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. Abstract

With the recent (and ongoing) liberalisation of the energyrkat, increasing fuel prices,
and increasing political pressure toward the introductibmore sustainable energy into
the market, dynamic control of power plants is becoming lyigimportant. More than
ever, power companies must be able to adapt their produtdgiamcontrollable fluctu-
ations in consumer demands as well as in the availabilityroflypction resources, e.g.
wind power, at a short notice.

Currently, thermal power plants in Denmark provide the seagy flexibility, which
is coordinated by a load balancing controller. As the stetibg@roduction increases, the
flexibility of the power system should be increased as wellpraposal for increasing
flexibility is virtual power plants (VPP). The concept of VR$to pool smaller units
together to obtain a larger unit which offers the flexibilkgown from thermal power
plants. A virtual power plant could consist of heat pumps eledtrical vehicles which
has some flexibility that can be utilised. Creating suchugirpower plants will increase
the number of units the load balancing controller coordiaaand this will strain the
design method of the current load balancing controller.

This thesis presents a new method for designing a load bataonontroller which is
flexible and scalable in the number of units to meet the requint of the future power
system. The developed method is based on model predictiteotoln order to achieve
flexibility in the controller, the method presented in thigsis utilises a two-layer hier-
archical control structure using an object-oriented desibhe object-oriented structure
is designed so units can be added, removed and modified withdesigning the whole
controller. Furthermore, the design allows freedom in thplementation of the unit in
question, in order to meet the diversity of the future units.

The optimisation problem arising from the constructiontef model predictive con-
troller has been fitted into the hierarchical structure bgoseposing it using Dantzig-
Wolfe decomposition. Besides the benefits of the flexibligysolving the optimisation
problem within the hierarchical structure, this decomposialso ensures efficient solv-
ing of the problem, thus allowing the controller to coordemore units.

The newly developed design method has been utilised fohegig of a controller for
the current portfolio and compared to the performance otthieent portfolio controller
through simulations. Through simulations on a real scertéué new controller shows
improvements in ability to track reference production acdromic performance.







. Synopsis

Den nylige (og igangveerende) liberalisering af elmarkestigende braendselspriser og
gget politisk pres for at indfare mere vedvarende energirketet har gjort dynamisk
regulering af kraftveerker til et vigtigt emne. Elselskaimskal i hgjere grad end tidligere
veere i stand til med kort varsel at tilpasse produktioneddiukontrollerbare udsving i
forbrugernes efterspgrgsel samt tilgeengeligheden afutimhsressourcer, f.eks. vind-
kraft.

Det er i gjeblikket de termiske kraftvaerker, der leverer dedvendige fleksibilitet,
koordineret af en balanceregulatoraMtlen stokastiske produktion gges, er der et behov
for at @ge fleksibiliteten. Et forslag til hvordan gget flddiiiet kan opras, er virtuelle
kraftveerker (VPP). Konceptet bésti at samle mange sirenheder med en smule fleksi-
bilitet til en stgrre enhed, som kan give samme fleksibjlgetn kendes fra de termiske
kraftveerker. Et par eksemple&adanne enheder er varmepumper og elbiler. Selv om
konceptet i et virtuelt kraftveerk er at aggregere mangé smheder, @ det stadig for-
ventes, at de medfarer en kraftig stigning i antallet af eehesom balanceregulatoreren
skal koordinere. Dette er mere, end den nuvaerende regitatdéindtere.

Denne afhandling praesenterer en ny metode til at desigmadelegulatorer, som
er fleksible og skalerer til mange enheder for at imgdekomenkrav, som fremtidens
energisystem stiller. Den udviklede metodik er baseteep model preediktiv reguler-
ingsstrategi. For at o@nden gnskede fleksibilitet i regulatoren, udnytter den @nees
terede metode sig af en objektorienteret to-lags hiedaregulatorstruktur. Den objek-
torienterede struktur er konstruered, enheder kan tilfgjes, fiernes og aendres, uden at
den grundlaeggende struktur i regulatoren sendres. Endvitedesignet udformetas
det giver stagrst mulig frihed til at udforme den enkelte ehf@ at imgdekomme den
mangfoldighed af forskellige enheder, der kommer i freenid

Det underliggende optimeringsproblem, som udspringeeafrdodelpraediktive reg-
ulator, er blevet indpasset i den hierarkiske struktur wdubaytte Dantzig-Wolfe dekom-
position. Dekomposition giver ud over at kunne indpasseihagen af optimeringsprob-
lemet i den hierarkiske struktur, en mere effektiv lgsnihgrablemet, hvilket medfarer,
at regulatoren kan koordinere flere enheder.

Den udviklede design metode er anvendt til at syntetisereegulator til den nu-
veerende portefglje af kraftvaerker. Den nye regulator emsamignet med den nu-
veerende regulator via simuleringer med rigtige produlgifata. Simuleringerne viser
en forbedring af evnen til at fglge referencer og en forbiealikenomi.
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1 | Introduction

This thesis is concerned with developing a method for cdietrdesign for dynamic load
balancing of a portfolio consisting of multiple units costed to one common power
system. The goal is to use the current operational experigndevelop a new method
in order to create a controller with a more modular structunéch is ready to meet the
future challenges that the power system will bring with therent focus on developing a
sustainable energy production.

The chapter gives the motivation for developing a new methodescription of the
power system as well as state of the art within power systamralocand the underlying
theory the method utilises.

1.1 Motivation

This research project was proposed and funded by DONG Efief@MG Energy, 2010].
DONG Energy is the largest Danish power producer with mosne #6500 employees and
5500 MW installed capacity of thermal power and 654 MW of wpaiver in Denmark.
Besides, DONG Energy has activities in most countries intiNwn Europe where the
focus is on development of renewable energy projects. Bedite activities in power
generation, DONG Energy is active within oil and gas exgloreand production as well
as distribution of both gas and electricity.

Even though DONG Energy is considered a small company cadgarthe tycoons
in the area of power generation, there has been a traditratefigning, constructing and
operating the most fuel efficient thermal power plants inwloeld as well as a massive
practical experience with wind power projects.

The massive investment in wind technology driven by the Brai@overnment has
resulted in 30% of the installed capacity in the Danish posystem comes from wind
turbines in 2007, with visions to expand even further. Monedantegrated in the system
increases the demand for the power production by exisitiagnal units to be flexible as
well as the coordination between thermal power and wind @¥elb al., 2006; Banakar
etal., 2008].

The Danish system began as a monopolised system with gemebatsed on fossil
fuels. A system with a reasonable predictable productighcamsumption, and only slow
changes in the power exchange with other regions. The dawelot has been towards
decentralisation and liberalisation along with a politiceeentive to introduce more re-
newable energy in the system which is often stochastic mtamusuch as wind turbines.
In Denmark the goal is to increase the share of electricabgrfeom renewable sources
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Introduction

from 24% in 2005 to 36% in 2025 as found in [Danish Ministry ehfisport and Energy,
2005].

In 2003 Energinet.dk the Danish Transmission System Oge(as0) started con-
structing a controller to maintain the balance between wmmsion and production in
Denmark. This led to the fact that DONG Energy had to desigoréroller which could
communicate with the TSO and distribute the set point reckivom the TSO to the
thermal power plants. This requirement was expanded WilldNG Energy to include
a better coordination of the power plants to minimise theat@mns between the actual
and sold production within the portfolio. This event was kiekoff the load balancing
controller within DONG Energy.

The controller started out as an excellent idea implemeased prototype and has
proved to work well in practice. However, many years of imeeatal design has led to
a structure which is no longer simple and easy to maintaire durpose of this project
is to take a step back and rethink the design principles ®ictntroller in order to get
an easier maintainable controller, and a controller whatheope with the challenges the
future of the power system is likely to bring.

Since the PhD project started, DONG Energy has formulatédhtegy called 85/15,
meaning that 85% of the power production should come frorbaaidioxide neutral
sources within the lifespan of of generation. This is a vérglienging vision. There is
no grand solution where change of one technology will sd® ¢hallenge, it relies on
multiple different techonologies, all cooporating to asfa this goal. An important step
towards this vision is to create a flexible system such theptbduction and consumption
can be changed depending on the resources available, suchcas

One of the candidates for creating flexibility is Virtual RawPlants (VPP). The con-
cept pools several, otherwise too small, production andwamption units, such as mul-
tiple smaller power plants, wind turbines and heat pumpd,raake them behave as one
unit providing yet another means of load balancing. If theP\d@ncept proves success-
ful, an enormous amount of possibilities for load balandiergomes available, and thus
increasing the importance of this project, rethinking therent load balancing controller
structure to obtain a more flexible a scalable controller.

Electric vehicles is another topic which catches much &tian The electrical vehi-
cles will introduce an additional demand for electricityt the charging of the vehicles
can be controlled thus providing an additional VPP.

This project has the objective to develop a controller desigthod for the next gen-
eration of load balancing controllers. In order to investigthis objective, the following
hypothesis is formulated

Hypothesis: It is possible to develop a controller desigh method whiah loa utilised to
synthesise a controller which fulfils the criteria:

Scalability The controller must be scalable in the number of units paodting in
the load balancing control.

Flexibility The controller must be flexible, such that addition of newsuand
maintenance of existing ones is possible.

Performance The controller must perform at least as well as the curremtdler
measured on some performance criteria.




2 Power Systems Control and Electricity Market

1.2 Power Systems Control and Electricity Market

The largest of the European grids both in area but also inwelwith a production capac-
ity of 3000 GW is ENTSO-E RG Continental Europe [ENTSO-E, @4J1 The electrical
grid covers the continent of Europe, from Portugal in thetwedRomania in the east.
Since electricity cannot be stored for later use, there isrstant need to outbalance
the consumption and the production to supply the consuniersrder to keep the bal-
ance within an area as big as ENTSO-E RG Continental Eurojgesjtlit into several
regions where each region of the grid is governed by a Trassan System Operator
(TSO). Western Denmark, meaning Jutland and Funen, is gi@nrevithin the ENTSO-
E RG Continental Europe area and is synchronous intercteshée Germany and asyn-
chronously connected to Norway and Sweden. The area alaigmdjor production
units is shown in Figure 1.1. This region is governed by thaiflaTSO Energinet.dk.

“Norway

Nordjyllandsveerket »
_m_ DONG Energy Power Plant
—— 400 KV AC power line
---- DCTie Line

Wind farm

Other producers Power plant

L

tudstrupvaerket

Horn/skRev 1 L

Esbjergvaerket
Fynsveerket

Figure 1.1: The main components of the power system in théaneBenmark.

In western Denmark there are 7 sites containing large pole@tgpcovering a total
of 9 units with an electrical production capacity rangingnfr80 MW to 650 MW, where
the most common size is around 400 MW. There are two majoryserd in western
Denmark where DONG Energy is the largest and operates aofodalinits in the area.

Sealand on the other hand is not part of the ENTSO-E RG CorthEurope area,
instead it is synchronous interconnected with ENTSO-E R@&lMavhich covers most
of Scandinavia.

The electricity grid balance between consumption and prtioln have to be main-
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Introduction

tained at all times. All the rotating devices connected &ghd, such as generators, have
some energy and thus gives a bit of leeway to maintain theanbaldf the consumption is
larger than the production, energy will be pulled out of thetem, making the generators
slow down from the usual 50Hz, and thus a drop in the systeguéecy can be observed.

In order to keep balance between production and consum@ONG Energy uses a
multi hierarchical scheme as shown in Figure 1.2.

Business Planning
(years)

Level
System Leve Production planning

(days - weeks)

Balance control
(minutes)
Y

I" Units
= (minutes - hours)

B

Plant Level Processes
i] (seconds - minutes)
Measurements

_g_ 43_ Navsas and Servos

(seconds)

Y

Figure 1.2: System hierarchy within DONG Energy. The higgrconsist of a system
level which coordinates the units, and a unit level that amstthe control hierarchy of
the individual unit. The time units on the figure show the t@bitime scale on which the
level operates.

The upper three levels of the hierarchy are denatgstem levelmeaning that the
scope of these levels covers multiple power producing uts the highest level is the
business planning where decisions on building new powettplis taken. It might not
seem obvious to include this level when discussing balaeteden consumption and
production, but the investment decision is based on the faethe capacity. During
planning and construction, balance control is an essequdidlof the power plant design.

The next level is production planning also knownuast commitment Production
planning is static optimisation of load distribution amgyaver production units, [Padhy,
2004], [Salam, 2007]. Solving the unit commitment problesams determining the com-
bination of available generating units and scheduling ttesipective output to satisfy the
reference production, often with a minimisation of costerttie operating constraints en-
forced by the power producing portfolio for a specific timgpitally from 24 hours up to
a week. The optimisation problem is of high dimension andlmioatorial in nature, and
can thus be difficult to solve in practice. Results using istiarmethods [Johnson et al.,
1971], [Viana et al., 2001], Mixed Integer Programming [Bil et al., 1978], [Jgrgensen
et al., 2006], Dynamic Programming [Ayuob and Patton, 1%1d Lagrangian Relax-
ation [Aoki et al., 1987], [Shahidehpour and Tong, 1992}ehbeen reported in literature.

Once a solution to the unit comment problem, i.e. a statiedgle has been found, the




2 Power Systems Control and Electricity Market

load plans are distributed to the generating units. Eadtisirésponsible for following its
load plan and must handle disturbances etc. locally, implytie necessity of local power
plant controllers, wind farm controllers etc., which is wimoas the lower three levels of
the hierarchy.

The lowest system level is the balance control level. Dueetgadions between the
predicted and actual consumption as well as fluctuationsadyetion, this level is added
to give a dynamic correction on system level. Due to the afi@rioned increased pro-
duction from wind power, the fluctuations in production viiitrease in the future, mak-
ing this layer even more important. This hierarchy level baninfluenced both by the
power company operating the portfolio of power generatinigsufor minimising the de-
viation between sold and actual production, which is onfgoréed in [Jgrgensen et al.,
2006], and by the TSO in the area, that uses a dynamic feedipgerkach to balance the
load in the area. The latter is often referred to as a Autan@atineration Control (AGC).

The problem of designing AGCs to cooperate among multipjéores has been the
subject of much research lately, both regarding optimosagind stability. However, it is
often assumed that the generators within the area functi@me generator. For example
[Bakken and Grande, 1998] describe how to introduce an AG@oinway, but the focus
is on the main controller rather than the distribution of &ner among the participating
generators. Centralised AGC design under constraintsasetd in [Hassan et al., 2008]
both for single-area and multi-area production, but the ésereated as one generator.
In [Venkat et al., 2006; Moon et al., 2000; Tyagi and Srivaat&2006] decentralised
model-based methods for multi-area AGC are developed, lthibut discussing how to
distribute the output from the controller known as the aremtrol error (ACE) among
the multiple generators in the control area. Focusing driligta [Azzam and Mohamed,
2002] developed a design method for generating a stalgjlsdmtroller.

[Liu et al., 2003; Chen et al., 2007; Wood and Wollenberg,8]98scribe how to
distribute the ACE among the participating generatorséndiea. [Liu et al., 2003; Chen
et al., 2007] deal with control of multiple generators witl@in area using optimisation-
based schemes. However, both treat the problem as a sthic than a dynamic prob-
lem. [Wood and Wollenberg, 1996] present an AGC for distifigithe ACE to multiple
generators based on a Pl-controller structure with a sestflulition factors to share the
contribution among multiple units. The distribution factare based on a static optimisa-
tion of the system, [Raj, 2006] describes an updated waydaoes time prices to update
the distribution factors. A complete survey can be foundshgyeghi et al., 2009].

1.2.1 Energy Market and Short Term Load Scheduler

The liberalisation of the power system has created a makiehywaccording to [Jgrgensen
et al., 2006], includes two types of costumers from the pgweducers’ point of view -
The power exchanges and the TSO, the commaodities tradeeé ipatlier market appear
in Figure 1.3. The market has influence on the productionnitenand balance con-
trol levels of the hierarchy, where the trades on the markdetisive for the production
planning and balance control.

The different commodities traded in the market are:

1. Energy Every day an hourly based price for the next 24 hours prodngsi set
based on the producers’ and buyers’ forecasted demandee #ctual production

5
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I Commodities |
' |
|
1. Energy |
Power 2. Reserves |
Exchange
|
|

|
|
3.Reserve |
|
|

Power
Producer

TSO

|  activation

Figure 1.3: Power market commodities.

deviates from the sold production, the TSO will fine the paatusince the TSO
must balance the production by activating reserves. Duhiaglay, bilateral trades
among power producers are allowed through the power exehamgell, to cover
foreseen production deficiencies in case of failure.

2. ReservesThe TSO buys power reserves in the form of primary, seconalady
tertiary reserves for a period in time to have capacity t@bed out imbalances
between the production and consumption. The seller musbleeta activate the
power reserve when required throughout the sold period. réberves and their
differences are described later in this section.

3. Secondary and tertiary reserve activationThe Danish TSO can activate the
bought reserves to balance production and consumptionsteweDenmark. The
seller of the reserves will get extra payment if the reses\activated. The primary
reserve is governed by the frequency and must be autongtizdivated in case
of deviations in the system frequency.

Each day on the energy market, which in the Danish case is Roodl [Nord Pool,
2010], at noon an auction is run for the forthcoming day. Tiwelpction companies will
submit amount and price for the energy production for eaclr hbthe forthcoming day.
The distribution companies will submit the consumption pride they are willing to pay.
For each hour an intersection between consumption and gtiodus formed, and this
intersection determines the amount of energy and the pfierargy .

After the auction has run, Nord Pool will announce the retuthe participants of
the auction which includes DONG Energy. The announced tressah amount of energy
which is to be produced each hour. As depicted in Figure telstld production is used
by theshort-term load scheduld6TLS) together with weather forecasts, district heating
demand forecasts and constraints such as minimum amourarofbs fuel. The STLS
solves the unit commitment problem again and the outpute$kiort term load scheduler
is a 5-minute based 24 hour ahead schedule for all produatida that DONG Energy
operates.

Based on the 5-minute based production plan generated by@Bmnrgy, The TSO
generates two plans, an hourly and a quarter plan. Thess planused for settling
payments for deviations.

6



2 Power Systems Control and Electricity Market

Sold production
iDismd heating forecast

g L
Weather forecast] ~ Short-term load Production plan r
scheduler
(Production Planning) |
__Frequency control
contribution
\i !

Reference

Load balancing |_ L
controller

TSO

AGC signal

A Measured production of individual units

Total measured production

Figure 1.4: Diagram of the interconnection of the systene bbld lines show vectors of
signals. The portfolio can be divided into two groups. A mareontrol which the load
balancing controller cannot give corrections to, and anraatic control group which the
load balancing controller can affect.

The first plan generated is an hourly based energy planreefés as the hourly plan,
which defines the energy production at each hour of the forttieg day. This plan can be
changed up to 45 minutes prior to the start of each hour. Whsioitked, the settlement
price will be according to this plan.

The settlement price for each hour is based on the energgti@vibetween actual
production and planned production multiplied by a price @eergy unit. The price of
the introduced deviations are not known in advance, anddhosot be used for control
purposes. Note that on an hourly basis, a positive devigfiozduction> reference) is
likely to generate an income rather than an expense.

The other plan generated is a quarter-based plan which raudtdnged according to
the actual conditions during the hour. This means in casaulfs on a unit, it is possible
to change the quarter plan during the hour. This can resthisum of the four quarterly
plans of the hour being different from the hourly plan. Thiarphas been added to the
market to ensure that the power balance is maintained anplisiathe energy balance.
There is a settlement price on deviations from the quarfdey as well. Any deviation
outside+2.5M W h is billed at a price per energy unit. This will always resualiain ex-
pense for the producer no matter if the deviation is posiiveegative, although the price
for positive and negative deviation is normally asymmetfibe prices for deviations on
a quarterly basis are also not known in advance.

The full details of the billing and the market can be foundinérginet.dk, 2010].
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Reserves

Even though the market gives a good estimate of the demankedollowing day, there
will be deviations during the day for obvious reasons. Tfwes three levels of control
have been established to balance production and consumgée Figure 1.5.

System

Restore
Frequency Limit
Activation Primary

Control

Free up

Take over Secondary
Control Free up
Take over Tertiary

Control

Figure 1.5: Interaction of of the tier of reserves.

In order to execute the control, it is required that a cerfaimduction capacity is
reserved hence reserves. On the shortest time scale isith@rpreserve which is used
to avoid system collapse, and then followed up by slowerrveseto bring the system
back to the nominal state. The time scale for activation ésvshin Figure 1.6.

Tertiary Control ’m

Active

Secondary Control

Primary Control Active | Replacing

\

I
Os 30s 15 min

Figure 1.6: Time scale for the reserve activation. The prymeserves must be fully acti-
vated within 30 seconds. The primary reserves are thenaeghaith secondary reserves
within 15 minutes. The secondary reserves must be maimtddreas long as necessary
until the tertiary reserves can take over.

Primary Reserves

When the system frequency deviates from the 50Hz, this redero be activated pro-
portionally to the system frequency deviation. The resenust be activated within 30
seconds after a deviation occurs. Details about the resamvde found in [ENTSO-E,
2010b]. In case of frequency deviations, the primary researe activated throughout
the entire European grid.

In the ENTSO-E RG Continental Europe grid a totaHe8000A/ W of primary re-
serves are maintained, of tha$82.1 M W must be maintained by western Denmark.

Primary reserve activation must be implemented as a loaatr@léer on the unit,
typically on the process level. The controller measure$rdwiency of the system, and if
it deviates from the nominal frequency @i H z, the controller is activated. The primary
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reserve controller must be implemented as a proportionatraier with a deadband,
resulting in the characteristics shown in Figure 1.7.

2
P [MW]

Max power

Y

Dgad baqd f [mHz]

Control band

Figure 1.7: Primary reserve activation as a function of tegdiency deviation. The con-
troller activating the primary reserve must be implemerted proportional controller.

Energinet.dk is responsible for providing the reserved,larys them from the power
producers in Denmark. In case Energinet.dk is buys resérves DONG Energy they
buy an amount from the portfolio. The distribution of theee®s among units within the
portfolio can be freely chosen. The distribution is perfethby the Frequency Control
Scheduler which sends a set of parameters consisting obdedgdcontrol band and max
power to the local controllers to coordinate the local colntrith the amount sold.

On a system level the response anticipated from the primesgrve controller is
added to the reference as seenin Figure 1.4 to avoid beinglealby secondary reserves.

Secondary Reserves

The secondary reserves are used to replace the primarywessand help restore the
system frequency when they are activated. Each controleageavestern Denmark has
secondary reserves. The control area which hosts an intzakimould seek to activate
secondary reserves in order to reject the disturbance. riiéans that if an area creates
a frequency deviation, all areas seek to stabilise the sysiith the primary reserves,
but the area must bring the system back to nominal behaviparctvating secondary
reserves.

The secondary reserves can in many cases be activated befexguency deviation
occurs. In western Denmark, the TSO measures the exchatiy&aimany, and in case
of deviations from the planned exchange, secondary resamneeactivated to normalise
the situation.

The secondary reserves are activated automatically byteotlen owned by the TSO
without the interference of an operator. The TSO will sendaetivation signal for the
secondary reserve activation which they then expect addtgersion of as a response.
The distribution of the secondary reserve activation isguered by the load balancing
controller shown in Figure 1.4

Tertiary Reserves

The last reserves in the battle to stabilise the system émryuare tertiary reserves. They
must be activated within 15 minutes from the time of the arderey are activated by
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the operator at the TSO by contacting to the operator at thigatecontrol room for the
energy generation companies. The additional order of gneilgmost often be put into
the STLS which will then generate and broadcast a new pramuptan to the units.

The size of the needed positive reserve is based oiVthd principle, i.e. there must
be enough reserves to outbalance a breakdown of the langiestithin the region. The
reserves are asymmetric with630MW and —160MW which must be fully delivered
within 15 minutes.

1.2.2 Load Balancing Controller

The topic of the load balancing controller has already be@flyp described in section
1.2.1. It serves two purposes; one of them is to distribigesitondary reserve activation
signal among the units. The other purpose is to minimise #éwaton between actual
and sold power production.

The mechanism for determining the individual units paptting in the control must
contribute is proposed to be a steady state optimisatiowoofl and Wollenberg, 1996].
However, due to the conditions in western Denmark, wherddiler units are not used
for base load, but rather changing load very frequentlystaéc optimisation approach
has been deemed infeasible. Instead, the gains are degerimyna logic-based mecha-
nism, where each unit is prioritised by the operator for bwtbative and positive correc-
tions. The logic then utilises the boiler unit with highegbpity first, and after usage all
boilers must be returned to the production plan.

Besides the main control loop, there is much logic in the r@blet for handling bump-
less transfer between automatic and manual control and fghgires in an attempt to
make the controller as optimal as possible. The result isge lwontrol structure with
many cross couplings.

Figure 1.8 shows the correction signals from the load batgnmontroller during the
morning hours. The correction amount is quite significant.

The problem with the current controller is the complexitytbé& cross couplings,
which means that modifying one part of the controller oftffiecs other parts of the
controller in a way that the designer cannot predict. Thuslenthe performance of the
controller is quite adequate for the existing system, theeecu structure is not suited
for portfolios that change structure over time. Furthemmdine complexity of the logics
makes any form of rigorous stability or performance analysitually impossible.

To the author’s knowledge no other load balancing contrdtie balancing the load
within a portfolio has been reported in literature.

Figure 1.4 shows that the portfolio is split in two parts; atoaatic control part and
a manual control part. DONG Energy has the responsibilityetiver a total production
from the portfolio corresponding to the reference. Howgmet all units have the ability
to communicate with the load balancing controller - they alivays be in manual control.
But the units that are capable of participating are switéheshd out of automatic control
mode by the operator and the control systems on the unit. &hdtris a system that
needs dynamic reconfiguration.
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100F T T T T T T T L—

Correction [MW]

6 6.2 64 66 6.8 7 72 74 76 78 8
Time [hours]

Figure 1.8: Example of control signals given by the curremitoller during the morning
hours. Each line shows the corrective control signal to aniein automatic control. The
control signal for all six units are depicted, but only fivetiapate in the control.

1.2.3 Power Plant Modelling and Control

The planning and dynamic coordination on system level besamcreasingly important
to power systems. In order to cope with the increasing derfarftexibility, the existing
power plants must be changed from base load to being ablextgyeHoad fast.

In existing literature there are many detailed models ofspaf the energy system
to describe the dynamic behaviour of individual system conemts, such as [de Mello,
1991; Weber and Krueger, 2008].

There is focus both on improving processes in the power plamivell as the master
control level of the unit, i.e. the two upper plant levels igute 1.2. [Deprugney and
Liters, 2004] reports improvements on the control of theaittroller. [Mglbak, 1999] re-
ports improvement in control of superheater steam temyerabntrol using Generalised
Predictive control. [Dahl-Soerensen and Solberg, 2009]ément a simple controller to
improve coal mill performance, while [Niemczyk et al., 200&rk on improving non-
linear models for use in coal mill control. [Majanne, 2005jnks on stabilising the steam
temperature in an industrial power plant where part of tearstis used for other pur-
poses than power production using model predictive metheldite [Gibbs et al., 1991]
use nonlinear model predictive methods to improve comralésign to increase availabil-
ity and lower pollution of fossil fired plants. [Mortensenadt, 1998] are concerned with
improving the load following capabilities of the power pisron unit level using LQG
methods, while [Deprugney et al., 2006] udg,-control. [Welfonder, 1997; Lausterer,
1998] both report significant improvements in the the distnce rejection capabilities
and load following capabilities of single power plants byngssmaller energy buffers
in the power plant which can later be repaid, such as the cwmade system or turbine
throttling valves.

[Bjerge and Kristoffersen, 2007] share experience desigtiie controller for an off-
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shore wind farm to be integrated in the current power system.

Another issue is the start up of plants where [Franke and\agber, 2006; Albenesi
et al., 2006] report better automation and faster start uphefmal power plants and
combined cycle power plants using nonlinear model prédéianethods and nonlinear
programming. A highly relevant problem when increased ffidity is needed.

Most of the developed controllers and models reported aneptex and unsuited
for making a load balancing controller which covers a largepge and therefore needs
simple models to avoid too much complexity. The load balagciontroller gives a set
point to the power production and measures the output frenplént. Therefore, models
should be limited to capturing the main dynamics along wligh ¢onstraints governing
the behaviour, such as the upper and lower production bcamdisonstraints on the rate
of change on the set point.

1.3 State of the Art and Background of Chosen Methodology

This section provides an overview of the state of the art outtogy utilised for devel-
oping the design method to fulfil the hypothesis.

There are many methods for controlling a MIMO system, sucthagower system
portfolio. Spanning from the current Pl-controller stiwet based on SISO theory in
combination with cross couplings and feed forward ([Framkt al., 2002 Astrom and
Hagglund, 2006] to mention a few) to more advanced technimeatel-based multivari-
able controllers like LQR of ,-control [Skogestad and Postlethwaite, 2005]. The power
system portfolio is a constrained MIMO system with knowledy the future reference.
Therefore, Model Predictive Control (MPC) is an obvioustcolter scheme to choose.

In this thesis a linear MPC implementation is utilised whieljuires repeated online
solution of constrained linear optimisation problem. Eifere, the some basics of convex
optimisation with the focus on linear programming is coddiest in this section.

1.3.1 Convex Optimisation - Linear Programming

In MPC applications the performance and reliability of thimisation algorithm solv-
ing the constrained optimal control problem are importd@ments, as the optimisation
problem is solved repeatedly online. In linear MPC the penfnce function is usually
guadratic, linear, of;-norm based as described previously. Using these perfanan
functions leads to a convex optimisation problem as tremi@@oyd and Vandenberghe,
2004].

The performance function used in the controller design okth this project result in
a linear constrained optimisation problem, which is a gl@eise of convex programming
and will be described here. A general linear program hastthetare

min ¢ =c’z (1.1a)
st. Gz>h (1.1b)

with ¢ € R being the functional to be minimised in order to find optimumg R™
are the free variables which can be manipulated in order tomise ¢, c € R™ contains
the weights of the free variables, weighing their importarelative to each otheG €
R™*™ js the constraint matrix, ankl € R™ is the affine part of the constraints.

12



3 State of the Art and Background of Chosen Methodology

Checking if a solution is an optimal solution to (1.1) is aglént to finding a solution
(z*,7*) to the corresponding Lagranian function

L(z,7) =c’'z— 7" (Gz > h) 1.2)

with 7 € R™ being the introduced Lagrange multipliers. If the solut{an, 7*) fulfils
the Karush-Kuhn-Tucke(KKT) conditions

VL= ¢c—GTn=0 (1.3a)
VL= Gz—h-s=0 (1.3b)
s;m; =0 1=1,2,....m (1.3¢c)
s,m>0 (1.3d)

with the slack variable defined as
s=Gz—h>0. (1.4)

then the solutioz* is an optimal solution to (1.1) [Nocedal and Wright, 2006].

The KKT conditions imply that the first derivative of the Lagian with respect ta
as well as the first derivative with respectitanust be zero. Furthermore, element wise
either the constraint or Lagrange multiplier must be zeya- 0 means that the proposed
solution is not on the constraint, and thus the constraiesdmt affect whether or not the
optimum is reach. 1§, = 0 the constraint is active and the lagrange multiptigcan be
different from zero, and thus affecting (1.3a).

The special property of a linear program is that the solutidhalways be on a vertex
of the feasible area. This property can be exploited wherinfinthe solution. In case of
a non unique solution, there will still be a valid solution@wertex. Illustrated in Figure
1.9 is the optimsation problem

min ¢ = —z; — 229 (1.5a)
st. 2 <3 (1.5b)
21 20,20 >0 (1.5€)

The optimum is shown in the figure and is in an extreme poinheffeasible area.
There are two main methods to solve this problem, eitheutfitaheSimplexalgorithm
[Dantzig and Thapa, 1997], or throughpamal-dual interior point algorithmsuch as
Mehrotra’s predictor-corrector algorithm [Mehrotra, 29®Wright, 1997; Zhang, 1998;
Czyzyk et al., 1999; Nocedal and Wright, 2006].

The Simplex algorithm starts at a feasible extreme poinhefgroblem, and travels
along the edges of the feasible region until it finds optimuhie search will always
happen in the direction with the steepest decline. For tlaengle, starting at vertek
there are two possibilitiez or 5. The direction towardg2 has the steepest decline. From
here the algorithm would go tand conclude it to be optimal since following any vertex
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Zo A Optimum

AN

Figure 1.9: Two dimensional linear optimisation problenmeTines show the inequality
constraints. The dashed lines show the contours of thenpeafoce function

would lead to an increase in the objective function. For aitkxt mathematical covering
of the algorithm see [Dantzig and Thapa, 1997]. The chos#nipahown in Figure 1.10.
The simplex algorithm belongs to the group of active setexslyNocedal and Wright,
2006], a group which is not restricted to linear programming

Z2 Optimum

=

Figure 1.10: Paths to the solution for the interior point aimdplex methods. The black
line shows the interior point method, while the grey linewhahe simplex method.

The simplex algorithm is not used in practice, but rathemaplémentation known as
the revised simplex method [Dantzig and Thapa, 1997] wlichdre computationally ef-
ficient. [Klee and Minty, 1972] showed that the simplex altfon in worst case needs to
visit all extreme points of the feasible area, and thus gexmonential with the problem
size [Nocedal and Wright, 2006]. In practice the algorithntkgavell and is widely used.
However, this theoretical drawback has lead to the devedoprof alternative methods,
such as the interior point methods.

Interior point methods make a search through the interigheffeasible area to the
optimum based on the gradient of the performance functioeribr point methods usu-
ally uses fewer but more computationally expensive iteretito reach optimum. The
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rule of thumb says that simplex algorithm is faster on snmadl medium problems, while
the interior point methods are competitive on large-sceddlpms [Nocedal and Wright,
2006]. However, this is only a rule of thumb. One of the adages of the interior point
method is that the computational complexity lies in calttalaof a matrix and a Cholesky
factorisation. And thus it is possible to exploit the sturetof the problem and tailor the
algorithm to be efficient on a certain problem. The interioinp methods might find an
optimum on an edge instead of a vertex in case of a non uniqudmso Figure 1.10
shows the path through the interior, it makes a few iteratioery close to the goal to
converge completely, which is not shown in the figure.

In an MPC context [Rao et al., 1998] show how to structure adratec program
arising from linear MPC with a quadratic performance funietio make efficient use of
interior point methods for solving the optimisation prable

1.3.2 Model Predictive Control

Model Predictive Control (MPC) has successfully been &ghilh the process industries
for more than thirty years [Qin and Badgwell, 1997, 2003;i$y02006]. Regarding the
use of MPC within power system, it has been applied both lsialements like boilers
[Rossiter et al., 2002; Gibbs et al., 1991] and wind farms[3eet al., 2009]. It has also
been applied to coordination of power systems [Venkat ¢2@06; Larson and Karlsson,
2003; Negenborn et al., 2009].

MPC refers to a group of control algorithms that makes ekplise of a process
model to predict future responses from the system. In mgsghirantations the prediction
horizon is finite and constant, these algorithms are alsavkras receding horizon con-
trollers. At each controller update, measurements fronctmtrolled plant are gathered
and predictions are based on these measurements. Thetjoresiare used to evaluate
a performance function, and an optimisation is performettiwkeeks to find the input
sequence optimising the performance function over theeshberizon. The first input in
the sequence is then applied to the plant, and the procesltgpeated at every controller
update.

In this thesis the models used for prediction are lineatghdoth linear [Muske and
Rawlings, 1993] and nonlinear models [Adlger et al., 1999; Tennyu et al., 2004] can
be used. An overview of linear MPC is found in [Rossiter, 208&ciejowski, 2002;
Rawlings and Mayne, 2009] among others.

MPC has a number of strengths, these are the ability to ilncatp constraints, using
future knowledge and not least handle MIMO systems. The mgsbrtant ability with
MPC is the ability to incorporate constraints both on inmuttput and internal states of
the system with MPC. Even though it is denoted linear MPC &hds linear models and
affine constraints, the resulting controller is nonlin€@dompared to a linear controller it
is possible to move the system closer to the constraintowitimcreasing the number of
constraint violations.

Process Control Hierarchy

The placement in the control hierarchy is given for the calter in this thesis. However,
this section briefly discusses where MPC is usually applethé hierarchy. MPC is
usually found in the middle of the hierarchy, as shown in Fegli11a.
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[ Plant-wide static set-point Plant-wide static set-point
optimization (daily) optimization (daily)

Set-point optimization at unit
level (hourly)

Predictive Control
(Logic, overrides, Decoupling, Predictive Control
Exception handling)

Abstraction

Local loop controllers
(P,P1,PID)

Actuators Actuators
(Valve servos etc.) (Valve servos etc.)

(a) Typical Hierachy for MPC (b) Future trend for use of MPC.

Figure 1.11: Typical control hierarchy for MPC [MaciejowsR002].

The reason is mainly due to the computationally complekitiuding the local con-
trol loops where P- and PI-controllers are dominant in thel@hgredictive controller
will increase the size of the problem, thus making it impblesio solve it within the time
limit. [Maciejowski, 2002] suggests, as can be seen in Edut1b, that the future trend
is to incorporate the local control loop as well as the semtpoptimisation in the MPC.
[Pannocchia et al., 2004, 2005] show that in some cases MB@dhe considered over
PID controller even in SISO systems.

Computational Aspects of MPC

Model Predictive Control is often expressed using eitfyepenalty functions without
economic terms [Muske and Rawlings, 1998];penalty functions without economic
terms [Chang and Seborg, 1983; Allwright and Papavasill®92; Rao and Rawlings,
2000] or using economic terms only [Rawlings and Amrit, 2009

When using/s-penalty functions the result is a convex quadratic prognarg prob-
lem which is covered in [Boyd and Vandenberghe, 2004]. Ugingenalty or linear
terms result in a linear programming problem which is furttiecussed in Section 1.3.1.
MPC requires repeated online solution of these optimisgtimblems. Therefore, the
computational speed and robustness of the optimisatianitighs have limited the type
of applications that can be controlled by MPC. MPC was odtijndeveloped for the
process industries with relative slow dynamics and a lowlemof input and output (say
less than 50). As MPC is developed for mechatronic apptinatwith very fast dynamics,
low state order models, and typically less than three inpdt@utput, new ways of im-
plementing and solving the constrained optimization pFobtonstituting the MPC have
been developed. Using explicit controllers found by medmsudti-parametric program-
ing [Bemporad et al., 2002; Sakizlis et al., 2007] reducesoifiline problem to a look up
table.

Another method to reduce the number of free variable is tjinaoput blocking [Qin
and Badgwell, 1997; Maciejowski, 2002]. Input blocking iseghnique to only allow
the controller to change the input at a limited number of srtfgoughout the prediction
horizon, as opposed to every sample instance throughoytréuiction horizon. Often
this will be the first moves of the prediction horizon and floe remaining part the input
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is kept constant.

Both process control and mechatronic applications useemeatised MPC to control
the system. This is possible because of the low number of empdioutput as well as the
relative low number of states in the model. The system in ttésis consists of fast
dynamics with a large number of controlled inputs and owtptiterefore methods for
achieving lower computationally complexity of the conteolby exploiting the structure
of the problem is treated later in this section.

Models

A common implementation of models in MPC is step or impulspoase models. The
advantage of using these convolution models is that theyagaesent any kind of stable
dynamic process [Muske and Rawlings, 1993].

The problem with this formulation is that unstable modelarzd be represented.
[Morari and Lee, 1991; Eaton and Rawlings, 1992] describagisato encompass this
deficit by representing the instability as an integratorafii¢jowski, 2002] gives a way
to decompose the unstable model by using coprime factmsgthou et al., 1996].

The systems modelled in this thesis are all stable modedbthars impulse response
models are used to represent the system dynamics.

Starting with a state space model usedfbsstep prediction

Xp+1 = Axy, + Bug + Edy, (1.6a)
Zp — CXk (16b)
an impulse response model can be derived as

k—1 k—1

z), = CAFxq + Z H,;—iu; + Z Hg,—.d; (1.7
i=0 i=0

with £ = 1,2,..., N and the impulse response coefficients defined as

H,,=CA"'B i=12,...,N (1.8a)
H,; = CA"'E i=1,2,...,N (1.8b)
Define the vectors
ug do z1
up d; zy
uy_1 dy_; ZN
and the matrices
CA H, 0 0
CA? Ha,2 Ha,l 0
@ = I‘(X - . .
CAN_l Ha,N Hoz,N—l Hoe 1
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with o € {u,d}. Using (1.7) the stacked outpuf;, may be expressed by the linear
relation

Z = &x, + T, U+T,D (1.9)

This model description has eliminated all internal staggsgept the current, and thus the
size of the matrix relating to controlled inpuE,,, is only dependent on the number of
input, output and prediction horizon.

Output Feedback and Offset-free Tracking

MPC assumes that the state vector is measurable in orderke coarect predictions.
This is often not the case, so in order to be able to achieymibfeedback a state observer
is needed, for instance a Kalman Filter [Grewal and Andr@0868].

If a step disturbance enters the system, the combinatiomattem and observer will
result in a steady state offset from the reference. The samaviour is exhibited when
the steady state gain of the model is different from the stestate gain of the system
[Maciejowski, 2002].

To remove this error, an augment the system model with arbatice model in the
observer. [Pannocchia and Rawlings, 2003] suggests a Kalfifter designed for the
augmented system

{E’;ﬂ - {13 Bld] [ﬁ’j + m i+ w, (1.10a)
ye=[C C4 [ﬁﬂ + vy (1.10b)

with d;, € R™, B; € R"*" andC,; € R?*™, The noise vectorsv, € R*tna
andv; € RP are assumed to be zero-mean white noise disturbances faugmented
system.

For a stable estimator to exist the original system must tectible and the following
condition must hold
I-A -By

rank { C C,

} =n+ng (2.11)
A pair of matrices By, C,) always exists such that (1.11) holds.
It is possible to obtain offset-free tracking for the sysiém

I-A -By

rank [ C C,

} =n-+gq (1.12)

with n being the number of states in the original system, @igithe number of output.
This only holds if the constraints are not active and theedei®op system is stable.
Similar results to [Pannocchia and Rawlings, 2003] areingthin parallel in [Muske
and Badgwell, 2002].

If B, = 0 andC,; = I then the disturbance model is modelled as a constant as
described in [Muske and Rawlings, 1993]. This model is oftenoted an output error
model.
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Controller Tuning

A model predictive controller must be tuned like most othamteoller. The performance
is based on the values of the weight functions in the perfaoadunction and the pre-
diction horizon as well as the observer, for instance thecdauce matrices in a Kalman
filter. Depending on the problem size, this gives quite a nemalb free design variables.

In practice, for all types of controllers tuning, the cotitpsuch that the systems
behaves “right” is often a matter of trial and error.

In some cases the weight matrices may be given, but in moss ¢lais is a task for the
controller designer. There are methods to aid controlleini such as loop transfer re-
covery [Doyle and Stein, 1981], and least-squares methmdsstimating autocovariance
on noise Rkesson et al., 2007; Odelson et al., 2006; Rajamani andiRgsyl2009].

1.3.3 Hierarchical Control and Reconfigurable Systems

Decomposing the control problem into smaller problems,thdrethe structure is decen-
tralised without communication between local controllgiiott and Rasmussen, 2008;
Acar, 1995; Magni and Scattolini, 2006; Raimondo et al., 0distributed where the
local controllers communicate [Mercaig and Doyle 1ll, 2007; Jia and Krogh, 2001;
Dunbar, 2007] or hierarchical, as used in this thesis, caresaany purposes.

Complexity of power plants, power systems and most otherqa® and traffic net-
works have increased due to a wish to optimise them. Theragsditen consist of mul-
tiple units or subsystems interacting, and it can be diffitucontrol with a centralised
control structure. Reasons for not pursuing a centraliségtion could be that the con-
trolled system is spread over a physical area where commtimnccould be expensive
in resources such as communication bandwidth of power ecopgan as in multi robot
coordination [Keviczky et al., 2008], or communicationaled as in multi area automatic
generation control [Venkat et al., 2008]. Other reasonglmomposition of the control
is to achieve robustness, reliability or reconfigurabitifithe subsystems without having
to redesign the whole controller or to achieve a lower comganally complexity.

The overall structure of the power system portfolio conisdiierarchical, but on the
plant level, especially in the units, numerous examplesah ldecentralised and dis-
tributed controllers can be found. The main focus on the oktite section is on MPC
implementations of hierarchical control and reconfigugataintrol.

A good classification and review of the subject of the areabeaiound in [Scattolini,
20009].

There are many variants of hierarchies, the main strucfitreegower system portfo-
lio is a multi layered hierarchy. However, this thesis tseato layer hierarchical control
for coordination. The idea of hierarchical control and thesign of coordinators has
been studied for a long time [Mesarovic et al., 1970]. Thadiaea is that the system
comprises a set of subsystems under local control with sateeaiction either through a
common goal or through dynamic interaction.

The basic idea is described in [Scattolini, 2009] and shawfigure 1.12. For each
local system an MPC optimises the local performance funatioder local constraints.
If the local solution for each subsystem satisfies the camtt that couples the subsys-
tems together, the solution is accepted. If this is not tlse céhe coordinator will update
the local control objective based on the coupling constrgd@cattolini, 2009] suggests
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that the local objective functions are updated using thedrage multipliers of the cou-
pling constraint. This scheme is then pursued in an itexattanner until the coupling
constraint is satisfied. How the coordinator updates theemf the common resource to
guarantee convergence of this method as well as if it coegeimthe same optimum as a
centralised solution, is not specified.

System
Local solution Y
. Controller 1 » Subsystem 1 >
Price
Uy Y1
A
T
Coordinator Xa! I X2
1
A
i uz Y2
Price Controller 2 » Subsystem 2 >
Local solution

A

Figure 1.12: Hierarchical controller where the the locahtecollers are coordinated
through a supervisor [Scattolini, 2009].

This coordination method has been the topic of [Negenbd@72Negenborn et al.,
2008a, 2009] who use it in power networks as well as traffievogts [Negenborn et al.,
2008b]. Using a price updating scheme is also the approajdtenitzer, 2009] who uses
dual decomposition to decompose the system. [Marcos é2Gfl9; Cheng et al., 2007]
use a newton search and sensitivity analysis to update ite ggheme.

As described in Section 1.2, the controllable part of theesyschanges topology
frequently. It may only be once every few days, or severaksimper day depending on
the scenario. It is frequent enough that the controller rhastble to handle it.

There are two major research topics within this field. Onehefr is fault tolerant
control [Blanke et al., 2006; Iserman, 2005] which relatsl¢tection and isolation in
case of failure in part of the system. However, when a plaanhgks from manual to
automatic control or vice versa, that is not a fault, it is aowrence that needs to be han-
dled. Plug and Play process control [Stoustrup, 2009] iswgoing research topic dealing
with this kind of systems both with models [Michelsen andnylaeek, 2009] and without
models [Bendtsen and Trangbaek, 2009] to support the recwafign of the system. A
related topic is found in [Chokshi and McFarlane, 2008] whi®at reconfigurability of
manufacturing systems.

1.3.4 Decomposition of Linear Programs

When a linear program has a structured constraint matris, gossible to solve it effi-
ciently by decomposing it into smaller programs. Two methémt decomposing such
a system is théagrange relaxatioriBeasley, 1993] andantzig-Wolfe decomposition
[Dantzig and Wolfe, 1960; Dantzig and Thapa, 2002; Lasd002p Both methods can
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4 Outline of Thesis

significantly decrease the computation time for optimésatf linear systems with spe-
cial structure in the constraint matrix, especially profeas given in (1.1) with a block-
angular structure aff, such that the problem can be stated as

mzin p=clz) +2lz,+ .. +chzp (1.13a)
F, F, ... Fp z g
G, . hy
2
s.t. G | > | he (1.13b)
Gp| 7P hp
with z = [z, 22, ...,2p]

Both methods use an iterative scheme to solve the optimisgatioblem. In each
iteration, the lagrange multipliers attached to the cawygptionstraints of the problem are
assumed constant. Thus the optimisation problem is redocetlock diagonal structure
and can be treated @independent problems. The difference in the two methodews h
to find the Lagrange multipliers. Lagrange relaxation cotepuhe multipliers through
heuristic methods, while Dantzig-Wolfe decomposition §irtde multipliers by solving
an optimisation problem. [Gunnerud et al., 2009] showetlttteacomputation time using
Lagrange relaxation is very sensitive to changes in thelpnojand even minor changes
might result in a doubling of the computational time.

[Negenborn et al., 2008b; Rantzer, 2009] applied Lagraatzxation for decompos-
ing problems in a model predictive control context. [Gumutket al., 2009] used Dantzig-
Wolfe decomposition for control and planning purposes ooregér time scale, while
[Cheng et al., 2008] used Dantzig-Wolfe for target caldatain a distributed model pre-
dictive controller. The contribution of this thesis is teeudantzig-Wolfe decomposition
for computation of the dynamic calculations of model prédeccontrol.

The Dantzig-Wolfe decomposition breaks the linear prog(arh3) into P indepen-
dent subproblems and a Master Problem (MP). The Master &robbordinates the sub-
problems. The Master Problem sends Lagrange multipliersf the coupling constraint
to each of the subproblems. The Lagrange multiplier is aftéerpreted as a price of a
common resource which gives rise to the coupling constrdilsing this pricesr, each
of the P subproblems computes their optimal solution. This intangfe of information
continues until convergence. This is the same descripsagiveen by [Scattolini, 2009]
for how to make hierarchical MPC.

For the dual problem Benders’ decomposition can be usedssifig [Benders, 1962].
Dantzig-Wolfe decomposition builds on the principles af gimplex algorithm, and the
subproblems must to be solved so that the proposed soldtianvertex of the feasible
area. Interior point methods for Dantzig-Wolfe decomposithas been developed in
[Martinson and Tind, 1998].

1.4 Outline of Thesis

This thesis is made as a collection of publications and igldiVinto two parts. The first
part, which has already begun with a system description tatd ef the art in Chapter
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1, consists of an introduction and state of the art. The neapter, Chapter 2, describes
the design method developed through the contributions lwhitfil the criteria of the
main hypothesis as presented in Section 1.1. A summary afdhiibutions is given in
Chapter 3. Part 1 ends with a conclusion and suggestionsifioref work presented in
Chapter 4.

The second part is the presentation of the six publicaticedenduring the project and

presented in the following order:

Paper A [Edlund et al., 2009a] Shows that the controller structure of the current
controller is internally unstable, unless the gains distiing the control actions
were chosen carefully. This research was driven by an obedgmoblem where the
power plant in control drifted away from the production pldis paper serves as
a motivation for developing a new and more stringent desigthod.

Paper B [Edlund et al., 2008] Introduces model predictive control for controlling
a power plant portfolio. This paper gives a preliminary aadion that MPC is a
viable option to base a design method upon.

Paper C [Edlund et al., 2009b] MPC relies on models, and as the scope broad-
ens, the required fidelity of the models are lowered. Theegfib was necessary
to develop simple models for use in a model based portfoligrotier. This paper
covers the modeling of different possibilities to changadiavithin the portfolio.
These possibilities are termed effectuators. The papéudas models for four
different effectuators; boiler load, district heatingndensate throttling and wind
turbines. Only the boiler load unit is currently operatibinaghe portfolio.

Paper D [Edlund et al., 2009c] In this paper a primal-dual interior point algo-
rithm based on Mehrotra’s predictor-corrector algorittentailored to the control
of a single boiler load effectuator. Even though the optitién problem in the
controller is decomposed, an efficient solution stratedlrsties on solving the
derived subproblems fast. This paper exploits the straadfithe subproblem to
reduce the number of calculations.

Paper E [Edlund and Jargensen, nd]Introduces Dantzig-Wolfe decomposition
for solving the dynamic part of the model predictive cor@nlA thorough descrip-
tion of the algorithm is presented. The main result of thegpagpthe experimental
results showing linear scalability of the algorithm as action of the number of
effectuators.

Paper F [Edlund et al., nd] This paper gives an overview of the complete design
method, including the handling of switching effectuatarsand out of automatic
control. A simulation based comparison with the currentipiemented controller

is presented based on the actual scenario of a month of ioitfeeration.
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2 | Design Method

The load balance controller as seen in Figure 1.4 is the fottss thesis. The objective
of the controller is to minimise deviations between sold aoalial production as well as
activating secondary reserves when ordered by the TSO.

In order to accept the main hypothesis from Section 1.1, #sgd method for the
new load balancing controller must result in a a controlat ieets the criteria:

Scalability Is scalable in the number of units it can coordinate.

Flexibility Must be flexible, so that addition of new units and mainteraot
existing units is possible. This means that the design max b modular struc-
ture with good encapsulation of information and clear comitation interfaces
between modules.

Performance Perform as least on par with the current controller measored
some performance criteria.

Balance between the production and consumption is cuyremdintained by chang-
ing the production, but in some cases consumption could Arged as well to achieve
the goal. For the sake of generalisation all power produamdjpower consuming units
that are capable of participating in load balancing cordreltermeceffectuatorsvhich
has the definition:

Definition 1. An effectuator is a process or part of a process in a poweesyttat rep-
resents control actions with associated dynamics and taatuzosts allowing the power
output to be manipulated.

2.1 Proposed Controller Structure

The structure of the proposed controller is a two layer h@viaal structure as shown in
Figure 2.1. All parts referring to the individual effectaet in the controller are placed
in the lower layer separated from one another, allowing tkeebe modified, removed or
adding new ones without affecting the other units. Abovegésardination layer coordi-
nating the units in question to achieve the portfolio goahafimising deviations.

Model Predictive Control (MPC) has been chosen as the dtetrecheme, since
the system is a constrained MIMO system where knowledgeeofitture references are
available.

The design framework relies on a set of assumptions:
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AGC signal,
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Figure 2.1: Sketch of the modular structure of the load afencontroller. Commu-
nication with the individual effectuator is handled by timelépendent subsystems, and
portfolio communication is handled on the upper layer oftiferarchy. r; is the refer-
ence to effectuator € {1,2,..., P}, z; is the state estimate; is the measured output,
andu; is the controller correction. For the portfolio there is &erencer,,,+, State esti-
matex,.,+ and a total measured productigp,,.. The references; andr,,. come from
the STLS as seen in Figure 1.4.

e The effectuators can be modelled as independent of each sthénat a change in
one effectuator does not directly affect another effectuat

e The effectuators can be modelled as a linear dynamic modekiffine constraints.
The investigated models in [Edlund et al., 2009b] can alhwiinor modifications,
be modelled with the structure shown in Figure 2.2. Howestier kinds of linear

Ui

Min/max

e

Rate limit

HF

)

Linear
process
dynamics

I

Min/max

=

Yi

Figure 2.2: General structure of the effectuators

input, output and state constraints fit into the modelliragrfework as well.

e The underlying optimisation problem in the MPC can be stated linear program,
which means the corresponding objective function mustisbi$ linear and/; -
norm elements.
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1 Proposed Controller Structure

Each effectuator in the lower layer of the hierarchy corgaanconstrained linear
model and an objective function for the optimal operatiortha effectuator which to-
gether form a constrained linear programming problem.Heurhore, it contains all com-
munication with the physical unit. The information that e sent to the upper layer is
how the output of the effectuator will affect the portfoliatput, meaning a prediction of
the power production/consumption of the unit.

The upper layer contains a constrained linear model of tinégtio excluding the in-
dividually modelled effectuators, as well as an objectivection of the optimal operation
of the portfolio. The upper layer also handles communicatiith surrounding systems,
for instance obtaining the portfolio reference (the lodukstule).

2.1.1 Solving the Optimisation Problem

The hierarchical structure encapsulates the informatdgrming to each unit. However,
one challenge persists: MPC relies on solving an optindagtroblem at each sample.
This is a challenge of the MPC framework, since solving thénaigation problem usu-
ally grows cubically with the size of the problem. Therefaree of the design challenges
has been to create an optimisation problem which can be suledged in the same hier-
archical structure as well as being scalable.

To solve the optimisation problem, a Dantzig-Wolfe decosition approach has been
applied [Dantzig and Wolfe, 1960; Dantzig and Thapa, 2002je decomposition tech-
nigue has been adapted to the MPC context in [Edlund anddsgend] where details
of the algorithm are also described.

Dantzig-Wolfe decomposition can only be applied to lineeslyems. The perfor-
mance function for the whole problem is assumed to be chasaméxture of linear and
£1-norm terms which can be rewritten into a linear programadalé for Dantzig-Wolfe
decomposition.

An important consequence of this forced choice of perfogeaiinction and con-
straints is the solution, i.e. the point where the perforoedninction attains its extremum,
must either be at an extreme point of the feasible set, ordl#ien of an unconstrained
problem.

When the optimisation problem is composed from the effeotuaptimsation prob-
lems and the portfolio optimisation problem, it can be réeri into a linear program with
the structure

min ¢ =clz +clzy+ ...+ chzp (2.1a)
F1 F2 e Fp 7 g
G Zl h;
2
st G | > ke (2.1b)

Gp| P hp

with z = [z1,22,...2p] € R?, 2, € R, ¢ € R, F; € R™*" G, € RPi*" g e R™
andh € RP:. ¢ is the functional which needs to be minimised in order to fipinum, z;
are the free variables; are weight factors, weighing the importance of the corradpw
z;. The constraint matrix has a block-angular structure wttesdlock diagonal elements
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come from the effectuator optimisation problem, and thepting constraint comes from
the portfolio linking the problem together¥'; is unit i’s contribution to the coupling
constraint. G; originates from the individual effectuators optimisatimmoblem. g and
h; are the affine parts of the constraints. Ignoring the cogptionstraints the program
consist ofP independent problems

min ¢ = c?zi (2.2a)

Z;

Dantzig-Wolfe decomposition builds on the theorem of carz@mbinations

Theorem 1. Let Z = {z € R" | Gz > h} with G € R™*" andh € R™ be nonempty,
closed and bounded, i.e. a polytope. The extreme poin&akt denotedv’ with j €
{1,2,..., M}.

Then any pointz in the polytopic setZ can be written as a convex combination of
extreme points

M
- Z /\jvj (2.33a)
j=1
st. A >0, j=1,2,... M (2.3b)
M
doa=1 (2.3¢c)
j=1
Proof. See [Dantzig and Thapa, 2002] O

Using the theorem on (2.2) and substituting it into (2.1)dge

P M,
m/\in = Z Z fijhij (2.4a)
i=1j=1
P M,
i=1j=1
M;
> =1, i=1,2,...P (2.4c)
j=1
Aij 2> 0, 1=1,2,...,P;j=1,2,..., M; (2.4d)

With M; being the number of extreme points of subproblerfi; andp;; are defined as
fij = C;TFV{ (2.5a)
pij = Fiv] (2.5h)

Equation (2.4) is denoted the Master Problem. The idea istpgenerate the extreme
points needed for the optimisation instead of generatihgx&leme points which can be
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1 Proposed Controller Structure

even more computationally complex due to the size of thelpmb Assuming that an
initial feasible solution is available for (2.4), a Redudddster Problem can be set up
and expanded through iteration with more extreme points.itekation/ the Reduced
Master Problem is defined as

P 1
i=1j=1
P 1
s.t. Z Zpij)\ij > g (26b)
i=1 j=1
l
> =1, i=1,2,...P (2.6¢)
j=1
/\Z‘jZO, 1=1,2,..,P;j=1,2....1 (2.6d)

in whichl < M, forall« € {1,2,..., P}. Obviously, the Reduced Master Problem
can be regarded as the Master Problem with = 0 for j = [ + 1,...,M; and all
i€{1,2,...,P}.

Solving the Reduced Master Problem yields a Lagrange nlieltipr, for the coupling
constraint (2.6b). This can be interpreted as a ’'price’ far portfolio deviation. New
extreme points are generated by solving subproblems dedmed

min ¢ = [cq; — FZTﬂ']T Z; (2.7a)

Z;

fori € {1,2,..., P}. These originate from (2.2), but the objective function jslated
with —F7'r wherer is given by the Reduced Master Problem in order to generéfea-di
ent extreme points based on the updated priteis the effect the effectuator will have
on the portfolio output.

The algorithm will then iterate over these steps until coggace at the global opti-
mum is reached. One of the strengths of Dantzig-Wolfe deositipn is that there is a
well-defined stop criterion, and convergence is ensureda Bworough description of the
algorithm, see [Edlund and Jgrgensen, nd].

Algorithm 1 summarises the Dantzig-Wolfe Algorithm for gtion of the block-
angular linear program (2.1). The subproblems (2.9) maydbeed in parallel. This
is advantageous when the number of subproblémss large.

One of the properties of the Dantzig-Wolfe decompositicthéd the computationally
complexity grows linearly with the number of effectuatarsontrol, and thus good scal-
ability is ensured when compared to a centralised solutibichwwould typically grows
cubically with the problem size. However, it is still a nunceslgorithm, and the exact
execution time of the algorithm cannot be guaranteed asdéjgendent on the system
states. However, the Dantzig-Wolfe Algorithm preservessilility of (2.1) at each iter-
ation, as well as having a monotonically decreasing pefdoiga function. In predictive
control applications, this implies that the algorithm candbopped prematurely and the
output of the last iteration will be a suboptimal solutioattban be applied to the system
without violating the constraint. Thereby it is ensured #naolution can be found within
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Algorithm 1 The Dantzig-Wolfe Algorithm for a Block-Angular LP (2.1).

1. Compute a feasible vertex of the Master Problem (2.4). Ifuxchgoint exists the
original problem is infeasible, so stop.

2: [ =1, Converged = false.

3: while Not Convergedio

4:  Solve the I'th Reduced Master Problem, RMP(l):

P 1
min ¢ = DO fihi (2.8a)
7 i=1 j=1
P 1
i=1j=1
!
> aj=1 i=1,2,...,P (2.8¢)
Jj=1
Aij >0 i1=1,2,...,P;5=1,2,...,1 (2.8d)

and letr be the computed Lagrange multiplier associated to thermmkbnstraint
(2.8b). Letp; be the computed Lagrange multiplier associated with (2.8c)
5. Solve all the subproblems € {1,2,..., P})

min  ¢; = [¢; — Fﬁr]T Z; (2.9a)

and let(t;, viT1) = (¢*, z¥) be the optimal value-minimiser pair.

i )

6: ify;—p; >0Vie{l,2,...,P}then

7 Converged = true. The optimal solution is
l .
z; =Y Ajvl  i=1,2...,P (2.10)
j=1

8 else
9: Compute the coefficients for the new columns in the RMP

firpr = clvitt (2.11a)

Pi1 = Fvit! (2.11b)
10: l—1+1
11:  endif
12: end while

28



1 Proposed Controller Structure

the sample time. Under mild condition this implies that 8igtcan be guaranteed, even
if the algorithm is stopped prematurely [Scokaert et al99]9

2.1.2 Communication and Data Encapsulation

When applying a Dantzig-Wolfe decomposition, the MastebRmm and the subproblems
are defined using the exact same structure as shown in Figurde Reduced Master
Problem (2.6) is solved in the upper layer, and the subpnobl€2.7) are solved in the
lower layer of the hierarchy.

The Dantzig-Wolfe algorithm grows almost linearly as a fime of the number of
subproblems, rather than cubically when solving one cksich problem as shown in
[Edlund and Jgrgensen, nd].

Currently, a standard Kalman filter is used for state estonait communicates the
states to each subproblem and the Master Problem. The tsoletion means that the
modelled units which are not in control need to send an ouygradiction at the beginning
of each sample for use in the Master Problem. The commuaicagtween upper and
lower layer is shown in Figure 2.3.

Coordinator

Repeat until
convergence

Figure 2.3: Communication timeline between coordinatareach unit during each sam-
ple.

The developed controller has an object-oriented structitte a clear interface be-
tween the layers and a clear communication scheme. Theotlentstructure can be
described as a UML diagram as shown in Figure 2.4. As longesrplementations of
the effectuators adhere to the defined interface, the imgaégions can be chosen freely
without having to change the framework. The interface isrggefiby the communication
needs of the Dantzig-Wolfe decomposition.

If the information of one unit needs to be updated, it is easghut down this par-
ticular part of the controller, update it and set it back intmtrol without having to shut
down the entire controller. If the coordination layer neewsntenance, the controller will
clearly lose its ability to minimise the deviation, but thentmunication with the effectu-
ators can be maintained, and thus information of the staig$ngut can be maintained.
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Coordinator

-Portfolio model

-Objective function

-Communicate with portfolio()

+Calculate Optimal combination of proposals()

0.*

0.1

«interface»
Effectuator
+Is Participating()
+Give output prediction()
+Set price on coupling constraint()
+Calculate Proposal()
+Set combination of proposals()

Boiler Load Condensate
-Model -Condensate model
-Constraints for power -Constraints for power
-Objective function -Constraints for volume
-Communicate with boiler() -Objective function
-Communicate with condensate()

Figure 2.4: UML diagram of the controller structure. The defi interface allows for a
flexible implementation of the specific effectuators.

2.2 Specific Controller Implementation

In the current system, only boiler load units are availablecontrol purposes, and the
specific implementation in this thesis is limited to inclubdese; however, other effectua-
tors can be included in a straightforward manner.

As outlined above, the individual boilers can be modellguhsately, as the actions in
one boiler do not affect the other boilers. They are only éedithrough the objective to
follow the overall portfolio reference and activating sedary resources. A constrained
linear model for each boiler is derived in the following, adpwith a performance function
for each boiler.

2.2.1 Boiler load units

In the current controller there are between 0 and 6 powert pliaits in control. These
will all be modelled in a similar fashion.

The boiler load effectuator is activated by offsetting tlieduction reference. The
boiler has an operating range, shown in the PQ diagram in BigThe district heating
production (Q) is plotted along the x-axis and the power potidn (P) along the y-axis.
There are upper and lower limits on the power production tvhkliepends on the current
district heating production.

When using the boiler for control purposes, the district imgaproduction is main-
tained, meaning that the changes in production happercabytin the PQ-diagram as
shown in Figure 2.5.
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A
PIMW]

Operating point

QMYS]

Figure 2.5: Movement in the PQ-diagram when changing thiebloiad.

A simple model of the boiler has been derived in [Edlund ¢t28l09b], but in order
to fit it into the linear control scheme developed here, sossei@ptions must be made.
The modelling concept is shown in Figure 2.6. The model @erivere is for the use in
the controller, and thus all constraints are formulatedttotd the controller which gives
corrective signals to the boiler units.

d
Min/max ‘ Rate limit

% Process
% % ] dynamics

Ui Yi

Figure 2.6: Concept of the boiler modelling.

The model has two input signalg; is the input signal coming from the production
plan, andu; is the input signal coming from the load balancing controllEhus, in the
nominal casey; is zero, since no corrective signals are needed.

The process dynamics is modelled as the third order system

1

H(s) = s v1p

(2.12)
whereT; is the time constant of effectuator

In order to gain offset-free tracking, the linear models angmented with a distur-
bance model under the assumption that the disturbance tostgonstant, so that the
constrained augmented discrete time state space modehksco

a1 0 0 0 by €1,
e | LS o R I LTSS
0 0 0 1 0 0
yie=[0 0 1 1]xp (2.13b)
w <y < (2.13¢)
max{Au; — Ad;, 0} < Ay; < min{Au; — Ad;, 0} (2.13d)

The elements i ;, B; andE; are dependent ofi; and the sample time. Symbols with
a bar beneath, e.g@. mean the lower bound, while denotes the upper bound. The upper
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rate of change constraint is modelled, so that it is alwaysmegative and vice versa, to
avoid forcing the controller to take actions in case the pobion plan violates the rate
of change constraint. The upper and lower limits for the caler (2.13c) are set in the
control system by the operator.

The rate of change constraint is dependent on the boiler laasipical form of the
rate of change constraint as a function of the boiler loacEaed in Figure 2.7.

A
Rate of Change
[MW/Min]
u [%]
- T
0% low medium h|ghloo%

Figure 2.7: Actual rate of change constraint as a functidsodér load. This state depen-
dency is not captured in the constraint (2.13d), but a lisation based on the prediction
is used in the model.

To linearise, the constraint the predictiomois used to generate rate of change con-
straints throughout the prediction horizon. If no predintdf« exists, it is assumed to be
Zero.

In case the operator changes the upper or lower bound, sohénairrent control
signal violates the limits, the limit is ramped down with tiiaximum allowed rate of
change. This measure is taken to avoid infeasible optifmisaroblems.

2.2.2 Optimisation Problem for a Boiler Load Effectuator

The optimisation problem for each boiler unit is formulased

N-1
Hlljlfl b = kZ:O Pikr1Yik + Vi kr1ll1,gs 00 AU k|15, (2.144a)
st X g1 = Aixp + Biug g + Eid; g, k=0,1,...,N—1 (2.14b)
Yik = CiXik, k=1,2,...,N (2.14c¢)
Uik < Uik < Uik, k=0,1,...,N—1 (2.14d)
Auip < Aug g, < Aug g, k=0,1,...,N—1 (2.14e)

whereU; = [u; 0, ui 1, -, uin—1)7, andA;, B;, C;, E; given in (2.13a) and (2.13b).

The first term in the performance functipp,_1y; » is a linear term representing the
cost of the boiler unit. The weight .11 is the marginal cost, i.e. the cost for producing
energy in the boiler unit. The price is calculated based enftiel prices and boiler
efficiency. The efficiency is state-dependent. For the daficins ofp; 11, it is based on
the production plan alone.
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It is assumed that the production plan from the STLS is ogtirmad thus in the
nominal case the correction signal from the load balancorgroller should be zero. In
order to avoid the power controller maximise the productibthe cheapest units, and
minimise the production of the most expensive units the tégm:—1/|1,4, ,_, i added.
This term penalises the part of the output coming from therodar.

The last term of the performance function is a penalty ordrapanges on the correc-
tion signal.

This optimisation problem is the controller for unjand this information is stored in
each of the effectuators on the lower layer of the hierarchy.

Primary Reserve Handling

Figure 2.8 shows an example of the maximum reserve availalieth up and down
direction as a function of the unit load. Reserves availfdni¢he positive and negative
corrections are shown in the right and left half planes rethyedy.

A Load
+ 100%

Upper Boupd

Lower Bqund

4+ 09
_ Down 0% Up
Maximum Reserve [MW]

Figure 2.8: Primary Reserves as a function of unit load. @rythxis is the unit load. On
the x-axis the maximum possible primary reserve that carebeeded at the boiler load
in both positive and negative direction. Dotted lines showositive reserve reservation
and the derived upper and lower input bounds for the coetto8imilar reservation can
be made at the same time for negative reserves.

Currently the Frequency Control Scheduler makes resenatbf the reserves pe-
riodically. It means it can reserve 5MW of positive correatiand 10MW of negative
correction power from a specific unit at a given time.

It is chosen to give first priority to the Frequency Controh&duler, and let it make
the reservations. Once the reservations are known, the apddower bound for the unit
can be determined, so that the reserved primary reserveeadeligered. These upper and
lower bounds are enforced on the power controller along witper and lower bounds
set by the operator.

Automatic / Manual Control and Fall-back Strategies

The boiler load effectuators can be in either automaticrobior manual control mode.
As explained earlier, in automatic control mode the colgralan give corrective control
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signals to the unit. The units can also switch from manualtoraatic control and vice
versa. This event is assumed external and non-predictathgver, it is observable.

If the effectuator switches from automatic to manual cdntiaile v £ 0 the strategy
is to ramp the control signal toward zero with a predefinegeslorhis is done on both
unit and in the controller, so in case of communication efrtdre behaviour of the unit
can be predicted. The same fall-back strategy is used inofdaalts in the effectuator.

These fall-back strategies along with the control statesadirhandled in the lower
layer of the hierarchy.

2.2.3 Portfolio Modelling

The portfolio is comprised of the boiler load units modelfg@viously and a mixture
of other production units. These other production unitssigirof various small ther-
mal power plants and some wind turbines. They have a pramucgiference, and their
production is measurable, but little is known about theinaiyical behaviour. They are
considered a disturbance in this context.

In order to include them in the controller, the model of tiker unitsconsists only
of a disturbance model assuming that the output is constarthat the other models are
modelled as

Lother,k+1 = Lother,k (2153)
Yother,k = Lother,k (215b)

The total portfolio output is then

P
Yport,k = Yother,k + Z Yi,k (216)

=1

The optimisation problem for the portfolio is based on refee tracking and is given
as

N
min ¢ = ]; yportk = Tportklly g ., (2.17a)
(2.17b)

wherer,,,+ is the portfolio reference which is the sum of referencedltorats in the
system plus the demand from the TSO as shown in Figureklig the sample number
andN is the prediction horizon.

This optimisation problem is placed in the upper layer oftitezarchy.

2.2.4 The Centralised Control Problem

The individual effectuators as well as the portfolio haverbenodelled, and the optimi-
sation problem for each of them has been defined. The desamdbller is equivalent
to solving the centralised problem
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min ¢ (2.18a)
s.t. Xik+1 = Aixi,k + Biuiyk -+ Eidi,k7 i1=1,2,..,P (218b)
vik = Cixik, i=1,2,...,.P (2.18c)
w;p S < Uk, 1=1,2,...,P (2.18d)
Aui’k < Aui,k < Aui’;“ i=1,2,..,P (2189)
Tother,k+1 = Lother,k (218f)
Yother,k = Lother,k (218g)
with
N P
¢ = Z Yother,k + Z Yi,k — Tport,k +
k=1 i=1 1,qport,k
mrert 2.19
P [N-1 (2.19)
> [Z Pik+1¥ik + 1Yo kt1llng e + 1 Buik]1s,
i=1 Lk=0

This optimisation problem can be rewritten into a lineargwean with the structure of
(2.1).

2.2.5 Finding an Initial Feasible Solution

Step 1 of Algorithm 1 states that an initial feasible solntieeds to be calculated. This
can in all cases be done by using a Phase | simplex algorithttasasibed in [Edlund and
Jargensen, nd]. It should be noted that computating a feagbtex of (2.4), may be just
as expensive as computing the optimal solution. Therefbaefeasible vertex is readily
available, it should be used directly instead of applyindpase | simplex procedure.

Rewriting (2.17) into a linear program will add an extra sktlecision variables to
the Master Problem callegdl ;. These variables act similar to slack variables in the sense
that if they are large enough, the problem will become fdasib this case, it means that
if a feasible solution can be found to all subproblems, ailfdasolution to the Master
Problem exists.

The task of finding an initial feasible solution to the Magieoblem is thereby re-
duced to finding a feasible solution to all subproblems with 0. Once a solution to all
subproblems are found,,; must fulfil z,o; 1 > |Yother .k + Zil Yik — Tport,k|. Since
the right hand side is known, finding a solution for this inality is trivial and result in
an initial feasible solution to the Master Problem.

2.3 Simulations
In order to evaluate the new load balancing controller, It e tested against the cur-

rently running controller through simulation in a scenafi@tching throughout a month
of real operation. Figure 2.9 shows the simulated systera.sithulated system consists
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Figure 2.9: Simulation of the load balancing controller be system level. The bold
lines show vectors of signals. The dashed lines show signgtisboundary conditions
for the simulation. The portfolio is a simulation model.

of the load balancing controller and models of the powertglaontaining boiler load ef-
fectuators. All dashed lines, i.e. the signals from the tstewm load scheduler and TSO
are boundary conditions for the simulation.

The current controller is implemented in SimullYK[Mathworks, 2010]) and com-
piled so it is able to be executed in the central control rodmother words, it is the
actual controller and not some simplified implementation of thetodter the compar-
ison is performed against. In order to test the new developsnand maintenance on
the current controller, models have been developed in Sikito be able to test the
whole system. Since a test environment already exists,aih isbvious choice to make
the comparison in Simulirlk!.

The new controller is implemented in mixture of Java for la#l tlata handling such as
reading measurement data and constructing constrairt$/atiab™ [Mathworks, 2010]
for solving the optimisation problem.

The dynamic part of the boiler unit models are implementdthasr models or linear
parameter varying models. Besides the dynamics of therhailig, parts of the control
system operating the boiler unit have been implemented.elins that all upper/lower
bounds, rate of change constraints, correction for didteating and parasitic consump-
tion are implemented in the models along with a lot of the dagpntrolling the switch
from manual to automatic mode and vice versa.

The simulation environment runs at the same sample timesasitinent controller, i.e.
0.5s, and since the sample rate of the newly developed dienti®5s, a ZOH approach
will be taken. The data is saved with a 5s sample time for botitrollers for analysis
purposes.

Simulations cover 25-hour sequences start from 23:00 toigid the following day.
In the analysis section, the first hour is discarded, so tlayais covers 24-hour se-
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quences from midnight to midnight. The first hour is used toichtart-up and settling
issues influencing the analysis, allowing to string togeteveral sequences for more
extensive analysis.

In this thesis only the main results from a noisy scenaricti@ated for full details,
see [Edlund et al., nd]. For each boiler unit the input anghousample sequences of the
original measured scenario are known. One can thus estmatése sequence for the
scenario as

Yn = Ymeas — Ysim (220)

This noise is applied to the output of the model of the boileit.uSince the noise is
generated based on closed loop measurements, it is likiglsefil by the controller in the
loop rather than white noise.

This noise generation is chosen, so that the simulationesiteresembles the actual
scenario as closely as possible including failures. Thesoreanents from the units mod-
elled as the portfolio are applied directly to the simulatwthout filtering.

The analysed scenario contains three entities. There anaéasurements from the
actual operation, a simulation of the current controlledt arsimulation of the new con-
troller.

For the simulations standard deviation and mean error @@ as quantitative mea-
surements for the evaluation. Figure 2.10 shows the mean err

N
1 s
o= E ]; Yport,k — Tport,k (221)

with N, being the number of samples in the simulation. Figure 2.bWwshhe standard
deviation

1 X

0 =\ 77 2 (Wportsk = Tport.k) = 1)’ (2.22)
S k=1

on a daily basis. Analysis shows that the constraints froimamy reserves limit the
controller in periods.

The standard deviation on the new controller is higher thancurrent controller. A
significant change in the current and the new controlleras titre new controller adheres
to fulfilling the primary reserve reservations at all timélhis adds an extra constraint
to the controller which is active for longer periods and tegrades the performance of
the new controller. A comparison of of the new controllerhwdind without the primary
reserve constraint on a noise-free scenario is found irujfietlet al., nd]. Both are sig-
nificantly higher than the measurement data which are likelye caused by the noise
generation scheme as shown in Figure 2.11. The trends idathdeviation is the same
for both controllers and measurement data. As seen in tlse+i@e scenario, the current
has a slightly better performance than the proposed.

The mean error is larger in the noisy scenario compared todise-free. Though
not consistently lower, the average shown in Table 2.1 shioatshe new controller is an
order of magnitude closer to zero mean error compared touttrerd controller.

Figure 2.12 shows the price difference between the two obbats. Analysing the
price shows that on most days the new controller performsh&n day 20, the primary
reserves limit the controller, so that a large deviationuos®ver a long period of time
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Figure 2.10: 24-hour mean error for the controllers in ayeienario. The figure shows
the measurements (solid), the current controller (dashad)the new controller with

(dotted). The results are for the individual days. Day 1istted from the analysis due
to missing measurement data for the scenario.
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Figure 2.11: 24-hour standard deviation for the contrsliera noisy scenario. The figure
shows the measurements (solid), the current controllesh@ld) and the new controller
(dotted). The results are for the individual days. Day 1istted from the analysis due
to missing measurement data for the scenario.
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o M
Measurements 17.74 -3.27
Current 23.11 -2.78
New 25.72 0.29

Table 2.1: Standard deviation and mean throughout the whoteh of simulation. Mea-
surements are the measured values with the controllerngratithat time. Current is a
simulation with the current controller and new is the simiolawith the new controller.

which is detrimental for the earnings of the controller. Q@rrage the difference is 240
€per day, which means an earning of almost 90, 8per year.
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Figure 2.12: Price difference between the current comtrelhd the new controller. Pos-
itive difference means that the new controller is cheapam@more money for DONG

Energy).

2.4 Fulfilling the Design Criteria

Three design criteria has been established which the netnotienneeds to meet in order
to fulfil the predicted demands from such a controller.

Scalability Through the application of Dantzig-Wolfe decompositidnsishown
experimentally in [Edlund and Jgrgensen, nd] that the caatjonal complexity
of the controller grows almost linearly with the the numbéefiectuators while
still converging to the same optimum as the centralisedtismlu This is a signifi-
cant improvement in lowering the computationally compexiver the centralised
solution. It is also shown that already at 2-3 effectuattive, Dantzig-Wolfe de-
composition is faster than the centralised solution. Furtiore, it is possible to
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distribute the optimisation problem among multiple preoes, giving an advan-
tage which exploits the trends toward computers with migtggocessors.

Flexibility The design method fulfils the objective of flexibility thrdugn object-
oriented design with data encapsulation and clear intesfadt ensures that the
controller is easily maintainable in case of updates of tiroller such as adding
and removing effectuators.

Performance The design method itself does not ensure that the perforenenc
terion is met, so that a controller design with the developedhod performs as
well as the current controller. However, the developed wettnsures that if afy -
norm based MPC can be constructed to fulfil the performariterion, the design
hierarchical design will also fulfil the criterion. In Semti 2.3 as well as [Edlund
et al., 2008, nd], simulations show that@&nnorm based MPC can be constructed,
which improves the performance in terms of standard deriatind mean value, as
well as improve the economic performance by a better digich of the control
actions.

The scalability and flexibility criteria have both been tezband fulfilled by the design

method, while the performance criterion is dependent onspiexific implementation.
The design method has been utilised for controller synshfesithe current power plant
portfolio and the resulting controller fulfills the perfoamce criterion. Thus, all criteria
established in the hypothesis can be fulfilled by the desigthod.
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The main contributions of this thesis consist of six papegarding different aspects of
the portfolio control. This chapter summarises the contrdms made in the project. The
papers are notincluded in a chronological order, but in demthat takes the reader from
the motivation to the solution in a logical way.

3.1 Stability of the Current Controller

In [Edlund et al., 2009a] the current load balancing colgradtructure was analysed.
[Wood and Wollenberg, 1996] give the structure of an aut@nggneration controller
which is used for balance control by the TSOs and is very aimmil structure to the load
balancing controller treated in this thesis. The stuctofiood and Wollenberg, 1996]
is expanded to include rate of change constraints whicheayeined for the controller to
meet the requirements for operating in the western Denmark.

A linear approximation of the implemented structure is shawrFigure 3.1.
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Figure 3.1: Linear approximation of the load balancing oaligr structure.

Using the definition of internal stability [Zhou et al., 199%kogestad and Postleth-
waite, 2005], it is proven that the current controller stae is internally unstable. The in-
stability cannot be seen in the portfolio output, but resuthe effectuators drifting away
from the production plan in opposite directions. The ingitgbcan be shown through
numeric simulations as well as in real data as shown in Fi§ue In the figure two
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effectuators are shown which at 3 hours drift away from thinegd production plan and
stay there for many hours.

sol Generator 1| |
: Generator 2

60

401

201

Correction Signal [MW]

0 5 10 15 20
Time [hours]

Figure 3.2: Correction signals from the controller. Thereotion signals drift apart and
stay on opposite sides of the optimal production plan foesshhours.

[Edlund et al., 2009a] give two proposals for salvaging thetller. One of them is
a stronger parallel run which forces all effectuators talsahe same correction. Parallel
run is commonly used within the power plant industry when owanore similar subsys-
tems have to work in parallel to complete a task. When usingpBtrollers in parallel, the
subsystems will in general not contribute equally when ldgyium is reached. In order
to obtain this behaviour, parallel run is introduced. Theafial run drives the integrators
towards the same value, thereby ensuring that the behasgaur in the example above,
where two generators drift in opposite directions, is agdid However, increasing the
strength of the parallel run will decrease the ability to e&kst changes. The other pro-
posed solution is to make a smarter distribution of the armotinorrection signal each
effectuator receives. The latter has been implementeckicdlrent system as a result of
this paper.

3.2 Showing MPC is Viable for Portfolio Control

The first contribution towards developing a design methad [Edlund et al., 2008]. A
Model Predictive controller with the structure

42



2 Showing MPC is Viable for Portfolio Control

N-1
m&n ¢= Z ||Yk+1 T Pkl ge g + qg,k+1}’k+1 + HAuk |1¢1Au,,k (3.1a)
k=0
st Xpi1 = Axy + Buyg + Edy, k=0,1,...,N (3.1b)
yr = Cxg, k=1,2,...,N (31C)
u; < uy < Uy, k=0,1,....N (3.1d)
Aug < Aug < Auy, k=0,1,...,N (318)

is proposed to to improve the control compared with the eilyémplemented PI-
controller. (3.1b) and (3.1c) is a MIMO state space moddhefithole portfolio including
the effectuators, so thgt= [y1, y2, ..., yp, Upore) With y; being output from effectuator
i=1,2,..., Pandy,. being the portfolio output. The first term of (3.1a) descsibiee
deviation between output and reference both for the whatégdio and for the individual
effectuators. The second term is an economic term meagheragpst of producing power
on each plant. The third term smooths the solution by penglimpid movements in the
manipulated variables, thereby avoiding wear on the affgors.

Simulations showed that this controller is capable of lomgethe deviation as shown
in Figure 3.3 as well as increasing the income of the podfoli

—— MPC
R

eviation [MW]

D

L L L L L L L L
0 10 20 30 40 50 60 70 80 9

Figure 3.3: Portfolio deviation comparison between a Ritagdler based and an MPC
based load balancing controller.

Besides the contribution of formulating an MPC-based aiar, the introduction
of economic terms in the portfolio controller is a novel apgeh. From distributing the
control actions to all effectuators based on possible ratha@nge to an economic distri-
bution is a significant change of behaviour. This can be se#reiinput signals in Figure
3.4. This contribution has, parallel to this project, beaocgssfully implemented in a
rule-based logic scheme in the current Pl-controller.

[Rao and Rawlings, 2000] demonstrate the Model Predictiveti@llers containing
£1-norm penalty functions may give rise to either dead-beatlercontrol. While theo-
retically (3.3) result in this behavior, simulations in [&dd et al., 2008] demonstrate that
the controller performs well and provides the desired pticfcontrol.
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Unit 1 Unit 2
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Figure 3.4: Comparison of input signals between the Plroliat and the MPC. The
MPC controller distribution is based on economic termsanathan a share based on the
rate of change capability.

3.2.1 Developing Models for Effectuators

The effectuator model used for MPC in [Edlund et al., 2008} Wwased on assumptions
that the current model in the simulation environment usedHe currently implemented
controller is an adequate description of the system dyrmamiad the results of simula-
tions with a controller based on these models showed godorpence. In [Edlund et al.,
2009b] simple dynamic models with constraints of severfalotfiators were derived and
validated against available measurement data.

Three of the derived effectuator models are located in a pplaat, and their dy-
namics affect the other models constraint or dynamics. hewehe effect of the cross
couplings induced by the control actions is so small thatiitloe ignored by the controller,
but the model parameters likely needs to be tracked and eghdatside the controller.

In [Edlund et al., 2008] all power plant units were considete have no district
heating production. The derived model for the boiler lodéatiator in [Edlund et al.,
2009b] had dynamics corresponding to the dynamics of thesteased in [Edlund et al.,
2008], but the constraints were modelled as a function oflisigict heating production.

The fourth derived effectuator model describes a wind he'liérm which can also be
used for load balancing.

3.3 Hierarchical Controller Structure

In order to obtain a modular and flexible controller, a hieh&al approach has been
taken in [Edlund et al., nd] as shown in Figure 2.1. The dgwadiocontrol structure is
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a two-layer hierarchical structure designed with an obgeiinted design approach and
can be represented using UML diagrams as in Figure 2.4.

One important design decision is the usage of an interfateeles the upper and
lower layer of hierarchy. The interface allows multiple iexmentations of effectuators
without changing the design framework. The interface iSgie=i as minimalistic as
possible to allow as much freedom to the implementationfetéiators as possible. The
structure has a high coherence inside each module and a iglirog. This, coupled with
the usage of the interface, ensures a modular and flexibteatien

The hierarchical controller design has the following reguoients to the lower layer
controller implementation

e The effectuators must be modelled as independent, so tlw@rge in one effectu-
ator does not directly affect another effectuator.

e The underlying optimisation problem can be stated as adipegram, which in
terms means the objective function consist of linear @adorm terms and linear
constraints.

e The interface requires that the controller can generatéraoproposals for the
effectuator based on an updated price from the upper layer.

All effectuators that can be fitted into these requiremeatslze used in the control
structure without changing the design framework, therabyng the design flexibility to
incorporate future effectuators, such as a virtual powantpbr electric vehicles.

The hierarchical controller structure relies on a decortijposof the underlying op-
timisation problem to ensure the same optimality condgtiag the centralised version of
the controller.

3.4 Efficient Solution of Optimisation Problems

In [Edlund et al., 2008] an MPC was derived, and the resultainbd with the controller
were good. However, it was clear that the time needed forrfondi solution was criti-
cal, and the chosen centralised implementation has a catiguutime on a normal PC
close to the sample time. Even if faster hardware is utilifeel complexity grows cubi-
cally with the problem size, and thus the number of effecitsathat can be added to the
controller is limited.

Two contributions for lowering the computationally comytg are considered. A
hierarchical decomposition using Dantzig-Wolfe is pragg# [Edlund and Jgrgensen,
nd], and a customisation of an interior point solver for thelypem [Edlund et al., 2009c].
Both contributions exploit the structure of the problemeduced the required computa-
tions.

3.4.1 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition has been used for decompdaigg-scale linear problems
in optimisation for a long time. However, using it for the dynical calculations of a
model predictive controller is a novel approach.
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The benefits of using Dantzig-Wolfe decomposition are thatierarchical structure
is possible to implement with a clear interface with a smalel of communication. Be-
sides the clear interface design, it also makes it possibdpitead the optimisation over
multiple computers connected by a network, without muclrivead.

Dantzig-Wolfe decomposition also ensures better scithabBcalability in computa-
tionally complexity is shown in Figure 3.5.

- = = Centralised
3.25

e U 0.0074X
" — Dantzig-Wolfe
0 e e 0,055t ]
3 - - Parallel Dantzig—Wolfe|

7 co0.02%%

Average execution time per sample [s]

10
# of effectuators

Figure 3.5: Computation time as a function of the effectrsaiio the optimisation.

Computation time grows almost linearly with the number ééetuators compared to
the cubic growth of a centralised solution. This couplechwiite algorithm being faster
with a small number of effectuators makes MPC a viable cdletrecheme for the load
balancing controller.

Theoretically, the Dantzig-Wolfe decomposition convergery slowly, the test prob-
lem in [Edlund and Jgrgensen, nd], and the simulation on léstieascenario [Edlund
et al., nd] shows good convergence in practice.

3.4.2 Customising an Interior Point Method

The other contribution toward increasing the efficiencyhef optimisation algorithm was
customising an interior point method which is reported idI[lad et al., 2009c]. The
interior point method is tailored to solve the local optiatien related to one of the boiler
load effectuators. However, many of the techniques apledbe reused in MPC appli-
cations.
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The optimisation problem for a single boiler load effectuat

N-1
min ¢ = > ks = rrsallyg o F Gogsrviin + 1 Buklly (3.2a)
k=0
s.t. Xp+1 = Axy + Bug + Edyg, k=0,1,....N—1 (3.2b)
yk:CXk, k=1,2,...,N (320)
up < uy < Uy, k=0,1,...,N—1 (3.2d)
AUkSAUkSAuk, kiO,l,...,N*l (328)
can be rewritten into a linear program with the form
min ¢ =c'z (3.3a)
st. Gz>h (3.3b)

by rewriting the optimisation problem using different mmikuch as the model description
as given in (1.9).
The program has a constraint matrdX, with the structure

I 00
-1 00
o I 0
0 0 I
T 00
G=| 3 o0 o (3.4)
T I 0
¥ I 0
r, 01
T, 0 I

The individual elements of this matrix are defined in [Edlwetdal., 2009¢c]. The
important thing to note is that the constraint matrix is hygstructured, i.e. many zero
entries, and this can be exploited.

One of the most costly operations in the interior point soirgEdlund et al., 2009c]
is the calculation oH = GTDG, whereD is a diagonal matrix. Performing this cal-
culation with normal matrix multiplication is very expewsi Implementing the interior
point algorithm in Matlab¥, 79% of the time was spent on this operation when imple-
mented with standard notation. Using Matlab’s sparse fgcles, a significant speed-up
of the algorithm was obtained, but the most expensive ojp@ratas still the calulation
of H with 55% of the computation time. Exploiting the structurfetive matrix along
with a few other customisations of the algorithm gave a spaedf the algorithm of
approximatly 20 times compared to the standard nonspargennentation.

Comparing the algorithm in Figure 3.6 with an active setepimplemented in FOR-
TRAN and Matlab’s Linprog shows a significant improvementngared to other algo-
rithms handling general problems.

The important contribution is not that it is possible to spep a solver for this specific
problem, but most optimisation problems arising from MP®@eha highly structured
constraint matrix and thus can be exploited in a similar way.
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Figure 3.6: CPU times for the different LP algorithms.

Dantzig-Wolfe Decomposition relies on the subproblemsednegate solutions in a
vertex of the feasible area. In the rare case that a solutitimetsubproblem exists on an
edge of the feasible area, the interior point method mightcoaverge to a vertex. So
using the customised interior point method to efficientliyedhe subproblems generated
by Dantzig-Wolfe decomposition could lead to a Dantzig-##&@llgorithm which will not
converge to an optimum. In practice this has not proved tojrelklem.

3.5 Implementation and Benchmarking of the Controller

Throughout the project, implementations of the controlave been made. The first
implementation is reported in [Edlund et al., 2008] with th&pose of showing that
MPC is a viable option for a control scheme as described itiGe8.2.

In [Edlund et al., nd] the design method was used to syntleésiccontroller for use
in the current system. The performance of the controlleigtes! with the developed
method was compared based on three factors; mean errafastiadeviation and price.
The comparison was performed through a simulation in a siebased on data from a
month of actual operation.

The new method incorporates a method to ensure that the kladding controller
does not violate the primary reserve constraints, somgtthiat has not been handled
previously.

Table 3.1 shows a comparison of the new controller compaitdtihe current im-
plementation. There are three tested entities; there amn#asurements from the actual
operation, a simulation of the currently implemented calfér and a simulation of the
proposed new controller. The new controller includes qais to ensure that primary
reserves are maintained. For comparison purposes the mevolber has been simulated
without this constraint as well.

In both the noise-free and the noisy scenario, the new certtperforms close to but
slightly worse than the current controller. The hypothegs that it was caused by the
constraints enforced by the primary reserves. The compasisth the new controller
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Noiseless Noise

o u o n
Measurements - - 17.74 -3.27
Current 11,98 -1.26 23.11 -2.78
New 12.21 -0.12 25.72 0.29

New no primary 11.41 -1.02 - -

Table 3.1: Standard deviatianand mean errop throughout the whole month of sim-
ulation. The measurements are the actual production dateent is a simulation of the

current controller and new is a simulation of the new cotgroFor comparison purposes,
the new controller is also simulated with the constraintrf@intaining the primary re-

serves are removed.

without this constraint in the noise-free scenario showsghtsy improved result com-
pared to the current controller.

Comparing the economy of the two implementations, the nemirotber performs
slightly better and is estimated to yield a gain of approxatya90,000 euro per year.

One remark to make is that the currently implemented cdetrblas matured over
the cause of years. In comparison, the new controller has ipgglemented and tested
through simulation for a very short time. It is thereforeelikthat the implementation and
further development of the newly developed method will gighproved performance
compared to the results of this thesis.
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4 | Conclusion

When the project started, the scalability of the controllasa feature which might be re-
quired at some point in the future, but the main focus was gropmance improvement
on the current portfolio. During the course of the projeet thive towards more sustain-
able energy production has changed the energy system, tsectlability has become
absolutely crucial to the controller design. An examplehid thange is the rapid devel-
opment of virtual power plants and thereby a potential iasesin number of effectuators
in control in the very near future.

The power system is very complex, and with the increasingbmurof effectuators
complexity will increase even more. One of the aims in thesth has been to develop a
design method which is clear and relatively simple to enshaeit can be implemented
in the production at some point. This includes a very higlelley abstraction.

To test whether it was possible to develop a design methogpathesis was for-
mulated stating that it is possible to develop a controlksigh method which leads to
synthesis of a controller which fulfils the criteria of sdailay, flexibility and perfor-
mance.

A design method has been developed which results in systbgaicontroller with an
object-oriented structure with clear interfaces, thusiang theflexibility of the control
structure. The modular design ensures that the contrslkasily maintainable in case of
updates of the controller such as adding and removing efigémts. The use of interfaces
in the design offers flexibility in the implementation of thentrol formulation for the
individual effectuator.

By using Dantzig-Wolfe decomposition, a computationabedfit solution can be ob-
tained which grows linearly with the number of effectuatorscontrol. Furthermore,
decomposition allows distribution of the optimisation argseveral computers, thus im-
proving thescalability significantly compared to a centralised solution. A cussadi
interior point solver can be utilised to efficiently solvetbmaller distributed problems in
the hierarchical structure.

Using the design method for synthesis of a controller fordheent portfolio, the
simulatedperformanceis comparable with the simulated performance of the culgrent
implemented Pl-controller structure.

The developed design method fulfils all three criteria oftiipothesis, therefore the
hypothesis is accepted.

The contributions of the work consist of six papers desoghilifferent aspects of
portfolio control as well as the development of the methoedsummary, the contributions
can be listed as:
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Conclusion

Analysis of the current controller structure, based on thecture used in literature.
The structure was proven unstable. There are, howeveroaetbr stabilising the
controller. [Edlund et al., 2009a]

Formulation of the load balancing problem as a model pregictontroller, and
showing that the current state of the art within load balag@ontrol can be im-
proved by introducing Model predictive control theory. [&ad et al., 2008]

Developing a method for synthesising a load balancing otlatrwith a modular

design and clear interfaces using model predictive canffble design is a two-
layer hierarchical structure which has a performance etgual centralised solu-
tion. The design method requires that the underlying ogtition problem can be
formulated as a linear program. [Edlund et al., nd]

Customisation of a general interior point method to explbé structure of the
specific problem in order to speed up the optimisation, byaitipg the structure
of the problem. [Edlund et al., 2009c]

Introduction of Dantzig-Wolfe decomposition for the dynamalculations of MPC
for use in portfolio load balancing control. The result isiadependent problems
corresponding to the physical subsystems. [Edlund anctdgem, nd]

Implementation of the method on the existing portfolio andhpared the perfor-
mance with the current controller through simulations. Tbeparison showed
that the developed method has potential to improve perfocaan the existing
portfolio. [Edlund et al., nd]

Developing a method for ensuring that primary reserves aiatained when the
load balancing controller performs internal balance auntt is a prerequisite that
the reserves are available from the beginning. [Edlund. ehd]

4.1 Future Work

The design method for a load balancing controller preseint#uis thesis fulfils the cri-
teria to be able to accept the hypothesis. There are two pathbe followed after this
project is finished. One path is the industrial implementatnaturing and implementa-
tion of the controller in a suitable application. The otheffurther development of the
controller design to remove some of the limitations theentrdesign method imply.

e A design method and a prototype of an implementation has pemnided in this

thesis, but in order to implement and use the controller iarajon it must be
matured and implemented to fit in the platform of the contgatem. Further-
more, only the controller core has been developed, in omkave a fully fledged
controller suitable for operation it has to be expanded ¢tuihe elements such as
communication and operator interface.

The design method enables inclusion of new effectuatotsdrportfolio in a rela-
tivity straight forward manner. Identification and constian of new effectuators
are not directly related successors of this thesis. Butrdmadwork for including
them in balancing control is now established and ready fertésk.
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1 Future Work

e The proposed controller design relies on one Kalman filtesfate estimation of
the whole system. The complexity of the matrix multiplicais grows cubically
with the problem size. This could prove to be a limiting fadtr the scalability in
the proposed control design. However, the computation sipast on the Kalman
filter in the implementation is insignificant compared to tbenputation time spent
by the controller. A logical extension of the design methazlid be to include a
distributed state estimator as well. Distributed stat@redton has already been
treated in [Alriksson and Rantzer, 2006; Farina et al., 2@08ong others, but
needs to be incorporated in the method. Incorporatingibliged estimation into
the method would ensure that the estimator would fit into thenéwork, thereby
ensuring that each of the modules for the individual effattts contain all infor-
mation needed to add the effectuator to the control.

e Currently, the design method requires that the controber lze stated as a linear
program to be able to perform the optimisation. Expansiothefcontroller de-
sign is a topic for further research. Inclusion of nonliriées in both performance
function and constraint is the ultimate goal, but the negtdal step is to include
quadratic terms in the performance function since it wouldtge the framework
to handle the most common MPC formulation.

e Simulations show that the discrete events generated bgteffiors being added to
or removed from the controller do not induce large deviaion cause instabili-
ties. However, there is not established firm theoreticat@nuaes that these events
will not destabilise the system. A theoretical foundatiois@ing these properties
would be a clear enhancement of the robustness of controller

e Currently, the events of adding and removing effectuatmrgyanerated externally.
Expanding the controller to predict when it is safe and/dinogl to add and remove
effectators is another topic of future research closebteel to the stability analysis
above. This topic can be generalised to the controller bairg to handle discrete
events, and thus removing the limitation that the effecttisatnust be continuous to
be included in the control. This would significantly expahd types of effectuators
that can be handled by the controller.
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1 Introduction

Abstract

This paper deals with the the stability analysis of a controller structure used fo
automatic generation control (AGC). The AGC structure is derived filoenlitter-
ature and augmented to handle generation rate constraints. The derivetdre is
then compared to the structure of the AGC used within DONG Energy, wiich r
moves deviations between reference and production. The analysiedsated on
a linear approximation of the closed loop system, with focus on the structuhe
controller. We show that with the chosen structure, the closed loop sysiiélmew
internally unstable independently of the controller parameters. The &atysws
that the different units in the portfolio might drift in opposite directions, héawor
also observed in the real system. The drifting ruins the economical optionis The
instability issue can, however, be alleviated by introducing so-called planatle

1 Introduction

Controllers in general, and in particular controllers ukedautomatic generation control
(AGC), are often implemented with the primary motivatioratthieve economic benefit
from good operation of the plants, which can then be traedlaito a number of perfor-
mance criteria, of which the most fundamental is stabitisetf the system.

The problem of designing AGCs to cooperate among multipdéores has been the
subject of much research lately, both regarding optimalitg stability. However, it is
most often assumed that the generators within the areaduras one generator. For ex-
ample [Bakken and Grande, 1998] describes how to introdu@ezC in Norway, but the
focus is on the main controller rather than the distributibthe error among the partici-
pating generators. Centralised AGC design under consgriitreated in [Hassan et al.,
2008] both for single-area and multi-area production, batdrea is treated as one gener-
ator. In [Venkat et al., 2006; Moon et al., 2000; Tyagi and/&stava, 2006] decentralised
model-based methods for multi-area AGC are developed, hbbut discussing how to
distribute the output from the controller known as the areatrol error (ACE) among
the multiple generators in the control area. Focusing drilgta [Azzam and Mohamed,
2002] developed a design method for generating a stalgl=omtroller.

[Liu et al., 2003; Chen et al., 2007; Wood and Wollenberg,8]38scribe how to
distribute the ACE among the participating generatorséettea. [Liu et al., 2003; Chen
et al., 2007] deal with control of multiple generators witlsin area using optimisation-
based schemes. However, both treat the problem as a sthtiec than a dynamic prob-
lem. [Wood and Wollenberg, 1996] presents an AGC for distiity the ACE to multiple
generators based on a Pl-controller structure. This stredor distributing the ACE is
very common, and the principle is also used in the internaCAGthin DONG Energy,
who operates in Denmark. The work in [Wood and Wollenber@®6] 9vill be used as a
base for the structure in this paper and will be further dised in section 3. However, as
will be shown, in case of load disturbances, it is requirethtwlify the scheme in order
to maintain stability.

The outline of the rest of the paper is as follows: Section &dbes the set of as-
sumptions and requirements for the controller and the sysiéis is followed by a dis-
cussion of the augmentation of the structure needed tal filiéilrequirements in section
3. Section 4 presents an analysis of the stability of the aumed structure. A numerical
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example of the problem is given in section 5, and a discussidhe possible remedies
for the problem in Section 6. At last in Section 7 data is shéwm the real system,
illustrating that the problem highlighted in section 4 ¢xiis reality.

1.1 The Danish power system

The Danish power system is split into two areas, Western Rekrand Eastern Den-
mark, which are not synchronously connected. The westetropRenmark is,however,
synchronous with the UCTE grid. This paper will focus onlytba Western Danish Area.
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Figure 5.1: Generators participating in balance contréVestern Denmark

The Danish power market has been decentralised and libedalh the recent years.
This includes the market of reserves and balance contr@.tfBmsmission system oper-
ator (TSO) in the area is separated from the power producessdier to avoid conflicts
of interest. Therefore the Danish TSO has to buy productiEserve and load balancing
services from independent power producers. Figure 5.1 stiosvgenerators in Western
Denmark that typically participate in the power balancinghie region.

In Denmark, much of the electricity production is based omdygower. In November
2007, the installed wind capacity amounted to more than 26%tedotal installed capac-
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ity. The Western Danish area functions as one area with pheilfienerators, which means
that a primary concern when designing an AGC is how to distelthe ACE between the
generators. Therefore an AGC is applied to regulate theflfasttiations caused by the
wind power [UCTE, 2007].

The commissioned AGC works in a deregulated market and istgpbetween the
TSO and multiple independent power generating companites Danish TSO, generates
an area control error (ACE) and distributes it among the congs participating in the
balance control of the Danish power system. The individuadipcer is then responsible
for distributing its share of the ACE among the generatoesaied by the company. Each
producer also has the responsibility for maintaining thiamze between the actual and
ordered production within the portfolio of generators.

The fast fluctuations in the power system must be suppresstttelmal generators,
which are dominant in the power system. Therefore the thlegmaerators will often
reach their rate limit at typically 4% load/minute, and #fere the AGC must be able
to handle the fact that the generators reach the generatierconstraints a significant
percentage of the time. It is noted in [Wood and Wollenbeg$6] that an AGC should
be able to handle this, but no specific method is given. Int@gdt is often done with a
Pl-controller structure augmented with a set of so-cgladicipation factorgto split the
load among the participating plants.

Due to the fast fluctuations in the Danish power system, thefggarticipation fac-
tors is changed very often. Existing literature does notrseehave investigated what
influence a rate limit constraint has on the stability of tigtribution of the ACE within
the power system.

i Disturbances

Economic Dispatch | —-roguction plan Reference r——— ===
(Production Planning) | feedforward

Expected _ -
Response

Deviation
——

Load balancing
controller

TSO

AGC signal

Measured production

Figure 5.2: System level control within DONG Energy.

The system level control within DONG Energy is depicted igufe 5.2 and further
described in [Jgrgensen et al., 2006]. This paper condestoa the load balancing con-
troller. It gets an input from the production sold on the Po&rchange and the share
of the ACE coming from the TSO. Adding these gives the totatfpbo reference which
has to be followed.

This paper deals with analysis of the stability of an AGC wltsempensation for
generation rate constraints are added to the controlleg. aflalysis is conducted based
on a linearised model of the power system.
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2 Preliminaries

This section will define the stability condition as well ast lihe assumptions used when
analysing the structure and stability of the AGC.

During the analysis the definition of internal stability sedl as defined in [Zhou et al.,
1996] and [Skogestad and Postlethwaite, 2005].

oYl P(s)

C(s) Y1 :

Figure 5.3: Block diagram used to check internal stability

Definition 2. The interconnection of LTI systenf3(s) andC/(s) depicted in Figure 5.3
is internally stable if and only if all four transfer functis comprisingH (s) in (5.1) are

stable
1]

{ (I-C(s)P(s))!  C(s)(I — P(s)C(s
P(s)(I— C(s)P(s)" (I P(s)C(s))"*

The following assumptions are made:

N
=
|
-
[

e The AGC is based on Pl-controllers.

e The AGC should be able to compensate for generation ratdraarts and genera-
tion limits of the generators.

e Each generator has it own local loop controller to ensureregice tracking. With
the local loop controller, the generator response can beogppated by a third

order model )

(Tis + 1)3
whereT; is the time constant for generatorThe time constants of the generators
used in DONG Energy’s AGC ranges froh to 90s. In this work, each of the
generators will be modelled by a stable transfer function.

Gi(s) = (5.2)

(o) = agi(s)
Gils) Bai(s)” ©-3

This means that the polynomigk; (s) has all roots in the open left half plane, and
thats = 0 is not a root ineg; (s).

e The controller in the system is tuned in such a way that theeayss stable from
reference to output.
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3 Structural Considerations

This section first discusses the structure of the AGC prapospNVood and Wollenberg,
1996] and what augmentations must be made in order to fuliéllrequirements given
in the previous section. Secondly it discusses the streafithe controller used within
DONG Energy.

3.1 AGC proposed in the literature

In essence, the structure of the AGC described in [Wood arlteWgerg, 1996] is shown
in Figure 5.4. It consists of one Pl-controller and a set afipi@ation factors f;,7 =
1,...,N) where N is the number of generators. The participation factors ban te
found in a number of different ways; [Wood and Wollenberg9@J9suggests to use the
economic dispatch for finding the set of participation fasto

s el o P G o
,LJ ; s

Tis
' I e N

Figure 5.4: Proposed AGC structure[Wood and Wollenber§619

When phenomena such as reaching a generation rate congtr@ims, it is necessary
to change the set of participation factors so that additidisturbances are not introduced
in the system due to the rate limit.

Changing the participation factors arbitrarily in the sture shown in Figure 5.4
might cause abrupt changes in the control signals.(., uy), unlessu, = 0. Changing
the control inputs to the generators abruptly will alsoddtrice additional disturbances
due to the dynamic behavior of the generators themselves.

To ensure that the generation rate constraints are nottethlahe control signals
should not change more rapidly than the generation ratetreamis allow. This means
thatp; should be changed to accommodate bumpless transfer. fitiisn, means that
memory of the value at the previous sample instant is needexler to track the change
in u;. One easy way to achieve this is using an incremental fortoulgdescribed in
[Astrbm and Wittenmark, 1990]), as shown in Figure 5.5.

Furthermore memory is needed when bumpless transfer fromuah#o automatic is
wanted in the switch as described Astrom and Wittenmark, 1990]. This is an additional
argument for having several parallel integrators.

3.2 AGC used in DONG Energy

The controller for distributing the ACE within DONG Energyad a slightly different
structure from the one presented in above. It is shown inrEigL6.
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Pr1
BN:RET

Pr2

Tis

Figure 5.6: Structure of the AGC within DONG Energy

The reference is distributed to a set of Pl-controllers \géim scheduling. The gains
are recomputed evefty5 seconds according to factors such as generation rate aomstr

In order to compensate for generation rate constraintA®e structure used within
DONG Energy has to be augmented in a similar fashion. Thdtrissshown in Figure
5.7. The structure has a behaviour similar to the structuoes previously.

Figure 5.7: Current structure of the AGC
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4 Stability of an AGC

In the previous section it was argued that, in order to corsgtenfor the generation rate
constraints, it is necessary to have memory about eachaenewrhich can for instance
be added in terms of integrators. In this section, the staluf a structure with parallel
integrators will be analysed. The participation factoes ealculated at each sample, and
is based on the constraints and limits. Therefore the fygation factors often change
rapidly, in particular whenevefAu,. changes sign. This behaviour will be treated as a
disturbance entering the system close to

4.1 AGC with compensation for changes ip;

For the analysis the system is grouped into subsystems asmshd-igure 5.8.

Figure 5.8: Subsystems used for analysis of AGC with comgt@sfor changes ipy;

where the transfer function of each subsystem can be desgcib

agi ag2 1
1(8) = ——,92(5) = ——,c1(s) = s,c9(s) =1+
91(s) = 57 02(5) = 52 cals) = s, enls) = 1+

g2(s) contains the generato€s; wherei = 2,..., N. ag; is assumed not to have a
root ins = 0. We now have the following result.

(5.4)

Theorem 2. The structure shown in Figure 5.8 is internally unstable #ory choice of
controller parameters under the assumptions listed inise@.

Proof. By showing that at least one of the transfer functions in)(6ahnot be stabilised
for any choice of controller parameter, it is proven thatgiistem is internally unstable.
The transfer function matrix is shown in (5.5) on the nexterag O

All transfer functions except the bottom left has the sameod@nator. Sincéj% is

stable by assumption, all three transfer functions ardestatfowever, 13((;‘)) has a zero
in s = 0, sinces = 0 is not a root in the nominator polynomial it is not cancell@this
closed right half plane pole in the transfer function cartroeliminated by any choice of

controller parameters, and the structure is thereforeriatly unstable.
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g1 (g91c1+g2)co
H(s) = | Dgfigidn  Qase | =
14+(g1c1+g2)co 1+(gici+g2)co
ag1fBc2T; (ag1Bgatag2Bc1)(1+T;s)
Bc1Bc2Tis+(ag1Baz+ageBa1)(1+T;s) Bc1Ba2Tis+(ac1Bazt+agafBa1)(1+T;s)
agiBgeTistagiTisaget+agiags ag1Ba2(1+T;s
s(Bc1Bc2Tis+(ac1Ba2tac2B861)(1+7Tis))  BeiBc2Tis+(ac1Ba2+ac2B8c1)(1+T;s)
(5.5)
4.2 Current Structure
For the analysis the system is grouped into subsystems asmshd-igure 5.9.
r + O
' d
Figure 5.9: Subsystems used for analysis of the currendg aucture
The transfer function for each subsystem can be described as
agt 1 | age
g1(8) = ——,92(8) = (aea + =—)—=——,c1(8) = (s + 1 (5.6)
() = S5 92(5) = (2 + )22 a(5) = (5 + )

Theorem 3. The structure shown in Figure 5.9 is internally unstable #ory choice of
controller parameters under the assumptions listed inise@.

Proof. For the sake of brevity, we only show the unstable transfectian from distur-
bance {) to output of generator Iy() which is

yi(s) 91 +9192

= . 5.7
d(s) 14+gic1+g2 .7)
By inserting the expressions from (5.6), it can be written as
ydl(S) —
© agi1BeatTisagiBaetTisacagiags (5.8)

s(Ba1Ba2TistagasBars(acaTis+1)+agiaci Bazs?(1+Tis))
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This transfer function has a root in= 0 in the denominator, and sinee= 0 is not a root
in the nominator polynomial it is not cancelled. The root i 0 cannot be cancelled by
any choice of controller parameters, and the structuresietbre internally unstable.

5 Numerical Example

In this section, a numerical example is shown for the stmecghown in Theorem 2.
It corresponds to the structure proposed in [Wood and Wo#egy 1996], except that
it is modified to accommodate generation rate constrainte System consists of two
generators, where the dynamics can be modelled as two tlieat systems as shown in
Figure 5.10.

1s mlnjll
’ T
ﬁ (soslu)’ Vo

Figure 5.10: Example AGC with compensation for changesjn

The participation factors are calculated using the simpihetions

04 <0 06 <0 . -
fi(z) = { 06 x>0 and fo(x) = { 04 750 The changing patrticipa
tion factors are used in order to exploit the full rate of apapossible when there are
asymmetric rate limits.d is zero-mean white noise added to the output with variance

% =0.001.

14

12 -

Total Output ||
Reference

— - — - Generator 1
— — —Generator 2 ||

. . .
0 500 1000 1500 2000
Time [sec]

Figure 5.11: Simulation of AGC with compensation for chagep ¢;
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Figure 5.12: Controller with parallel run

Figure 5.11 show the result of a simulation of the system shioviFigure 5.10 using
a sample time of 1 second. The results shows that the cantrsltapable of following
the reference, but the generators drift in opposite divestias predicted by the internal
instability results shown in the previous section.

6 Stabilisation of the structure

In this section, we present two different ways to remedy thernal instability of the
system as well as a discussion of pros and cons of the twd@wmutBoth solutions have
been applied to the controller within DONG Energy.

6.1 Parallel run

Parallel run is commonly used within the power plant indggthen two similar subsys-
tems have to work in parallel to complete a task. When usingoRtrollers in parallel,
the subsystems will in general not contribute equally whenetquilibrium is reached. In
order to obtain this behaviour, parallel run is introdudedthe AGC system, the genera-
tors are treated as parallel subsystems, which contributettieve an overall goal. Figure
5.12 shows how the parallel run is introduced.

The parallel run drives the integrators towards the sameyahd thereby ensures that
the behaviour seen in the example above where to generaiftis dpposite directions
is avoided. Choosing the parallel run, paraméigy. is a trade off between forcing the
integrators towards each other, and obtaining good referémacking. If the gaink,
is too large, the parallel run may in some situations doreitia¢ controller behaviour,
ruining the reference tracking capability.

Gain scheduling of the parallel run as a function of the cleaimgACE might be
a solution to overcome balancing between not interferinghencontrol power and no
effect from the parallel run.
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6.2 Participation factors

Within DONG Energy, the calculation of participation factdas been changed to a rule
based scheme, which takes the current state of controlieth@nchange of the ACE into
account. The result of the algorithm is a prioritised lisheTgenerator with the highest
priority gets as much of the ACE as possible within the getimraate constraints.

One of the rules in the algorithm is to force generators baglatds zero when pos-
sible, so that if a generator gives a positive contributiod the ACE value decreases,
the generator gets higher priority. This has resulted irgaificant improvement to the
AGC in DONG Energy and the phenomona of internal instabditghe AGC has been
removed. However, the complexity of the system has beeiifisigmntly increased.

7 Actual System

The linear analysis of the controller showed that the unitdigely to drift even though
the total portfolio output remains stable. The analysis w@sducted on a simplified
linear model of the controller, since the real system cabeainalysed in detail through
any of the methods described in the introduction. Howevenegal trend data shows
good agreement with the analysis, as will be discussed ifotlosving.

Figure 5.13 shows the correction signals sent to the unasp@riod of 24 hours.

T T T T
80} Generator 1| |
: Generator 2

60 { 1

Correction Signal [MW]

o
(4]

10 15 20
Time [hours]

Figure 5.13: Correction signals from the controller

After approximately three hours, the correction signal efigrator 1 rapidly drops
to a negative value while generator 2 stays positive. Thesction signals keep their
opposite signs as for the most of the time within the next sdwaurs. Using stan-
dard Pl-controllers, the output is kept steady once ther ésraero, meaning that the
Pl-controllers output might settle with opposite signsrakigure 5.13. The parallel run
in the Pl-controllers is the only mechanism trying to puk tfvo units towards a com-
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mon correction, so that they contribute equally. Howeuee, parallel run is too weak
compared to the noise and the change in reference to suatded case.

The explanation for the units drifting from the productidamis found in the distri-
bution of the controller gain and the rate limiter. The cohér has two different gains,
one for positive error, and one for negative error. The tésuhat one unit ends up with
a large part of the contribution in one direction and the otivét ends up with a large
part of the contribution in the other direction. When the ersgpositive, both units re-
ceive commands to follow a step up, but one unit gets a latgprtean the other. When
the error changes sign, both units correspondingly reaaigters to follow a step down,
but the other unit then gets a much larger step than the firsterihe error is close
to zero, it often changes sign, which over time results in wmi¢ accumulating a large
positive correction and one unit accumulating a large megabrrection. Overall, this
behaviour is quite similar to the behaviour observed byoohticing disturbances in the
linaer approximation treated in section 4.

The units are saved from drifting too far apart for three naasons. The systems are
limited, so that one unit cannot deviate more than a certaiousnt from the production
plan without manual intervention from the operator. Thésé$ ensure that the units are
not drifting too much. The parallel run is a gain multipliedhvan error, so the larger
the span between two units, the stronger the parallel ruAns. last but not least, there
are steady periods where the reference from the TSO is aosteady state, giving the
parallel run a chance of pulling the units together again.

8 Discussion

A set of assumptions and requirements commonly found iralilge for an AGC has
been summarised and analysed. In order to fulfill this setgdiirements, it is argued that
the system must be structured in a certain way. However, stalso found that such a
system is internally unstable. The instability shows int that generators participating the
balance control has a tendency to drift in opposite dirasti®ata from a real production
environment supports this conclusion. The drifting of teagrators ruin the economical
optimisation of the system.

Two different ways to remedy the problem have been proposmarallel run and
changes in the calculation of participation factors. losrid that in practice, the parallel
run is insufficient to force the drifting generators towattals same value.

Another solution is to change the calculation of the pgrtition factors. A rule-based
system has been set up within DONG Energy, and rules havedusad to ensure that
the generators are forced back to the production plan whssille. The system works
well, and the drifting is no longer seen. However, the sydbetmavior is now far more
difficult to analyse in case of problems.

The favoured remedy is the last proposed, but due to the exitybf this solution,
a better approach might be to reduce the requirement tha@ should be based on
Pl-controllers. This is an indication that it may prove attegeous to introduce model-
based MIMO control in the future.
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1 Introduction

Abstract

This paper introduces a model predictive control (MPC) approachrtstouction
of a controller for balancing power generation against consumption owepsys-
tem. The objective of the controller is to coordinate a portfolio consistingusfiphe
power plant units in an effort to perform reference tracking and disture rejection
in an economically optimal way. The performance function is chosenmitare
of the £;-norm and a linear weighting to model the economics of the system. Sim-
ulations show a significant improvement of the performance of the M#fipared
to the current implementation consisting of a distributed PI controller streidbaith
in terms of minimising the overall cost but also in terms of the ability to minimise
deviation, which is the classical objective.

1 Introduction

This paper focuses on the power system in the western parewofark, where DONG
Energy [DONG Energy, 2007] is the largest power produceinga major power pro-
ducer also means that DONG Energy provides a major part dfdtacing reserves for
the transmission system operator (TSO), who has the oveaallbalancing responsibil-
ity. Load balancing means making the production equal toctvesumption. In 2007
approximately 30% of the installed capacity in West Denmveaik wind turbines - a large
share compared to other areas of Europe. This makes balant®lca difficult issue
due to the stochastic behaviour of the wind-based producfleday, balancing can be
done partly by exporting the electricity to other parts of&he and partly by adjusting
the load of the other production units. However, with theéasing integration of wind
power the current balance control system must be improvedder to be able to handle
the changing conditions in the future.

The deregulation and decentralisation of the European psystem complicate co-
ordination of control actions. In [UCTE, 2007] it is predidtthat a significant number
of wind turbines will be installed in Europe. This will inlace more stochastic pro-
duction, which calls for improved control of the power syst® balance production and
consumption in order to avoid large blackouts in the future.

The fluctuation in Denmark introduced by the wind turbines made it necessary to
commission an AGC (Automatic Generation Control) whichhtedo activate a reserve
of £140MW to take care of small and quick deviations [UCTE, 2007].isTAGC is
controlled by the TSO, which sends an activation signal ®hhlancing participants,
who are then responsible for activating the required reserhe reserves are activated
by changing the load distribution among a portfolio of poywkmts.

The controller which distributes the reserve activatiothinithe DONG Energy port-
folio is responsible for maintaining the load balance witthie portfolio on a seconds-
to-minutes horizon, until the economic dispatch can taler and handle the short term
(minutes-to-hours) load balancing. The controller is ¢fiere referred to as the load bal-
ancing controller, not to be mistaken for the AGC at the TSO.

The portfolio is a very complex system and the optimisatiot @ontrol are therefore
ordered in a hierarchical fashion in order to break down thramexity as described in
[Jargensen et al., 2006]. The economic dispatch as weledsdall balancing are handled
mainly on the system level as described in [Jgrgensen &04l6].
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The load balancing controller is currently based on a digteéd PI controller struc-
ture and ad hoc methods to obtain the desired behaviour gfydtem. The requirements
and wishes for the balance controller keep increasingdhapushing the method to the
limit of what is possible. In particular, requests for opdiiity according to a performance
function have arisen, which cannot be guaranteed with thesgusystem setup. Also,
operation closer to the limits is required. The first versiof the load balancing con-
troller were focused only on minimising the deviation frame treference production, but
recently focus has shifted towards minimising the deviatie economically as possible.
This calls for methods which are better suited for handlargé multiple-input-multple-
outpout (MIMO) systems with multiple performance measures

Much work has been done to enhance the disturbance rejectmbilities of single
power plants, see [Welfonder, 1997] and [Lausterer, 1998}vever, real-time coordina-
tion of several units in an effort to perform disturbancectipn has not been reported in
the literature before.

This paper presents the first step towards establishing a stdngent method for
handling balance control of a power system portfolio. A mdzesed MIMO control
solution based on Model Predictive Control (MPC) offeringérent constraint handling
and systematic utilisation of feed forward is presented.hérsintroduction to the sys-
tem is given in section 2 followed by the derivation of a simptate space model and
constraints, which are used in the construction of the otietr(section 3). Based on
the stated optimisation goals, a performance functionisting of linear weighting and
£1-norms is derived in section 4 and used to construct a cdettolr the system. In sec-
tion 5, the controller is tested in two different scenarlasstrating the reference tracking
ability and disturbance rejection capabilities of the solu The results are compared to
the current implementation of the balance controller.

2 System Description

A quick introduction to the Danish power production systard the highest level of the
hierarchy of DONG Energy is given here. For more details [3ermensen et al., 2006].

The Danish power production can be split into two categosnned production
andreserves The planned production is the production known ahead o tiwhich
means long-term contracts and power sold on the power egeh@36 hours ahead of
production time. Reserves are power production which caadtigated quickly and
which is used to compensate for imbalances. The reservessaeice requested by the
Danish Transmission System Operator (TSO) who has the megplity for maintaining
the balance within the Danish region. There are differemi&iof reserves, see [Jgrgensen
et al., 2006] for details. For the sake of simplicity, thippaonly considers the automatic
reserves.

An overview of the interaction of the different subsystempiesented in Fig. 6.1.
A short-term load scheduler (STLS) performs optimisationthe distribution of power
generation resulting in a 5-minute based 24-hour prodagtian, which is sent to the
production units. To compensate for the dead time of theymridah units, the production
plan is issued as a reference feed-forward.

Based on the imbalances within the Danish region, the TS@rgéss a reference
signal, and the portfolio is then expected to respond todgfexence with a given dynamic
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i Disturbances

hort- I —_— e e e ——
Short-term load Production plan Reference r =
scheduler » Lg
feedforward

(Production Planning)

Expected
Response

Deviation

Load balancing
controller

AGC signal

Measured production

Figure 6.1: Overview of the portfolio at system level

response.

The load balancing controller shown in Fig. 6.1 serves twpgpses. It manages the
coordination of the production units to obtain the expecesghonse to the TSO reference
signal. The second purpose is to minimise the deviation éetvithe actual total produc-
tion and the reference production. This way, the power olletrcompensates for the
unavoidable discrepancies that will occur due to the fewdsdird nature of the STLS.

The current active portfolio consists of six units placeéhet different power plants.
The maximum power output of the units in the portfolio ranffesn 80MW to 650MW,
and the units also vary in terms of dynamic behaviour.

Note that the term 'unit’ covers the physical process froel faput to generator as
well as the control system controlling the process.

3 Modelling

As the focus of this paper is to establish a model-based rddtiraconstructing a load

balancing controller, this section describes the modehefgortfolio used by the con-
troller. Fig. 6.2 is a schematic view of the model of a singhé&.uThe input to the model

is a reference given to the control system, and the outptieisrteasured power output
from the unit.

Unmeasured

i imi Disturb:
— Min/max [ Rate limit W
up
Low pass Proces
— L L

filter dynamics y

Figure 6.2: Schematic of the unit model used in the controlle

The input to the model can be divided into two; the producpéam (u,), which is
uncontrollable by the controller and therefore regarded disturbance, and the balance
controller input {.) to the system.
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The unit model consists of two parts; the control system hadystem process. The
part of the control system influencing the model the mostgslithits on the reference
signals, both in form of a max/min bound and a limit on the cdtehange. The dynamics
of the process are approximated by a third order model wahs&ble poles, which in
this context describes the process dynamics reasonahly wel

The max/min bound in Fig. 6.2 is to be interpreted as

Umin,k < Ue,k + Up, k < Umax,k (61)

meaning that the sum of the inputs are bounded at each s@mple
The same applies for the rate limiter namely

Aumimk S Auc,k} + Aup,k S Aumaz,k (62)
where
Auc,k = Uec,k — Uc,k—1
Aupe = Upk — Upk—1

The low pass filter is implemented in the control system ineori avoid abrupt
changes from the currently implemented PI controllers. 8¢teal filter implemented in
the control systems varies slightly between the units, tiattypically a third order filter
with three time constants of 10s.

The dynamic parts of the model are formulated as a state spadel as shown in
(6.3). The rate limitation and the max/min bound are forrfedaas input constraints.
That is,

Tjk+1 = ijk + Bjuk + Ejdk. (6 3)
Yk = Cjxzy '

s.t.
Umin,k < Ue,k + Up, k < Umazx,k
Aumin,k S Auc,k + Aup,k S Aumam,k

for each unitj = 1,...,6 andz; € RYs, etc.

The production plan is treated as a disturbance since itatdrancontrolled by the
load balancing controller. Thus each unit model has onetjrmgme disturbance and one
output.

The individual unit models can be compiled into one portfeliodel by constructing
large block diagonal matrices containing the individudt umodels. The output matrix is
also constructed as a block diagonal matrix, but has to barelqdl to contain an output
describing the total portfolio output, ie,

A ... 0 B, ... 0

A= , (6.4)
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B . 0 Ci e 0
E=| : -~ = |,c=| - (6.5)

0 . 0 ... Cg

e 6 C, ... Cs

This means that the input, state and output vectors of th#gtiormodel are

Y1,k
U1,k X1,k Yok
U2 k T2k K
Uk = . , L = . y Yk = . (66)
' ] Ye,k
u X ’
Ok Ok Ytotal k
whereyiotai ik = Zizl Yi k-
4 The Load Balancing Optimisation Problem
The structure of the problem is as follows:
inJ 6.7
min (6.7)

s.t.
Tr4+1 = Axy + Bug + Edg
yr = Cy,
Unin €U < Unas
AUpin < AU < AUjpas

whereJ is a performance function which has to be minimised withaolating the con-
straintsU is a vector containing all inputs over the prediction honizo= 0, ..., N such
thatU = [ul,uT,... u5]7.

4.1 Choosing a performance function

The load balancing problem has two main objectives from wiie performance func-
tion should be constructed; the deviation from the refezgmoduction should be min-
imised, and this should be done as economically as possible.

Definition 3. In the following the weighted, -norm is denoted &s$- ||, , with the weight
q. For avectorr = [y, 22, ...zy]T the weighted’;-norm is defined as

71,4 = q1]z1] + g2|z2| + ... + gy TN ]

The deviation can be posed as a financial objective as wetle smbalances are fined
by the TSO, who has the overall load balancing respongibitiDenmark. Posing the
deviation as a financial optimisation problem entails thatdverall performance function
has to describe the expenses for obtaining the referendegtion. The cost of deviations

89



Paper B

can be described by the weightédnorm such that

N
Je = Mk = rill1ges (6.8)
k=1

wherey;, is the system output vector;, is the system reference vector apd; is a
cost vector for the deviations. The cost is summed up oveptadiction horizork =
1,...,N.

The production plan for each plant is assumed to be econtiynaqatimal, therefore
the output reference for each of the units is the productlan peference (denoted
for unit j at samplek).

The reference to the total production is combined by two ceair One source is the
summed production plans for all the power plants, and theratburce is the signal from
the TSO {rs0,%). This results in a reference vector

1,k
T2,k

76,k
Ttotal,k

whereriotar = rrsok + Z?:l 75 k- SINCeTotqr r has an addition fromygo i, it is
impossible to track all references without error in all castierer,ozq; 1 # 0.

The other part of the expenses is the production costs.tikgly, these costs should
be placed on the input since they are dominated by the fuél ¢tmvever, placing the
weight on the input will make it seem beneficial to lower thpunhsince the output de-
viation will not occur until some time into the future, duette phase lag through the
system. When the cost is summed over the finite horizon, theoédewering the in-
put would thus yield a greater benefit than the penalty of #headion - an unintended
behaviour. Therefore the weight is placed on the output tidathis phase lag. The
production cost function is described as

N
Ju =Y du LU (6.10)
k=1

whereg, ; is the marginal cost factor ang is the system output.

A cost on input change is added to the performance functioorder to dampen
the input signals to the system. Even though changing thet isipould not have any
significant cost, leaving this part out yields a significamtbgraded performance, due to
rapidly changing control signals that will expose the dipamcies between model and
the real system. This is formulated as a weightedorm yielding

N—-1

Jaw= Y |[Aull1ga,, (6.11)

k=0

whereAuy, is the change in input angh,, 5 is the penalty for changing the input.
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5 Implementation and Results

These functions can be combined into one objective function
J = Je+Ju+JAU- (612)

This performance function can be transformed into a lineagmam by variable sub-
stitution as described in [Maciejowski, 2002]. The lineemgram can be efficiently min-
imised by a standard Linear Programming (LP) solver.

4.2 Notes on tuning the performance function

Since the price of deviating from the total production is krmdwn until a few hours after
the deviation, the price has to be estimated. The price efvesctivation at the power
exchange Nordpool ranged from 0.5 teB®Wh over the period from 6 to 13 July 2007.
Choosing it too low will make it beneficial to deviate from ttwetal production creating
steady-state offsets which should be avoided. Thereforestimate of 8&/MWh is
chosen for both positive and negative deviations.

A unit’s deviation from the production plan is not penalisisé@ncially, only the devi-
ation of total portfolio output is. However, it is desiredadhere to the production plan,
which is why a weight is put on the individual unit’s deviatitrom the production plan.

The weight on the deviation must be chosen such that it ismobnflict with the
overall optimisation goal. However, as it is kept within goper and lower bound, the
actual weight does not influence the result. The upper boarideounit deviation penalty
is equal to the penalty for deviating from the portfolio refiece. Otherwise, it would be
optimal to deviate from the total output in case of distuxzm

The lower bound on the unit deviation penalty is equal to tieeifference between
the production costs of the cheapest and most expensiveQthigrwise, it would always
be beneficial to bring the cheapest unit to the maximum andnibe&t expensive units to
the minimum in steady state. And this would in turn comprantige assumption that the
production plans are optimal when in steady state

5 Implementation and Results

The controller environment and the simulation models apémented in Matlab/Simulink.
The controller is formulated as a linear program, which nseaat it can be solved by an
LP solver. For this purpose GLPK from [Makhorin, 2007] wittetGLPKMEX matlab
interface from [Giorgetti, 2007] is chosen.

5.1 Bounds and limits

Due to the formulation of constraints on the input it is pbksfor the production plan to
move outside the operator set bounds such that the uppedlwouimput becomes neg-
ative or the lower bound becomes positive. The controlleukhnot try to compensate
for poorly chosen limits, so the bounds in the implementatice formulated such that

Umin S 0 S Umaz (613)

The rate limits on the units are load dependent since theepsads significantly easier
to control in some areas than in others; therefore, a higiteraf change is allowed in
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these areas. To linearise the constraint, it is assumedhagte limit is constant over
the prediction horizok = 0, ..., N with the value obtained &t = 0.

5.2 Reference signals

The production plans are known ahead of time and are therefed in a feed-forward
manner. Unlike the production plan the reference sigaab is generated in real time
and is therefore not known. The best guess is that it will bestant into the future.
However, it is known that the portfolio is supposed to respuaiith a filtered version of
the reference signal from the TSO, and therefore a filteresive of the signal from the
TSO is added to the controller reference.

5.3 Simulations

The controller is evaluated and compared to the currentamphtation, which consists
of a Pl controller structure, via simulation against a noedir model of the portfolio. The
controller will be evaluated in two different scenariosd@ach scenario will be evaluated
based on two different parameters. The first parameter iaghtitiéy to perform reference
tracking and disturbance rejection, formulated as:

K

6= Z H’rtotal,k - ytotalﬁ”l (614)
k=0

which is the portfolio deviation from the reference, sumroedr the whole period.
The second parameter is the production costs and deviatioalifes

K K

Ce = Z qe,total(|rtotal,k: - ytotal,k|) + Z Q?il/k (615)
k=0 k=0

whereyy, is a vector of plant output; is a vector of fuel costs angl ;:.; is the cost of
deviation of the portfolio. Since the deviation cagt)(fluctuates, the controllers are com-
pared with a deviation cost &0, €13 and€80 per MWh denoted with the subscripted
xZ.

The production prices used in the evaluated scenarios diveflout based on the
different types of fuel present in the portfolio. The pricsed in the evaluation are shown
in Table 6.1. The prices are assumed to contain all load dispercosts of producing
power on a particular unit.

Unit 1 2 3 4 5 6
Cost| 22.9| 246 | 18.0| 43.0| 26.9| 28.1

Table 6.1: Price i€/MWh

5.4 Scenario 1. Output disturbance

This scenario evaluates how well the controllers perforithweégard to disturbance re-
jection. Att = 500s, zero-mean gaussian noise with variaf8e is added to the output
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5 Implementation and Results

of the portfolio (.:q;). The noise emulates process disturbances, which showdde
pressed by the controller. The production plans are conftesughout the scenario. Fig.
6.3 shows the scenario results with the PI controller as agethe MPC.

1170

T T
— — — Reference
MPC
Pl

1165

1160 fohvmors

Prodcution [MW]

1155

1150 2 i

1145

I I I I I I I I I
[¢] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [s]

Figure 6.3: Scenario 1 - Portfolio output

The results of the objective functions (6.14) and (6.15)awed in Table 6.2.

J Co 13 €80
Pl 4.29 MWh | €47782 | €47837 | €48125
MPC 2.84 MWh | €47677 | €47714| €47904
Improvement 34% 0.22% | 0.26% | 0.46%

Table 6.2: Scenario 1 - Comparison

The input signals from the controllers are shown in Fig. &lde MPC control signals
change rapidly compared to the control signals from the Btrolers. In general, this
results in a better disturbance rejection for the MPC, whizhuces the deviation [34%
compared to the PI controllers as seen in Table 6.2. Therdagya difference in the
coordination of the input signals to the units. The PI cdfgre distribute correction
signals among all units, where the MPC exploits the knowdedg economics, using
the cheapest unit when extra power is needed, and using teeexjpgensive unit when
too much power is produced. This result cannot be obtainedetuning the current
implementation of the PI controllers.

5.5 Scenario 2: Signal from the TSO

This scenario evaluates the controller’s capabilitiesefémrence tracking of the signal
issued by the TSO. The production plan is the same as in t@pgescenario, meaning
that the production plans for the individual units are cansthroughout the scenario. At
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t = 500 a signal applied from the TSO results in a total portfolierehce as seen in Fig.

6.5.

Table 6.3 shows the scenario results with the Pl controfievell as the MPC.
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Figure 6.4: Scenario 1 - Input signals
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Figure 6.5: Scenario 2 - Portfolio output

The results of the performance functions (6.14) and (6.4&ja@und in Table 6.3.
The results show that the MPC significantly reduces the tleviaThe peak deviation
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6 Conclusion

J Co 13 €80
PI 1.02 MWh | €48081 | €48095 | €48163
MPC 0.16 MWh | €47994 | €47996 | €48007
Improvement 84% 0.18% | 0.20% | 0.32%

Table 6.3: Scenario 2 - Comparison

is reduced fron2.7MW to 1.1MW as shown in Fig. 6.6, and the summed deviation is
reduced by84%. This improvement originates from the MIMO approach of the®)
which has a superior coordination of the portfolio that sakgnamics and constraints
into account, unlike the ad hoc coordination used by the Rtrotlers. A result that

is very difficult if not impossible to obtain by retuning thercent configuration of Pl
controllers.

T T T T T T T T
——MPC

epl
25 H

Deviation [MW]

I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [s]

Figure 6.6: Scenario 2 - Deviation

The input signals from the controllers are shown in Fig 6.i@c®again it is seen that
when extra power is needed the MPC uses the cheapest urijtafidswhen there is an
overproduction the most expensive units are lowered inraeinimise expenses. In
both cases the controller returns to the production plamvgessible.

6 Conclusion

This paper has introduced a model-based control approaichlance control of a port-
folio of power generating units. The model-based contrallees MPC, which allows
constraint handling within its framework. The MPC seeks ptirnise the system based
on financial considerations, thus performing referenceking and disturbance rejection
in an economically optimal way.
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Figure 6.7: Scenario 2 - Input signals

One of the advantages of MPC is the MIMO approach, which imggdhe coordi-
nation of the units. The construction of the cost functioraasixture of¢;-norms and
linear weighting is well suited to describe the economichefsystem. The choice yields
a cost function, which is asymmetric around the referenémying for different control
depending on whether the deviation is positive or negative.

Through simulations, the MPC is compared with the curremiylemented load bal-
ancing controller, which is a PI controller structure. Th&® shows significant im-
provements both for disturbance rejection and refereramkitng, and it also results in
significant savings. Based on the simulations, saving&€&d0,000 or more per year
seem likely. This improvement is the result of choosing a MiMased approach and of
the modelling of the economic behaviour in the MPC.

The portfolio in the paper is the currently active portfolmut the goal is to incor-
porate more entity types than just power plant units, eg vanchs and district heating
production. The model predictive controller is the firstostewards developing a strin-
gent method for portfolio control with a system containingny units, which all need
to be controlled. To handle such a system, a stringent mdthrdaandling subsystems
entering and leaving the portfolio will be required as well.
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1 Introduction

Abstract

This paper presents a collection of models of so-called 'effectuat@s’subsys-
tems in a power plant portfolio that represent control actions with agsedaitynam-
ics and actuation costs. These models are derived in order to facilitatertiyle!
model-based control synthesis of a portfolio of generation units existiag electri-
cal power supply network, for instance in model-based predictiveraioor declara-
tive control schemes. We focus on the effectuators found in the Dpoigar system.
In particular, the paper presents models for boiler load, district heatorglensate
throttling and wind turbine effectuators. Each model is validated agaitsilanea-
surement data. Considering their simplicity, the models fit the observadvday
well and are thus suitable for control purposes.

1 Introduction

Currently a large part of the world is deeply concerned algbaival warming and the
consequences that might follow from emission of green hgases. This has among
other things led to the signing of the Kyoto Protocol [Unitéations, 1998]. Throughout
Europe, this has given use to a very ambitious project toeBs® the share of energy
delivered by renewable sources such as wind [UCTE, 2007Ddnmark the goal is to
increase the share of electrical energy coming from renkewsurces from 24% in 2005
to 36% in 2025 as found in [Danish Ministry of Transport anakEgyy, 2005].

Due to the geography of Denmark much of this renewable engaigyto come from
wind turbines. Given the stochastic behaviour of the windbites, a flexible power
system and good load balancing control is needed, in orderdinl blackouts.

DONG Energy owns and operates a portfolio of power plants @asté&fn Denmark
as shown in Fig. 7.1. With respect to the communication with Transmission System
Operator (TSO), this portfolio is considered as one entitthlvegarding deviations and
activation of reserves. To accommodate this, DONG Energycheated a load balanc-
ing controller to minimise the deviation of the portfolicfn the reference as well as
distribute the ordered reserve activation.

In [Edlund et al., 2008] we showed through simulations thatds possible to sig-
nificantly decrease the deviation between the portfolipouand the reference by intro-
ducing a model-based control scheme for the balance ctertrdhe focus was to show
that it is possible to gain better economics and decreaseetviation, and only little at-
tention was paid to the models used in the control scheméiidrpaper we focus on the
models of the generation units. A control strategy for howdordinate the individual
effectuators is not discussed in this paper.

In the existing literature there are many detailed modelsasfs of the energy sys-
tem, used to describe the dynamic behaviour of individuatesy components, such as
[de Mello, 1991; Weber and Krueger, 2008; Welfonder, 19%¥gwever, the aim in this
paper is to construct simple models which are suitable fotrotler synthesis of a model-
based control scheme for load balancing control.

There are many ways to manipulate the output from the paotfolfollow the refer-
ences. Here we shall use the tegffectuatoras a unifying term for all of them.
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Figure 7.1: Generators participating in balance contraVestern Denmark

Definition 4. An effectuator is a process or part of a process in a poweesystat rep-
resents control actions with associated dynamics and tamuzosts allowing the power
output to be manipulated.

Some parts of the power system, eg power plants, containpiewtays of changing
the power output and will therefore be treated as providirgenrhan one effectuator.
Regarding the effectuators as individual system is a nquetaach when comparing to
eg [Lausterer, 1998].

The paper is structured such that the description and mogedf the effectuators
are in Section 2. This is followed by a validation of each effiator in Section 3, and a
discussion in Section 4.

2 Modelling

A description and mathematical model of each of the fourdygfeffectuator is presented
in this section. The first three effectuators are physiqadiits of the thermal power plants,
while the fourth - wind turbines - are located elsewhere églabre.

2.1 Boiler Load Effectuator

The boiler load effectuator affects the whole steam cy¢li dctivated by offsetting the
production reference. The boiler has an operating rangayisiin the PQ-diagram in

Fig.7.2. The district heating production (Q) is plottedragdhe x-axis and the power pro-
duction (P) along the y-axis. There are upper and lower $imit the power production,
which dependent on the current district heating production
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PIMW]

Operating point

QMYS]

Figure 7.2: Movement in the PQ-diagram when changing thieibloiad

When using the boiler for control purposes the district meaproduction is main-
tained, meaning that the changes in production happenisalgrtin the PQ-diagram as
shown in Fig. 7.2.

This effectuator is slow in a load balancing context (misjtbut the potential energy
production is unlimited, meaning that the corrections camaintained by this effectua-
tor for an unlimited time period. There is a large amount offeoavailable in this type
of effectuator.

Besides the behaviour of the boiler, there is a communicat&lay between the load
balancing controller and the power plant. However, thisgéd so small compared to the
dynamics that it can be neglected for this effectuator.

Effectuator Model

There are two communication methods for activating thegoddlad effectuator in a power
plant, either through the production plan or through an inmed by the balance con-
troller to give real time corrections to the boiler load effeator. The production plan is
not controllable and is therefore modelled as a disturbafbe output of the model is
the produced power from the unit caused by the boiler loagtafator.

The model is formulated as a greybox model and the dynam&sssumed to be
adequately described as the following state space system

~-T," 0 0 T, T,
iy, = bt 0 z+| 0 |u+| 0 |d
0 ' -1t 0 0
y = [O 0 l]xb. (7.2)

whereT;, is the time constant for the effectuator. is the input given by the balance
controller,d is the production plan and additional manually orderedexiions.

Upper and Lower limits

The limits can be set by the operator, or can be given by theess The limits are applied
to the input such thaP, < u < P,. Itis assumed that the upper limit is non-negative
and the lower limit is non-positive.

103



Paper C

Only the limits derived from the process are described h&he upper limit can be
approximated by a linear constraint as a function of theididteating production.

E = _amaxQ + ﬁmam —d (72)

wherea,,,... IS an approximation of th€', value (see below) at maximum loa@,is the
current district heating production art, .. will be the maximum power production at
no district heating production.

The lower limit can be described as piecewise linear functio

_ aminQ + ﬁmzn —d
Pb—max{ CrO+ By —d (7.3)

where a,,,;, iS an approximation of the€’, value at minimum load and,,;,, will be
the minimum power production in condensation mode. The taggiation is a linear
approximation of the pure back pressure line as shown inFg.

Rate Constraints

The rate limits are all piecewise linear functions of powad district heating production.

The rate limits are set in the control system, and can thexdfe determined precisely.
The rate limit for the balance controller is the absolute tait minus the disturbance

(d). Itis assumed that zero is always in the interval betvieettower and upper rate limit.

2.2 District Heating Effectuator

The centralised Danish power plants with district heatirggpction have a possibility to
bypass part of the power generation process and insteatlaisa¢rgy to produce district
heating. Unlike power production, district heating is nftst-in-time product since it can
easily be stored. Usually there are accumulator tanks ¢todge thermal power plants
which can store multiple hours worth of production at maximeapacity.
The district heating production can be exchanged for powedyxction while main-

taining boiler load. When doing so the production will movahe PQ-diagram as illus-
trated in Fig. 7.3.

A - District heating Consumption line
............ Loss less line
PIMWI _— [imit

I /;&\»:

|
I /current state |
| / i
|4 7

Pure condensation
mode

Q [MJ/ST

Figure 7.3: Movement in the PQ-diagram when changing th&ibiheating
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The loss of steam for power production is highly dependertherstate of the unit.
Lowering the power output withd W will typically increase the district heating produc-
tion with 2-7 MW. The exchange factor is called thig-value and is a nonlinear function
of the boiler load, typically the function is in the rangé — 0.4.

When used as an effectuator, there are several constraifth siould not be vio-
lated, since it results in changes in the physical proceis. 3 shows an example of
such a constraint the district heating consumption lineos€ing the consumption line
means that the accumulator tank goes from charging to digicitgg and that requires a
large discrete change in the physical process.

The district heating effectuator is characterised as a unedast effectuator (approx.
30 sec). The potential energy is limited due to the accuroutahks. The potential power
that can be drawn from this effectuator is big, but it is stifialler than the power in the
boiler load effectuator.

Besides the behaviour of the district heating system, tisesecommunication delay
between the load balancing controller and the power plant.

Effectuator Model

The desired input to the model is a reference to the powetwapd the desired output
is the actual power production from the effectuator. The ehadnstructed here is a
nonlinear model.

The change in district heating is modeled as a first ordeafisgstem with a time
delay. The time constant in the system is typically aroBtewhile the communication
delayty is a result of interacting computer systems communicatireg a network with
no real time guarantees. The delay is therefore treatediag $®chastic, but it typically
ranges betweehand10 seconds. To convert the system so the output is power prioduct
the input and output values are multiplied and dividedyy thus yielding a nonlinear
state space model.

. 1
Ean(t) = *%»Tdh(t)+

y(t) = —Cyzan (t)

1
3OCU U(t — td) (74)

Upper and Lower Limits

This model will only include limits for the charging lines dthe plants physical limita-
tions, such as a minimum production of no district heating.

The limits are implemented in the local control system se ieasonable to apply the
limits to the input of the model. The input to the effectuatbould be within the limits
Py, < u < Pyp,, and it is assumed thatis always a valid solution for the inequality.

The upper limit is given as the minimum of two constraints

. C’UQ lan
Pan = s 7.5
“ e { CU(QPIWI - Qconsump) (7.5)

whereQ,iqr IS the production plan for district heating, a@d,,sump is the district heat-
ing consumption. The lower constraint is only active if thétus charging the accumu-
lator tank
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The minimum limit is given by the back pressure line. The ealeint condensation
mode production corresponding to the current load is found a

Peon = CUQ + P (76)

The distance between the district heating plan and a a legaroximation of the back
pressure line as a function 6%, is used to find the maximum district heating production
possible at that load. Thus the minimum power correctioousifl as

. -G, (abackpcon + Bpack — Q lan)
P P 7.7
Ldh man { Cru (Qplan - Qconsump) ( )

The lower constraint is only active if the unit is dischagythe accumulator tank.

Rate Constraints

There are rate limits on how fast the district heating préidaccan be changed, which
means that the changes from the district heating effeatydis the district heating pro-
duction should not be changes faster than a given limit. Timg is assumed constant
throughout the whole state space. The rate limits can beeeged as

APy = apanCy (7.8)

whereaa gy, is the district heating production rate of change consti@nstant. The
limit is typically 30 — 50M .J/s/min, which with a typicalC,, value of0.2 gives a rate
limit of 6 — 10MW/min in the power production.

2.3 Condensate Throttling Effectuator

The condensate system is the system that preheats the satel@and transports it from
the condenser to the feedwater tank.

An example of a condensate system is depicted in Fig. 7.4 hBgging the conden-
sate flow, the steam demand can be changed and thereby h#qmwer output quickly.
For more details on this effectuator see [Lausterer, 1998Yell as [Welfonder, 1997],
where the authors also propose to use this effectuator tivatdhe power output from
the power plant unit.

From turbine outlets

From
district
heating

Cooling
water

tank

Figure 7.4: Example of a condensate System

Condensed steam

The nominal flow in the condensate system varies with theebtwad, therefore en-
ergy and power limits varies as a function of this. At all tsmeeither the condenser nor
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the feed water tank should be completely emptied or filleds Weans that the effectuator
can deliver a limited amount of energy.

There is typically very little energy stored in the conddadhrottling system, so it
can only be used for a few minutes to manipulate the poweryatazh. On the other
hand it reacts in a matter of seconds. The available powergsrnieral much smaller than
the energy the available power in the boiler load effectuato

Besides the behaviour of the condensate system, there im@mwaoication delay be-
tween the load balancing controller and the power plant.

Effectuator Model

The dynamics of the system from reference to power outputeaapproximated by a
lineaer low-pass filter and a time delay. The time consta2®iseconds for the whole op-
erating range. The time delay is equal to the one found inigteat heating effectuator.
The ratio between flow and power is a nonlinear functid#, ) dependent on the
power and district heating production.
The model of the system can be put in the form of a parametgingastate space
system.

e = { f’(;%)) X ]:cc(t)+ { 1/020 } ult — 1) (7.9)
y = {(1) ?}mc(t) (7.10)

The output from the statespace model is
-]

where the first term is the current power output from the sysend the second term is
the water volume displaced from the setpoint of the tank. Mibeel is valid as long as
the states are kept within the described bounds.

Upper and Lower Limits

The limits are described in the control system as a piecelivisar function dependent
on the current power and district heating production.

It is assumed that the condenser and tank where the distatiny condensate enters
the condensate system are balanced, such that the flow lbeteedenser and feedwater
tank is coordinated according to the flow entering from trstridit heating. The system
consists of three tanks, where the water is moved betweeit,will be modelled as one
tank, where it is possible pour water into, or drain water. Iétgg as the level is kept
within certain bounds. These level bounds in this one virtaak, originates from the
most restricting of the three tanks for upper and lower bsund

The limits of the volume used in the model are defined as

o Ycond - V(),cond Zcond - ‘/O,cond
Ve=min{ Vipna — Voupna YVe.=min§ Vg — Voipna (7.12)
Vo, fwt =V o Vo,fwt — V puwt
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with Vj, zz being the initial volume in tank xx.

2.4  Wind turbines

The focus here is the wind turbine farms. Wind turbine farmesacollection of wind

turbines, which are controlled as one entity. The turbirresgathered in a small geo-
graphical area, which means that the wind condition is apprately the same for all
turbines.

pA Upper limit

Lower limit #
0 MW

[

time

Figure 7.5: Limits on wind turbines power production

On Fig. 7.5 the possible production is shown for a wind farmiffeBent control
strategies are described in [Bjerge and Kristoffersen7R@ith some of them based on
the possibility to incorporate the windfarm in the balanoateol. It is assumed that the
setpoint follows the upper limit with a constant offset, ahimight beO MW

A wind turbine can react very quickly to set point changest tBare will be a maxi-
mum rate of change, this rate of change can either origimae the mechanical limits of
the construction or an artificial limit enforced in order t@perve the mechanical parts in
the wind turbines. The experience from the offshore windhfars an effectuator which
has a rate of change approximately as slow as the boiler fect@ator but much faster
dynamics (few seconds). If the wind speed is maintained ¢ineections can be main-
tained for an unlimited amount of time.

In addition to the dynamics of each wind turbine, there is mmmnication delay
between the load balancing controller and the wind turbines

Effectuator

A simple first order linear low-pass filter with a time delay#ed. The input to the model
is the desired offset from the setpoint, and the output istieent offset from setpoint.
The model is described in state space as

o) = —Tixw(t)+Tiu(t—td) (7.13)
y(t) = zu(t).

WhereT,, is the time constant for the wind park. A model of the wind tnebgives a
T =~ 0.1s. The communication delay, is the same as in the district heating effectuator.
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Limits

The upper limit is given by the distance from the setpoint®apper limit, which is set
by the operator. The negative correction is bounded by zero.

Rate Limits

The described rate limit is applied to the input of the mod#his yields the following
rate limits
—Auy < Au < Ay, (7.14)

whereu is the input to the model.

3 \Verification

The models consist of both a dynamic part, and a constraint ke constraints are either
found and verified using a static tool such as Turabs [Jolmar2®)4], or derived from
the implementation in the control system. The parametetisanmodel are estimated by
hand.

3.1 Boiler Load Effectuator

The models are likely going to be used in a predictive corsttbeme. However since the
prediction horizon of the scheme is unknown it is chosen smkate the models open-loop
performance.

140

—— Actual output
- — - Simulation

120

100

80

Power Output [MW]

60

40

Time [hours]

Figure 7.6: Verification of the dynamics of the power plaggrgario 1. The solid line
shows the actual output, and the dashed line shows the opersimulation

Fig. 7.6 shows the first evaluation scenario. The model ttla tiffset from the actual
output. This is most likely caused by the measurements usadddel validation being
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slightly different than the ones used for the actual conffbk trends in the dynamics are
followed well for the prediction.
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— Actual output
- — - Simulation
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Figure 7.7: Verification of the dynamics of the power plamgrsario 2. The solid line
shows the actual output, and the dashed line shows the opersimulation

Fig. 7.7 shows the first evaluation scenario and the modeliideaoffset from the
actual output, but the trends in the dynamics are followeedgy, both for the prediction
and the simulation. Between 0.8 hours and 1 hour, the modbiVénges from the actual
output, which has been tracked to using different limitsiffecent parts of the system.
This should be corrected in the control system.

3.2 District Heating Effectuator

For this verification the boiler load has been maintainedarestant level. At = 14s a

step has been applied to the system and the response shdvefigure was observed.
Afirst order linear model with time delay gives a good appnuadion to the measured

response. A time constant s and a delay of's is found to give the best fit.

3.3 Condensate Effectuator

The best currently available data for estimation and vétidaare shown in Fig. 7.9.
This data shows a short series of step test applied to thersyshile the boiler load is
maintained in steady state.

When the effectuator is activated it responds to the inputvéder the measurements
are strongly affacted by process noise from the power plansiog the small series of
steps to be insufficient for parameter estimation. The stahdariation of the noise is
estimated te = 2.70. When plotting the model output3o, 98% of the measurements
should lie within the the resulting band if the noise is nolyndistributed. In this se-
guence.8% of the samples lie outside the band. From this result the his@ecepted
as describing the behaviour well enough.
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Figure 7.8: Validation for the District heating responséeTolid line shows the actual
output, and the dashed line shows the open-loop simulation.

430¢

- - —Reference

—— Measured Output
= - - — Model Output
ST S bound at + 30

4201

Production [MW]
N I
o =
(=] (=)

w
(o]
o

w

9]

o
T

370 : :
0 1 2
Time [hours]

Wk
N

Figure 7.9: Validation for the condensate throttling syste
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3.4 Wind Turbine Effectuator

The model dynamics are approximately as fast as the sampéedi the available data,
so it has not been possible to make a numeric validation. Mewthere are various
complex models available for a single wind turbine. An urahied model developed
within DONG Energy has been used to identify the dynamicaasp.

2520 : : ;
— Reference
2500 C_omplex simulation mode |
- — Simple model
__ 24801 1
=
X
— 2460[ 1
o
S
2 2440 1
<
o
24201 1
24001 =
2380 1 1 1 1 1 1
0 1 2 3 4 5 6 7

time[seconds]

Figure 7.10: Validation for the wind turbine model

Fig. 7.10 shows a comparison of a complex windturbine moadelthe simple model
when the windturbine makes a change in the reference. Aseardén, the dynamics
are very fast, and therefore the rate limiter in the corgrolill be the dominating the
dynamical factor of a wind turbine system. It is assumed ghaind turbine park, will
behave approximately like a single turbine.

4 Conclusion

The paper characterise four different so-cakfgctuatorswhich can be used for load
balancing control.

The different effectuators are characterised as sumnaainiséable 7.1. Some of the
effectuator are limited in the energy available for loadabaing purposes, while other
are capable of maintaining the correction for a long periSimple models have been
derived of each effectuator with the aim of making them $lédor controller synthesis,
in particular in an model predictive control scheme.

The aim has been to create a set of simple models which degbeldynamics ade-
quately for use in synthesis of a load-balancing controllee models for the effectuators
are described as nonlinear state space systems with upet® states and a time delay.
Such simple models are well suited for controller synthass model based controller
scheme such as model predictive control.
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4 Conclusion

effectuator Energy Power Dynamics
Boiler load Unlimited | Large > 1lmin
District heating Large Medium | 20 — 40s
Condensate throttling Small Medium | 10 — 15s
Wind turbines Unlimited | Medium | < 5s

Table 7.1: Comparison of the effectuators.
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1 Introduction

Abstract

Constrained optimal control problems for linear systems with linear cainssr
and an objective function consisting of linear ahehorm terms can be expressed
as linear programs. We develop an efficient primal-dual interior pagarithm for
solution of such linear programs. The algorithm is implemented in Matlab and its
performance is compared to an active set based LP solver and linpidgtlab’s
optimization toolbox. Simulations demonstrate that the new algorithm is more than
one magnitude faster than the other LP algorithms applied to this problem.

1 Introduction

In MPC applications, the performance and reliability of dpimization algorithm solv-
ing the constrained optimal control problem is importanthesoptimization problem is
solved repeatedly online. In this paper we develop a prishalinterior-point algorithm
for model predictive control (MPC) with input and input-€atonstraints and an objec-
tive function consisting of linear stage costs as well;aaorms penalizing deviation
from target and movements [Maciejowski, 2002; Boyd and ‘éterghe, 2004; Edlund
et al., 2008]. The primal-dual interior point algorithm iaded on Mehrotra’s predictor-
corrector algorithm [Mehrotra, 1992; Wright, 1997; Zhang9&; Czyzyk et al., 1999;
Nocedal and Wright, 2006]. Linear programs for MPC have mnesfy been considered
by [Morshedi et al., 1985; Allwright and Papavasiliou, 19820 and Rawlings, 2000].
Interior-point algorithms based on Riccati iterationsdotution of an/; constrained reg-
ulation problem [Rao et al., 1998] and a roblistonstrained regulation problem [Van-
denberghe et al., 2002] have been reported. In this papetseestate elimination to
construct a structured linear program with upper and loveitd on the decision vari-
ables, and highly structured general constraints. Theiagpstcucture of the constraints
in this linear program is utilized by the primal-dual intarpoint algorithm.

1.1 Power Portfolio Control

DONG Energy is the main power generating company in Denmbtogperates a portfolio
of power plants and wind turbine farms for electricity anstdct heating production. The
wind turbines constitute a large share: 30% of the instajtkration capacity in Western
Denmark. The share is expected to increase even further ew avimd turbine park is
added to the portfolio at the end of 2009. In addition a largel pf electric cars are
added to the power network.

In a liberalized electricity market, such an interconndgiewer and heating system
with significant stochastic generators and consumers reedgile and robust control
system to coordinate the most economic power generatigreectiag constraints, long-
term contracts, and short-term demand-fluctuations.

By simulation Model Predictive Control has been demonsttats a very promising
technology for dynamic regulation and coordination of pogeneration in the DONG
Energy portfolio [Edlund et al., 2008]. This controller iglled the DONG Energy port-
folio balance controller. The controller reduces the diémabetween sold and actual
production in the most economical way. This is an example ofi Predictive Control
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with an economical rather than a traditional target destatibjective function [Rawlings
and Amrit, 2009].

The models used in this paper has been derived in [Edlund, &Q19]. To test dif-
ferent optimization algorithms, and the possibility to kxipthe structure of the problem,
we consider a single subsystem of the entire power generptidfolio. The subsystem
is a single boiler load effectuator with the simplificatidvat rate-of-movement limits can
be specified as parameters [Edlund et al., 2009].

1.2 Paper Organization

In Section 2 we state the constrained optimal control prabhdth a linear cost and -
norm penalties. We derive the LP problem used to computestbiéen of the constrained
optimal control problem. Section 3 describes the intepioint algorithm for an inequality
constrained linear program. Section 4 specializes theatipes in this algorithm to the
LP problem for the constrained optimal control problem Jiitlear cost and, -penalties.
Section 5 compares the developed interior-point algoritonthe MPC-LP to off-the-
shelf LP solvers. Section 6 concludes on the results.

2 Problem Definition

We state the control problem that is to be used in the powamnioal controller in control-
ling one power generating unit (a power plant). The problechthe models are described
in detail in [Edlund et al., 2008, 2009]. The power balancetamler is a Model Predic-
tive Controller in which a constrained optimal control pleah is solved at each sampling
instant. Only the input associated to the first time perioiinislemented and the com-
putations are repeated at the next sampling instant. Wed=rsng horizons to have
economic performance as well as stability. This implies thea constrained optimal con-
trol problem solved at each sampling instant is relativatgé. It is important that this
large constrained optimal control problem is solved rdigustd fast as it is embedded in
a real-time system.
The objective function used to measure the quality of a pawagectory is

N-1

o= )  Chyrzirt T 1zt — terally g, + 1Akl (8.1)
k=0

zy, IS the output (power production);, is the reference (planned power production), and
uy IS the input (modified power production to meet short termtélations in demand).

k is a time index and we consider these cost for a finite pesidds {0,1,..., N — 1},
characterized by the control and prediction horizdn,

The first term represent the production costs, i.e. the ddsiety emission taxes etc.
The second term describes the costs for deviating from tbdugtion plan computed
by the production planner. The last term is a cost relateddotear that penalizes
excessive movement of the input.

The models describing the dynamics of the system are liféerinputs have bound
and rate-of-movement constraints [Edlund et al., 2009kr&fore, the constrained opti-
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mal control problem solved at each sampling period is

‘ Hii{},l ¢ = o({urtoo 320, u—1, {dirrs1 Hng) (8.2a)

Uk f =0

s.t. Tr41 = Az + Bug + Ed, k€ N (8.2b)
Zk4+1 = kaJrl keN (82C)
Umin, k S U S Umax, k ke N (82d)
Aumimk < Auyg < Aumax’k keN (826)

N ={0,1,..., N — 1}. Note that the input bounds and the rate-of-movement cainsr
are time varying.
Combination of (8.2b) and (8.2c) yields

k—1 k—1

z, = CAFzy + Z Hyp—iui + Z Hyk—id; (8.3)
1=0 1=0
with k£ = 1,2, ..., N and the impulse response coefficients defined in the usual way
H,;=CA"'B i=12,...,N (8.4a)
Hy;=CA™'E  i=12,...,N (8.4b)
Define the vectors
Ug d() AUO
(5% dl A'U/1
U= ) D= ) AU = )
UN_1 dyn-1 Aun_q
21 1 U1 w1
22 T2 V2 w2
Z = R = V = . W =
ZN TN UN WN
and the matrices
CA Hy 1 0 e 0
CA? Hy,> Hyax ... O
o = ) I, = .
CAN-1 Ha,N Ha,Nfl S Ha,l

with a € {u,d}. Using (8.3) the stacked output8, may be expressed by the linear
relation

Z =®x0+1T,U+TyD (8.5)
Introduce the matrices (shown for the cdée= 5)
I I 0 0 0 O
0 - I 0 0 0
Ly=|0l =0 —-I I 0 O
0 0o 0 —-I I 0
0 o 0 o0 —-I I
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to have the following expression
AU =9U — Iou_1 (86)

Consequently, the constrained optimal control proble)@ay be expressed as

min ¢ =c'Z+ 7= Rl , +[IAU], (8.7a)
st. Z=oxqg+1T,U+T43D (8.7h)
AU = VU — Tgu_, (8.7¢)
Umin S U S Umax (87d)
AUmin < AU < AUvmax (87e)

Theorem 4 (Linear Program fof, -approximation) Thel;-approximation problem

min ¢ = | Az -0, (8.8)

with A € R™*™ andb € R™ can be represented as the linear program

min ¢ = e’y (8.9a)

I}y

st. —y<Azx-—-b<y (8.9b)
withz € R,y e R™, ande = [1 ... 1]’

Proof. Thel;-approximation problem (8.8) is equivalenttan, , {¢ = e’y : y > |Azx — b|}.
The constrainy > |Az — b| may be written as the linear constrainty < Az — b <
Y. U

Corollary 1 (I1-approximation as LPs in standard formijhel,-approximation problem
(8.8) may be expressed as the linear program in the form

/
min 6= m m (8.10a)
s.t. [AA ﬂ m > [ bb} (8.10b)
(8.8) may also be expressed as the linear program in the form
min ¢ = H/ m (8.11a)
1 el |y
w [0l <] 6115
Proof. Follows by rearrangement of (8.9). O
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2 Problem Definition

Using Theorem 4 we may express (8.7) as

nin p=cZ+sV+qW (8.12a)
st Z=®xg+TyU +TyD (8.12b)
AU = U — Tyu_, (8.12¢)
Unmin £ U < Unax (8.12d)
AUpin < AU < AUpas (8.12€)
VAUV (8.12f)
-W<Z-RSW (8.129)

which by elimination ofZ and AU is equivalent to the inequality constrained linear
program

Un‘l/ir&/ ¢ = (Pxog+ T, U~+TyD)+ sV +qdW (8.13a)
s.t. Uin < U < Upax (8.13b)
AUpin < WU — Ipt—1 < AUpax (8.13c)
-V S vy — IQU_l S Vv (813d)
~W < ®xg+T,U+TyD-R<W (8.13e)

This linear program along with Corollary 1 may be used toverst the following linear
program

min ¢ =g’z (8.14a)
xT
st. x<z<umxy (8.14b)
b < Az < b, (8.14c¢)
with the variables and data defined as
U Umin Umax Gu
r=|V]ixm=| 0 |z,=] 0 |g=1s (8.15a)
w 0 0 q
v 0 0
\ I 0
A=|¥ T 0 (8.15hb)
' O I
r, o -I
AUvmin + IOu—l A[]max + IOu—l
Igu,l (©.¢)
b = —00 b, = Tou_q (8.15¢)
b 00
—00 b
gu=Tlc (8.15d)
b=R— (Pzy+TyD) (8.15e)
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The original objective function i$ = ¢ — ¢’b wherec’d is a constant.

Consequently, we may solve the constrained optimal copnaidlem (8.2) by solu-
tion of the linear program (8.14). The coefficient matrixi@b) is highly structured. It
is composed of the matricds andI’,, which themselves are structured matrices. We de-
velop a primal-dual interior-point algorithm that expkthis structure to efficiently solve
the constrained optimal control problem (8.2) in the MPC.

3 Interior-Point Methods

Before proceeding to a description of the interior-poimgfoaithm applied to (8.14), we
describe the interior-point algorithm for the structuriahgler linear program

min ¢ =g’z (8.16a)
zER™
st. Az >b (8.16b)

The algorithm and its principles are discussed in [Nocedd|\&right, 2006].

3.1 Optimality Conditions
The Lagrangian of (8.16) is

L(z,\) =gz — N(Ax —b) (8.17)
and a stationary point of the Lagrangian satisfies
VoL(z,\)=g—AX=0 (8.18)

Consequently, the first order necessary and sufficient afitirconditions may be stated
as

g—AX=0 (8.19a)
Az —b>0 1L AX>0 (8.19b)
in which L is used to denote complementarity. Introduce slack vagabéfined as
s=Ax—b>0 (8.20)
and let
S1 Al
S9 AQ
S = . A= ) (8.21)
Sm A'm
such that the complementarity conditiofnis\; for i = 1,2,...,m may be stated com-
pactly asSAe = 0 with e = [1 e 1]/. Consequently, the optimality conditions
(8.19) may be stated as the systems of equations and ingegiali
rp =g—AX=0 (8.22a)
res=s—Azr+b=0 (8.22b)
rsx = SAe =10 (8.22c)
(s,A) >0 (8.22d)
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3 Interior-Point Methods

3.2 Newton Step

Given an iteratéx, A, s) satisfying(s, A) > 0, (8.22) may be solved by a sequence of
Newton steps with modified search directions and step lsngth
The Newton direction is computed as the solution of

0 -A 0] |[Ax rr
—-A 0 I||AX =—|7rs (8.23)
0 S Al |As TsA

The structure of this linear system of equations may bezetilto solve it efficiently. Note
that the second block row of (8.23) yields

As = —rs + AAx (8.24)

Using thatS > 0 and easily invertible as it is a diagonal matrix with pogtentries, the
third block row of (8.23) along with (8.24) yield

AN = —S71 (rex + AAs)

L L (8.25)
=857 (—rsx + Arg) — STTAAAx
Finally, the first block row of (8.23) along with (8.25) yield
—rrL = —AIA)\
= (A'STTAA) Az — A'S™! (—rgn + Ary) (8.26)
=HAz +7
in which
H=A(S"'A)A (8.27a)
F=A [S‘l(rSA — Ary)] (8.27b)
Consequently, (8.23) may be solved by solution of
HAx = —g=—(rp +7) (8.28)

for Az and subsequent computation&g by (8.24) andA X by (8.25). The next iterate
in the Newton iteration is computed as

€T

M+ o

S

-

with the step lengtly € (0, amax) N (0, 1] selected such thdt\, s) > 0, i.e. with the
maximum step length computed as

Ax
A
As

(8.29)

S+ OmaxAs > (1 —171)s (8.30a)
At Qmax AN > (1 — 1)\ (8.30b)

with 7 — 1 as the iterate approaches the solution.

123



Paper D

3.3 Predictor-Corrector Interior-Point Algorithm

To avoid being restricted to small step lengths as is oftercttse when (8.22) is solved
directly, the complementarity conditions are modified stingt the pairs; \; decrease at
the same rate for all Instead of solving (8.22c), we solve

2D > arrt

rsx = SAe —ope =0 W= (8.31)
m m

for some value ot € (0, 1]. In Mehrotra’s predictor-corrector algorithm,is selected
adaptively based on the duality gap reduction for an affiap gt = 0). This affine step
may also be used to predict, and introduce a correction such that the step direction is
computed by solution of (8.23) with

rey = SAe + ASAAe — ope (8.32)

AS andAA are the step directions computed in the affine step-(0).

3.4 Primal-Dual Interior-Point Algorithm

Algorithm 2 specifies the steps in this procedure for sofutib(8.16).

The main computational efforts in Algorithm 2 are 1) fornoatiof the matrixd =
A’DAwith D = S~1A being a diagonal matrix with positive entries on the diadganal
2) Cholesky factorization off.

4 Interior-Point Algorithm for MPC-LP

The constrained optimal control problem (8.2) (which isieagjent with (8.14)) gives the
following A-matrix and b-vector in the standard LP formudet (8.16)

1 0 0] [ Umin 1
-I 0 0 —Umax
0 I 0 0
0 0 I 0
v 0 0 AUmin + I()’U,,1
A= -¥ 0 0 b= _(AUmax + [Oufl) (833)
v I 0 Iou_1
- I 0 —I()U_l
r. o I b
-, 0 I] I —b |

This A-matrix is highly structured. Therefore, we may spéize the steps in Algorithm
2 that involves operations with thé-matrix. The following theorems state the com-
putational simplifications used in Algorithm 2 whehhas the structure in (8.33). For
notational convenience we use Matlab like notation in sofiteeotheorems.

Lemma 1 (Hessian matrix,d, in MPC-LP) Let A have the structure in (8.33). Let

D =diag([dy; da; - ..; d1p]) = A~1S be a diagonal matrix with positive entries and let
D, = diag(d;) fori = 1,2,...,10 be sub-matrices ab corresponding to the division of
Ain (8.33).
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4 Interior-Point Algorithm for MPC-LP

Algorithm 2 Interior-point algorithm for (8.16).

Require: (g € R*", A €e R™*™ b e R™)
Residuals and Duality Gap:
rp=g—AXNrs=5—Ax + b 1, = SAe
Duality gap:u = %
while Not_Converged do

ComputeH = A’(S71A)A

Cholesky factorizationd = LL’

Affine Predictor Step:

Computer = A'(S71(ren — Ary)), =g = —(rp +7)
Solve:LL'Az = —g

As = —rg; + AAx

AN = —S71(rs + AAs)

Determine the maximum affine step length

At apaxAA >0 s+ apmaxAs >0

Select affine step length € (0, amax]

Compute affine duality gapy, = CFeAA) (s+als)

3
Centering parameter: = (”7&)

Center Corrector Step:
Modified complementarity:

rsx < Tsx + ASAAe — ope

Computer = A'(S~1(re\ — Ary)), —g = —(rp +7)
Solve: LL'Ax = —g

As = —rg, + AAx

AN = —S71(re\ + AAs)

Determine the maximum affine step length

A+ OmaxAA >0 5+ amaxAs >0

Select affine step length: € (0, amax]
Stepix — .+ aAx, A — A+ A\, s — s+ aAs
Residuals and Duality Gap:
r, =g—A'X\rs=5—Ax + b, 1,y = SAe
Duality gap:p = £2

end while

Return:(z, \)
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Then

T _ Hyy  Hio
- wpa = [l i)

Hoyy
with the sub-matrices
Hyy = Dy + V' DoV + T, DT,
Hyp = Hjy = [V Dy T Ds]
- D6
=" )]

and

Dy =Dy + D, Dy = D5 + D¢ + D7 + Ds

D3 = Dy + Do Dy= D7 — Dsg
D5:D9—D10 D6:D3+D7+D8
D7 = Dy + Dy + Dy

Proof. Follows by straightforward matrix multiplications usiagin (8.35).

(8.34)

(8.35a)
(8.35h)

(8.35¢)

O

Theorem 5 (Cholesky Factorization in MPC-LP)Solution of H2 = b corresponds to

solution of the system B B
Bl
Hoy D | |xo b
This system may be factorized by
1. ComputeD, = Dy — D,Dg ' D,
2. ComputeDs = D3 — D5 D7 D5
3. ComputeHy; = Dy + ' Dy U + 17, D3,
4. Cholesky factorizél,,: Hi, = LL’
and solved by

1. Solvel.L'z; = by — D~ 1b, for a; by back substitutions

2. Computer, = D! (b2 - {5?&??”)
5 utl

(8.36)

Proof. The results are obtained by application of the Schur comgherto (8.36) and the

matrix definitions (8.35).

Theorem 6 (Matrix-vector operations in MPC-LP)

1. LetA have the structure in (8.33). Let= [U; V; W]. Then

O

Az = [U; =U; V; W 215 —21; 235 245 25; 26) With 2 = QU, 20 = T, U, 23 =

214+V,za=—21+V,25 =20+ W,andzg = —20 + W.
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4 Interior-Point Algorithm for MPC-LP

2. LetA have the structure in (8.33).
Letv = ['Ul; V25 ... '010}. Then

01+ Uty + 1,03
Alv = v + v7 + vg (8.37)
V4 + Vg9 + V10
With ¥1 = vy — g, U2 = v5 — Vg + V7 — Vg, V3 = Vg — V10

Proof. Follows by straightforward matrix-vector manipulations. O

Theorem 7 (Operations with¥). For illustration considerd for N = 4 and letD =
diag([d1; da; d3; dy]) be a diagonal matrix withD,; = diag(d;) for i € {1,2,3,4} also
being diagonal matrices. Then

Di+Dy  —Dy 0 0
/ _ —Dy Dy + D3 —D3 0
U' DY = 0 Dy Ds+ Dy —Dy (8.38)
0 0 —Dy Dy
Letz = [z1; ®o; x3; 24 then
Uy = [xl; To — T1; T3 — T Ty — [133} (8.39a)
Uy = [1’1 — T9; Tp — T3] T3 — T4 x4} (8.39b)
Proof. Straightforward matrix-matrix and matrix-vector opeoat withWw. O

The operation$", DT, I",,U, andI",, Z for some diagonal matri®, some vectot/,
and some vectat are implemented using straightforward matrix operatioremehough
T, is structured. In the current Matlab implementatibjpDI", is the computational
bottleneck.T’, DT',, is implemented using thdD is a diagonal matrix but without using
the structure of’,,.

Remark 1 (Operations withl',,): T, is a matrix of the impulse response parameters,
{H,, = CA*-'B}N . 7 =T, U transfers a set of inputgu; } ' to a set of outputs
{z}1_, for the systemk(=0,1,..., N — 1)

Tpr1 = Az + Bug 290=0 (8.40a)
Zk+1 = ka+1 (840b)

Similarly. U = I"}, Z corresponds to

Too1 = AT + C' 2 Zn =0 (8.41a)
Up—1 = B/i‘k,1 (841b)

going backwards withk = N, N —1,...,1.
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Figure 8.1: Input and output for the benchmark case.
5 Results

Using the boiler load effectuator of a power plant [Edlundlet2009], we test the devel-
oped interior-point MPC-LP algorithm (Algorithm 2) utilizg the structure ofi in (8.33)
for solution of the constrained optimal control problen2j8.We compare our MPC-LP
algorithm to the solution of (8.2) usirignprog in Matlab’s optimization toolbox and an
active set LP solver applied to (8.14).

The boiler effectuator is a SISO system and we use a contr@doof N = 50.
The number of decision variablé&, V, W) in the LP to be solved i8N = 150. The
sampling time isl’; = 5s and we run the test problem in closed-loop for 2000 samples.
Figure 8.1 illustrates the benchmark case for which we hawepared the tree different
LP solvers. All three LP solvers give the same result indticathat our solver is im-
plemented correct. The case study and controller tuningasen such that some of the
constraints are usually active as indicated to the righiguie 8.1.

As can be read from Figure 8.2, the runtime of our MPC-LP (IPngolver is about
one order of magnitude faster than both the active set LResahd linprog. Furthermore,
the variance of the CPU-time is much smaller for MPC-LP tharbbth linprog and the
active set LP solver. In real-time applications it is ddslieao have a predictable com-
puting time. MPC-LP and linprog are implemented in MatlabeTctive set LP solver
is a highly efficient LP solver for general LPs in the form @).that is implemented in
Fortran and equipped with a mex-interface.

Figure 8.3 illustrates the CPU-time for the three diffedeRtsolvers for (8.2) as func-
tion of the number of decision variables in the LP (8.14) a®d§), respectively. The
interior-point MPC-LP algorithm (IPmpc) is significantlgdter than the other algorithms,
typically more than one order of magnitude faster.

6 Conclusion

We have developed computationally efficient primal-duétiiior point algorithms for
constrained optimal control problems that have linear dying, input constraints, rate-
of-movement constraints, and objective functions comtgitinear stage costs arlg-
norm deviation penalties on the set-point and the input mave. MPC for dynamic
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6 Conclusion

10 : ‘
—IPmpc

Active Set LP Solver
linprog

10° :
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Figure 8.2: CPU times for the different LP algorithms sotv/{8.2).

;IPmpc |
Active Set LP Solver
linprog

Optimization time / seconds
=)

260 360 460 560 660 760

Variables
Figure 8.3: CPU-time as function of the number of decisionaides in the LP corre-
sponding to (8.2).

regulation, coordination and optimization of power getierasolves such problems in
real-time repeatedly. Fast and robust optimization algors are important in these ap-
plications. The new primal-dual interior point algoritheiimplemented in Matlab and
its performance is compared to an active set based LP satkefirgrog in Matlab’s
optimization toolbox. Simulations demonstrate that the atgorithm is more than one
magnitude faster than the other LP algorithms.
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1 Introduction

Abstract

In this paper we treat the dynamic coordination of a set of constrairyeena-
ically independent systems seeking to achieve one common goal. Thigigted
by a portfolio of multiple power generators which has to follow one produatder-
ence for the whole portfolio. A Model Predictive Controller with linear @nehorm
terms is proposed to coordinate the units. The underlying optimization pnaiflthe
proposed controller can be stated as a linear program with a block-agulstraint
matrix. Dantzig-Wolfe decomposition can be successfully applied to degsethis
kind of problems into several subproblems.

Simulations show that the computation time only rises linearly with the number
of units in the problem rather than cubically as is the case when the problehaas s
in a centralized manner with an active-set solver.

1 Introduction

Model Predictive Control (MPC) has successfully been &gbilh the process industries
for more than thirty years [Qin and Badgwell, 2003; Lu, 2068pisy, 2006]. Since
the description of the first MPCs based on convolution mofieishalet et al., 1978;
Cutler and Ramaker, 1980], several generations of indlistrid academic MPCs have
lead to the formulation of state space based MPCs [Muske awdifys, 1993; Ma-
ciejowski, 2002; Rawlings and Mayne, 2009] and in a senskeagrthe theory of Model
Predictive Control (MPC), Generalized Predictive Con{fePC), and Linear Quadratic
Gaussian (LQG) regulation [Clarke et al., 1987; Bitmead| et1890; Astrom and Wit-
tenmark, 1990; Mayne et al., 2000; Jgrgensen, 2005]. LiMRRE requires repeated
online solution of constrained linear or quadratic optiatizn problems. Therefore, the
computational speed and robustness of the optimizaticorihgns has limited the type
of applications that can be controlled by MPC. MPC was odtijndeveloped for the
process industries with relative slow dynamics and a low lmemof inputs and outputs
(say less than 50). As MPC is developed for mechatronic egdins with very fast dy-
namics, low state order models, and typically less than 8t;ngnd outputs, new ways
of implementing and solving the constrained optimizatioobpem constituting the MPC
have been developed [Bemporad et al., 2002; Diehl et al5;2@@ttingley and Boyd,
2009]. Both process control and mechatronic applicati@esane centralized MPC to
control the system. This is possible because of the low numii@puts and outputs as
well as the relative low number of states in the model.

In this paper we consider a set of dynamically independestesys that must coop-
erate to meet a common objective. This is motivated by a @artbf multiple power
generators which has to follow one production referencetferwhole portfolio. The
multiple power generator problem is large scale with a vargé number of independent
systems. In addition, the system has fast dynamics and reusirirolled with a sample
rate of approximately 5 seconds. Consequently, such sgstarmot be controlled by a
centralized approach with one Model Predictive Contraliging existing optimization
algorithms due to the large size and fast dynamics. In thiepave develop a compu-
tationally efficient algorithm fof;-norm Model Predictive Control of independent linear
dynamic systems that must cooperate to meet a common oejedie utilize the special
structure of the linear program representing the MPC andDasezig-Wolfe decomposi-
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tion to obtain an efficient optimization algorithm that caive this class of systems very
fast.

In practice the computational complexity of the optimieatproblem scales cubically
with the problem size [Ferris et al., 2007]. Therefore mdthtw avoid solving the cen-
tralized optimization problem must be pursued to succéigsfpply MPC on large-scale
systems. Lower computationally complexity can be achigtheough decomposition of
the control problem, i.e. splitting the problem into mukigmaller problems which are
easier to solve. Much research is going into decomposificomtrol, an extensive review
of the area is found in [Scattolini, 2009].

The strategy followed in this paper is to exploit the stroetaf the underlying opti-
mization problem for decomposition. The decompositiondge two level hierarchical
control structure. The structure consists of a higher levgdervisor that coordinates
the lower level of independent local controllers. The regmient for the method pre-
sented in this paper is that the underlying optimizatiorbf@m is a linear problem with
a block-angular constraint structure, i.e. a block diagomatrix with a set of coupling
constraints involving all variables. The requirement carabhieved by formulating the
objective function with/;-norm and linear terms.

A system meeting these requirements can be efficiently decsed with two meth-
ods; Lagrange relaxation [Beasley, 1993] and Dantzig-udéfcomposition [Dantzig and
Wolfe, 1960]. Both methods significantly decrease the cdatmn time for optimization
of linear systems with a block-angular constraint struetuBoth methods use an itera-
tive scheme to solve the optimization problem. In each ti@nahe lagrange multipliers
attached to the coupling constraints of the problem, arenasd constant. Thereby the
optimization problem is reduced to a block diagonal strrecand can be treated &sin-
dependent problems. The difference in the two methods istbdind the Lagrange mul-
tipliers. Lagrange relaxation computes the multiplier®tigh heuristic methods, while
Dantzig-Wolfe decomposition finds the multipliers by salyian optimization problem.
[Gunnerud et al., 2009] showed that the computation timegusagrange relaxation is
very sensitive to changes in the problem, and even minorgggamight result in a dou-
bling of the computation time.

The contribution of this paper is to use Dantzig-Wolfe deposition for computa-
tion of the dynamic calculations of model predictive cohtnad thereby reduce the com-
putational complexity compared to the centralized sofutigthout relying on heuristic
methods.

[Negenborn et al., 2008] and [Rantzer, 2009] applied Laggarlaxation for decom-
posing problems in a model predictive control context. [@enud et al., 2009] used
Dantzig-Wolfe decomposition for control and planning mses on a longer time scale,
while [Cheng et al., 2008] used Dantzig-Wolfe for targetaoddtion in a distributed model
predictive controller.

There are multiple other approaches to achieve decomposificontrollers. Two of
them are a decentralized control scheme, meaning thatitheoeecommunication among
local controllers [Acar, 1995; Magni and Scattolini, 206&imondo et al., 2007], and
distributed control where local controllers have commatian among each other [Jia
and Krogh, 2001; Dunbar, 2007; Zhang and Li, 2007; Venkat.eP@08]. All of these
papers treat systems which are dynamically coupled raltiagrindependent. [Keviczky
etal., 2008; Dunbar and Murray, 2006] treats dynamicaliefrendent systems that needs
coordination to achieve a common goal. The approach in lx@hi¢zky et al., 2008] and
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2 The problem

[Dunbar and Murray, 2006] have been to communicate with dighibours and thus limit
the knowledge and size of each local controller. This apgraeorks for systems where
each subsystem has a small amount of neighbours.

This paper is organized as follows. In Section 2 we define timérol problem trans-
form it into a block-angular structured linear program. t&et3 describes Dantzig-Wolfe
decomposition algorithm used for solving linear prograBection 4 describes the power
plant application motivating the development in this papelfowed by the results and
comparison of the algorithm compared to the centralizedtiwol in Section 5. Conclu-
sions are provided in Section 6.

2 The problem

In this paper, we consider a set of dynamically independgsiems that needs coordina-
tion in order to achieve one common goal.

Each independent system is described by the linear timeigmtadiscrete state space
formulation

Xikt1 = AiXi i+ Bius i + Eqd; g (9.1a)
Vik = CiXi (9.1b)

In our application this system represents a number of potaatpincluding the basic
control systems.d, ;, represents the production plam; j is the correction to the pro-
duction plan, andy; j is the produced power. We considErpower plants such that
i€{1,2,..., P}. kis the discrete time index.

The control problem that we want to investigate is

min ¢ (9.2a)
s.t. Xik+1 = Aixi 1 + Biug i + Eid,; g, i=1,2,...,P (9.2b)
Vik = CiX; i, i=1,2,...,P (9.2¢)
wi g < wp < Wigs i=1,2,..,P (9.2d)
Au; < Aug g < Augy, i=1,2,..,P (9.2e)
with
N
Z Zsz +
= e 9.3)

P
Z [Z‘hzkyzk +Z||yzk r; k”l,q“k + Z ”Auzk”1s‘|

i=1

¢ is the performance function we want to minimize to find optimuSymbols with a

bar beneath, e.gu means the lower bound, whitedenotes the upper boundu, ;, =

u; ,—U, ,—1. [Edlund et al., 2008] motivate and describe the detailhisfabjective func-
tion. The first term penalizes deviations of the total powedpction,y, = Zf;l Vi ks

from the sold powerr;. The second term is an economic term measuring the cost of
producing power on each plant. On each plant, the third teenalizes deviation from
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the scheduled power productian,;. The fourth term smooth the solution by penalizing
rapid movements in the manipulated variables.

Model Predictive Control is often expressed using eithepenalty functions with-
out economic terms [Muske and Rawlings, 1993}penalty functions without economic
terms [Maciejowski, 2002], or using economic terms onlyJiftags and Amrit, 2009].
The objective function (9.3) contains both-norm penalty functions and a linear term
related to cost. Therefore, the mathematical program dagfitie controller is a linear
program. [Rao and Rawlings, 2000] demonstrate the Modeli&iee Controllers con-
taining/;-norm penalty functions may give rise to either dead-beatlercontrol. While
theoretically (9.2) result in this behavior, numerous datians demonstrate that the con-
troller performs well and provides the desired portfolimtol [Edlund et al., 2008].

Control problems witl; -norm penalties such as in (9.2) can be expressed as a linear
program [Edlund et al., 2009b]. This implies that (9.2) canelxpressed as the block-
angular structured linear program

min ¢ =iz + chzo + ... + cpzp (9.4a)
Fl F2 . Fp z g
G, . h;
2
s.t. Go _ (9.4b)

vV
-
'

With z = [z1, 29, ...2p]. ¢ is the functional which needs to be minimized in order to
find optimum,z are the free variables, are weight factors, weighing the importance of
the corresponding;. The constraint matrix has a block-angular structure wtredlock
diagonal elements come from the optimization problem eelab the individual power
plants and the coupling constraint comes from the rewritiivggfirst term of (9.3) into a
linear problem.F; is unit:’s contribution to the coupling constraing; originates from
the individual subproblems constraints (9.2b)-(9.2¢) tvedast part of the performance
function. g andh; are the affine part of the constraints.

This paper is based on a specific performance function givé€f.B8). However, the
method is applicable for all control problems where the ulyétey control problem can
be stated as (9.4).

3 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition is an algorithm that isyvefficient for solution of
linear programs with block-angular structure [Dantzig &wolfe, 1960; Lasdon, 2002;
Dantzig and Thapa, 2002]. Dantzig-Wolfe decompositioraksehe linear program (9.4)
into P independent subproblems and a Master Problem (MP). Thesstblem coor-
dinates the subproblems as illustrated in Figure 9.1. Thetdddroblem sends the price,
m, of the shared resource to each of the subproblems. Usisgtite,r, each of theP
subproblems computes their optimal solution. This intange of information continues
until convergence.

Throughout the description of the decomposition it is assiithat the feasible region
of each subproblem is closed and bounded. This is no linitats the decomposition can
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3 Dantzig-Wolfe decomposition

Master
problem

Subproblem 1 ‘ Subproblem 2 ‘ Subproblem P ‘

Figure 9.1: Concept of the Dantzig-Wolfe decompositione Biig problem is split into
several smaller problems communicates with a coordinatagdch the optimum.

be applied to unbounded subproblems as well [Dantzig andeNb®60].
Dantzig-Wolfe decomposition builds on the theorem of carz@mbinations

Theorem 8. Let Z = {z | Gz > h} be nonempty, closed and bounded, i.e. a polytope.

The extreme points & are denoted:’ with j € {1,2,..., M }.
Then any pointz in the polytopic setZ can be written as a convex combination of

extreme points

M
- Z /\jvj (9.5a)
j=1
st Aj >0, j=1,2,...M (9.5b)
M
doa=1 (9.5¢)
j=1
Proof. See [Dantzig and Thapa, 2002] O
X2 A
L
X1

Figure 9.2: lllustration of the theorem of convex combiaasi. Any point in the feasible
area (shaded region) can be expressed as a convex commbinatioe extreme points
(black dots).

The theorem of convex combination says: Any point in a pggtoan be expressed as
a convex combination of the extreme points. This is illusian Figure 9.2. Any pointin
the shaded region can be expressed as a convex combinati@esttreme points marked
by a black dot.
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The linear program (9.4) can be expressed as

P
min ¢ = Z ciz; (9.6a)
i=1
P
s.t. ZFiZi >g (9.6b)
i=1
G;z; > h,j, 1=1,2,..., P (96C)

Using Theorem 8, the polytope defined by (9.68); = {z;| G,;z; > h;} can be
expressed as

M;
Z; = Z)\”Vg (973)
j=1
M,
Ny =1 (9.7b)
j=1
)\1320 ]:17237M2 (97C)

M; is the number of extreme points 8. Substituting (9.7) into (9.6) yields

P M;
min ¢ = Z Z fiihij (9.8a)
=1 j=1
P M,
i=1j=1
M;
ZAU =1, i=1,2,..,P (9.8c)
j=1
)\ijzo, i:1,2,...,P;j:1,27...,Mi (98d)

fi; andp;; are defined as

fij =civ? (9.9a)
pij = Fiv! (9.9b)
The Master Problem (9.8) is equivalent to the block-angliterar program (9.4). The

Master Problem has fewer constraints than the originallpropbut the number of vari-
ables in the Master Problem is larger due to the large nunflExteme points.
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The Lagrangian associated to the Master Problem (9.8) is

P M,
L(Nij, 7, pis Kij) = ZZfij)\ij

i=1 j=1

P M
- Z Zpij)\ij - g
=t (9.10)

P M;
- Pi(z Aij —1)
i=1 j=1
P M;
P
i=1 j=1
With 7 being the Lagrange multiplier of the coupling constrain8t9, p is the Lagrange
multiplier for (9.8c) andk being Lagrange multiplier for the positivity constraint&).

Consequently, the necessary and sufficient optimality itiond for the Master Prob-
lem (9.8) are

V)\ijﬁ:fij—p;j’ﬂ'—pi—:‘{ij:o 1=1,2,...,P;5=1,2,..., M; (911a)

P M;

> pijij—g=0 L 7>0 (9.11b)
i=1 j=1

M;

> Xij—1=0 i=1,2,...,P (9.11c)
j=1

)‘2]20 1L /{ijZO i:1,2,...,P;j:172,...,Mi (glld)

We notice that the conditions (9.11a) and (9.11d) imply

Kij = fij —Pym—pi=lci—Fm'vl—p; >0 i=12,...,P;j=12,.. M,
(9.12)

such that the Karush-Kuhn-Tucker conditions (KKT-coratig) for (9.8) may be stated
as

P M;
i=1 j=1
M.
D Aj—1=0 i=1,2,...,P (9.13b)
j=1

Nij >0 L kij=lc;—Fia'vl—p;>0 i=1,2,...,P;j=1,2,..., M,
(9.13c)

3.1 The Dantzig-Wolfe algorithm

Large problems are characterized by a very large numbertoérag points. Therefore,
generation of all the extreme points in the Master Probler) (®an in itself be a very
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challenging computational problem. The Dantzig-Wolfeoaithm overcomes this chal-
lenge using delayed column generation, i.e. it generatesittreme points for the Sim-
plex basis algorithm when needed.

The master problem with a reduced number of extreme poirdasllied the Reduced
Master Problem (RMP) and can be expressed as

P o1
min ¢ = ;; fijNij (9.144a)
Pl
i=1 j=1
!
> =1, i=1,2,..,P (9.14¢)
=1
ij >0, i=1,2,.. P j=12.. .1 (9.14d)

in whichl < M, forall i € {1,2,..., P}. Obviously, the Reduced Master Problem can
be regarded as the Master Problem with, = O for j = {4+ 1,04+ 2,..., M; and all
i€{1,2,...,P}.

Initially, a feasible extreme point to the Master ProblenB)9s needed. We may
generate such a point using techniques similar to Phasehkisimplex algorithm for
a standard linear program. In the Dantzig-Wolfe algorithme onay use the procedure
described in this section to a Phase | LP. In the following, agsume that a feasible
extreme point has been computed. We can use this feasiblenmextpoint to form a
Reduced Master Problem with= 1. We denote the solution to the Reduced Master
Problem (9.14) a3/} * such that a feasible solution to Master Problem (9.8) is

Nij =AEME =12, P j=1,2,...,1 (9.15a)
Aij =0 i=1,2,...,P;j=1+1,1+2,....M; (9.15b)

This solution satisfies (9.13a) and (9.13b). To be optimalsib needs to satisfy (9.13c).
These conditions are already satisfiediffer 1,2,..., Pandj =1,2,...,l. We need to
verify whether they are satisfied for al= 1,2,..., Pandj =1 +1,1+2,..., M;. This
is complicated by the fact that we only know the extreme mowt fori = 1,2,..., P
andj =1,2,...,1.

(9.13c) is satisfied forall = 1,2,...,Pandj = 1,2,..., M; if min; ¢, — p; > 0
where ‘

¢; =min [c; - Fin]'v]  i=12,...,P (9.16)

J
Vi

v{ is an extreme point of the polytopg;, = {z; : G;z; > h;}. Therefore, using the
Simplex Algorithm we may compute the solution of (9.16) as solution of the linear
program

Y; =min ¢ = [¢; — Fin] z; (9.17a)

z;
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3 Dantzig-Wolfe decomposition

fori =1,2,..., P. These programs are called subproblems.
If ¢ —p; > 0foralli =1,2,..., P, the solution generated by the Reduced Master
Problem is optimal. We can compute the solution to origimabfem (9.4) by

l
z; = vl\; i=12... P (9.18)
j=1

If v; — p; < 0forsomei € {1,2,..., P} then the KKT conditions are not satisfied and
the solution generated by the Reduced Master Problem is soluéion to the Master
Problem. In this case, we augment the Reduced Master Probignthe new extreme
points,v'™!, obtained by solution of the subproblems (9.17).

The next iteration of the algorithm starts with the solutidithe new Reduced Master
Problem. The algorithm terminates in a finite number of tiers as there is a finite
number of extreme points in a polytope.

Algorithm 3 summarises the Dantzig-Wolfe Algorithm for gtibn of the block-
angular linear program (9.4). The subproblems (9.20) magobeed in parallel. This is
advantageous when the number of subprobldmss large. In all iterations, the Dantzig-
Wolfe Algorithm preserves feasibility of (9.4). In predie control applications, this
implies that stability can be guaranteed under mild coaditven if the algorithm is
stopped prematurely [Scokaert et al., 1999].

3.2 Computation of an initial feasible vertex

The initial feasible vertex of the Master Problem (9.8) maycbmputed using a Phase |
simplex algorithm. The linear program

P
min or=e L a+ Yy €5 (9.23a)
O¢7{Zi76i}f=1 12:; P
P
s.t. > Fizi+Ra>g (9.23b)
i=1
0<a<|g (9.23d)
0 < G; < |hy i=1,2,...,P (9.23¢)
with
I i=jNgi =20 1 p=gA(h), >0
Rij: -1 Z.Zj/\g73<0 (Si)p,q: -1 pzq/\(hi)p<0
0 i#] 0 p#q

may be used to compute a feasible vertex of the block angukear program (9.4). A
feasible vertex of the block angular linear program (9.4¥iéntical to a feasible vertex
of the Master Problem (9.8) as these two linear programsitiezeht representations of
the same problem. A feasible vertex to (9.4) and (9.8) eXigite® optimal value function
of (9.23) is zero, i.e.¢; = 0 as this implies that a feasible vertex with= 0 and
{3; = 0}L_, exists. Otherwise, (9.4) is infeasible.
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Algorithm 3 The Dantzig-Wolfe Algorithm for a Block-Angular LP (9.4).

1: Compute a feasible vertex of the Master Problem (9.8). Ifuhgoint exists then
stop.

2: [ =1, Converged = false.

3: while Not Convergedio

4:  Solve the I'th Reduced Master Problem, RMP(I):

P l
min ¢ = ;; Fijhij (9.19a)
P l
i=1 j=1
l
> =1 i=1,2,...,P (9.19¢)
j=1
Aij >0 i=1,2,...,P;j=1,2...,1 (9.19d)

and letr be the computed Lagrange multiplier associated to therlgnkbnstraint
(9.19b). Letp; be the computed Lagrange multiplier associated with (9.19c
5:  Solve all the subproblems € {1,2,..., P})

min  ¢; = [¢; — Fin]' 2 (9.20a)

s.t. GiZi 2 hl‘ (920b)

and let(y;, vi™') = (¢, z*) be the optimal value-minimizer pair.

3

6: ify, —p;>0Vie{l,2,..., P}then

7 Converged = true. The optimal solution is
l .
z; =) Ajvl  i=12...P (9.21)
j=1

8 else
9: Compute the coefficients for the new columns in the RMP

fige1 = civit! (9.22a)

Piir1 = Fovit! (9.22D)
10: l—1+1
11:  endif
12: end while
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It is trivial to find an initial feasible vertex to (9.23), i.da = |g|,{z; = 0,8, =
|h;|}2, } is a feasible vertex of (9.23). Therefore, the phase | blecjutar program may
be parameterized similar to the Master Problem (9.8) angedalising a Dantzig-Wolfe
algorithm similar to Algorithm 3. The subproblems in the pbd part of the Dantzig-
Wolfe algorithm are

main ér0= e, — R'7] (9.24a)
s.t; 0<a<|gl (9.24b)
and
;ﬂlg,l ori = (—Fim) 'z + €5, Bi (9.253)
st Gizi+Sif; > h (9.25b)
0 < f; < |hy (9.25¢)

fori € {1,2,..., P}. Thisimplies that a feasible vertex may be computed by smldf
a number of relatively small subproblems, (9.24) and (9.2B) solution of a Reduced
Master Problem using delayed column generation.

It should be noted that the computation of a feasible verfe@®), i.e. solution
of (9.23) by the Dantzig-Wolfe algorithm, is of approximigt¢he same computational
complexity as the computation of the optimal solution whéeasible vertex is available.
This means that we can utilise the block-angular structfficently in the computation of
a feasible vertex. It also means that just finding a feasibteex may be just as expensive
as computing the optimal solution. Therefore, if a feasil@gex is readily available, it
should be used directly instead of applying a phase | simmiegedure.

Just as several alternatives exists for determining alfasiertex in linear pro-
gramming by the simplex algorithm, several alternativethtophase | procedure in the
Dantzig-Wolfe algorithm exists. The alternatives are ryalfased on determining a fea-
sible vertex by replacing (9.23) with &-norm or co-norm regression problem in the
phase | procedure.

4 Application

Section 2 defines the general control problem Foplants with independent dynamics
collaborating to achieve a common objective, i.e. (9.23)X9In this section, we apply
this optimization model for control of a power generatingtfmdio.

[Edlund et al., 2009a] defines the word “effectuator” to diémcan entity whichis
a process or part of a process in a power system that represanitrol actions with
associated dynamics and actuation costs allowing the paugut to be manipulated
[Edlund et al., 2009a] also derives dynamic models for sevtgpes of effectuators.

Figure 9.3 illustrates a power portfolio. A power portfotionsists of multiple differ-
ent effectuators. An effectuator can be a traditional tfapower plant or a wind farm.
In Denmark, thermal power plants are combined heat and pplaets (CHP). In the
future, even electric vehicles may be used as effectuators.

Each effectuator has its own regulatory control system.rdfbee, the manipulated
variable,u;, of an effectuator is its power production reference. Thipwat)y;, from
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Disturbances

-————— == —_——_— -
Shzg};tee(;:}ek:ad Production plan =]fRefeW\ l > |
(Production Planning) L feedforward | | |
| |
l _ l Portfolio output
Portfolio reference_: Load balancing l > W -
g controller || h |
| > |
| MW |
| |
| || |
| |
||
| |
Portfolio __ __ 1 __ J

Measured production

Figure 9.3: Sketch of the system we want to control. Bolddirepresent vectors

an effectuator is the produced power by that effectuatoe gdwer portfolio controller
consists of a short term load scheduler (STLS) and a loachbialg controller. The short
term load scheduler makes a static economic optimizatiothefsystem and uses the
solution to generate references for each effectuator. Bteult-tolerant considerations,
these references are sent directly to the effectuatorgrrditfan to the load balancing
controller. If the dynamic part of the portfolio control stees due to hardware error, this
architecture implies that the effectuators still have &nmefice. [Jgrgensen et al., 2006]
describe the details of this power portfolio controller.

The short term load scheduler provides a 5-minute 24 howadhbased production
plan for each effectuator. However, a power productionesyss complex: Disturbances
and deviations from the production plan does occur. Thegetbdynamic load balancing
controller is added to the system. The load balancing cthetrseeks to minimize the
deviation between sold and actual power production.

4.1 Modelling of an effectuator

In the following, we only consider boiler load effectuatofihis choice is made to sim-
plify the presentation. A third order transfer function deses the boiler load effectuator
dynamics sufficiently well

yi(s) = (ui(s) + d;i(s)) (9.26)

(ris+1)3
y; is the produced poweti; is the setpoint from the STLS, and is the correction com-
puted by the load balancing controller. Therefargt d; is the desired power production
setpoint sent to the regulatory system of the effectuatpis the time constant for the
boiler. Different boilers may have different time constar@esides the dynamic part, the
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model includes an upper and lower bound on the output as waltanstraint on how fast
power production can be changed. The effectuator has aot@ystem which enforces
these constraints. Therefore they are treated as inputraorts in the model.

Using the performance function defined by [Edlund et al.,&0€¢he optimization
problem for each effectuateérc {1,2,... P} can be stated as

N N N-1
min ¢ =3 |yik =ikl T Y Gointin+ Y [[AUkl[1ga,., (9.273)
k=1 k=1 k=0
s.t. Xikt1 = AiXi,k + Bzulk + Eidi,k k=0,1,..., N—1 (927b)
Yik = CiXy i k=1,2,...,N (9.27¢)
ik < wi, < Wik k=1,2,..,N (9.27d)
Aui’k < Aum < Aui,k k=1,2,..,.N (9276)

The first term of the objective functiod,_, ||yik — 7ik/l1.q... .. is added to penalize
deviations from the static optimization determined by th&S. In the nominal situation
the effectuators should adhere to the production plangstris made in an optimal fash-
ion utilizing information which is not available for the Iddalancing controllerg, ; j

is the marginal cost of the effectuator, which is the costrofipcing an extra megawatt
hour, the marginal cost includes fuel cost and wear on thetplat does not include
static cost such salary to operators which is independetiteopower production. The
second termZ,If:1 4,,.; Y- IS therefore an economic term measuring the cost of produc-

ing power on each plant. The third ter@i\’:_o1 |[Auk||1,4a. ., SMOOth the solution by
penalizing rapid movements in the manipulated variables.

The constraints for the optimization problem comes fromlthear model and the
constraints of the model.

4.2 Portfolio modelling

So far P independent problems have been described, in order formitttfolio to work as
a whole some problem or optimization problem for the wholefptio has to be derived.

The goal of the portfolio is to minimize the overall deviatibetween the total refer-
ence and the total production

N
min ¢ =Y yrork — rxll - (9.28)
k=1

there are no constraints in the portfolio goal, howeverdlaee also no means of actually
affecting the output of this optimization goal singg; », = Zf; i 1 IS the sum of out-
puts from the effectuators. Since the portfolio uses therinftion from the effectuators
they cannot be solved separately but needs to be combine®) répresents the opti-
mal control problem that combines the portfolio controllgem (9.28) with the control
problem for each effectuator (9.27). It should be noted tt@tportfolio reference; in
(9.28), is not necessarily equal to the sum of the effectuaterencesy; ; in (9.27).
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4.3 Finding an initial feasible solution for the master problem

Rewriting (9.28) into a linear program will add an extra sktlecision variables to the
master problem, calleg,,;. These variables acts similar to slack variables in theesens
that if they are large enough the problem will become feasibi this case it means that
if a feasible solution can be found to all sub problems, aifdasolution to the Master
Problem exists.

The task of finding an initial feasible solution to the Magieoblem is thereby re-
duced to finding a feasible solution to all subproblems with- 0. Once a solution to
all subproblems are foungk,; has to fulfill ;. . > IZil yi.x — Tk|. Since the right
hand side is known, finding a solution for this inequalityrigial and result in an initial
feasible solution to the Master Problem.

5 Results

[Edlund et al., 2008] implement (9.2) as a centralized MPi@gia sample time of 5 sec-
onds. We also use a sample time of 5 seconds and compare tke partfolio balancing
MPC (9.2) implemented using the Dantzig-Wolfe Algorithnsdebed in this paper to
a centralized implementation using standard linear prograng [Edlund et al., 2008].
We investigate the effect of the prediction horizén, as well as the effect of the num-
ber of effectuatorsP, on the computing time for the Dantzig-Wolfe based MPC armd th
centralized MPC.

In this section problems of different size will be treatedack of the Effectuators
have3N optimization variables an8N constraint equations. The portfolio adla’
constraints to the optimization problem. WhéVYeis the prediction horizon. So with
effectuators we have a centralized optimization probleth 8&Vp optimization variables
and8Np + 2N constraints. And when using Dantzig-Wolfe decompositianhavep
optimization problems witl3 )V optimization variables angllV constraints, in addition to
the RMP with2 NV constraints and a variable number of optimization varigldepending
on the number of iterations needed.

For finding the solution an active-set LP-solver is used Wisicales cubically with
the number of optimization variables. The solver is used@iving both the centralized
problem and the Dantzig-Wolfe decomposition, so the sofutimes are comparable.

The largest deviation in the elements of the optimal poirttveen the centralized
solution and the decomposed is of in the magnitudedo®. That is within the expected
precision of the algorithm and it is therefore concluded tha two algorithms does
converge to the same optimal point.

Figure 9.4 shows the average execution time per sample axtdi of the number
of effectuators.

The centralized solution scales approximately cubicaity whe number of effectua-
tors. The extra overhead is created from a mixture of thavopér using more iterations
to converge and Matldl creating more overhead when the problem size grows. The
Dantzig-Wolfe decomposition scales almost linearly wite humber of effectuators. Part
of the overhead in this algorithm comes from the fact thatRIMP grows faster when
a large number of subsystems are used since a multi colurmaragén scheme is used.
The subproblems in the Dantzig-Wolfe decomposition atgarican be run in parallel.
The figure shows a lower bound time estimation for a paraéesion of Dantzig-Wolfe
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Figure 9.4: Average execution time as a function of the nurobeffectuators

where the the time for optimization of the subsystems isutated as the time of the
slowest system. In reality there will be some overhead frbemdommunication. The
solution time of a parallel real implementation will be samhere in between the seriel
and fully parallel version.

The average execution time as a function of the predictioizbo is shown in Figure
9.5. As expected the execution time still scales cubicaly whe prediction horizon,
since an increased prediction horizon means an increaggdatlem size.

- - - Centralised -
10" 0,00018%° B ]
—— Dantzig-Wolfe e
0 0.000033%° e
- = Parallel Dantzig-Wolfe| L.
' 0.00001%° .

Average execution time per sample [s]

.
20 30 40 50
Predicion horizon [samples]

Figure 9.5: Average execution time as a function of the mtexh horizon
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6 Conclusion

We have treated a power portfolio system consisting of ipleltdynamically indepen-
dent power plants which cooperates to achieve a total ptaucA Model Predictive
Controller with linear and;-norm terms has been proposed to coordinate the units. The
underlying optimization problem of the proposed controtlen be stated as a linear pro-
gram with a block-angular constraint matrix (9.4). Dant#iplfe decomposition can be
successfully applied to decompose this kind of problenedding a two layer hierarchi-
cal optimization structure. The decomposition has a ldgibgsical interpretation as the
lower layer consist of independent local controllers focteaf the power plants. The
upper level is the supervisor which coordinate the indigidunits.

The Dantzig-Wolfe decomposition updates and solves thprsblems in an iterative
manner, and will converge to the same optimum as the cerghfiolution within a finite
number of iterations. Theoretically the number of itenasianay be high, but the sim-
ulation results show fast convergence in practical contjmuts. The computation time
scales linearly with the number of units in the problem, eathan cubically cubically as
would be the case if the problem is solved in a centralizedrmaawith an interior point
solver. Dantzig-Wolfe decomposition yields faster sauattimes than the centralized
solution even for small number of effectuators.

The proposed Dantzig-Wolfe algorithm scales cubicallyhwiite size of the subprob-
lems in the as the interior point algorithm, i.e. when the bamof constraints or the
prediction horizon increases. When the the prediction bargrows there is algorithms
which has linear scaling [Rao et al., 1998], this can be aetgddovhen the subproblem
size grows. However,it is not investigated in this paper.
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1 Introduction

Abstract

This paper describes a design method for developing a flexible higrarotodel-
based predictive controller (MPC) for power system portfolio contrdhe Tesign
objectives are flexibility and computational scalability — since the portfolio willhg
significantly in the future.

The method yields a model predictive controller with a two layer hierarcity a
clearly defined interfaces. The same hierarchical structure is ach@vehe un-
derlying optimization problem utilising Dantzig-Wolfe decomposition. Decompo
sition yields improved computational efficiency and better scalability coethty
centralised methods.

Through simulations on a real scenario the new controller shows immpeaves
in ability to track reference production and economic performance.

1 Introduction

With the recent (and ongoing) liberalisation of the energariat [Ringel, 2003], in-
creasing fuel prices, and increasing political pressuweatd the introduction of more
sustainable energy into the market [UCTE, 2007; Danish sfiipiof Transport and En-
ergy, 2005; United Nations, 1998], dynamic control of powkmnts is becoming highly
important. More than ever, power companies must be ablegptdkeir production to un-
controllable fluctuations in consumer demands as well dsmvailability of production
resources, e.g., wind power, at short notice [UCTE, 2007].

Historically, static optimisation of load distribution amg power production units,
so-calledunit commitmenthas been the norm [Padhy, 2004; Salam, 2007]. Unit commit-
ment refers to determining the combination of availableegating units and scheduling
their respective outputs to satisfy the forecast demariativét minimum total production
cost under the operating constraints enforced by the systeter a power company’s
jurisdiction (itsportfolio) for a specified period of time — typically from 24 hours up to a
week. The optimisation problem is of high dimension and cioiatiorial in nature, and
can thus be difficult to solve in practice. Results using litigrmethods [Johnson et al.,
1971; Viana et al., 2001], Mixed Integer Programming [Dillet al., 1978], Dynamic
Programming [Ayuob and Patton, 1971] and Lagrangian Rétax&Aoki et al., 1987;
Shahidehpour and Tong, 1992], have been reported in literat

Once a solution to the unit comment problem, i.e., a statieduole, has been found,
the load plans are distributed to the generating units. Eadhis then responsible for
following its load plan, and must handle disturbances eically, implying the necessity
of local power plant controllers, wind farm controllers.etc

However, with the aforementioned increasing impact of steym fluctuations in the
supply and demand, dynamic effects at the system level ailblme increasingly incon-
venient to deal with for individual generating units. Yetseem-widedynamic portfolio
controlis a fairly new concept in the field of power production. Sq farthe best of the
authors’ knowledge, no results have been reported excemgddsen et al., 2006; Edlund
et al., 2009a, 2008].

Furthermore, an additional difficulty that will have to beéa in tomorrow’s ‘smart
grids’ is the addition of many more power plants of varioyssty, with different dynamics
—e.g., decentralised bio-mass fired thermal units, sotardand so forth — which means
that scalability of the control system is set to become aroitamt issue.
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This paper presents a novel, object-oriented design fdr autynamic portfolio con-
troller, which is able to handle dynamic disturbances atsystem level as well as the
non-static configuration of generating units, i.e., thd faat not all units are active at
all times. It is based on model-based predictive contra ¢sg. [Rossiter, 2003] and/or
[Rawlings and Mayne, 2009] for a comprehensive review) dilides a decomposed so-
lution scheme tailored specifically to the problem at hansbiee the optimisation prob-
lem (see [Edlund and Jgrgensen, nd] for further detailsjtsTizased on actual operation
data from the Danish power grid indicate that the proposediralber is able to improve
the load following capabilities of the system compared tistéxg solutions.

The objective of the new controller is to minimise deviatdretween sold and actual
production. When designing the controller two objectivegshaeen in focus.

Scalability The future of the power system will require the controlleb&able to
coordinate more units, therefore the method must be sesiialérms of computa-
tional complexity.

Flexibility To create a controller which is flexible, such that additibnew units
and maintenance of existing ones is possible. This meangnileg a modular
structure with good encapsulation of information and cleanmunication inter-
faces between modules.

The outline of the rest of the paper is as follows. In Sectiam 2verview of the Dan-
ish power system is given, including a brief account of thetesy services the producers
must provide. For comparison purposes, Section 2.3 brigfilaas the existing portfo-
lio controller. Next, Section 3 presents the proposed cbaesign method and Section
4 uses the design method for designing a controller for tmeenti portfolio. Section 5
present the comparison of the control performances of thelations, while Section 6
sums up the contributions of this work.

2 System description

To start with the broad perspective, the system is a parte@ERNTSO-E, which is the
electrical grid covering the mainland of Europe, from Pgalin the west to Romania
in the east; within this grid, balance between consumptimh@oduction must be main-
tained at all times. Roughly speaking, if the consumptiolaiger than the production,
energy will be pulled out of the system, making the genesattow down from the usual
50Hz and thus a drop in the system frequency can be observed.

In order to maintain the overall balance between produaiwhconsumption ENTSO-
E is split into several regions governed by a Transmissiastey Operator (TSO) who
is responsible for matching production with consumptiod emport/export from the re-
gion.

The areatreated in this paper is the west Danish area, whicmhected synchronously
to Germany and asynchronously to Norway and Sweden. The maduction units are
shown in Figure 10.1.

In order to keep balance between production and consumativierarchical scheme
based on time horizons is used. Balance between the prodwaid consumption is cur-
rently maintained by changing the production, but in somsesaonsumption might be
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“Norway

Nordjyllandsvaerket __S_v_v_e_cjt_an

_&_ DONG Energy Power Plant
— 400 KV AC power line
---- DCTie Line

Wind farm

Other producers Power plant

Horns Rev 1 _u.
Esbjergveerket

Fynsvaerket

Figure 10.1: Within the west Danish area there are 7 sitetagong large power plants
comprising 9 boiler units in total with an electrical protioo capacity ranging from
80 MW to 650 MW, the most common size is around 400 MW. Theretare major
producers in the area; DONG Energy is the largest and opeaatietal of 6 units in the
area.

changed as well to achieve the goal. To this end, we introthectermeffectuatoy which
encompasses all power producing and power consuming wpthte of participating in
load balancing control, as follows:

Definition 5. An effectuator is a process or part of a process in a poweesyttat rep-
resents control actions with associated dynamics and taatuzosts allowing the power
output to be manipulated.

2.1 Energy Market and Production Planning

The first effort to balance production and consumption hapgehen the energy is sold
on the energy market, which in the Danish case is Nord Poald®wool, 2010]. An auc-
tion determines the energy price throughout the area fdr baar of the following day.
The results of the auction yields an amount of energy to bdymed each hour. As de-
picted in Figure 10.2, the sold production is used by thetdbam load scheduler (STLS)
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together with weather forecasts, district heating demanetasts and constraints such as
minimum amount of biomass fuel, to solve a unit commitmewbpem and compute a
5-minute based schedule for all production units in thefpliotthat DONG Energy oper-
ates, 24 hours ahead. A more detailed description of the $ah®e found in [Jgrgensen
et al., 2006].

Sold production
iDismct heating forecast

—»
Weather forecast] ~ Short-term load Production plan r
scheduler

(Production Planning)

Frequency control,
contribution

\

i
I

Reference

Load balancing L_J | _
controller

TSO

AGC signal

A Measured production of individual units

Total measured production

Figure 10.2: Diagram of the interconnection of the systeime Bold lines show vectors
of signals. The portfolio can be divided into two groups. Amaal control which the load
balancing controller cannot give corrections to, and anraatic control group which the
load balancing controller can affect.

2.2 Reserves

Even though the market gives a good estimate of the demanidddollowing day, there
will be deviations during the day due to disturbances, ineate predictions, weather, etc.
Therefore, three levels of control have been establishdwhl@nce production and con-
sumption. In order to execute the control it is required thaértain production capacity
is kept in reserve for that purpose. On the shortest timess#he primary reserve, which
is used to avoid system collapse. This is then followed updyer reserves to bring the
system back to the nominal state. The time scale for aativasi shown in Figure 10.3.

When the system frequency deviates from 50 Hz, this reseneehis activated pro-
portional to the system frequency deviation. The resengetbde activated within 30
seconds after a deviation occurs. Details about the resemwebe found in [ENTSO-
E, 2010]. In case of large frequency deviations the primaserves will be activated
throughout the whole European grid.

Secondary reserves are used to replace the primary reserdd®lp restore the sys-
tem frequency when they are activated. Each control arelydimg West Denmark, has
secondary reserves. The control area which hosts an indzakdmould seek to activate
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Tertiary Control Active

Secondary Control Active

Primary Control Active | Replacing X
0s 30s smin

Figure 10.3: Timescale for reserve activation

secondary reserves in order to reject the disturbance.rfibahs that if an area creates a
frequency deviation, all areas seek to stabilise the systigimthe primary reserves, but
the area responsible for the imbalance has to bring theraystiek to nominal behaviour
by activating secondary reserves. The secondary resesmda cnany cases be activated
before a frequency deviation occurs, however. The secgndaerves are activated by
the TSO providing an activation signal (AGC Signal on Figlife?) to the power pro-
ducing company. The power company is then expected to delifitered response to
the activation signal.

The last reserves that may be activated to stabilise thersyfséquency are the tertiary
reserves. These reserves must be activated within 15 rsifrai@ being ordered. They
are activated by an operator at the TSO by taking contactempierator at the central
control room for the energy generation companies. The iadait ordering of energy,
will most often be added into the STLS, which will then generand broadcast a new
production plan to the units.

2.3 Current controller

The current load balancing controller structure is degctiim [Edlund et al., 2009a] and
is an adaptation of an automatic generation control system fWood and Wollenberg,
1996]. It consists of a set of parallel Pl-controllers, wehtre gains of each Pl-controller
can be changed to accommodate the changing load scenaroastdaints.

The mechanism for determining the individual gains is in fptdaand Wollenberg,
1996] proposed to be a steady state optimisation. Howeuertathe conditions in the
West Danish area where the boiler units are not used for loask but rather changing
load very frequently, the optimisation approach has beemael infeasible. Instead the
gains are determined by a logic based mechanism, where eéadk prioritised by the
operator for both negative and positive corrections. Tigéclthen utilise the boiler unit
with highest priority first, and after usage return all bgléeo the production plan.

Besides the main control loop, there is a lot of logic in thatodller for handling
bumpless transfer between automatic and manual contbbthier features in an attempt
to make the controller as close to optimal as possible. Thdtris a huge control structure
with many cross couplings.

The problem with the current controller is the complexitytbé& cross couplings,
which means that modifying one part of the controller oftélecis other parts of the
controller in a way that the designer cannot predict. Thuslenthe performance of the
controller is quite adequate for the existing system, theec structure is not suited
for portfolios that change structure over time. Furthemmdine complexity of the logics
makes any form of rigorous stability or performance analysitually impossible. As a
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oad balancing controller

AGC signal Iport
Yy v

Coordinator
} H ‘ ‘ Unit P }: i
M ] T T
U4 X1 U2l Xy Up Xp
yport
] State estimator
Y1 Y2 yp

Figure 10.4: Sketch of the modular structure of the load iy controller. Com-
munication with the individual effectuator is handled bg thdependent subsystems, and
portfolio communication is handled on the upper layer oftttegarchy.r; is the reference
to effectuatori € {1,2,..., P}, z; is the state estimate; is the measured output, and
u; is the controller correction. For the portfolio there is &erencer,,,, State estimate
Zport @and a total measured productigp,,;. The references come from the production
planning.

consequence, a novel, modular control scheme has beempetel

3 Proposed controller structure

The structure of the proposed controller is a two layer haiaal structure as shown in
Figure 10.4. All parts pertaining to the individual effeatars in the controller are placed
in the lower layer separated from one another, allowing tteebe modified, removed or
adding new ones without affecting the other units. Abovedsardination layer coordi-
nating the individual units to achieve the portfolio goahaihimising deviations.

Model Predictive Control (MPC) has been chosen as the dietrecheme, since
the system is a constrained MIMO system where knowledgeeofuture references are
available.

The design framework relies on a set of assumptions:

e The effectuators can be modelled as independent of each stloh that a change
in one effectuator does not directly affect another effettiu

e The effectuators can be modelled as a linear dynamic modekffine constraints.
The investigated models in [Edlund et al., 2009b] can alhwiinor modifications
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3 Proposed controller structure

be modelled with the structure shown in Figure 10.5. Howentber kinds of linear

Min/max Rate limit . Min/max
Linear

— — > process [ —

Ui dynamics Yi

Figure 10.5: General structure of the effectuators

input, output and state constraints fits into the modellagtework as well.

e The underlying optimisation problem in the MPC can be stated linear program,
which means the corresponding objective function mustisbio$ linear and/; -
norm terms.

Each object in the lower layer of the hierarchy contains astramed linear model
and an objective function for the optimal operation of tHe&fiator which together form
a constrained linear programming problem. Furthermoreritains all communication
with the physical unit. The information that has to be senth&® upper layer is how
the output of the effectuator will affect the portfolio outpmeaning a prediction of the
power production/consumption of the unit.

The upper layer contains a constrained linear model of tinifgtio excluding the in-
dividually modelled effectuators, as well as an objectivection of the optimal operation
of the portfolio. The upper layer also handles communicatiith surrounding systems,
for instance obtaining the portfolio reference (the lodukstule).

3.1 Solving the optimisation problem

The hierarchical structure encapsulates the informatestaming to each unit. However,
one challenge persists: MPC relies on solving an optindagtroblem at each sample.
This is a challenge of the MPC framework, since solving thaigation problem usually
grows cubically with the problem size. Therefore one of tesigh challenges has been
to create an optimisation problem which can be encapsulatéte same hierarchical
structure as well as being scalable.

For solving the optimisation problem a Dantzig-Wolfe depasition approach has
been taken [Dantzig and Wolfe, 1960; Dantzig and Thapa, ROUBe decomposition
technique has been adapted to the MPC context in [Edlund @amgdsen, nd], where
details of the algorithm are also described.

Dantzig-Wolfe decomposition can only be applied to linesslyems. The perfor-
mance function for the whole problem is assumed to be chasanaxture of linear and
£1-norm terms, which can be rewritten into a linear prograntadlé for Dantzig-Wolfe
decomposition.

An important consequence of this forced choice of perforeainction and con-
straints is the solution, i.e., the point where the perfaroggfunction attains its extremum,
must either be at an extreme point of the feasible set, oralutien of an unconstrained
problem.

When the optimisation problem is composed from the effeotugptimsation prob-
lems and the portfolio optimisation problem it can be re@ntinto a linear program with
the structure
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mzin ¢p=clz +clzy+..+chzp (10.1a)
F, F, ... Fp z g
Gy . hy
2
s.t. G T > | he (10.1b)
Gp| 7P hp

with z = [21,22,...2p] € R, z; € R", ¢ € R, F; € R™*" G, € RPi*"i g e R™
andh € R?i. ¢ is the functional which needs to be minimised in order to fipinum, z;
are the free variables; are weight factors, weighing the importance of the corradpw
z;. The constraint matrix has a block-angular structure wtterdlock diagonal elements
come from the effectuator optimisation problem and the tnggonstraint comes from
the portfolio linking the problem togetherf; is unit i's contribution to the coupling
constraint. G; originates from the individual effectuators optimisatiproblem. g and
h; are the affine part of the constraints. Ignoring the couptiogstraints the program
consist of P independent problems

min ¢ =c’z; (10.2a)

zZ;

s.t. Gizi Z hi (102b)

Dantzig-Wolfe decomposition builds on the theorem of carm@mbinations

Theorem 9. Let Z = {z € R" | Gz > h} with G € R™*™ andh € R™ be nonempty,
closed and bounded, i.e. a polytope. The extreme poin&sat denotedv’ with j €
{1,2,...,M}.

Then any pointz in the polytopic setZ can be written as a convex combination of
extreme points

M
- Z /\jvj (10.3a)
j=1
st A >0, j=1,2,.. M (10.3b)
M
doa=1 (10.3c)
j=1
Proof. See [Dantzig and Thapa, 2002] O
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Using the theorem on (10.2) and substituting it into (10i&)ds

P M;
min ¢ = Z Z fijNij (10.4a)
A i=1j=1
P M;
i=1j=1
M;
> =1, i=1,2,...P (10.4c)
j=1
Aij >0, i=1,2,..,P; j=1,2,..., M, (10.4d)

With M; being the number of extreme points of subprobierj; andp;; are defined as

fij=clv! (10.5a)

Pij = FZVZ (105b)
Equation (10.4) is denoted the Master Problem. The ideadslpgenerate the extreme
points needed for the optimisation instead of generatihgx@leme points which can be
even more computationally complex due to the size of thelpmbAssuming an initial
feasible solution is available for (10.4), a Reduced MaBtblem can be set up and
expanded through iteration with more extreme points. Attien/ the Reduced Master
Problem is defined as

P 1
m}%n = Z Z fijNij (10.6a)
i=1 j=1
P 1
i=1 j=1
l
> =1, i=1,2,..,P (10.6¢)
j=1
Aij >0, 1=1,2,..,P;5=1,2,...,1 (10.6d)

in whichl < M; forall i € {1,2,...,P}. Obviously, the Reduced Master Problem
can be regarded as the Master Problem with = 0 for j = [+ 1,...,M; and all
ie{l1,2,...,P}.

Solving the Reduced Master Problem yields a Lagrange nfieltipr, for the coupling
constraint (10.6b). This can be interpreted as a 'priceafshared resource, in this case
the portfolio deviation. New extreme points are generajesbiving subproblems defined
as

min ¢ = [c; — F'7]" 2 (10.7a)

Z;
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fori € {1,2,..., P}. These originate from (10.2), but the objective functionpslated
with —F7'r wherer is given by the Reduced Master Problem in order to generéfa-di
ent extreme points based on the updated prteis the effect the effectuator will have
on the portfolio output.

The algorithm will then iterate over these steps until cogeace is reached.

When using a Dantzig-Wolfe decomposition, the Master Prolded the subprob-
lems are defined using the exact same structure as shownureFi§.4. The Reduced
Master Problem (10.6) is solved in the upper layer, and thprsiblems (10.7) are solved
in the lower layer of the hierarchy.

The Dantzig-Wolfe algorithm scales almost linearly as acfiom of the number of
subproblems, rather than cubically when solving one cks#cproblem.

Currently a standard Kalman filter is used for state estnatit communicates the
states to each subproblem and the Master Problem. The tsoleition means that the
modelled units which are not in control need to send an oytpadiction at the beginning
of each sample for use in the Master Problem. The commuaitaitween upper and

lower layer is shown in Figure 10.6.

Coordinator __

o

(9]

> o)
g 2
2% o=
cF 23
= O o =
S OQ ° Q

c 2 [
T S [
8 %

~

Repeat until

convergence

Figure 10.6: Communication timeline between coordinatat aach unit during each
sample

The developed controller has an object oriented structuitte avclear interface be-
tween the layers and a clear communication scheme. Theodlentstructure can be
described as a UML diagram as in Figure 10.7. As long as théemmntations of the
effectuators adhere to the defined interface, the implestiens can be chosen freely
without having to change the framework . The interface isndefiby the communication
needs of the Dantzig-Wolfe decomposition.

If the information of one unit needs to be updated, it is easghut down that part
of the controller, update it and set it back into control with having to shut down the
entire controller. If the coordination layer needs maiatere the controller will clearly
loose its ability to minimise deviation, but the communicatwith the actual units can
be maintained and thus the current input can be maintairstdad of ramping down to

zero input.
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Coordinator

-Portfolio model

-Objective function

-Communicate with portfolio()

+Calculate Optimal combination of proposals()

0.*

0.1

«interface»
Effectuator
+lIs Participating()
+Give output prediction()
+Set price on coupling constraint()
+Calculate Proposal()
+Set combination of proposals()

Boiler Load Wind Turbine
-Model -Wind Turbine model
-Constraints for power -Constraints for power
-Objective function -Objective function
-Communicate with boiler() -Communicate with Wind turbine()

Figure 10.7: UML diagram of the controller structure. Théimkd interface allows for a
flexible implementation of the specific effectuators.

4 Specific controller implementation

In the current system, only boiler load units are availablecontrol purposes, and the
specific implementation in this paper is limited to inclulege; however other effectua-
tors can be included in a straightforward manner.

As outlined above, the individual boilers can be modeledasaply, as the actions
in one boiler does not affect the others. They are only calffieough the objective to
follow the overall portfolio reference and activating sedary resources. A constrained
linear model for each boiler is derived in the following, adpwith a performance function
for each.

4.1 Boiler load units

In the current controller there are between 0 and 6 powett pliaits in control. These
will all be modeled in a similar fashion. A simple model of theiler has been derived in
[Edlund et al., 2009b], but in order to fit it into the lineamtml| scheme developed here,
some assumptions must be made. The modeling concept is shdvigure 10.8. The
model derived here is for use in the controller and thus aikstraints are formulated to
fit into the controller which gives corrective signals to thaler units.

The model has two input signalg; is the input signal coming from the production
plan andu; is the input signal coming from the load balancing controll€hus in the
nominal case; is zero since no corrective signals are needed.
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Figure 10.8: Concept of the boiler modelling

The process dynamics is modelled as the third order system
1

(Tis +1)3

whereT; is the time constant of effectuatar

In order to gain offset-free tracking, the linear modelsaugmented with an output
error model such that the constrained augmented discne¢estiate space model becomes

H(s) = (10.8)

a1, 0 0 0 b1,; €1,
X; oy = |21 9224 0 0 S by i w+ |2 di (10.9a)
s asi,; as2; a33; 07" byi| " esi| " |
0 0 0 1 0 0
yir=10 0 1 1]xik (10.9b)
u; < up < (10.9¢)
max{Au; — Ad;,0} < Au; < min{Au; — Ad;, 0} (20.9d)

The elements i\ ;, B; andE; are dependent of; and the sample time. Symbols with
an bar beneath, e.qu, means the lower bound, white denotes the upper bound. The
upper rate of change constraint is modelled such that itwayd non-negative and vice
versa, to avoid forcing the controller to take actions inectie production plan violates
the rate of change constraint. The upper and lower limitsHfercontroller (10.9c) are set
in the control system by the operator.

The rate of change constraint is dependent on the boiler l18agipical form of the
rate of change constraint as a function of the boiler loag@ated in Figure 10.9.

To linearise the constraint the predictionwofs used to generate rate of change con-
straints throughout the prediction horizon. If no predintdf» exists, it is assumed to be
zero.

In case the operator changes the upper or lower bound sucthéhaurrent control
signal violates the limits, the limit is ramped down with threximum allowed rate of
change. This measure is taken to avoid infeasible optimisgroblems.

The optimisation problem for each boiler unit is formulatexd

N1
mlijn ¢; = I;O Pikr1Yik + Vi kr1l|1,q5 000 AU k|15, (10.10a)
st X g1 = AiXp + Biug i + Eid i, k=0,1,...,N—1 (10.10b)

Vit = CiXi, k=1,2,...,N (10.10c)
Uik < Ui < Tk, k=0,1,...,N—1 (10.10d)
Aui < Aug g, < Aug g, k=0,1,...,N—1 (10.10e)
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Figure 10.9: Actual rate of change constraint as a functibhailer load. This state
dependency is not captured in the constraint (10.9d), buteafisation based on the
prediction is used in the model.

whereU; = [u; o, u; 1, ..., u; n—1]T, andA;, B;, C;, E; given in (10.9a) and (10.9b).

The first term in the performance functipp,_1y; 1 is a linear term representing the
cost of the boiler unit. The weight ;4 is the marginal cost, i.e., the cost for producing
energy on the boiler unit. The price is calculated based erfukl prices and boiler
efficiency. The efficiency is state-dependent. For the daticuns ofp; 1, it is based on
the production plan alone.

It is assumed that the production plan from the STLS is ogtirad thus in the
nominal case the correction signal from the load balancorgroller should be zero. In
order to avoid that the load balancing controller maximtbegproduction of the cheapest
units, and minimise the production of the most expensivesuhe term|[y. r—1/l1,4, .
is added. This term penalises the part of the output comang the controller corrections.

The last term of the performance function is a penalty ordrapanges on the correc-
tion signal.

This optimisation problem is the controller for unjtand this information is stored in
each of the effectuators on the lower layer of the hierarchy.

Primary reserve handling

Figure 10.10 shows an example of the maximum reserve alailatboth up and down
direction as a function of the unit load. Reserves availfdri¢he positive and negative
corrections are shown in the right and left half planes rethgsly.

Currently the Frequency Control Scheduler makes resenatf the reserves peri-
odically. That means it might reserve 5MW of positive coti@tand 10MW of negative
correction power from a specific unit at a given time.

It is chosen to give first priority to the Frequency Controh&duler, and let it make
the reservations. Once the reservations are known, ther @ogkelower bound for the
unit can be determined, such that the reserved primarywesan be delivered. These
upper and lower bounds are enforced on the load balancintgotlen along with upper
and lower bounds set by the operator.
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Figure 10.10: Primary Reserves as a function of unit load. tl&ny-axis is the unit
load. On the x-axis the maximum possible primary reservedha be delivered at that
boiler load in both positive and negative direction. Dotlieés show a positive reserve
reservation and the derived upper and lower input boundshi@rcontroller. Similar
reservation can be made at the same time for negative raserve

Automatic / manual control and fall-back strategies

The boiler load effectuators can be in either automaticrobior manual control mode.
As explained earlier, in automatic control mode the cotgralan give corrective control
signals to the unit. The units can also switch from Manualtm@atic control, and vice
versa. This event is assumed external and non-predictabiever, it is observable.

If the effectuator switches from automatic to manual cdntialle « # 0 the strategy
is to ramp the control signal toward zero with a predefineg@eslorhis is done on both
unit and in the controller, so in case of communication ertbe behaviour of the unit
can be predicted. The same fall-back strategy is used inafdaalts in the effectuator.

These fall back strategies along with the control statusaireandled in the lower
layer of the hierarchy.

4.2 Portfolio modelling

The portfolio is comprised of the boiler load units modeleevipusly and a mixture of
other production units. These other production units areua smaller thermal power
plants and some wind turbines. They have a production mederand their production is
measurable, but little is known about their dynamical béhav They are considered a
disturbance in this context.

In order to include them in the controller the portfolio mbdensists only of an output
error model and the output of the portfolio is the sum of al pinoduction units, such that
the model becomes

Tport,k+1 = Tport,k (1011&)
Yport,k = Tport,k (1011b)

The optimisation problem for the portfolio is based on refee tracking and is given
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as

(10.12a)

N
min E
U
k=1

P
Yport,k + E Yi,k — Tport,k
i=1 1,qport,k

(10.12b)

wherey,,,+ is the output from the units lumped together and denotedgiort .,
is the portfolio reference which is the sum of referenceslitorats in the system plus
the demand from the TSO as shown in Figure 18.1 the sample number and is the
prediction horizon.

This optimisation problem is placed in the upper layer oftitegarchy.

5 Results

In order to evaluate the new controller it will be tested agathe currently running con-
troller through simulation in a scenario stretching thrieorgt a month of real operation.

The current controller is implemented in Simullf¥Mathworks, 2010], and com-
piled so it is able to be executed in the central control rodmother words, it is the
actual controller and not some simplified implementation of thetoalter the compari-
son is performed against. In order to test the new develofsvaerd maintenance of the
current controller, models have been developed in SimiMidkbe able to test the whole
system. Since there already exists a test environment ithesisfore been an obvious
choice to make the comparison in Simuliifk

The new controller is implemented in mixture of Java for ladl tlata handling such as
reading measurement data and constructing constrairtdJatiab’™ [Mathworks, 2010]
for solving the optimisation problem.

The dynamic part of the boiler unit models are implementelihear models or lin-
ear parameter varying models. Besides the dynamic of therhaiit, parts of the control
system operating the boiler unit has been implemented, &ns¢hat all upper/lower
bounds, rate of change constraints, correction for didteating and parasitic consump-
tion are implemented in the models along with a lot of the dogntrolling the switch
from manual to automatic mode and vice versa.

The simulation environment runs at the same sample timeeasutrent controller,
i.e., 0.5s, and since the sample rate of the newly developettdiler is 5s a ZOH ap-
proach will be taken. The data is saved with a 5s sample timédth controllers for
analysis purposes.

Simulations cover 25-hour sequences starting from 23:00idmight the following
day. In the analysis section the first hour is discarded, saatialysis covers 24-hour
sequences from midnight to midnight. The first hour is theedu® avoid startup and
settling issues influencing the analysis, allowing to gttimgether several sequences for
more extensive analysis.

The controller is evaluated in both a noise-free and a naspario.

5.1 Noise-free scenario

For the noise-free case standard deviation and mean egarsad as quantitative mea-
sures for the evaluation.
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Figure 10.11: Mean error for the controllers in a scenaribatit noise. The figure shows
the current controller (solid), the new controller (dashead the new controller with the
primary reserve constraints removed (dash dotted). Thiétsese for the individual days.
Day 19 is omitted from the analysis due to missing measuredsa for the scenario.

Figure 10.11 shows the mean error

N,

1 s
n= ; Yport.k — Tport.k (10.13)

with N, being the number of samples in the simulation. Figure 1thb#s the standard
deviation

1 &

o=\ ;«ypm,k — Tport,) — H)? (10.14)

on a daily basis. Analysis shows that the constraints fromamy reserves are limiting
the controller in periods.

For analysis purposes the new controller the new contridlsimulated without the
primary constraints to compare the standard deviation agahnn a similar scenario to
the current controller. The standard deviation is gengtailer for the new controller,
although there is a period from day 20 to 28 where the stargfan@tion is lower for the
current controller.

The standard deviation and mean for the scenario are givéalte 10.1. The stan-
dard deviations are within 10% of each other, so even thongtetare differences they
are close to each other.

Looking at the actual production (Figure 10.13), it is ewitlthat both controllers
tend to follow the reference well. However in some caseseady to the primary re-
serve constraint causes the proposed controller tempotarperform poorer then the
current controller, as can be seen from Figure 10.14. Thegretation is that there are
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Figure 10.12: Standard deviation for the controllers in @ngcio without noise. The
figure shows the current controller (solid), the new cotergldashed) and the new con-
troller with the primary reserve constraints removed (déstted). The results are for the
individual days. Day 19 is omitted from the analysis due tgsinig measurement data
for the scenario.

Noise-free Noisy
o[MW] p[MW] o [MW] u[MW]
Measurements - - 17.74 -3.27
Current 11.98 -1.26 23.11 -2.78
New 12.21 -0.12 25.72 0.29
New no primary  11.41 -1.02 - -

Table 10.1: Standard deviation and mean throughout theenrhohth of simulation

missing reserves to fulfill both the primary reserve resgouna and follow the reference.
Removing the constraint imposed by the primary reservesdugal the performance sig-
nificantly as can also be seen from Figure 10.14. Furthernsariéching from manual to
automatic mode is handled efficiently by both controllersesn from Figure 10.15.

5.2 Noisy scenario

For each boiler unit the input and output sample sequenctsedaddriginal scenario are
known. One can thus estimate a noise sequence for the stasari

Yn = Ymeas — Ysim (1015)

This noise is applied to the output of the model of the boileit.uSince the noise is
generated based on closed loop measurements, it is filtgrdwekzontroller in the loop
rather than white noise.
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Figure 10.13: The production of day 3 in the scenario. Botitradlers tend to follow the
reference well. Both the new controller (dotted line) anel ¢arrent controller (dashed
line), follow the reference (solid line) well.
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Figure 10.14: Section of the production on day 3, showingréodevhere the primary
constraint is active and thus limits the new controller {€dtline) from reaching the

reference (solid line). Removing this constraint make thes wontroller (dash dotted
line) perform similar to the current controller (dashea)in
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Figure 10.15: Section of day, where a power plant is switdh@a manual to automatic
control. Both the new controller (dotted line) and the cntreontroller (dashed line)
handle this event in a bumpless fashion and follow the raferésolid line) well.

This noise generation is chosen in order for the simulat@@mario to resemble the
actual scenario as closely as possible including failurbe.measurements from the units
modelled as the portfolio are applied directly to the siriatawithout filtering.

The mean and standard deviation are once again used astgtiamntineasures for
controller performance. The price difference between trollers can be calculated
given fuel costs and deviation prices.

The standard deviation on the new controller is higher tihancurrent controller as
was the case in the noise-free scenario. Both are signifychigther than the measure-
ment data which is likely caused by the noise generationsefas shown in Figure 10.17.
The trend in standard deviation is the same for both coetr®hnd measurement data.
As seen in the noise-free scenario, the current contradisiarslightly better performance
than the proposed.

The mean error is larger in the noisy scenario compared todtse-free. Though not
consistently lower, the average shown in Table 10.1 shoatstiie new controller is an
order of magnitude closer to zero mean error compared touttrerd controller.

Figure 10.18 shows the price difference between the tworalherts. Analysing the
price shows that on most days the new controller perforntsibietterms of income. On
Day 20 the primary reserves limits the controller such thiarge deviation occurs over
a long period of time, which is detrimental for the earningthe controller. On average
the difference is 24&/day, which means an earning of almost 90.&J0ear.

5.3 Execution time

The benefits of using Dantzig-Wolfe decomposition, besidewery logical decomposi-
tion, is that the execution time scales almost linearly i number of units in control
and that the problem can be easily distributed amongst pheiprocessors and thus low-
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Figure 10.16: Mean error for the controllers in a noisy scenarlhe figure shows the
current controller (solid), the new controller (dashed)l dne new controller with the
primary reserve constraints removed (dash dotted). Thidtsese for the individual days.
Day 19 is omitted from the analysis due to missing measuredsa for the scenario.

ering the execution time further.
As a benchmark of execution time, day 24 is chosen, wheret4 aré controlled.

Prediction horizon [samples] Execution time [s]

5 691
15 1245
25 3602
35 12960

Table 10.2: Execution time as a function prediction horizon

Table 10.2 shows the execution time as a function of the ptiedi horizon. These
simulations are performed on a Dual Core Intel Xeon machinaing at 2.53GHz with
4GB RAM and using Windows Vista as operating system. A 25 figimulation can be
performed in just about an hour. This timing is including imulation.

Increasing the prediction horizon significantly increds=execution time of the con-
troller. This has two explanations, one is the obvious thatgroblem size grows, and it
was shown in [Edlund and Jgrgensen, nd] that the executiom girows cubically with
the prediction horizon. Secondly the algorithm may beneditnf better handling of fast
vs. slow unit dynamics (compared to the prediction horizoF)is is subject of future
research.
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Figure 10.17: Standard deviation for the controllers ini@yecenario. The figure shows
the current controller (solid), the new controller (dashead the new controller with the
primary reserve constraints removed (dash dotted). Thiétsese for the individual days.
Day 19 is omitted from the analysis due to missing measuredsa for the scenario.

6 Conclusion

The aim for this paper was to develop a controller design atktbr developing a con-
troller for power system portfolio control. In the futureetiportfolio is likely to grow
significantly in the number of units under control. Therefowo design objectives were
in focus: flexibility and computationally scalability.

The controller design involves a model predictive cont&molith a two layer hierar-
chy and some clearly defined interfaces. The underlyingragétion problem from the
MPC controller was split into the same hierarchical strretoy use the Dantzig-Wolfe
decomposition algorithm. The decomposition of the optaties problem also gave a
computationally scalable controller. The Dantzig-Woleedmposition scales linearly in
computational complexity with the number of units in cohtemd the optimisation prob-
lem is distributable over several computers. Solving thmesaptimisation problem in a
centralised fashion would yield a cubic scalability.

The proposed controller design relies on one Kalman filtersfate estimation of
the whole system. The complexity of the matrix multiplicais grow cubically with the
problem size. This could prove to be a limiting factor for gualability in the proposed
control design. However, the computation time spent on taknién filter in the imple-
mentation is insignificant compared to the computation tdpent by the controller. A
logical future expansion of the design will be to incorperdistributed estimation with
the same hierarchical structure as the controller.

The controller was tested in simulations both with and withooise. The newly
developed controller has an extra constraint added compartae current controller, in
order to ensure primary reserves. In the noiseless caseig developed controller was
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Figure 10.18: Price difference between the current cdetrahd the new controller. Pos-
itive difference means that the new controller is cheapam@more money for DONG
Energy).

tested both with and without the extra constraint. Withbetéxtra constraint the standard
deviation and mean was lowered compared to the currentlieimgnted controller, when
the extra constraint was added the standard deviation coadavel above the current
implementation.

In the noisy case the standard deviation was again higharttieacurrently imple-
mented controller, which is likely caused by the constragdin. In the noisy case it was
possible to calculate the cost of the production in the pbaf The newly developed
controller gave an economical gain compared to the currentraller due to a better
distribution of control action among the participatingtsni

One remark to make, is that the currently implemented ciatrbas matured over
the cause of years. In comparison the new controller has ipgglemented and tested
through simulation for a very short time. It is thereforeelikthat the implementation and
further development of the newly developed method willgiah improved performance
compared to the results of this paper.
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