of the observation on these
parameters. For each candidate model, all model parameters are inferred
and the likelihood of each model is calculated. Eventually, the model with
the largest likelihood is selected. The model selection process is called
model inference.

14
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For the problem of parameter estimation stated in Section 2.1, we
would like to approximate the joint posterior distribution p(@, n|r) by an
auxiliary distribution q(6, ). Thereby, differently from [4], we only need
parameter inference since the model has already been specified by the
parameters 8, n and r and the posterior distribution p(@, n|r). Inspired
by the variational Bayesian expectation-maximization (VBEM) method
[6] which provides analytical calculation of the posterior distribution of
the parameters of interest and the nuisance parameters, we introduce
a similar method called divergence minimization (DM) to obtain an
estimate of the joint posterior distribution p(@, n|r) in an iterative way.

2.2.1 KL Divergence

The KL divergence is an appropriate, well-known criterion to measure
the discrepancy between any two distributions. The KL divergence is also
called cross-entropy, directed divergence or discrimination information
[40]. In the field of physics, the terminology free energy is used.

The KL divergence between the auxiliary distribution q(n, #) and the
target distribution p(n, |r) is defined as [13]

,0
D(a(m, 0)lIp(n, 6Ir)) 2 f 416 o(n, 0) log -1 (2.3)

n,0 p(TI/ 0'7’) .

An auxiliary distribution that is optimal in the sense of the KL divergence,
minimizes the divergence in (2.3)?:

G(n,0) =arg min D ,0 ,0|r)). 2.4
d(n,6) = arg min_D(q(n, O)lIp(r, 61r)) (2.4)

In (2.4) Q denotes a specified class of auxiliary distributions. The choice
of Q reflects constraints imposed on the auxiliary distribution. Notice that
any auxiliary distribution q(n, 8) satisfies

f dndlq(n,0) =1 and q(n,H0) > 0.
n,0

When Q is the set of all possible joint distributions of n and 6, the
divergence (2.3) is minimized for q(n,0) = p(n,0O|r), in which case
the divergence vanishes®. However, this solution does not simplify the

2A related method is information geometry, where the divergence D(p(n, 8|7)||d(n, 8))
is minimized instead. For more details, we refer the reader to [30].
3The divergence between q and p satisfies

D(qllp) = 0

15
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original problem. In order to reduce the complexity of the minimization
problem in (2.4), we may impose additional constraints on the auxiliary
distribution. For example, we may apply the Bethe approximation to the
integral at the r.h.s. of (2.3) as shown in [61] or we may apply a structured
mean-field approximation to the auxiliary distribution q(n, ), as shown
in [6]. Using the Bethe approximation results in the BP algorithm, which
still have a high computational complexity. With the structured mean-
field approximation, the auxiliary distribution belongs to the class of
distribution that factorize according to a certain scheme. As a result, the
derivation of the divergence minimization is rather simple and systematic,
and furthermore, the resulting algorithms have a low complexity and a
good convergence property. Thus, we will focus on the structured mean-
field approximations in our application.

2.2.2 Factorization of the Auxiliary Distribution

Adopting a structured mean-field approximation [6], the auxiliary
distribution is constrained to be factorizable as

q(n, 6) = 4,(1)d6(0) (2.5)

where both g,(n) and qy(0) are arbitrary distributions or are required to
fulfill some constraints. Notice that for arbitrary distributions,

f dna,(m) = 1, a,(m) = 0, f 4640(0) = 1, 40(6) = .

On the one hand, the factorization implies that an independence as-
sumption is imposed between the parameters of interest @ and the
nuisance parameters 7). The factorization in (2.5) makes the solution
(2.4) suboptimal, i.e., the estimated distribution will not equal the true
posterior distribution in most cases. Usually, the more factors the auxiliary
distribution contains, the further the estimated distribution is away
from the true distribution. An extreme case of a structured mean-field
approximation is the so-called mean-field approximation or a naive mean-
field approximation. In the mean-field approximation, the joint auxiliary
distribution factorizes in the product of as many factors as the number
of model parameters, with one factor per parameter. Thus, no further
factorization is possible when the mean-field approximation is used.
Compared to the mean-field approximation, the structured mean-field

with equality if and only if q = p.
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approximation retains certain dependency between certain parameters by
carefully selecting the factorization of the auxiliary distribution.

On the other hand, the advantage of the factorization of the auxiliary
distribution is that it makes the computation of marginal distributions
from the approximated joint distribution much easy to compute. For
example, let g,(n)qs(@) be the estimated distribution. Then the posterior
distribution of the parameter 6 can be approximated by

p(6ly) = f dnp(n, Oly) ~ f dna, (M) = ().  (2.6)

To further simplify the calculations, q,(n) and q¢(#) may be further fac-
torized. Different factorizations lead to different estimators with different
trade-offs between estimation accuracy and computational complexity.

2.2.3 The DM Method

In this subsection, we derive the DM method considering the auxiliary
distribution in (2.5). The generalization to an auxiliary distribution with
more than two factors is straightforward.

Given the auxiliary distribution in (2.5), the KL divergence between
the auxiliary distribution and the target distribution is

qr](n)qt?( )

D(a,(maa(®)Ip(n, o) = [ [ cndoa, (n)au(e)tog L.

The goal of the DM method is to find g,(n) and gg(6) that minimize the
above divergence in an iterative manner. First, an initial distribution g, ()
is selected and the divergence in (2.7) is minimized with respect to qy(0)
for this initial setting. Then, by fixing the estimate of qy(8), the divergence
is minimized with respect to g,(n). In this way, the estimate of q,(n) is
updated. This iterative process is the so-called DM method.

Formally, at iteration i + 1, i > 0, of the DM method the following two
steps are performed:

2.7)

Step 1 (VB expectation step (E-step) [6]) The auxiliary distribution of
the parameters of interest is kept fixed to its current setting q['] (9),
and the auxiliary distribution of the nuisance parameters, q,](n) is
estimated by solving

of*I(m) = argmin D(cl}(6)q,(m)lIp(n, 6ir)) (2.8)

st f dng, (m) = 1, (1) > 0.

17
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Applying functional derivatives and Lagrange multipliers, one ob-
tains the solution

i < exp| [ doad)logpm o], @29

The basic definitions and formulas for functional derivatives are
stated in Appendix A.1. The derivation steps from (2.8) to (2.9)
are provided in Appendix A.2.

Step 2 (VB maximization step (M-step) [6]) * The auxiliary distribution
of the nuisance parameters is kept fixed, and the auxiliary distribu-
tion of the parameters of interest, gy(8), is updated by solving

q5™(6) = argmin D(qe(6)a} (m)lIp(n, OIr)) (2.10)

s.t. fdqu(e) =1, go(0) > 0.

The solution is similar to (2.9):

a5™(6) o< exp| f dnal™(n) log p(n, 6ir) |- (2.11)

Since 6 and n are symmetric in the minimization of the objective
functional, the derivation of (2.11) is exactly the same as that of
(2.9).
Since the divergence is minimized at each step, the divergence is non-
increasing over the iterations:

D(af(m)al(®)lIp(n, 61r)) > D(a ™ m)a}(6)lIp(n, 61r))
> D(of m)al M O)lpm, 6Ir)).  (2.12)

Thus, the overall algorithm is guaranteed to converge in KL diver-
gence.

2.3 DM and Expectation-Maximization (EM)

The DM method presented above approximates the joint posterior distri-
bution iteratively. The EM algorithm [14] approximates the MAP or ML

“In the DM method, both steps involve expectation and maximization operations.
Thus, it is inappropriate to call any step either the E-step or the M-step.
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estimates iteratively. In this section, the DM method is applied in the
case where the class Q of auxiliary distributions consists of Dirac delta
functions. The concept of "complete data" is also introduced in the DM
method. It is shown that the EM method is an instance of the DM method
when the auxiliary distributions are constrained to Q.

2.3.1 The EM as an Instance of DM

Assume that the distribution of the parameters in (2.5) is a Dirac delta
function:

4o (0) = 6(6 — 6y). (2.13)

Notice that estimating this distribution is equivalent to estimating the
value 60y. Inserting (2.13) in (2.7), the two steps in (2.9) and (2.11)
reduce to:

Step 1 (VB E-step):

oy ) = p(nl6, ), (2.14)

Step 2 (VB M-step):

0, = argmin (— exp | f dnaf'(n) logp(n, Bolr)||  (2.15)

[i+1]
CG

where Cg] is a non-negative constant, see more details in Appendix A.3.
Notice that Step 2 can equivalently be written as

gg”] = arg max qu]{log p(n, 7‘|90)} + log p(6o). (2.16)

2.3.2 EM Algorithm

The instance of the DM method in Subsection 2.3.1 is very similar to
the EM algorithm [14]. In the EM algorithm, the concept of complete
data is employed to help maximization of the likelihood function. Let
x denote the complete data. Thus according to the definition of a
complete data, the random vectors r,  and 0 form a Markov chain, i.e.,
p(r, O|x) = p(O|x)p(r|x). To give an example, x = {n, r} is a complete data
for estimating the parameters of interest. The EM algorithm computes, at
each iteration, the following two steps:
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E-step :

Q016" = [ plalol) r)logpaioflaa: (217
M-step :
61 = arg max Qo(016™). (2.18)
0

The selection of the complete data x guarantees that the likelihood
function p(r|0"*Y) is non-decreasing over the iterations [14].

If the complete data is selected such that = {n,r}, the resulting
estimates 0([)'] for the DM in Subsection 2.3.1 and for the EM after each
iteration are the same. Step 1 (VB E-step) provides the conditional
probability distribution for the expectation calculated in Step 2 (VB M-
step). In the original EM algorithm, this expectation is evaluated in the E-
step. Therefore, for this particular selection of the complete data, the DM
algorithm reduces to the EM algorithm provided the auxiliary distribution
of the parameters of interest is restricted to be a Dirac delta function.
The question is whether it is possible to show that for any selection of a
complete data, the EM algorithm is an instance of the DM method? To
verify this, we need to introduce the concept of complete data in the DM
framework.

2.3.3 Complete Data in the DM Algorithm

For any random variables «x, the posterior distribution of the parame-
ters can be obtained by computing

p(0|r)=fdazp(a:,0|r). (2.19)

In addition to approximating the joint posterior distribution of the
parameters of interest and nuisance parameters, the DM method can be
employed to approximate any joint posterior distribution. For example,
the joint posterior distribution p(x,8|r) can be approximated by an
auxiliary distribution

d(z, 0) = qu(x)qe(6). (2.20)

Substituting the complete data « in (2.14) and (2.16), while making
use of the Markov chain property of 8, x and r when x is a complete data
in (2.16), yields
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Step 1:
g (z) = p(=lol, r); (2.21)
Step 2:

0([)”1] = arg max qu1{|09 p(w|90)} +log p(6o). (2.22)

Step 1 provides the auxiliary distribution used to compute the expectation
in Step 2. In the original EM method, this expectation is evaluated in the
E-step, while the maximization in Step 2 is performed in the M-step. Thus
the EM algorithm can be considered an instance of the DM method.

2.4 Related Theoretical Frameworks

In this section we present theoretical estimation frameworks closely
related to the DM method. They include the EM, SAGE [19], variational
EM (VEM)[47], generalized EM (GEM) [14] and expectation conditioned
maximization (ECM) [44] methods. Fig. 2.1 depicts the relationship and
the main differences between these frameworks.

(1) From VBEM to DM

The VBEM method is proposed for model selection in [6]. In order to
select the model which gives the largest likelihood, all parameters in the
model are inferred. In the DM method, the goal is to approximate the
joint posterior distribution of all parameters, which implies that only one
model is considered. The updating steps for inferring the parameters are
the same in both methods.

(2) From DM to EM

As shown in Section 2.3, the EM algorithm results from the DM
algorithm by constraining the auxiliary distribution gg(0) to belong to the
class of Dirac delta function. As a result, the estimation of a distribution
reduces to a point estimation. In that sense, the EM algorithm is an
instance of the DM method.
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Figure 2.1: Overview of the estimation frameworks related to DM

(2) From EM to SAGE

When the process of updating all parameters at each iteration in the
EM algorithm is computationally prohibitive, the SAGE method can be
used to update only a subset of parameters at each iteration. In the SAGE
method [19], the concept of admissible hidden data is introduced for each
subset of the parameters based on the statistical structure of the likelihood
function. To update a subset of the parameters at each iteration, we need
to select corresponding admissible hidden data. The admissible hidden
data for such a subset is a complete data for this subset when the other
parameters are known. Then, the distribution of the admissible hidden
data is estimated. Finally, the distribution of the admissible hidden data
is maximized with respect to the subset of the parameters. Hidden data
is selected in a way that the maximization of the estimated distribution
can be easily performed. Similarly to the EM algorithm, the sequence
of the likelihoods of the parameters estimates is non-decreasing over the
iterations in the SAGE algorithm. More details about the SAGE algorithm
can be found in [19]. Another difference between the EM and SAGE
frameworks is that in the former the mapping of the complete data to
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the incomplete (observation) data is deterministic, while in the latter the
mapping of the admissible hidden data to the incomplete data may be
stochastic.

(3) From EM to VEM

When the calculation of (2.17) in the E-step of the EM algorithm is too
complex, the DM method can be employed to approximate p(x|0/, r).

Let g’(x) denote an auxiliary distribution satisfying fw dzq’'(x) = 1 and
q’(x) > 0. Consider the KL divergence

q'(x)

ETIE (2.23)

D(d/(@)lp(aio™, ) = | dagf(z)log
With the auxiliary distribution restricted to factorize as

q'@) =] o),

an approximation of p(x|0, ) can be obtained by using the DM method
in Subsection 2.2.3. Notice that there are two levels of iterations: the
inner-level iteration to approximate the exact result of the E-step; the
outer-level iteration to perform the approximated E-step and the exact
M-step.

The VEM method does not converge in likelihood as the EM algorithm
does, since the posterior distribution used in the E-step is not exact.

(4) From EM to GEM/ECM

When the maximization procedure in the standard M-step of the
EM algorithm (2.18) is intractable (e.g., when the dimension of the
parameters of interest is too large), one can resort to the GEM method
[14]. This method obtains a new estimate by increasing the r.h.s. of
(2.18) instead of maximizing it. The sequence of the likelihoods of the
parameter estimates is also non-decreasing. However, the convergence
rate of the GEM method is slower than that of the EM algorithm.

The ECM is a subclass of GEM. In the ECM algorithm, the M-step
in (2.18) is replaced by a conditioned maximization step (CM-step).
The basic idea of the CM-step is that the maximization is performed
iteratively. The parameters of interest can be divided into more than one
subsets. Instead of maximization over the entire set of parameters, the
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maximization can be done over one subset of the parameters, conditioned
on keeping the other subsets unchanged. After the maximization process
have been performed with respect to all subsets of parameters, an update
of the parameters of interest is obtained. Note that the objective function
in the M-step is not always convex. Thus, the CM-step may not generate
the minimum value of the divergence defined in (2.18). However, (2.18)
is increased as in the GEM algorithm. More details about the ECM method
can be found in [44].

Even though a subset of the parameters is updated at each iteration
in the sub-maximization-steps of both the GEM/ECM methods and the
SAGE algorithms, the calculations of their E-steps are different. As stated
above, the selection of admissible hidden data in the E-step of the SAGE
algorithm makes the sequence of likelihoods of the estimates returned by
the method non-decreasing over the iterations. As a result, the sequence
of likelihoods converges to a stable point much faster. This property is not
necessarily fulfilled in the GEM and ECM algorithms.

In summary, several closely related theoretical estimation frameworks
exist, which can serve to design iterative estimation and detection
algorithms. Each can be suitable for specific applications. Apparently,
the DM method is the most general tool among them. Thus, we use it in
this thesis to design iterative receivers for CDMA.
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Chapter 3
System Models for CDMA

This chapter describes the symbol notation and the signal model that will
be used in the rest of the thesis.

3.1 Notation

In this thesis, we shall make use of the following notation. Vectors are
denoted by boldface lowercase letters, e.g., «, and matrices by boldface
uppercase letters, e.g., X. The i-th element of a vector « is denoted
by either X; or {x};; the element in the i-th column and the j-th row of
a matrix X reads either x;; or {X};;. For scalars, (-)* denotes complex
conjugate, and for vectors and matrices, ()" and ()™ denote the transpose
and the Hermitian transpose, respectively; tr{-} denotes the trace, diag{x}
denotes a diagonal matrix with the elements of «, and Diag{ X} denotes a
diagonal matrix with the diagonal elements of X. An estimate at iteration
i is denoted by (-)[l. Two kinds of proportionality are used: x « y denotes
X = ay, and X «* y denotes e* = efe¥, i.e., X = B + y for real random
variables X, y and arbitrary constants «, f € IR. Throughout the thesis, we
use the natural logarithm, i.e., logx = log,x. Finally, E,{f(x)} denotes
the expectation of the function f(x) with respect to the distribution gy (x)
of the random variable x.

3.2 System Model

As mentioned in Chapter 1, in this thesis we deal with the problem of
multiuser decoding in the presence of unknown channel parameters for
CDMA systems. For a wideband system such as CDMA, the channel
appears frequency selective in most cases. However, in this thesis, only
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Figure 3.1: Block diagram of a DS-CDMA system (ENCy: encoder of user k; Iy:
interleaver of user k; M: modulator; Chy: propagation channel of user k).

flat fading channel is considered. The reason for this choice is that this
work is aiming at more theoretical findings, and simplifying the original
problems can help gain more insights into the iterative process for data
decoding and channel parameters.

In the rest of the thesis, we consider a direct sequence (DS)-CDMA
system with K active users as shown in Fig. 3.1. Let by[m] € {0,1}
denote the m-th information bit of user k, and let the column vector
by = [bk[0], ..., b [M — 1]]" stand for the information bit sequence of user
k. All information bits are independent and uniformly distributed. The
information sequence by is convolutionally encoded and interleaved to
yield the interleaved code sequence ¢. Let Cy denote the set of interleaved
codeword for user k, ¢, € Cx. All K users employ codes with identical rate
R, but different interleavers. The interleaved code sequences are then
mapped to the sequence of modulation symbol dy.. Let ¢[l] € {0,1} and
d¢[I] denote the I-th code bit and the I-th transmission symbol of user k,
respectively.

In the case of BPSK modulation, each interleaved code bit ¢[l] is
mapped onto a BPSK symbol di[l] € {-1,+1} with the mapping rule:
di[l] = 1 — 2¢i[l]. Let Z)E be the set of valid BPSK symbol sequences for
user k, i.e., dyc € Dp.

In the case of QPSK modulation, Gray mapping is considered. Each
two interleaved code bits, ¢,[21] and c[2l + 1], are mapped onto one QPSK
modulation symbol di[I] € {1 + j, +1 F j} using the mapping rule (see
Fig. 3.2)

de[l] = (2c4[21] — 1) + j(2ck[2] + 1] - 1).

We denote the set of valid QPSK symbol sequence of user k by Z)kQ, ie.,
dk,c € DkQ
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3.2. System Model
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Figure 3.2: QPSK Gray mapping

Hereinafter, the generalized notation 9y is used for the set of modu-
lation symbols for user k which could be either BPSK symbols or QPSK
symbols. The modulation type will be specified when necessary. For
the purpose of channel weight estimation, each (modulation) symbol
sequence is multiplexed with L, random pilot symbols placed at the
beginning of the sequence. The column vector dy = [dkp dic]" =
[d[0],...,d]L — 1]]" denotes the transmitted sequence of user k. The
sequence dy consists of the pilot symbol sequence dy,' and the data
symbol sequence dy of length L, where L = L + L,.

Each symbol modulates the signature waveform sy(t) with support
[0,T). The embedded spreading sequence si[l] for the I-th transmission

symbol has the energy fOT IS (t)[2dt = 1.

In the channel, each transmitted sequence of each user experiences
block memoryless fading. The received signal is the superposition of the
signals of all K users and white Gaussian noise.

Let the column vector r[I] = [r4[l], ..., ry[1]]7 denote the output of the
chip-matched filters at signaling interval I. Here N, denotes the spreading
factor. The (chip-rate) signal model is given by

r[I] = S[IAd[I] + w[l], 1 =0,...,L-1. (3.1)

In this expression, S[l] is the spreading sequence matrix at the signaling
interval |, i.e., the k-th column of S[lI] is s[l] € {-1,+1}"c. Note that
applying a real spreading sequence to complex QPSK symbols implies
that the in-phase and the quadrature parts of these symbols are spread
by the same sequence. In some applications, the in-phase and the
quadrature parts of QPSK symbols are spread using different sequences,

Ydy, € {-1,+1}% in case of BPSK and dyp € {+1 + j, £1 F j}' in case of QPSK.
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3. System Models for CDMA

which may improve the performance of the demodulator because of the
extra diversity obtained from distinct spreading sequences. In that case,
however, the demodulation is more complex. In the thesis, the same
spreading sequence is used to modulate both in-phase and quadrature
parts.

Let ax denote the channel weight of user k for the current transmis-
sion block, and let A = diag{a;,...,ax}. The column vector d[l] =
[di[l],...,dk[I]]" contains the transmission symbols of all K users at
signaling interval I. The noise vector w[l] is Gaussian complex circularly-
symmetric with covariance matrix o%Iy,, where 0> = No/E, and Iy, is
the identity matrix with dimensions N, X N.. The symbol Ny denotes
the spectral height of white noise; E; is the energy per BPSK symbol and
Es = 2E, is the energy per QPSK symbol.

In addition, an equivalent symbol-rate signal model is introduced for
later convenience:

2[l] = R[ID[lla +=n[l], 1 =0,...,L -1, (3.2)

where D[I] £ diag{d[l],...,dk[l]}, @ £ [ai,...,ak]" and n[l] is complex
circularly symmetric Gaussian with covariance matrix o?R[l], R[l] =
S["S[1]. The i, j-th element { R[I]}i; = pi;[I] of the matrix RJ[I] is the cross-
correlation between the signature waveforms of users i and j, i.e., pjj[l] =

si'sj. Furthermore, we define for convenience: z £ [z[O]T, z[1],..., z[L—

T T
11| , R = diag(R[0], ..., R[L - 1]}, D [ D[0],..., D[L - 1]| .
Note that the signal models of (3.1) and (3.2) are related as follows,

2[I] = S[I17 1.
Both »[l] and z[l] in (3.1) and (3.2), respectively, provide equivalent
sufficient statistics? for decoding the information bits.
3.3 Optimal Multiuser Receiver

The optimal criterion for decoding the transmission bits b of all users is
that the error probability conditioned on the observations r or z should

2The concept of sufficient statistic is, most generally, defined as follows: a statistic
T(x) = t is sufficient for underlying parameter 6 if, and only if the conditional pdf of the
data X, given the statistic T(x), is independent of the parameter 0, i.e.

p(x|t, ©) = p(x[t)
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3.3. Optimal Multiuser Receiver

be minimized. The sequence error probability given the observation r is
P(b # blr) =1—P(b = blr),

where b denote a decision on b. The error probability is minimized by se-
lecting the bit sequence estimate maximizing the a posteriori distribution:

byap = arg ,max, p(blr). (3.3)
This decision rule is referred to as maximum a posteriori (MAP) sequence
decoding. The above problem can be solved by exhaustive search
methods. Solving (3.3) requires a computational complexity O(2KM)
which makes its practical implementation infeasible.

In the DS-CDMA system shown in Fig 3.1, the mappings by — ¢ and
¢« — dy are one-to-one, i.e., one sequence by corresponds to a unique
sequence ¢ and one unique sequence ¢ corresponds to a unique sequence
dy. Thus, the optimal detector (3.3) is equivalent to

dyap = arg Te%( p(d|r), (3.4

where D :={[dy, ..., dk] : dex € Dy, k=1,...,K}.

We assume that the input information sequence is uniformly dis-
tributed, i.e., p(b¢) = 1/2M. Due to the encoding and interleaving process,
the distribution of the sequence of symbols at the output of the modulator
is of the form

p(dy) = {1”@"' i € Dy (3.5)

0 di ¢ Dy,

where |Dy| denotes the cardinality of 9y. Notice that the distribution of
the modulated code symbol sequence is not uniform when considering
all possible discrete sequences of length L. Further a specific encoder, an
interleaver and a modulation scheme determine the set 9. Thus, (3.5)
represents the constraints (so-called coding and modulation constraints)
that are imposed by the channel encoder and the modulator on the symbol
sequence d.

Given that the transmission sequences are independent, the posterior
distribution of d is proportional to the likelihood function of d in the range
P and zero otherwise:

p(rld) deD.

3.6
0 d¢D. (3.6)

p(dlr) = p(rld) [ | p(di) o« {
k
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3. System Models for CDMA

Now assume that the channel weights a and the noise variance ¢? are
known. From (3.1), since noise is Gaussian distributed, the logarithm of
the likelihood function of d can be written as

L-1 L-1
log p(r|d) = Z log p(r[IId[I]) = L log(rto2) — 62 Z”r[l] - spadp|’
1=0 =0

L-1 K K
o 20‘2Re{z Z i [1(ze1]" - Z pue [1185, die [|]*)}. (3.7)
k=1

I=0 k=1
Direct maximization of (3.7) with respect to the constraints d € D
requires an exhaustive search, which is prohibitively complex. Therefore,
we propose to use the DM method to find an estimate of the likelihood
function (3.7).

3.4 Applications of the DM Method for CDMA Receivers

Many suboptimal multiuser decoders have been discussed in Chapter 1
where it was pointed out that the motivation of this thesis is the lack of
theoretical justifications for the design of iterative receiver algorithms. In
Chapter 2, the divergence minimization framework was introduced. The
potential application of this framework to the design of CDMA receiver is
as follows.

The divergence minimization framework is based on a factorization of
the joint auxiliary distribution (or structured mean-field approximation).
By employing different factorizations of the auxiliary distribution for
the signal model of a coded CDMA system, different iterative receiver
algorithms can be obtained.

In the next chapter we apply the DM method to the CDMA signal
model (3.1) where the unknown parameters are the transmitted symbols
d, the channel weights a and the inverse of the covariance matrix 3}
of the additive noise. Due to the structure of the likelihood function,
p(rl|a, d, ¥,,), it is more convenient to work with the inverse of the noise
covariance matrix than with the noise covariance matrix. During the
optimization process in the DM method, approximates of the posterior
marginal distributions are obtained. In the end, the estimates of the
code bits can be obtained based on the approximated posterior marginal
distribution of the code symbols.

To approximate the posterior joint distribution p(a, d, ¥7}|r), it is nat-
ural to consider the following factorization of the auxiliary distribution:

da, d, ) = da(@)ts.1 (T, da(d). (3.8)
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3.4. Applications of the DM Method for CDMA Receivers

However, the estimation of the distribution of all code sequences is still
very complicated. Therefore it is necessary to further factorize qq4(d) in a
product of auxiliary distributions of the symbol sequences of all K users.
Doing so leads to

K
a(a, d, 37) = 6a(@)dz (321 | | o (). (3.9)

k=1

In Chapter 4 we show how to obtain an iterative receiver based on
the factorization in (3.9). The resulting receiver performs joint-user
channel weight estimation, noise covariance matrix inverse estimation
and successive interference cancellation and single-user decoding.

Starting from (3.9), a further factorization on the auxiliary distribution
of the channel weights can be done:

K
4@, d, 57) = | | ta@)az;2 (520 | [ dalev)- (3.10)
k k=1

Chapter 5 presents the derivation of an iterative receiver based on this
factorization. Differently from the joint-user channel estimator obtained
from (3.9), the channel weight estimation, in this case, is performed user-
wise. Thus, the receiver in Chapter 5 performs iterative separate-user
channel weight estimation, noise covariance matrix inverse estimation
and successive interference cancellation and single-user decoding.
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Chapter 4

DM Receiver with Joint-User
Channel Estimation

In this chapter, an application of the DM method to a synchronous COMA
system operating in flat fading channels is described. In this application,
the iterative receiver is derived based on the factorization in (3.9). The
resulting iterative algorithm performs joint-user channel estimation, noise
covariance matrix inverse estimation, successive interference cancellation
and single-user decoding. The performance of the DM receiver is
compared to that of a state-of-the-art ad-hoc receiver by means of Monte
Carlo simulations.

For this particular application to CDMA receiver design, the algorithm
is derived assuming that the variance of the white noise is unknown.
The expression when the noise variance is known can easily be obtained.
Interestingly, it will be shown that the receiver assuming unknown noise
variance has a better BER performance than the one having knowledge of
the variance.

4.1 Factorization of the Auxiliary Distribution

Let us define the new symbol E = ¥;!. Then, we rewrite the auxiliary
model in (3.9) as follows:

K
4(a, d, Z) = da(@)d=(2) | ] dac(d),
k=1

where a, d and E denote the channel weights, the code sequences of all
users and the inverse of the noise covariance matrix, respectively. The
factor graph representation of the above auxiliary distribution is depicted
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4. DM Receiver with Joint-User Channel Estimation
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Figure 4.1: Factor graphs of the structured mean-field approximation implied
by the factorization (3.9). Circles represent variable nodes; rectangles are
functional nodes.
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in Fig. 4.1. The following assumptions from (3.9) are reflected in the
graph structure:
e The variable nodes for the transmitted symbols of different users are
not connected, i.e., the multiple access constraint is relaxed.
e The variable nodes for the transmitted symbols of each user are
connected, i.e., the coding constraints are taken into account:

#0 dy € Dk
d 4.1
q(dk) {: 0 d ¢ D (4.1)

e The variable nodes for the channel weights of all users are con-
nected, i.e., the channel estimation is performed jointly over all
users.

As stated in Chapter 2, the factorization (3.9) makes the integral of the
joint auxiliary distribution with respect to the parameters very simple
since q(a), q(E), q(dy), ..., q(dk) are marginals of q(d, a,Z). Thus, the
resulting q(dy) for the k-th user is considered an estimate of p(dy|r).

One might consider the full factorization as suggested in [49], i.e.,

Qo (@) = [ [ daan(@dlD), dll] € (+1, -1}, 1=Ly,..,L=1 (49
|

However, (4.2) implies that the elements {di[l] : | = L,,...,L — 1}
are independent, i.e., discards the facts that the sequence dy is a code
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4.2. Derivation of the DM Receiver

sequence, dy € Dy. Thus, the full factorization in (4.2) breaks down the
code constraints and leads to the following inconsistency:

Ga (dk) # H Qo (A[1]), di € Dy,
|

i.e., if qq,(dx) is a valid distribution of the code sequence d, q,;(dk[]) can
not be a valid marginal distribution of the code symbol di[l]. Due to the
above inconsistency, the full factorization will not be considered in this
application.

4.2 Derivation of the DM Receiver

Given the auxiliary distribution in (3.9), the KL divergence to be mini-
mized is

D(a(a, =, d)|p(a, =, dir))

K
= D(6a(@)=@ [ | sald[p(a. 2 dy, .., ddlr)). 4.3)
k=1

Starting from some initial estimates of the auxiliary distributions, we
update one of the distributions g,(a), 9=(E) and qq (dk), k = 1,...,K, at
each step. The update step for q,(a) performs joint-user estimation of the
channel weights; the update step for g=(E) performs the estimation of the
inverse of the noise covariance matrix and the update of qq, (di) performs
successive interference cancellation and single-user decoding. We now
describe each of these update steps in detail.

4.2.1 Joint-user channel estimation

We first consider minimizing the divergence between (4.3) and g,(a),

while keeping qg](E) and qg](d) = [T, qgl(dk) fixed, i.e.,

minimize  D(0.(a)e¥(E)el}(d)||p(a, =, dir))
subject to f daga(a) =1 4.4
(a(a) = 0.

Solving this optimization problem, one obtains (see Appendix A.2)

K
a) o e f d==) Y [[dl@)logpta, = d)].  @5)

deD k=1
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4. DM Receiver with Joint-User Channel Estimation

Applying Bayes’ rule

p(a, E, d|r) = p(rla, E, d)p(a)p(E)p(d)/p(r),

discarding the terms independent of a, and moving the prior distribution
p(a) out of the argument of the exponential function in (4.5) yields

k") o p(a) exp|Ego{E{l0gp(rla, 4, D)} | (4.6)

Thus, updating g,(a) can be considered as scaling the prior distribution
p(a). If no prior information on a is available, the non-informative prior
p(a) o< 1 can be used, which corresponds to dropping p(a) in (4.6).

Since the noise in (3.1) is Gaussian, the log-likelihood function in (4.6)
can be written as

logp(rla, d, =

L
oL log 2] - tr{EZ(r[I]—S[I]D[I]a,)(r[I]—S’[I]D[I]a)H}. 4.7)

=1

In order to obtain (4.6), the expectation of the log-likelihood function
with respect to the distributions qg](E) and H,}le qgl(dk) must be com-
puted.

Let us define the soft symbol dE][I] = qu] {dk[l]}. Due to the factorization
in (3.9), the second moments of the code symbols are computed to be

) @dnydin, k#j
qu]{dk[l] dj[|]} = {Lk ! k=i’ (4.8)

L =L,,...,L—1. Notice that these moments are functions of the soft code

symbols. The variances of the soft symbol estimates can be computed as
“iglm =1 - (d"[1)? (4.9)

fork=1,...,Kand | =L,,...,L—1. The computation of the soft symbols

depends on the modulation scheme. The computations for BPSK and
QPSK modulations can be found in Section 4.2.3.

A

Furthermore, we define QI = qu]{E} as the expected value of the

inverse of the noise covariance matrix with respect to the distribution
q[E'](E). The computation of QL is described in (4.18), Section 4.2.2.
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4.2. Derivation of the DM Receiver

With dli][l], QEE and (4.8) we can compute the expectation of (4.7)
proceeding in this way yields

qu]{qu]{ logp(rl|a, d, E)}}
Ly
< ~t{ (Y (1 - ST, Ma)(r ] - STD, e
) 1=0
+ Z(T‘U] - S[1DY[a)(r[] - S(ND[]a)"
=1

L
-y S[I]E[‘][I]AAH(E[‘][I])HS[I]H)}, (4.10)

1=1
where Dy[l]  diag{dyp[l],..., dkp[l]}, I = 0,..., L, — 1 is the pilot symbol
matrix. For | = Ly,...,L -1, DU[I] = diag{d'[1],...,d['[1]} is the soft
symbol matrix. The error covariance matrix of d is defined as EUI[I] EUI[1]"
with B[] = diag{odm[l],...,adm[l]} and %, defined in (4.9). The

1 K K

derivation of (4.10) is provided in Appendix B.1.
For Rayleigh fading channels, a is Gaussian distributed:

p(a) o« exp{—aHZ);la}. (4.11)

Exploiting the properties of the trace operator in (4.10), inserting the
prior distribution (4.11) into the update expression in (4.6), we obtain
a Gaussian distribution for the update of the auxiliary distribution of the
channel weight vector:

oi*(a) « exp[—(a — aM () a - a“*”)] (4.12)
with mean vector!

L-1
ol — qu+1]{a} _ (Eg+1])_l Z(ﬁ[i][|])HS[|]HQ£ET[I] (4.13)
1=0

I'The mean vector (4.13) corresponds to the conditional mean vector from the MMSE
channel estimator in [59].
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4. DM Receiver with Joint-User Channel Estimation

and covariance matrix inverse
. Lp—-1
(504) = =t Y OISR sp A

1=0

L-1
+ Z(f?[”[l])HS ["elsnor]

I=Lp
L-1
+Z(Em[l])HDiag{S[I]HQEES[I]}E[”[I]. (4.14)
I=Lp

Detailed derivations of (4.13) and (4.14) are found in Appendix B.1.

In (4.6) the update of the auxiliary distribution q(a) is based on the
current setting of the other auxiliary distributions. Since qi*Y(a) is a
Gaussian distribution, it is sufficient to compute its expectation (4.13) and
covariance matrix (4.14). The computation module of (4.13) and (4.14)
is depicted in Fig. 4.2. Note that the covariance matrix EE”_] represents
the precision in the estimation of the channel weights and Eg] represents
the precision in the estimation of the code symbols. For constant envelope
modulation schemes, X can be obtained from dl'.

L

dti ali+1]
—_— Channel —_—
25] weight »li+1

b estimation b

‘ﬂﬂ!

Figure 4.2: Channel weight estimator: Module for updating g,(a).

4.2.2 Estimation of the Inverse of the Noise Covariance Matrix

~ When updating the distribution of E, the distributions qg](a) and
qg](d) are kept fixed. The minimum KL divergence is achieved for the
distribution

qg+1] (B) x p(BE)exp [qu] {qu] {logp(r|a,d, E)}}] , (4.15)
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4.2. Derivation of the DM Receiver

similarly to (4.6). To compute the argument of the exponential term
in (4.15), we compute the expectation of (4.7) with respect to the

distributions ql’(a) and qg](d). The expectation with respect to qg](d)
makes use of the soft symbols di[I]"], k = 1,...,K, | = L,,...,L -1 and

(4.8), while the expectation with respect to q(a) exploits the results from
(4.13) and (4.14). Doing so yields

exp [qu] {qu] {logp(r|a,d, E)}}] o |=|- exp [—tr {EB[‘]}] (4.16)

with

Lp-1

Bl = Z((r[l] - SD,[M1al) (r[1] - SID;[a®)”

1=0
+ SID, =Y D[S

L-1

+ Z((r[l] — SO [Ia)(r[] - S[l]f)[ﬂ[l]am)H (4.17)

I=Lp
+ SMEM[IAN AR ENINH S
+ S[EM[]Diag{= I} (EM I STI]"
+ SIDI=HDUI" S},
The rh.s. of (4.16) is (up to a proportionality constant) a the complex
Wishart distribution?.
Selecting the non-informative Wishart distribution Wy (0, 0) to be the

prior distribution in (4.15) and inserting (4.16) into (4.15), it follows that
= is Wishart distributed:

= ~ Wn(L + N, (BM™).

The expectation of E is then

M\t
B ) , (4.18)

Q2 E (B} =
w =) (L+Nc

2If the distribution of a complex symmetric and positive definite random matrix Apsxp
can be written as fa(A) o |A"Pexp[-tr{VA}], where n > p and Vp, is a constant
matrix, A is said to be complex Wishart distributed: A ~ Wy(n, V); the expectation of A
isnV [22].

39



4. DM Receiver with Joint-User Channel Estimation

I

dl’ Noise

_ Q[i+1]
Iil covariance w
N . —
d matrix inverse
estimation
alll E[i]
a

Figure 4.3: Estimator of the inverse of the noise covariance matrix: Module for
updating g=(Z). Note that the code symbol covariance 25] can be obtained from
dr.

where Bl is given by (4.17).

Since the expectation in (4.18) fully characterizes the distribution of
the noise covariance matrix inverse in (4.15), to update the distribution
of the noise covariance matrix inverse, the computation of (4.18) is
sufficient. Note that the computation of (4.18) only requires the results
of (4.13) and (4.14). The module computing QU is depicted in Fig. 4.3.

Simpler expressions for (4.18) are obtained for white Gausian noise.
In this case, E = diag{o~2,...,07?} with the variance inverse =2 being
chi-square distributed [23]:

-2 2
o~ XLNC'

We introduce a new symbol for the inverse of the noise variance: ¢ = 072.

The distribution of ¢ reads
" (e) o ()™ exp| ~ctr(BY| (4.19)

Here, we assume a non-informative prior distribution x3 for ¢c. With B!
given in (4.17), the expectation of ¢ is

tr{ Bl )_1 _ (4.20)

qu+1] [C] = ( LN,

Note that the estimates given in (4.18) and (4.20) coincide with the
ML estimates.
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4.2. Derivation of the DM Receiver

4.2.3 Successive Interference Cancellation and Single-User Decod-
ing

Similarly to (4.6) and (4.15), the minimization with respect to qq, (dx),
while keeping the distributions qf'(a), q¥(Z) and q['] (d) = TTju q[']( )
fixed, yields the update rule

['+1](dk) oc p(dk) expl 0 {qu]_ {qul {logp(rla,d, = }}}] (4.21)

In (4.21), the sequence of symbols of user k is updated based on the
estimates of the channel weights, the estimated symbol sequences of
the other users and the estimated noise variance inverse. The symbol
sequences are updated user by user in a successive manner.

With the prior distribution given in (3.5) and making use of the results
in (4.13), (4.14) and (4.17), (4.21) can be recasted as

o exp{z yi Refd [I]*)/['+1][I]}} dce D,

[|+1] (d ) (4.22)
=0 dy & Dy
In the above expression,
I = (o) s el
K
- Z dim(al") al" s, (11" 28 1]
"
K K .
) Y (ALl (50 siells )
i (4.23)
K
((a[']) s[1"oll) (r[l] Z jnaldpn
i
K K
ZZ( a['] S [I]/\[I+1] E.erl]( [|+1]) dT'][I]))

j=1 j’=1
7‘:

The first term on the rh.s. of (4.23) represents the result of spreading
code matched filtering. The second and third terms are the multiple
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4. DM Receiver with Joint-User Channel Estimation

access interference. Thus, (4.23) performs interference cancellation,
followed by linear filtering. It can be seen that the rh.s. of (4.22)
and (4.23) depend on the soft symbols. Calculation of the soft symbols
corresponds to demodulation and decoding process as shown in the
sequel. Further details of the derivations of (4.22) and (4.23) are
provided in Appendix B.2.

In (4.22), uEi,erl] denote the element at the j-th row and the j-column
of the lower triangular matrix U (see (B.5) in Appendix B.2) which is

obtained by a singular value decomposition of the positive semi-definite
symmetric error covariance matrix rli+,

w11 = gyl A+ (U[i+1])H ’

with Al = dlag{ Al ..,)\E”]} denoting the diagonal matrix of the

eigenvalues of ZI*. The last term in (4.23), relying on singular value
decomposition, is a correction term to the interference cancellation
process originating from the channel estimation covariance matrix. This
term accounts for the accuracy of the channel weight estimates. Since
the correction is relatively minor compared to the interference, becoming
negligible after only a few iterations, it can be omitted without noticeable
performance penalty.

A. Computation of the Soft Symbols

The soft symbol c]l[:”][l] is defined as the expectation of di[l] with
respect to the updated distribution in (4.22), i.e., dNEH][I] = quﬂ] {dk[l]}.
As mentioned in Chapter 3, the mapping of code bits to modulation
symbols is one-to-one. Thus, we can replace q['+1](d ) by qt™(cy) when
¢ is mapped to di. The soft symbols for BPSK and QPSK are given below.

BPSK modulation One interleaved code bit is mapped onto one BPSK
modulation symbol. Thus the expectation of di[l] is

dE 1] £ Egeafdell]) = Eg {ddnf= Y o - Y ol ).
dkEDB dkEDB
dk[l]:l dk[l]:_l

(4.24)
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4.2. Derivation of the DM Receiver

QPSK modulation Two interleaved code bits are mapped onto one
QPSK symbol. The expectation of a QPSK symbol is computed via the
soft code bit as

i = qu;u{dk[l]} = Z d[1ay™ (di) = e [21] + jel 21 + 1]

dkEDE
(4.25)
with the 2I-th and 2| + 1-th interleaved soft code bit defined as
= Y e - Y d e (4.26)
cxeCy cxeCk
o[21]=1 o[21]=0

and

i+ = Y e - ), e 427
ceCy cxeCy
ck[21+1]=1 ck[21+1]=0
respectively. Note that the calculation in (4.25) includes two steps:
a demodulation step relating modulation symbols to interleaved code
bits and a decoding step in which expectations are calculated based on
sequence probabilities.

B. Single-User Decoding

Conceptually, the distribution of the codeword vector dy € D is
estimated in (4.22). However, since the calculations of (4.18), (4.13),
(4.14) and (4.23) only require the soft symbols given in (4.24) and (4.25)
for BPSK and QPSK, respectively, the soft symbols calculated based on this
distribution are sufficient to perform the other steps.

BPSK modulation When BPSK modulation is used, Eq. (4.22) can be
rewritten as

o exp{ T dll2Rey {1}, < D
= O, dk ¢ DE

oy () (4.28)

The quantity 7/E+1][I] is computed as in (4.23). Comparing the structure

of (4.28) to the maximum posterior distribution algorithm in [24, 53]
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4. DM Receiver with Joint-User Channel Estimation

(called Log-MAP therein) gives rise to an interesting interpretation. The
value 7/['+1][I] may be related to the L-value® for d[l] based on the

“observation” y ['+1] [, i.e.,

LOANID = 4Re{yE 11} (4.29)

fork=1,...,Kandl=1L,,...,L-1.

With the L-values defined in (4.29), Lgcppdy " (dk) in (4.24) gives

G[l]=1

the posterior probability of d¢[l] = 1 given the observations y['+l][l],
| =L, ...,L—1. The BCJR algorithm [5] can be applied to compute the
posterior distributions of the symbols in (4.24) [24, 53]. Note that dl”” [1]
can be viewed as a posterior soft code symbol. Using this interpretation
and the well-known rules for conversion between L-values and soft
symbols, extrinsic soft code symbols can be defined in a straightforward
manner. The extrinsic soft code symbols will only be used in Section 4.5
for the purpose of comparison, since the formal DM framework dictates
the use of posterior soft code symbols.

QPSK modulation When QPSK modulation is used, (4.22) yields

. exp{z T Re{ddIly ['+”[|]}}, di € DO
=0, di & D
Inserting dy[I] = 2(ck[2I] — 0.5) + j2(ck[2] + 1] — 0.5) into (4.30) yields

oy ()

ay (i) (4.30)

L-1
« exp{2 Z(z(ck[zu — 05)Refy [T} + 2(cef21 + 1] - 0. 5)Im{)/['+1][l]})}
=L,

(4.31)

for ¢« € Cy. Similarly to the case of BPSK symbols, the L-value of the 2I-th
interleaved code bit is defined as

LM Me21]) = 4Refy [0} (4.32)
and the L-value of the (2| + 1)-th interleaved code bit is defined as
LG/ Med21 + 1) = 4im{y ). (4.33)

3For a binary variable, the L-value is defined as the logarithmic ratio between the
probabilities of the variable being 0 and 1, respectively.
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4.3. Scheduling in the DM Receiver

With the L-values (4.32) and (4.33), we can compute the soft interleaved
code bits in (4.26) and (4.27) and thereby compute the soft modulation
symbols. The module for computing the soft code symbols of user k is
depicted in Fig. 4.4.

After the last iteration, the decisions on the information bits are
obtained by making hard decisions on the posterior information bit
distributions provided by the single-user decoders.

1]
d,

[i+1] . _ ~ [i+1]
[il Interference | 7k Single-user | d,
_.Ed cancellation »| decoder p—
for user k
[ 7'y
all | s

Figure 4.4: Interference cancellation device and single-user decoder: Module
for updating qg, (dx). The code symbol covariance 25] can be obtained from dll.

So far, the derivations of the three components: channel weights
estimator, noise covariance matrix inverse estimator, and user sequence
decoders, are described. For the seek of simplicity, we only consider white
Gaussian noise from now on. However, the question that arises now is
how these three components are connected and in which order they are
activated. The scheduling is discussed in the next section.

4.3 Scheduling in the DM Receiver

Different versions of the iterative DM receiver can be obtained by using
different scheduling schemes for updating the channel weights, the
inverse of the noise variance and the users’ soft symbols. No analytical
approach for determining the optimal scheduling order has been proposed
yet. In this thesis, we consider four versions of the DM receiver with
scheduling rules listed in Table 4.3. We evaluate their performance by
means of Monte Carlo simulations.

The computational complexities of the channel estimation, the noise
variance inverse estimation and the interference cancellation versus the
system setting are given by Oce(K®), One(N?) and O\c(K3), respectively.
One stage is considered completed when the soft code symbols of all
the users have been updated once. For the different versions of the DM
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4. DM Receiver with Joint-User Channel Estimation

DM1 | ga(a) = 9c(c) = qa,(d1) - .. = Gac(dx) — a(a)
— 0c(¢) = Qa,(dy) . ..

DM2 Ja(@) = 0.(c) = Ga(a) — da,(d1) — Ga(a)
- de(d2) e

DM3 Ga(a) = q.(c) = qa,(d1) = Ga(a)

— 0.(¢) = qa,(d2). . ..

DM4 Ga(@) — 4.(c) = Ga(a) — qg,(d1) — Ga(a)
— 0c(¢) = da(a) = qa,(da) . ..

Table 4.1: The update scheduling schemes considered for the DM receiver.

CE NE IC
DM1 1 1 K
DM2 | K+1 1 K
K
K

DM3 K K
DM4 | 2K K

Table 4.2: Number of module activations per stage; CE: channel estimation, NE:
noise variance inverse estimation, IC: interference cancellation.

receiver listed in Table 4.3 the corresponding complexities of one stage, in
terms of module (CE, NE and IC) activations, are listed in Table 4.3. For
example, for the DM1 receiver, CE is activated once, NE is activated once
and IC is activated K times per stage.

Although convergence is guaranteed for all four versions of the DM
receiver, they may converge to different stationary points, leading to
different performances in terms of bit error rate (BER). The performances
of the four versions of the DM receiver are considered in Section 4.5.

4.4 Receiver Architecture

Fig. 4.5 shows a block diagram of the receiver architecture. Let
us consider iteration i where the soft symbols of user k are updated.
The soft symbols and the estimate of the inverse of the noise variance
from the previous iteration i — 1 are used to perform joint-user channel
weight estimation, which provides the mean and covariance matrix of the
channel weight vector as outputs of (4.13) and (4.14). The noise variance
inverse estimator utilizes the output of the channel weight estimator as
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4.4. Receiver Architecture

T : y

di-u

i 300 [i+1] di+u
all Buffer| < o Buffer|—»
1 Channel [I] ‘ Channel ]
estimation |_>a . estimation | >a —
I ; [
Noise variance| ([l ! Noise variance| [i+1]
inverse ' inverse
estimation | estimation
' Si+1]
f J[kll . I dk+1
i i | [i+1] i R
Interference 'YIEI] Single-user | | Interference|  Vk+1 Single-user
llati decoder : cancellation decoder
cancelation for user k 1 for user k + 1
Update user k Update user k + 1

Figure 4.5: The receiver architecture for user k at iteration i.

well as the soft symbols at iteration i — 1 to update the mean of the noise
variance inverse according to (4.20). Subsequently, the updated mean
and the covariance matrix of the channel weight vector and the updated
mean of the noise variance inverse are fed as input to the interference
cancellation device that generates the decoding metrics used to update
the soft symbols of user k according to (4.23). The updated soft symbols
are stored for use in the next iteration i + 1. At iteration i + 1, the soft
symbols of user k + 1 are updated in a similar way as above and so on.

In summary, the DM algorithm applied in the considered coded CDMA
system performs the following steps:

1.
2.

3.

Initialization of the iterative process: Calculate al®, d!% and c.
Channel estimation: Calculate al! and X! using (4.13) and (4.14).
Perform singular value decomposition of S,

Noise variance inverse estimation: Calculate ¢! using (4.20).

Select the user to be updated: Let k indicate the selected user. The
users can be for example ordered according to the magnitudes of
the estimated channel weights.

. Interference cancellation: Calculate the sequence ~¢ = [yk[Lp],...,

wlL — 1]] for user k using (4.23) and map the components of the
vector ~ to L-values.

Single-user decoding: Use the BCJR algorithm to calculate the
posterior distributions of the modulation symbols based on the
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4. DM Receiver with Joint-User Channel Estimation

L-values computed in Step 5. Compute the soft symbols di[l]
| =L,,...,L—1for user k based on the posterior distributions.

7. Go back to step 2 if the iteration process is not terminated*.

Notice that the above steps are referred as to the DM3 scheme in Table
4.3. For other versions of the DM scheme in Table 4.3, Step 7 should be
changed accordingly.

4.5 Simulation Results

In this section we evaluate the performance of the four versions of the DM
receiver by means of Monte Carlo simulations. Each version is specified
by its update scheduling scheme specified in Table 4.3. The system model
detailed in Section 3 is considered. More specifically, all users apply
the same rate R, = 1/2 terminated convolution code with generator
polynomials (5,7)s. The generated codewords have length L, = 320
code symbols, corresponding to information sequences of length M = 158
information symbols. Random signature sequences of length N, = 8 chips
are assigned to the users. Each codeword is multiplexed with L, random
pilot symbols and each block of L = L.+ L, symbols is transmitted through
a block fading channel. The effective signal-to-noise ratio is defined as
Eb/No = L/(LcR.) - Es/No, where E; is the energy per code symbol and E,, is
the energy per information bit and N is the power spectral hight. In the
simulations, we set No = 1. All users have the same E,/Nj.

The performance of the DM receiver depends on the initialization.
Thus it is important to initialize the iterative process properly. A
reasonable compromise is to let the initial estimates of the channel
weights be determined by a linear least-squares estimator based on the
pilot symbols. To get initial estimates of the input probabilities to the
single-user decoders, a decorrelating filter is applied to the received signal
vector. Together with the initial estimates of the channel weights, the
initial input probabilities are found. Similarly, an initial estimate of the
noise variance inverse is computed from (4.17) and (4.18), given the
initial channel weight estimates and the initial symbol probabilities. The
iterative process is terminated after 10 stages. This figure was found to
be sufficient for convergence (see e.g. Fig. 4.8).

4The iterative process terminates when the divergence in (2.3) does not decrease
significantly with further iterations. In practice, a few iterations suffice for this to
happen.
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4.5. Simulation Results

The averaged BER returned by the simulations (BER) is obtained by
averaging the BERs over all users. Whenever appropriate, the simulated
BER performance is compared to the performance of a single-user (SU)
system with known channel weights and known noise variance.

Pilot symbol overhead First, we investigate how many pilot symbols
are required for a DM receiver to have satisfactory performance. Clearly, a
large number of pilot symbols creates an overhead which is not preferred.
In Fig. 4.6, the averaged BER performance of the DM3 receiver (see Table
4.3.) is plotted for K = 32 users as a function of E,/Ny with the number
of pilot symbols as a parameter. As the number of pilot symbols increases
from L, = 4 to L, = 6, the BER of the DM3 receiver approaches the SU
performance. No additional improvement can be observed when more
than 6 pilot symbols are employed. The total transmission overhead with
L, = 6 is L,/L ~ 1.8% which is sufficiently low. Therefore, we choose
L, = 6 in the subsequent examples.

100 T T T T T T T

BER

—SuU
—o—DM3 L,=4
—<—DMs3 L,=5
——DM3 L,=6
——DM3 L,=7

1072

10_3 i i i i
4 6 8 10 12 14 16 18 20

Es/No [dB]
Figure 4.6: Averaged BER performance of the DM3 receiver for K = 32 users
with respect to the number L, of pilot symbols.

Scheduling and sorting order The different versions of the DM receiver
performing the update scheduling schemes given in Table 4.3 have
different complexities. In the following we investigate the impacts of
the update scheduling schemes on the BER performance and on the
convergence rate. In addition, the particular order of updating users
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4. DM Receiver with Joint-User Channel Estimation

also influences the performance. The best user schedule sorts users in
descending order according to the magnitudes of the estimated channel
weights, where the strongest user is processed first. For comparison, we
also consider a user update schedule based on sorting users in ascending
order of the magnitudes of the estimated channel weights.

10°
—SU
~e~DMI ({)
——DM2 ({)
——DM3 (1)
——DM4 ({)
101 —+—DM3 (1)
‘0:
w
om
1072F ]
5
$
10,3 i i i i i L i
4 6 8 10 12 14 16 18 20

Ey/No [dB]

Figure 4.7: Averaged BER performance of the four versions of the DM receiver
for K = 32 users. The users are updated in increasing (T) or decreasing (|) order
of magnitudes of the estimated channel weights.

In Fig. 4.7 and Fig. 4.8, we compare the performance of the different
versions of the DM receiver for K = 32 users. The four versions of the DM
receiver update the users according to descending order of magnitudes
of the estimated channel weights (denoted by (|)). For comparison, we
also consider the DM3 receiver with a user schedule based on ascending
order of magnitudes of the estimated channel weights (denoted by (7)).
We observe in Fig. 4.7 that the DM3 (|) receiver outperforms the DM3 (T)
receiver. We also observe that all the simulated receivers perform close to
the SU case with the DM4 receiver exhibiting the best performance. The
DM3 and DM4 receivers outperform the DM1 and DM2 receivers, since
the channel weight estimation and the estimation of the noise variance
inverse are performed more often at each stage. However, the DM3 and
DM4 receivers have higher complexity per stage compared to the DM1
and DM2 receivers.
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Figure 4.8: Averaged BER performance versus number of stages at E,/Ng = 16
dB of the four versions of the DM receiver for K = 32 users. The users are updated

in an ascending (7) or a descending (|) order of the magnitude of the estimated
channel weights.

In Fig. 4.8, the BER performance of the four versions of the DM
receiver are shown versus the number of stages. The improvement on
BER is marginal after 5-6 stages for the DM3 and DM4 receivers, and
after 9-10 stages for the DM1 and DM2 receivers. The BERs of the DM3
and DM4 receivers decrease at a similar rate.

Regarding Fig. 4.7 and Fig. 4.8, the DM3 and DM4 receivers have very
similar BER performance. However, the DM3 receiver is less complex than
the DM4 receiver. Thus we consider the DM3 () receiver in the following
simulations. In addition, the descending order of absolute estimated
channel weights is used in the rest of the simulations.

Exchanged information In the DM receiver, the CE, NE and IC modules
accept soft symbols as inputs. These soft symbols are calculated based
on the posterior probabilities (APPs) of the code symbols. In related
works, it is suggested to feed soft symbols computed based on extrinsic
(EXT) probability [43, 34] or hard-decision symbols [37] to the CE and
IC modules. In the following simulations, we investigate the impacts on
performance of feeding different types of information into the CE, the NE
and the IC device of the DM3 receiver.

In Fig. 4.9, we compare the DM3 receivers with different types of
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Figure 4.9: Averaged BER versus the number of active users at E,/Ng = 16 dB
for the DM3 receivers using different types of information for CE, NE and IC.

information passed into the CE, NE and IC modules. The performances of
the following schemes are compared:

e "'DM3": APP-based soft symbols passed to CE, NE and IC;
e "'DM3 (EXT/EXT)": EXT-based soft symbols passed to CE, NE and IC;
e "'DM3 (Hard)": Hard-decision symbols passed to CE, NE and IC;

e 'DM3 (EXT/APP)": EXT-based symbols passed to CE and NE and
APP-based soft symbols to IC;

e "'DM3 (APP/EXT)": APP-based soft symbols passed to CE and NE and
EXT-based soft symbols passed to IC.

Fig. 4.9 illustrates the BER performance versus the number of active users
for the four DM3 receivers at E,/Ny, = 16dB. We observe that the DM3
receiver using APP-based soft symbols for CE, NE and IC has the best BER
performance, especially when the number of active users is high. The
receiver using EXT-based soft symbols for CE and NE, and APP for IC has
a slightly worse performance. The DM3 receivers using EXT-based soft
symbols for IC "DM3 (EXT)" and "DM3 (APP/EXT)" perform considerably
worse than the other receivers. The DM3 receiver using hard-decisions
coincides with the one derived from the EM framework [37]. It has a
reasonably good performance for K < 32. When K > 32, the hard-
decision-based receiver performs better than the ones using EXT-based
soft symbols for IC and worse than the ones using APPs for IC.
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4.5. Simulation Results

Note that for this application, APP is the type of information indicated
by the DM framework. The above simulation results confirm that APPs
rather than EXT information should be used for computing the soft
symbols for CE, NE and IC in the DM receiver.

100 T T T T T T T T T T

{ —— SAGE [38] ‘ : A
—+— SISO-SAGE [27]
—o— SAGE-based [28]
——LMMSE [61] b
——DM3
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Figure 4.10: Averaged BER performance versus the number of users K at
E,/Ng = 16dB of the DM3 receiver, the LMMSE receiver [59], the SAGE-based
receiver [28], the SISO-SAGE receiver [26], and the SAGE receiver [38].

Comparison of the DM3 receiver with the related works In Fig. 4.10,
we compare the BER performance of the DM3 receiver with some related
receivers [59, 38, 28, 26]. The average BER is plotted as a function
of the system load in terms of numbers of users, at E,/Ng = 16 dB.
The DM3 receiver, the LMMSE receiver [59], the SAGE-based receiver
[28], and the SISO-SAGE [26] exhibit BER performance close to the SU
performance for up to K = 32 users. For K > 32 users, the performance
of the hard-decision-based DM3 and the SISO-SAGE receiver deteriorates
rapidly. Similar behavior is observed for the DM3 receiver and the LMMSE
receiver: the BER performances of the two receivers starts to degrade
when K > 42. For K = 46, the BER performance of the DM3 receiver is
slightly better than that of the LMMSE receiver. The SAGE-based receiver
performs slightly worse, but enjoys a similarly graceful BER degradation.
The SAGE receiver is competitive up to K = 32, after which it suffers
a rapid performance degradation. Note that the performance of the
LMMSE receiver in [59] is obtained by assuming perfect knowledge of
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4. DM Receiver with Joint-User Channel Estimation

the noise variance, while in the DM3 receiver no prior information about
the noise variance is available. As shown in Fig. 4.10, the DM3 receiver
and the LMMSE receiver [59] exhibit very similar performances. Further
investigations to compare these two receivers are carried out later on.

100 T T T T T T T T T T

U
—<—DM3 (known ¢)
—-—DM3 (known a, ¢ )
—+—DMS3 (all unknown) |
—%—DM3 (known a)

BER

i i

24 26 28 30 32 34 36 38 40 42 44 46
K

10_3 i i i i

Figure 4.11: Averaged BER performance versus the number for users K of the
DM3 receiver with different levels of channel knowledge. The effective SNR is
Ep/No = 16 dB.

The DM3 receiver with different levels of channel knowledge In the
following, we investigate the BER performance of the DM3 receiver for
different levels of channel knowledge. In principle, the more the receiver
knows about the channel state, the better its performance is expected
to be. However, through the simulations reported here, we observe a
somewhat intriguing behaviour.

Fig. 4.11 illustrates the BER performance of the DM3 receiver for
different levels of channel information at E,/Ny; = 16 dB. It is shown
that the receiver estimating the noise variance inverse in the iterative
process always outperforms the receiver that does not update the noise
variance inverse. Two effects are observed in Fig. 4.11. The first is that
the receiver with unknown ¢ and a has a better performance than the
one with known ¢ and unknown a. The second observation is that the
receiver with unknown ¢ and a has a better performance than the one
with known ¢ and a. Although surprising at first, this behavior is in
fact to be expected. With an increasing number of users in the system,

54



4.5. Simulation Results

100 T T T T T T T T

: —©—DM3 12dB
—<—DM3 16dB
—*— DM3 20dB

-2 10

(o]
O B
-
o

no. of stages

Figure 4.12: Estimated noise variance of the DM3 receiver versus the number of
stages for K = 32 users, at E,/Ng = {12,16, 20} dB. The estimate is the inverse of
the noise variance inverse estimate returned by the DM3 receiver.

the amount of multiple-access interference (MAI) increases. Beyond a
certain level of MAI, the interference cancellation process is overwhelmed,
resulting in an increasing level of residual interference. The residual
interference can be considered as additional additive noise, which can be
estimated and accounted for together with the additive white Gaussian
noise, leading to better performance. Therefore, it is very important to
include the noise variance estimation in the iterative process.

Since we assume ¢® = 1 in the simulations reported here, the noise
covariance matrix is an identity matrix. The estimated noise variance
versus the number of stages is plotted in Fig. 4.12 for K = 32 and
different Ey/Ny. The estimate is obtained by taking the inverse of the
estimated noise variance inverse returned by the DM3 receiver. As
mentioned previously, one stage is considered completed when the soft
code symbols of all users have been updated once. At the first few
stages, a significant part of the estimated noise variance is contributed
by the residual interference. As more stages are performed, less residual
interference is left. The estimated noise variance finally converges to the
true noise variance after 9-10 stages.
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4.6 Comparison Of the DM Receiver and the
LMMSE-Based Receiver [59]

In this section we interpret our DM algorithm and compare it to the
LMMSE-based receiver structure proposed in [59]. We consider the latter
receiver as the current state-of-the-art receiver.

4.6.1 Short Description of the LMMSE-Based Receiver [59]

The LMMSE-based receiver [59] consists of three components: a
channel estimator, an interference-cancellation multiuser detector, and a
bank of single-user posterior distribution decoders. In the following, the
receiver is described shortly.

The design of the LMMSE-based receiver [59] is based on the fol-
lowing assumptions: i) The thermal noise is zero-mean additive white
Gaussian noise with known variance ¢?; ii) The vector of channel weights
is zero-mean Gaussian with diagonal covariance matrix X,; iii) Only the
code-symbol distributions are updated over the iterations.

With these assumptions, the vector of channel weights is estimated
using a LMMSE filter, which outputs

LMMSE —

L-1
ali . = (Bl) gz (D) " S (4.34)
1=0

with the covariance matrix
L-1
BY = (Y smpvs, (57p)” sp1
1=0

+ Li S[I1EY[Z, (E[”[l])H SIM +1). (4.35)

=L,

The multiuser detector performs interference cancellation first:

Mx

Yermselll = 711 - sj[llaﬁ”d"ﬁ”[ll (4.36)

;e

foruserkand | =0,...,L—1. To further suppress the residual interference
in the signal on the l.h.s of (4.36), a linear LMMSE filter [58] is applied:

Y el = (g m)” el T, (4.37)
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The filter coefficients are defined as

g uH = (a[l+1]) s[I]" (Bi[l])_l (4.38)

1ck

with the covariance matrix
L-
1 - - ; - H
[l] _ - (i1 [l AlTYH [il H 2
Bl=7 ZO (S[I]E (AN ADH (EU) "SI + o I). (4.39)

Thus, applying the LMMSE filter (4.38) to the interference-mitigated
signal (4.36) yields the symbol-wise input to the single-user decoders
(4.37).

4.6.2 Discussion and Comparison of the Two Structures

Both the DM and LMMSE-based receivers perform channel weight es-
timation, interference-cancellation, and single-user APP decoding. How-
ever, the mathematical expressions for channel weight estimation and
interference cancellation are different in the two receivers. In the LMMSE
receiver, each component is designed independently based on some
assumptions on the statistics of the component input. In contrast, our
receiver algorithm is based on updating the auxiliary distributions for the
channel coefficient vector, the noise variance inverse, and the codewords.

In the following, we compare the blocks performing channel weight
estimation, multiuser detection and single-user decoding of the DM and
LMMSE receivers.

Channel estimation The expectation of the channel estimates of the
two receivers are reported in Table 4.3. The expressions (4.13) and
(4.34) for the estimated mean have the same structural form. However,
the noise variance inverse in the two estimates are different (see Table
4.3). The differences stem from the fact that the noise variance inverse is
assumed to be known in the LMMSE receiver while it is estimated in the
DM receiver. If the estimate of the noise covariance matrix is replaced by
a diagonal matrix with the diagonal elements equal to the known noise
variance ¢? in (4.13) and (4.14), (4.34) reduces to the equation of the
classical LMMSE receiver.

Multiuser detection The expressions of the interference cancellation
schemes of the two receivers are reported in Table 4.4. We compare
(4.36) and the last factors of the product in (4.23). In (4.23), the
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The LMMSE receiver [59] The DM receiver
a[LilJ\r/Ill\]/ISE alt*
=1 .
= (BY) - =
¢ YL DOIH SR [I] Y S (DUIDH S (1]
(4.34) (4.13)
ng sfi+1]
B szﬁl‘l =[] = HrTH QriH = chil Lo (DU SmH s o
- 1 1 =
( Z|:LO 1S[I]D [I]EGD [I] S[I] +g[i] Z:_;Llp (E[i][l])H Diag{S[I]H S[l]}E[i] [|]
+ L1, S[Eef=, ENmMH s i, 1)_1
+3g
+1 )
(4.14)
(4.35)

Table 4.3: Comparison of channel weight estimation in the LMMSE receiver [59]
and the DM receiver.

post-cancellation linear filter has the same structural form as that of
the LMMSE filter in (4.39). However, the covariance matrices in the
post-cancellation filters are different (see the second row in Table 4.4).
Compared to (4.36), there is an additional term in the last line in (4.23).
This term accounts for the covariance matrix representing the precision
of the channel estimates. Thus, the interference calculated in the DM
receiver takes into account the accuracy in the channel weight estimation.
As a result, the interference cancellation should be more efficient in the
DM receiver.

In both receivers, post-cancellation filters are applied after interfer-
ence cancellation. Here we compare the covariance matrices in (4.39)
and (4.18) together with (4.17). Consider the terms in the r.h.s. of (4.17)
together with (4.18). The first term is an estimate of the covariance
matrix of the residual interference, i.e., it includes the effects of both
thermal noise and residual multiple-access interference. The remaining
three terms are the covariance matrix representing the precision of the
channel vector estimate, the codewords and the combined effect of
the two. Compared to (4.17), the covariance matrix (4.39) comprises
only two of these terms. Since the distribution of channel weights is
not updated in the LMMSE-based estimator, the terms containing the
covariance matrices X[ are missing. More importantly, the covariance
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The LMMSE receiver [59] The DM receiver
e[ - £X, s;0adt g - Ly il
1= [ ] o S o
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(4.36)
(4.23)
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Table 4.4: The interference cancellation for the LMMSE receiver [59] and the
DM receiver.

matrix of the residual interference is estimated as the first term in (4.17).
With perfect cancellation the residual interference is nothing but the
thermal noise; however, a significant level of residual multiple-access
interference is present in the early iterations. The way that the residual
interference is accounted for in (4.17) makes the post-cancellation filter
more efficient in the DM receiver as shown in the simulation results later.

Single-user decoding Single-user decoders in the DM receiver outputs
posterior probabilities, while the corresponding modules in [59] as well
as in [43, 34, 41] output extrinsic probabilities. This is another significant
difference between the two receiver structures. As previously mentioned,
the exchange of extrinsic probabilities is an immediate consequence of
applying BP In contrast, the formal DM framework investigated here
specifies the single-user decoders to compute posterior probability output
from the single-user decoders.

Note that the noise variance is assumed to be known and no solution
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4. DM Receiver with Joint-User Channel Estimation

to the unknown variance case is suggested in [59]. In the following we
add a ML noise variance estimator to the receiver in [59] and compare
it to our receiver. The simulation settings used to generate the following
figures are provided in Section 4.5.
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Figure 4.13: Performance of the LMMSE receiver [59] and the DM3 receiver
versus the system load when the receivers have and do not have the knowledge
of the noise variance; E,/Ng = 16dB.

In Fig. 4.13, we investigate the BER performance of the LMMSE
receiver and the DM3 receiver in the cases where the noise variance is
unknown or known to these receivers. Consider first the BER performance
of the LMMSE receiver [59] and the DM3 receiver assuming known
noise variance (even though, in practice, this assumption is unrealistic).
In this case, the BER performance of [59] is much better than that
of the DM3 receiver at high system load K > 38. This performance
degradation of the DM3 receiver can be easily explained. Assuming
known noise variance is equivalent to switching off the noise variance
estimation, which leads to switching off the inherent estimation of the
residual interference in the DM3 receiver. In [59] on the other hand,
this residual interference is handled in the LMMSE filter (see (4.35)) no
matter whether noise variance estimation is performed or not. Thus, the
performance degradation of the modified DM3 receiver is caused by the
lack of residual interference cancellation.

Next, let us compare the BER performance of the LMMSE receiver [59]
and the DM3 receiver in the more realistic case where the noise variance is
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4.6. Comparison Of the DM Receiver and the LMMSE-Based Receiver [59]

unknown. Here, the later receiver performs much better than the former
at high system load K > 24. These different behaviours can be explained
by the distinct ways interference cancellation is performed in the various
parts of the receivers. The ML estimate of the noise variance in the
augmented LMMSE receiver includes also the residual interference. Thus,
in this receiver, the residual interference is estimated twice, once in the
LMMSE filter and once in the ML noise estimator. This redundant residual
interference cancellation eventually causes performance degradation.
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Figure 4.14: BER performance of the LMMSE and DM3 receivers versus the
number of stages; E,/Ng = 16dB.

Since the covariance matrix representing the accuracy of the channel
weights estimate is not used in [59], we also investigate the performance
of the DM3 receiver when this matrix is discarded. As shown in Fig. 4.13,
the DM3 receiver performs better when it accounts for this matrix even
though the resulting gain is not significant.

In Fig. 4.14, we compare the convergence behaviour of the LMMSE
receiver [59] and the DM3 receiver. Convergence is achieved when the
BER is not decreasing any further with additional stages. The convergence
rate is investigated for two high-load cases: K = 42 and K = 46. We
observe that in both cases, the BER of the LMMSE receiver decreases very
rapidly within few stages. After 4 stages, the BER of the LMMSE stabilizes.
However, the DM3 receiver requires 10 stages for K = 42 and more than
20 stages for K = 46 to stabilize. Since the noise variance is assumed to
be known in the LMMSE receiver, the residual interference is computed

61



4. DM Receiver with Joint-User Channel Estimation

more accurately in the first few stages. However, in the DM3 receiver,
the noise variance estimate is affected by the residual interference in
the first stages. Without knowing the noise variance, the noise and
the residual interference cannot be distinguished from each other, which
makes interference cancellation less efficient.

In summary, the DM and LMMSE receivers are very similar from
structural viewpoint. However, there are several fundamental differences
that make the performance and the complexity of the receivers different.
In the LMMSE receiver, extrinsic soft symbols are used for interference
cancellation, while APPs are used in the DM receiver. The residual
interference is handled with a linear LMMSE filter in the LMMSE receiver,
while the DM receiver handles it by estimating the inverse of the noise
covariance matrix. In contrast to the DM receiver, the covariance matrix
representing the accuracy of the channel weight estimate is not included
when estimating the noise and decoding the code symbols in the LMMSE
receiver. The DM3 receiver outperforms the LMMSE receiver in the
case of unknown noise variance (see Fig. 4.13). The LMMSE receiver
assuming known noise variance is less complex then the DM3 receiver
since it requires fewer stages to converge to a stable BER performance
(see Fig. 4.14).
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Chapter 5

DM Receiver with Separate-User
Channel Estimation

In this chapter, the DM method is applied to the same problem as
in Chapter 4 with the difference that the auxiliary distribution of the
vector of channel weights is further factorized. As a result of this
additional factorization, the channel estimator performs separate-user
channel weight estimation. Compared to the joint-user channel weight
estimation, the separate-user channel weight estimation has lower com-
plexity. However, the overall receiver performance with separate-user
channel weight estimation is worse. The applications described in this
chapter and in the previous chapter illustrate that the complexity of the
resulting receiver can be adjusted by the degree of the factorization, and
that the performance is related to the selected factorization.

5.1 Factorization of the Auxiliary Distribution

When the complexity of joint-user channel weight estimation needs to be
reduced, the auxiliary distribution of the channel weights can be further
factorized as follows (see also (3.10))

K K
0(a, d,Z) = ¢s(@) | [ ta @) | | daldo. (5.1)
k=1 k=1

When choosing the auxiliary distribution (5.1), the resulting receiver
performs separate-user channel weight estimation in contrast to the
receiver derived based on (3.9) which implements joint-user channel
weight estimation. The derivations based on (5.1) are shown in the
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5. DM Receiver with Separate-User Channel Estimation

following sections. The factor graph representation of the auxiliary model
(5.1) is illustrated in Fig. 5.1.
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Q d;[0] g>dl[1] g}dl[zl d1[3]
" O (5

Qd,
d2[0] <gz[l] <%[2] d2[3]
N N O CS
¢ ¢ 9 | ko o 5o
Oa, Oa, Oag O

Figure 5.1: Dependency among the variables under the structured mean-field
approximation in (3.10). Circles denote variable nodes; rectangles denote
functional nodes.

U,

Compared to Fig. 4.1, the variable nodes of the channel weights of
different users are disjoint, i.e., the channel weights will not be updated
jointly. The coding constraints on the transmitted code symbols are the
same as in Fig. 4.1.

Given the auxiliary distribution (5.1), the KL divergence to be mini-
mized is

K K
D{0=(2) [ | tac@) [ ] a0 || pta =, dlr)]. (5.2)
k=1 k=1

The KL divergence (5.2) can be minimized in an iterative way by using the
DM method. The auxiliary distributions g, (a), da.(dk), 4=(E) are updated
serially in successive steps.

5.2 Components of the DM receiver

In this section, the receiver components performing separate-user channel
weight estimation, noise covariance matrix inverse estimation and inter-
ference cancelation followed single-user decoder are derived. They are
compared to the corresponding components described in Chapter 4.
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5.2. Components of the DM receiver

5.2.1 Separate-User Channel Estimation

When updating g, (), k = 1,..., K, separate-user channel weight
estimation is performed. Similarly to (4.4), minimizing the divergence
in (5.2) while keeping q[E'](E), q;[i'j](aj), j#k j=1,...,Kand qg](d) =
[Tk 5 (di) fixed, yields

j#k

K
ol () oc exp U d=ql(E) f day ... da-1dacs ... day | | off(ay)

Y d(d) log p(a, d|r>}

deC

j#k

K
o exp {deq[E'](E)fdal...dak1dak+1...daKHq£']](aj) (5.3)

)" da(@ logp(ria, d, =

deC

K
+ fdal ... da_qday,; ... dax H o5 (a;) log p(a)

j#k
The log-likelihood function in (5.3) reads (see (4.7))

log p(rla, d, E)
L

o Llog[El - Y (r[l] - S DMa) =(r{l] - SID[a). (5.4)

I=1
In this update step, the expectation of the log-likelihood function in (5.4)

with respect to qg](E), e, qgl(dk) and qgij](aj), j=1,...,K j # kneeds to
be derived. Finally, the following expectation needs to be computed

K
i a Kk =k
qu[iig [ak’] = fak/da]_ cen dak_ldak+1 cen daK ]:!: qglj](al) = {QE'] K = k. (5.5)
i# ’

The prior distribution of the channel weights is the same as in (4.11).
Based on (5.5), we can compute the expectation of the sum of (5.4) and
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5. DM Receiver with Separate-User Channel Estimation

(4.11) with respect to ql'(a;), j=1,...,K and j #k,
J J

Eq[g [|Og p(rla,d, E)]
e

x Z(2Re{a;d;[|]((su]Har[l])k - Y alla (S[|]HES[|])kj)}
1=0

j#k
+ lal* ([N (S[I]HES[I])kk) (5.6)
and
Eq, [log p(a)] o —a7faul®. (5.7)

Note that in (5.6), |di[l]|> = 1 for constant envelop modulation. Inserting
(5.6) and (5.7) into (5.3), applying the results in (4.24), (4.8), and the
definition Qﬂ]’s = qu]{E}, the resulting distribution of the channel weight
of user k is Gaussian. More specifically,

i+

i1 K ‘L[a
qg: I(ae) o< exp [— ‘G[,—H]k

A

2
} 55

with mean value

-1

ua, = ((S[I]HQEE,SS[IJ)kk + a;f)

: Re{diil[|]*((S[|]H959,Sr[|])k - Z alldliy (S[l]HQEE,SS[l])kj)} (5.9)
jk
and variance

-1

@y = (stralst), + o) (5.10)

Detailed derivations of (5.9) and (5.10) are provided in Appendix B.3.
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5.2. Components of the DM receiver

5.2.2 Estimation of the Inverse of the Noise Covariance Matrix

Updating gz (E) results in the estimation of the noise covariance matrix
inverse. Similarly to (4.15), the distribution of E is updated according to

qg+1] (E) xp (E) exp |:f dal e daK H qgk](ak) Z qg](d)
k

deC
-logp(rla,d,E)]. (5.11)

To obtain the exponential term in (5.11), we compute the expectation in

(5.4) with respect to qgg(ak), k=1,...,Kand qg](d). Doing so yields

exp [ f day...dac | [ obi(a) ) afl(d)logp (rla, d, s)} o
k

deC
=l exp|[-tr (2B (5.12)

with
Lp—1
Bl 2 Z((r[l] ~ SMD,[Ma) (r{1] - S[l]Dp[l]a[i])H)
1=0
L-1
+ Z((r[u — S DUIalT)(r[1] - S[l]f)lil[ua[i])H

I=L,
+S[I]E[i][I]A[i](A[i])H(E[i][I])HS[I]H). (5.13)

Similarly to (4.16), the right-hand side of (5.12) is (up to a proportional-
ity constant) a complex Wishart distribution.

Comparing (5.13) and (4.17), the terms containing the covariance
matrix of the channel weight estimates does not exist in (5.13). This is
due to the factorization of the auxiliary distribution of the channel weights
in (5.1). Similarly to (4.18), the expectation of = is

-1

Qi+l 2 g [i+11{5} _ B . (5.14)
w,5 qE L + NC

When the noise is white and Gaussian, the mean of the noise variance
inverse is given by

(5.15)

tr{BI})"
LN, )

Eglc] = (
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5. DM Receiver with Separate-User Channel Estimation

5.2.3 Interference Cancellation and Single-User Decoding

The process of updating the symbol sequence of user Kk, q['+1](dk) is

carried out in two functional blocks: interference cancellation and single-
user decoding.
Similarly to (4.21), the minimization yields the update rule

o () = ay (die) o p(d) exp[ m{ o {Eq {logp (la, d,E)}}}]~
(5.16)
Inserting the prior distribution (3.5) into (5.16) and performing the

expectation in (5.16) yields the same result as (4.22), however, with the
metrics

Mx

[|+1][|] A ZRG{(( [I]) Sk[l] Q['] (’I“[l] _ 3[']3.?]&5']['])} (517)

;e

The formula in (5.17) is much simpler than (4.23). It can be observed
that the terms containing the second cross-moments of distinct channel
weights and the variance representing the precision of the code symbol
estimates do not appear in (5.17).

5.3 Scheduling

Similarly to the DM receiver discussed in Chapter 4, different scheduling
schemes can be applied in the DM receiver considered here. Every
scheduling scheme leads to a guaranteed convergence in divergence.
However, the iterative process with different scheduling schemes may
end in different local optima. It was shown in the previous chapter that
the DM3 receiver achieves the best performance-complexity trade-off. In
the following, we only consider the scheduling scheme originally used in
the DM3 receiver, where the channel weights, the noise variance inverse
and data symbols are estimated sequentially. The scheduling of the two
versions of the DM receiver - DM5 and DM6 - is reported in Table 5.1.

Compared to the DM3 receiver, the DM5 receiver differs only in
the channel weight estimation; the former receiver performs joint-user
channel weight estimation, while the latter estimates the channel for
individual users separately. The consequence of per-user channel weight
estimation is twofold:

68



5.3. Scheduling

DMS5 | g, (1) .. = Gac (@) = 9c(c) = da,(da) - -
— Qg (A1) . .. = Ga(A) = 0c(6) = o (dk)
DM6 Ga, (@1) = () — o, (d1) . ..
- an(aK) - qg(C) - qu(dK)

Table 5.1: Selected update scheduling schemes for the DM receiver with
separate-user channel weight estimation.

e The covariance matrix representing the precision of the channel
weight estimates is missing in the noise covariance inverse estima-
tion and in the data decoding process.

e The matrix inverse in the joint-user channel weight estimation is
not required here so that the complexity of the channel weight
estimation is reduced. The complexity of the matrix inverse is O(K3).
The complexity of the channel weight estimation for all users in the
DMS5 receiver is O(K?).

In the DM6 receiver, the complexity of the channel weight estimation

is reduced even further, since only the channel of one user is updated
before the user’s data is decoded.
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Figure 5.2: Receiver architecture for the DM6 receiver with separate-user
channel weight estimation.

The architecture of the DM6 receiver is depicted in Fig. 5.2. The
channel weights of one user are estimated first and then the estimation of
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5. DM Receiver with Separate-User Channel Estimation

the noise variance inverse and the interference cancellation are performed
before single-user decoding. The same procedure is repeated for the next
user. In the DM5 receiver, the channel weight estimation block for user k is
replaced by K parallel blocks, and each block estimates a channel weight
for each individual user.

5.4 Simulation Results

The same simulation settings are used as in Chapter 4. The system
model detailed in Section 3 is considered. All users employ the same
rate R, = 1/2 terminated convolution code with generators (5,7)s. The
generated codewords have length L, = 320 code bits, corresponding to
information sequences of length M = 158 information bits. Random
signature sequences of length N, = 8 chips are assigned to the users. Each
codeword is multiplexed with L, random pilot symbols and each block of
L = L¢ + Ly symbols is transmitted across a block-fading channel. The
effective signal-to-noise ratio is defined as E;/Ng = L/(L.R;) - Es/Ng, where
E; is the energy per code symbol and E; is the energy per information bit
and Ng = 1. All users have the same E,/Ng. We assume additive white
Gaussian noise. In the simulations, the performance of the DM5 and DM6
receivers are evaluated and compared to that of the DM3 receiver derived
in Chapter 4.

As Table 5.1 shows, it is obvious that the DM6 receiver has a lower
convergence rate than the DMS5 receiver. This can be explained by the
different scheduling schemes. In the DM5 receiver, the channel weights
of all users are updated before decoding the information of a single-user
information, while only the channel weight of one user is updated in the
DMG6 receiver. We plot the BER performance of the DM6 receiver versus
the number of stages in Fig. 5.3. In one stage, the data symbol estimates
of all users are updated once. It can be seen that in a low load system, e.g.,
K =32, K = 34 and K = 36, most performance improvement is achieved
when the number of implemented stages is 12. For a high load system,
e.g., K =38 and K = 40, no further improvement is observed after s = 15
stages. The BER performance is enhanced with the number of performed
stages. In Figure 5.4 the performances of the different versions of the DM
receiver are compared when the numbers of stages implemented are s = 8
and s = 15.

In Fig. 5.4 the BER performance of the DM6 receiver after s = 8 and
s = 15 stages under different conditions are plotted. In both plots, the
DMB6 receiver with unknown noise variance and known channel exhibits
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Figure 5.3: Convergence rate of the DM6 receiver versus the number of stages
with the number of users as a parameter. For one stage, the symbol estimates of
all users are updated once; E,/No = 16 dB.

the best performance. It can also be seen that the performance of the
DMB6 receiver operating under these conditions is very good after 8 stages,
which indicates a fast convergence rate. The DM6 receiver operating
without knowledge of the noise variance and channel weights performs
worse when K < 32. However, after s = 15 stages, it performs better
than the DM6 receiver that knows the noise variance. We observe that the
DM6 receiver needs more stages to converge when it does not know the
noise variance than when it has this information available. Provided the
DM receiver with unknown noise variance performs a sufficiently large
number of stages, its BER performance is better than when the noise
variance is known. This phenomenon is similar to that observed for the
DM3 receiver and the explanation can be found in Chapter 4. In addition,
we also observe that the DM3 receiver performs better when it knows
the channel weights than when it does not have this information and
therefore has to estimate these weights.

The BER performance of the DM5 receiver implementing s = 8 and
s = 15 stages under different conditions is depicted in Fig. 5.5. Again in
both plots, the DM5 receiver with unknown noise variance and known
channel weights shows the best performance. The order of the different
curves in Fig. 5.5 is very similar to those obtained for the DM6 receiver in
Fig. 5.4.
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Figure 5.4: The BER performance of the DM6 receiver versus the number of
users after s = 8 (left) and s = 15 stages (right) for Eb/Ny = 16 dB. ("Kn" stands
for known channel and "UK" stands for unknown channel).
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Figure 5.5: The BER performance of the DM5 receiver versus the number of
users after s = 8 (left) and s = 15 stages (right) for Eb/Ny = 16 dB. ("Kn" stands
for known channel and "UK" stands for unknown channel).

Comparing Fig. 5.5 with Fig. 5.4, it can be seen that the DM5 receiver
outperforms the DM6 receiver after 8 stages. It also can be seen that
at a high SNR regime, the performance of the DM5 receiver is slightly
better than the performance of the DM6 receiver after 15 stages. This
also indicates that the DM6 receiver has a slower convergence rate than
the DMS5 receiver.

In Fig. 5.6, the BER performance of the DM3, DM5 and DM6 receivers
implementing s = 15 stages is evaluated and compared at E,/Ny = 16 dB.
We observe that with an increasing number of users, the DM3 receiver has
the best performance. The performance of the DM5 receiver is the second
best. However, from a complexity viewpoint, the order is reversed. The
DMS6 receiver has the lowest complexity and the third best in terms of
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Figure 5.6: Comparison of the performance of the DM3, the DM5 and the DM6
receivers after s = 15 stages for E,/No = 16dB.

performance is the DM5 receiver.

To summarize this chapter, we have applied a further factorization
of the auxiliary distribution of the channel weights in the DM method.
This has resulted in an iterative receiver performing separate-user channel
weight estimation, noise variance inverse estimation, interference cancel-
lation followed by a bank of single-user decoders. As expected and shown
in the simulation results, the performance of the resulting receiver is not
as good as the one in Chapter 4. The complexity is reduced at the cost
of performance degradation. From this example, we can see that the DM
method is a flexible tool to trade-off performance for the complexity when
needed.

73






Chapter 6

Summary and Conclusions

This chapter summarizes the main findings and results of this thesis and
draws conclusions based on these outcomes.

6.1 Summary

Many different iterative receiver structures have been suggested for
iterative multiuser decoding in recent years. Most of them are partially
or purely based on heuristic approaches or arguments. As pointed out
in Chapter 1, there is a lack of a formal optimization framework for
designing iterative receivers that exchange soft symbols. This serves as
a main motivation for this thesis. The goal of this thesis is to provide a
systematic and holistic framework for the design of iterative receivers that
operate with soft symbols.

A theoretical DM framework inspired by the VBEM approach is
presented in Chapter 2 for the problem of multiuser decoding and
parameter estimation. The DM method approximates the target posterior
joint distribution by an auxiliary distribution in an iterative manner.
To make the complexity of the iterative process tractable the auxiliary
distribution is constrained to factorize in a pre-determined manner. As
a by-product, the factors of the auxiliary distribution can be seen as
approximations of the marginal posterior distributions of some model
parameters. The KL divergence between the auxiliary distribution and
the target joint distribution is guaranteed to be non-decreasing over the
iterations. The DM method is closely related to other algorithms such as
EM, SAGE, GEM, etc., since it can be seen as a generalization of these
methods.

The signal model for a CDMA system operating in flat fading channels
and preliminaries of multiuser decoding are described in Chapter 3.
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6. Summary and Conclusions

In order to design a CDMA receiver for data decoding in case of
unknown noise variance and channel weights, we consider two specific
factorizations of the auxiliary distributions leading to the two iterative
receiver structures described in Chapter 4 and Chapter 5.

In Chapter 4, by using the first factorization, the resulting CDMA
receiver performs joint-user channel weight estimation, noise variance
inverse estimation, interference cancellation and single-user decoding in
a iterative manner.

The resulting estimator of the channel weights is a linear MMSE
estimator which depends on the posterior means and variances of the
code symbols and the mean of the noise variance inverse. The channel
estimator provides not only estimates of the channel weights but also a
covariance matrix which is an indicator of the estimation accuracy.

The interference cancellation structure results naturally within the DM
framework. The interference is calculated based on the posterior means
and variances of the code symbols, for all interfering users, as well as the
channel weight estimates and the covariance matrix of these estimates.
The output of the interference cancellation scheme provides extrinsic
values for the single-user decoders.

The single-user decoders compute the probabilities of the individual
code symbols based on the conventional maximum a posteriori algorithm
such as the BCJR algorithm.

The above components are obtained purely based on systematic and
strict derivations within the DM framework. Thus, once the components
are activated sequentially, the KL divergence between the auxiliary
distribution and the target posterior distribution is guaranteed to be non-
decreasing.

Clearly, different versions of a given iterative receiver structure are
generated by activating its components in different orders (scheduling
scheme). We are lacking a criterion for optimizing the scheduling scheme;
thus, four different scheduling schemes are chosen heuristically. These
different versions of the DM receiver are evaluated by means of Monte
Carlo simulations. Among these four versions, the DM3 receiver, which
first performs channel weight estimation for all users, followed by noise
variance inverse estimation and interference cancellation, has the best
performance in terms of both BER and complexity.

The DM3 receiver is interpreted and compared to the start-of-the-art
receiver [59] for multiuser decoding and channel parameter estimation
both in terms of structural feature and simulated performance. Structure-
wise, both of them consist of channel weight estimation, successive
interference cancellation and single-users decoders. Besides, the DM3
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receiver estimate the noise variance inverse, and the latter mitigates the
residual interference using a LMMSE filter. The simulation results show
that the DM3 receiver outperforms the receiver [59], even if the noise
variance is unknown to the former receiver, while the latter has this
information available.

In Chapter 5 the DM method is applied to derive a CDMA receiver with
separate-user channel weight estimation. The main difference of this DM
receiver compared to the one described in Chapter 4 is that it performs
channel weight estimation separately for each individual user. In the
single-user channel estimator, firstly the interference is estimated based
on the posterior means and variances of the code symbols, the channel
estimates of the interfering users and the estimated mean of the noise
variance inverse. This interference is subtracted from the received signal,
and then a least squares estimator is applied to the resulting signal. Except
for the channel estimator, the remaining components in this DM receiver
have a structure very similar to the corresponding components described
in Chapter 4. Compared to the DM receiver with joint-user channel weight
estimation, the DM receiver with separate-user channel weight estimation
exhibits a performance loss; however, it complexity is reduced.

We have applied the DM method to the problem of joint multiuser
decoding, channel weights and noise variance inverse estimation based
on two selections of the auxiliary distribution. However, the choice of the
auxiliary distribution is not limited to these two.

6.2 Conclusions

The DM method considered in this thesis is an effective tool for iterative
receiver design. It is a purely systematic and holistic approach to design
each individual component in iterative receivers. The only assumption
upon which it relies is the factorization of the auxiliary distribution.
The proposed receivers are derived rigorously within the DM framework.
The DM design approach is flexible in the way that different receiver
architectures can be obtained by selecting different factorization forms.
For the resulting iterative receivers the KL divergence between the
auxiliary distribution and the target posterior distribution is guaranteed
to be non-decreasing over the iterations.

Through the work done in this thesis, we have gained many new
insights on iterative receiver design:
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6. Summary and Conclusions

Soft symbols As a result of the expectation performed in every updating
step of the DM method, soft code symbols are naturally used to estimate
the channel parameters and to perform interference cancellation. This
application of the DM method provides a theoretical foundation for
receivers that pass through soft information. Regarding the type of the
soft information, extrinsic values for code symbols are forwarded to the
single-user decoders, which is in accordance with the messages computed
using BP However, the single-user decoders feed posterior probabilities to
the interference cancellation device and the channel parameter estimator.
This is different from the extrinsic values generated by BP The BP
algorithm guarantees that the exact marginals can be computed for graphs
without circles. The factor graph representing the signal model of a multi-
user system like the one considered here contains many short cycles.
Therefore, approximated marginals are obtained by using extrinsic values
in this case. Simulation results show that in high SNR regime the DM
receiver with posterior probabilities fed back for interference cancellation
can support more users than the receiver providing extrinsic values for
interference cancellation.

Uncertainty of the parameter estimates At each iteration the distri-
bution of the parameters is updated. Thus, not only point estimates,
which usually coincide with the first moments of the unknown variables,
but also the second central moment estimates are provided to the other
components. These central moments provide a measure of the accuracy
of the estimates. For example, in our application of the DM method,
the auxiliary distribution of the channel weights turns out to be a
Gaussian distribution determined by its mean and covariance matrix.
Both quantities are provided by the channel estimator to the other
components.

Mitigation of residual interference Conventionally, the residual inter-
ference after interference cancellation is mitigated by using a LMMSE
filter. In the DM receiver residual interference suppression is embedded
in the noise variance inverse estimation. Thus, it is not necessary to
implement the additional LMMSE filter after the interference cancellation
module.

Annealing effect The simulation results shows that in high SNR regime,
the DM receiver having no knowledge of the noise variance can support
more users than the DM receiver which knows the noise variance. This
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effect is similar to the annealing phenomenon in physics. The explanation
lies in the fact that the proposed receivers are sub-optimal and can only
approach a local optimum. The final result after convergence depends on
the shape of the cost function and the initialization. Additional unknown
parameters may change the shape of the joint posterior function and thus
make the suboptimal solutions close to the optimal one.

6.3 Future Work

There are several open topics worth a further study. First of all, the
application of the DM method for CDMA receivers under more realistic
channels, for example, frequency selective fading channels, shall be
investigated. Other parameters assumed known in the investigation, for
example, channel correlation matrix, can be seen as additional unknown
quantities to be estimated using the DM method. Other factorization
of the auxiliary distributions can also be investigated for the problem at
hand.

The DM method has been applied in this work to design iterative
receivers for multi-user DS-CDMA systems. However, the developed
theoretical framework is generic and can potentially be applied to any
wireless multi-user access system. A promising application is to MIMO-
OFDM, where estimation of the time-variant multi-dimensional transfer
functions of the channels of multiple users is a challenging task, especially
in fast time-varying scenarios. As a matter of fact, some follow-up works
on this topic, which have been strongly inspired by the results of this
thesis, have been recently published [52][33].

Another interesting topic is the optimization of scheduling schemes of
the identified iterative structures. The same DM algorithm with different
scheduling schemes can converge to different local optima. An interesting
open issue is whether there is any criterion that can capture the difference
between the local optima?
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Appendix A

Theoretical Results

A.1 Functionals and Functional Derivatives

In this section, the concepts of functional and functional derivative are
described in order to understand the derivation of the updating steps in
the DM algorithm.

Let y(X) be a function of a variable x € [a,b], a,b € R and a < b. Here,
a function is a mapping from a set of real values to another set of real
values.

Functional A functional is a mapping from a class E of functions Y onto
the set of real numbers,

F: Y- R, y— F[y]

The class [E can be, for instance, a class of functions defined on an interval
[a, b] that are integrable.

Note that F[y] is a function of all the values of y(x) when X ranges in
the interval [a,b]. A functional takes as input a function in its domain -
not the value y(x) of the function at a specific point x. The output of a
functional is a number.

Functional derivative Consider a functional F[y]. The functional
derivative at y° is defined as

dF = F(y° + dy) = F(y°) = F'(y)| dy
yO

where y? is an arbitrary function in the domain Y.
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When considering a functional F[y;, y,] of two variables vy, y,, the
derivative of F is given by

_9F

Y1

dyl+a_F

dF
Y>

0dyz (A.1)

% Y2

where y? and y) are arbitrary functions in the domain of y; and y,,
respectively. The expression in (A.1) can be generalized to a function
of N variables as follows

dF =

)dyn (A.2)
¥
where a denotes a real number.

Functional derivative In case that N — oo and a — 0!, the left-hand
side of (A.2) can be rewritten as?

b
OoF
dF:f dx
2 OY(X)

where y°(x) is an arbitrary value of the function y(x) in the domain. The
definition of the functional derivative % can be found in (A.3). The
functional derivative can be seen as a response of the functional F to a

small change in the function y.

0y(x) (A.3)
yO(x)

The Euler equation When the functional is an integral form, the Euler’s
equation gives a powerful formula for quick calculation of the functional
derivative. Let

] = [ Lty A
The functional due to an infinitesimal change 6y(x) is calculated as
Fly + oy] = fL(x, y + oy)dx

_ f (L(x, y) + &Lg; y)éy) dx. (A.5)

IN and a converge in a coordinate way to infinity and not independently.

2The definition of an integral is fab dxf(x) = lime_o Y0, af(Xn), Xn = @ + na. Note
that 1 is absorbed into % and dy, is replaced by dy(x) in (A.3).
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The second derivative and higher order derivatives with respect to y(x)
are discarded in the r.h.s. of (A.5). Referring to the definition in (A.3),
the functional derivative of F in (A.4) with respect to y(x) reads

oF  dL(xy)
oy (x) ay

To better understand how to calculate the functional derivative, two
examples are given in the following.

(A.6)

Example 1 Let

1
Fly] = fo (Y(9)? dx. A7)

With an infinitesimal change 6y(x), the functional is calculated as

1
Fly + oy] = fo [y(x) + Sy()Tax
1
- f [(Y))? + 2y(95y(x) + (6y(0)Idx
° 1
= F[y] + f 2y(x)oy(x)dx. (A.8)
0

In the last line, the term (8y)? is discarded. From (A.8) the change of the
functional dF reads

1
dF = F[y + 6y] — F[y] = j(; 2y(x)oy(x)dx. (A.9)

According to (A.3), the functional derivative with respect to y(x) is

oF

2
Alternatively, letting L(X, y(X)) = (y(x)) and inserting into the Euler’s

formula (A.6) results in

5F  Ay(X)?
oy(x) — 9y(x)

= 2y(X). (A.11)
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Example 2 A functional can depend on more than one function. For
instance,

1
FIYX), 201 = [ yoPaoie (A12)
0
The functional derivatives with respect to functions y(x) and z(x) are
OF
= 2y(x)z(x)? (A.13)
5900 = 209209
F _3 (X)%z(x)°. (A.14)
5200 - Y '

A.2 Derivation of Step 1 in the DM Method

In the following, the Lagrange multiplier method is employed to minimize
the objective function (2.8) and obtain (2.9) in Step 1.

Note that in the below derivation, 7 is a vector of continuous variables
and 0 is a vector of discrete variables. However, n and @ are not restricted
to either continuous or discrete. With the above choice, the updating steps
for both continuous and discrete variables are described in below.

The optimization problem for Step 1 needs

ay (m) = argmin D(q}(6)a,(m)IIp(6, nly))

st f dng,(n) = 1, a,(n) = 0.

Introducing a Lagrange multiplier to account for the above constraint
yields the objective functional

Ly () = Y a0) [ dnay(m)(1oga,(n) + 1og cf)(6) - logp(, 61r)

=6

+A( f dna,(n) - 1).
(A.15)

To find the solution (2.8), we use the necessary condition that the first
order functional derivative of (A.15) vanishes for this solution:

L (G;() Z q['](e) Iog d,(m) + 1+ log d(8) — log p(n, 0|r)) +A=0.
I0k(n) i (A16)
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A.2. Derivation of Step 1 in the DM Method

Solving (A.16) for q,(n) yields

Gy(m) = exp[ ) al(6) logp(n, 1) — 1= } " of(6) log af}(8) - A].

0cO 6c®
(A.17)
Making use of the condition f dnq,(n) = 1, we obtain
i 1
(il - =
[ anexo[ Y dieytogpen,oin)] = (A18)
6cO
where the constant C; is defined as
C, 2 exp Z ai(@) log qC(6) - /\]. (A.19)
0cO
Inserting (A.19) in (A.17) yields
qy(m) = Crexp| Y a5(6) log p(n, 61r) | (A.20)
0cO
The second order functional derivative is computed as
aL(d,(m))
dGx(n) ol
— 0 = 0 (A.21)
eI )qq( )

Notice that q,(n) in (A.20) fulfills the other constraint ¢, (n) > 0. Thus, the
objective function is minimized by (A.20).

Furthermore, if n is complete data, p(r|n,8) = p(r|n). Using this
property and Bayes’ rule yields

S, 01y — PrRCIOD(E) (A22)

p(r)

Let’s consider the deterministic mapping » = f(n), i.e., p(r|n) = 6(r—f(n)).
Inserting (A.22) with this setting into (A.20) yields

Gy(m) = Crexp| ) a(8) Iog p(8) + ) " al(8) log p(l6) - ) _ of'(6) log p(r)]

EC) EC) 0O

= CiC; ) 3)(0) log p(n|6)

EC)

=Ca ) af}(0) log p(nl6)
EC) (A.23)
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where the constant C, is defined as

C. = exp[ ) a5(6) log p(6) - log p(r)] (A.24)

EC)

and C3 = C]_Cz.

A.3 Proof that the E-step and the M-step in (2.14) and
(2.15) respectively are an Instance of the DM
Method

E-step: Inserting (2.13) in (2.9) yields (2.14).
M-step: Computa

D(@@d b, )|, = -exo] [ nafla1ogpt, o]
(A.25)

Minimizing the Lh.s. of (A.25) is equivalent to maximizing the integral in
the r.h.s. of (A.25). The latter operation is equivalent to (2.15).
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Appendix B

Specific Derivations for the DM
Receivers

B.1 Derivation of the Updating Step for the Auxiliary
Distribution of the Channel Weights of All Users

From (4.7), the expectation in (4.10) with respect to qg](d) and qg](E) is
computed as follows:

qu]{qu]{ Iog p(rla, d, E)}} oc
Lp—1
- tr{(QE})_l (Z(r[I]—S[I]Dp[l]a)(r[l]—S[l]Dp[I]a)H

=0 (B.1)

L-1

+ qu]{Zr[l]r[l]H — r[Il]a" D" ST

I=Lp
_ S[D[lar[]" + S[I]D[I]aa,HD[I]HS[I]H})}.

Exchanging the order of summation and expectation in the last four terms
on the r.h.s., the expectation (B.1) results in

r[r[]" - r[lle"DUMNP S - S D" [ar[]™
+ STAEp {ddlT"} A" ST
=r[[]r[N" - r[Ila" DS - S[ID[1ar[]"
+ S[1AdM[11dM " AH s
+ S[NAEM[IE" N ARSI,
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Inserting in (B.1) yields (4.10). The expectation in (4.16) resulting in
(4.17) is determined in a similar manner.

B.2 Derivation of the Updating Step for the Codeword
Distribution

B.2.1 Computing the soft QPSK symbols The soft QPSK symbols are
defined as

GNP = Y ddiel (d) = Y [2ed21] - 1) + j@od2! + 11 - 1)] o (dh).
deD? dyeD?
(B.2)
Since the mapping cx — dy is one-to-one, (B.2) can be rewritten as

G™ = ) [2ed21] - 1) + j(2ed2! + 11 - 1] o)
c€Cx (B3)

= & [20]™ + j& 21 + 171

Note that as a result of the expectation in (B.2), the soft symbols are the
means of the modulation symbols given the code bit probabilities.

B.2.2 Computing the input for the single-user decoder Using the
results in (4.24) and (4.8) for codewords and the results in (4.13) and
(4.14) for the channel weights, we compute the expectation in (4.21) as
follows

EE[i] {qu]{qu], {lOg p('f'la, d, E)}}}

L-1
o _tr{Qg} Z((r[l]—S[uf)E][|]a,[i1)(r[l]—5[|]1”)E][|]aU1)H)

=L,

+S[I]f)E][I]EE]DE][I]HS[I]H}, (B.4)

where D[] = DU[I)(I - diag{e«}) + D[l]diag{ex} and e is a unit vector
with element k equal to 1. Terms independent of d[I], | = L,,...,L—1are
discarded in (B.4).

The compact expression in (4.22) is obtained from (B.4) by expanding
the matrix-vector multiplications and discarding terms irrelevant for
determining the codeword distribution of user k. The trace operator can
be eliminated by exploiting its cyclic property and decomposing the error
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covariance matrix. In particular, since the covariance matrix > js always
positive semi-definite we can employ a singular value decomposition,
>l = gWAL@UTYH, to obtain the last term in (4.23):

L-1
[i] il [i1 HLlH H
tr{ﬂw ;s SO M=0 AU S[I] }

L-1

— tr{QEE Z S[I]DIEI] [|]U[i]A[i](U[i])H DE] [l]HS[|]H}
I=Lp

L-1
-y tr{(U“l)HDE] [I]HS[I]HQEES[I]INDE][I]U[”A[i]}

=Ly

L-1
o Z dk[|]2Re{Z(uE])Hs['[|]ﬂﬁlsju§”)\§‘]}. (B.5)

=L, jk

In this expression u" is the k-th column of eigenvector matrix U and Al

is the j-th eigenvalue of the diagonal matrix Al'l.

B.2.3 Initialization of the iterative process The vector of channel
weights a!¥ is initialized based on the pilot symbols D,[0],...,D,[L, — 1]
using a least-square estimator

_1bp-

Lp—1 1
aldl = (;(Dp[l])HR[I]Dp[I]) ;(Dp[l])HS[l]Hr[l].

Initial symbol estimates are obtained also by means of a least-square
estimator

_1|-p—

Ly-1 1
do = (I; A[O][I]HR[I]A[O][I]) I; AL SO [,

Note that A%[I] is a diagonal matrix representation of the vector al”[l].
The initial noise variance inverse estimate is then

Lp-1
® = (LNe+2)( Y (+I - STID,[0a®)” (r[1] - ST1D, [1a)
1=0
L-1
+ ) (rl1 - SIBP 1) (r[1) - SOl )
=L,
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B.3 Derivation for Updating the Auxiliary Distribution
of the Channel Weight of User k

Letting ﬁEi] = E.o [aj], the expectation of w.r.t. reads
%

o 109p(rla, d)] & - Y (~a(DIN" SOIEr [ - (INMESIIDI
|
+ Z aﬂ(DU]HS[I]HED[|]S[|])kj§J[i]
j#k

+ Y @Y (DI SIMES D)
j#k
+ laP (DN SINMESIDINe)-  (B.6)

The above equation can be further reduced to
qu‘g[ log p(rla, d)] o« Z (2Refaidy(STITHEr[1])

|
— 2Re{ )" &, [N, (SIMEST) - lad; [N (SITESMw)

jk

=Y 2Refa d[N(STIEF [N - ) &V N(SIESTN)]
|

j#k

~lad? ) IdIASTMES M. (B.7)
|

B.4 Derivation of the LMMSE Channel Estimator
The LMMSE channel estimate [59] assumming white noise is given by

a =3 X"sH(SXT, X"+ A)S™ +02)

~ ~ ~ B.8
=eHXHSH (s X®, XS + SAS" + o217 r (B.8)
with A = [02(1 - 031)’ e, 001 - agK)].
Using the matrix inversion lemma
PB'(BPB"+R)=(P'+B"R'B)'B'R™ (B.9)

the LMMSE channel estimate can be recasted as

a= (7t + X"SH(SASH +621) 18 X) T XHSH(SAST +6?T)tr. (B.10)
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B.4. Derivation of the LMMSE Channel Estimator

Applying the matrix inversion lemma

A'BB'A'B+I)=(A+BB")'B (B.11)

yields
SH(SAS" + 6% 1)t = (6T + RA)1S". (B.12)

Inserting (B.12) into (B.10), we obtain

a =+ XYRA + ) RX) I XH(RA + c?I)tS"r. (B.13)
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