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Optimal Input Strategy for Plug and Play Process Control

Systems

Martin Kragelund, John Leth, and Rafa l Wisniewski

Abstract—This paper considers the problem of op-
timal operation of a plant, which goal is to maintain
production at minimum cost. The system considered
in this work consists of a joined plant and redundant
input systems. It is assumed that each input system
contributes to a flow of goods into the joined part
of the plant where the commodities (outputs) are
produced. A profit function with a certain regular
structure is defined for such a plant. Then the profit
is maximized subject to tracking of a given reference
production. The work shows whether a new input
ought to be included in the system to improve the
performance of the plant. The results are applied to
a coal fired power plant where an additional new fuel
system, gas, becomes available.

I. Introduction

The Plug and Play Process Control (P3C) project
deals with automatic reconfiguration of a control system
when new hardware and/or subsystems are added to an
existing system [1], [2] and [3]. This includes detecting
new hardware/subsystem, establishing its origin, incor-
porating it into control, and ensuring optimal operation.
All of these tasks are important considerations. In this
work we answer the question which and when additional
hardware is to be added to a plant.

Previous work has shown that economics is an impor-
tant factor when configuring, instrumenting and operat-
ing a system, i.e., a company will not implement new
hardware unless it will profit from this. Optimal steady
state consideration has been presented in [4]. There it
is assumed that the controlled plant quickly obtains its
new steady state and therefore it is possible to neglect
dynamics. Often the main concern for optimization is the
operational cost [5], which usually involves the integral
over time of some function dependent on the current sys-
tem configuration/instrumentation and state variables.

As the profit depends on the current system config-
uration it is impossible to predict which new hardware
or subsystems should be plugged into an existing plant.
Our approach for identifying the need for new hardware
is to model all the given possibilities, then calculate and
compare the profits of the plants having these different
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hardware configurations. The configuration giving the
largest profit should be implemented.

In this work we use a power plant capable of using
different fuel systems as an example and the objective
is to find the optimal configuration of these fuel sys-
tems. With this objective in mind we formulate a profit
function, which is adopted from our earlier work [6],
[7], where the fuel systems consist of coal, gas, and
oil. In short, the argument of the profit function is the
supply rates of different fuels with an additional reference
tracking constraint. Dynamics of the fuel supply and
reference tracking have been incorporated in the profit
maximization in [8], [9], [10]. These studies conclude that
a plant using multiple fuels yields a greater profit during
a day than a plant using only coal. This is a surprising
result in the light that coal is the cheapest fuel.

The different fuel systems in the power plant could be
thought of as different power plants capable of using only
one fuel each. The reason for this attribute is the plant
model, which is block diagonal, and the business objec-
tive model, which sums the objectives of the individual
fuel system. Basically, this work has two important prac-
tical contributions. The first is to show how inexpensive
fuels can be efficiently used for electricity production.
The second is an algorithm that quickly and cheaply
brings the production to the demanded level.

A. Outline

The control problem is formulated in Section II,
wherein we introduce the studied generic plant, the
mathematical structure of the objective function and
the optimization problem. In Section III optimization is
carried out using Pontryagin’s maximum principle. For
this the input set is defined, which guarantees tracking
of the reference signal. In Section IV the results of this
work is applied to an example consisting of a power plant
capable of using multiple fuels. Finally in Section V some
conclusions and suggestions for future work is given.

II. Problem Formulation

In this section we will formulate the problem of profit
maximization of a plant, which uses several input sys-
tems. The problem formulated in [10] will be used, how-
ever, the specification of the number of input systems will
be removed. Thereby this work will allow for adding new
input systems to the plant as they become available1.

1Here we use the term ’become available’ in the sense that new
input systems/hardware are developed.
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Fig. 1. Illustration of the type of plants, which are considered in this work. It is assumed that the dynamics only influence the maps, Hi,
which each takes the input, ui, to the output, xi. The output, xi, describes the flow of good into the plant, which delivers the objective
output, yj .

A block diagram of the considered system is depicted in
Figure 1. It is assumed that the plant converts a flow
of goods, x, into a number of output commodities, y.
Thereby the plant is modeled as an affine map and the
dynamics is only present in the input system model, H =
{H1, . . . , Hm}. We will assume that the complete system
dynamics can be described by a block diagonal linear
system, i.e., the different input systems are decoupled as
depicted in Figure 1.

Therefore, the complete system dynamics of the input
systems (H) is described as the following linear system

ż(t) = Az(t) + Bu(t)

x(t) = Cz(t),
(1)

where z = (z1, z2, . . . , zm) ∈ R
n1 × · · · × R

nm , zi ∈
R

ni , is the state vector of the m different input systems,
x ∈ R

m is the flow of goods from the different input
systems into the plant, u = (u1, u2, . . . , um) ∈ R

m is
the control input to the different input systems, and the
system matrices are given as

A =













A1 0 . . . 0

0 A2
. . .

...
...

. . .
. . . 0

0 . . . 0 Am













,

B =













B1 0 . . . 0

0 B2
. . .

...
...

. . .
. . . 0

0 . . . 0 Bm













,

C =













C1 0 . . . 0

0 C2
. . .

...
...

. . .
. . . 0

0 . . . 0 Cm













,

with Ai ∈ R
ni×ni , Bi ∈ R

ni×1, and Ci ∈ R
1×ni matrices

describing the dynamics of the different input systems.

Each of the outputs, yi, which is flow of product from
the plant, is given a price, pi, and each of the goods
flowing into the plant is given prices, qi. To formulate
the growth of profit we introduce following notation. For
[yji] ∈ R

nm let

yj∗ =

m
∑

i=1

yji

y∗i =

n
∑

j=1

yji

The growth of profit for the plant is then given by

f(z, t) =p(t)Ty(z, t) − qTCz,

where

p(t) = (p1(t), p2(t), . . . , pk(t)),

q = (q1, q2, . . . , qm),

y(z, t) = (y1∗(z, t), y2∗(z, t), . . . , yk∗(z, t)),

yji(zi, t) = Θji(t)
T zi + ϕji(t), (2)

where Θji(t) and ϕji(t) model the plant production of
commodities. Note that the unit of f is currency per time
unit, e.g. dkk/s in this paper.

The problem is now to maximize the profit over some
time horizon, T , i.e., the optimization problem is stated
as

max
u(t)∈U

∫ T

0

f(z, t)dt

subject to ż(t) = Az(t) + Bu(t),

(3)

where the input space is given by

U = {u ∈ R
m
+ |u ≤ cu}, (4)

with the elements of cu being the maximum flow of goods
for the different input systems. The inequality in (4) is
read element-wise and thus U is a polyhedral set.

Furthermore, a constraint is imposed in the optimiza-
tion as it is desired that one of the outputs tracks a
production reference, yr(t). This is formulated in the next
section.



III. Optimization

In this section a solution to the optimization problem
in (3) is calculated. For this purpose a solution strategy
similar to [10] is proposed, where a reference tracking
controller for the system in (1) is designed such that the
reference, yr(t), is followed. Thereafter, the optimization
problem is modified to include the reference tracking and
subsequently Pontryagin’s maximum principle is applied
to obtain optimal solution candidates.

A. Reference Tracking

We design a reference tracking controller, which results
in a modified input set, i.e., U in the maximization
problem (3) is replaced by a time-varying input set, U(t),
defined later in this section.

The reference tracking controller is constructed such
that one of the outputs, e.g. y1∗(z(t), t), tracks a pro-
duction reference yr(t).

In this work it is assumed that the different input
systems have equal relative degree δ (for definition of the
relative degree see [11], [12]). Now let e = (e1, e2, . . . , eδ)
be the tracking error defined by

e1 = y1∗ − yr =

m
∑

i=1

(

Θ1i(t)
T zi(t) + ϕi(t)

)

− yr(t)

e2 = ė1 =
d

dt

m
∑

i=1

(

Θ1i(t)
T zi(t) + ϕi(t)

)

− y(1)r (t)

...

eδ = ė(δ−1) =
dδ−1

dtδ−1

m
∑

i=1

(

Θ1i(t)
Tzi(t)

+ ϕi(t)
)

− y(δ−1)
r (t),

where, in generic notation, h(k)(t) denotes the k’th time
derivative of the function h(t). For later reference the
standard convention h(0)(t) = h(t) is used.

Note that we may consider e as a function of z and
t, by substituting for z

(k)
i an expression containing only

the state zi by using the dynamical system (1) (and time
derivatives thereof).

The error dynamics can thus be written as

ė1 = e2
ė2 = e3
...

ėδ =
dδ

dtδ

m
∑

i=1

(

Θ1i(t)
Tzi(t) + ϕi(t)

)

− y(δ)r (t),































(5)

and hence by introducing the auxiliary control input

v =
dδ

dtδ

m
∑

i=1

(

Θ1i(t)
T zi(t) + ϕi(t)

)

− y(δ)r (t) (6)

the error dynamics given by (5) becomes an integrator
of order δ with v as an input. A feedback controller K,
for the system in (5) with v as input, is then designed
such that v = Ke drives the error to zero.

The expression in (6) can be rewritten using the
Liebnitz’s rule for derivatives of products, i.e.,

v =
dδ

dtδ

m
∑

i=1

(

Θ1i(t)
T zi(t) + ϕi(t)

)

− y(δ)r (t)

=

m
∑

i=1

(

δ
∑

k=0

Θ
(δ−k)
1i (t)T z

(k)
i (t) + ϕ

(δ)
i (t)

)

− y(δ)r (t)

=
m
∑

i=1

(

δ−1
∑

k=0

Θ
(δ−k)
1i (t)T z

(k)
i (t) + Θ1i(t)

T z
(δ)
i (t)

)

+

m
∑

i=1

ϕ
(δ)
i (t) − y(δ)r (t)

=

m
∑

i=1

(

Qi(zi(t)) + Θ1i(t)
T
(

Aδ
izi(t) + Aδ−1

i Biui(t)
))

+

m
∑

i=1

ϕ
(δ)
i (t) − y(δ)r (t), (7)

where Qi(zi(t)) =
∑δ−1

k=0 Θ
(δ−k)
1i (t)T z

(k)
i (t) does not de-

pend explicit on u(t) as a relative degree of δ is assumed.

Substituting Ke for v in the right hand side of (7) and
then solving for u(t) we obtain, for each time t, a set of
feasible inputs, U(t), defined by

U(t) =
{

u ∈ U |

m
∑

i=1

Θ1i(t)
TAδ−1

i Biui = y(δ)r (t)

−

m
∑

i=1

(

Θ1i(t)
TAδ

izi(t) − ϕ
(δ)
i (t) −Qi(zi(t))

)

+ Ke(zi(t), t)
}

, (8)

which guarantees tracking of the reference, yr(t).

In summary, if the optimal control problem given by
(3) is to be solved with the additional constraint of
reference tracking one needs to replace the input set U
by the time varying U(t).

To obtain a solution which reflects the ratio of each
input system in the optimal input strategy, we introduce
a new parameter,

α = (α1, α2, ..., αm), αi ≥ 0,

m
∑

i=1

αi = 1.

It is then possible to reformulate the problem in (3)
such that the requirement u ∈ U(t) is included in the
dynamics. That is, if we use the identity

ui(t) =
αig(z(t), t)

Θ1i(t)TA
δ−1
i Bi

,

where

g(z, t) = y(δ)r (t) −

m
∑

i=1

(

Θ1i(t)
TAδ

izi − ϕ
(δ)
i (t)

−Qi(zi)
)

+ Ke(z, t),



and consider α as a new input, we obtain the following
maximization problem

max
α∈Ω(t)

∫ T

0

f(z, t)dt

subject to ż(t) = Az(t) + BΥ(α)G(z(t), t),

(9)

where

Ω(t) =
{

α ∈ R
m
+ |

m
∑

i=1

αi = 1,

[

g(z(t), t)
(

Θ1∗(t)TAδ−1B
)−1

α
]

∈ U
}

Υ(α) =diag(α1, α2, ..., αm),

G(z, t) =Ḡg(z, t), Ḡ =













1

Θ11A
δ−1

1
B1

1

Θ12A
δ−1

2
B2

...
1

Θ1mA
δ−1

m Bm













,

which is equivalent to problem (3) with reference tracking
included. Note that α has a physical interpretation of a
mixing signal which determines the ratio of the output
delivered by each input system.

B. Maximum Principle

In this section Pontryagin’s maximum principle is
applied to (9) and a optimal control strategy, α(t), is
devised.

The Hamiltonian for the problem is given by

H(z,α,λ, t) = f(z, t) + λT (Az + BΥ(α)G(z, t)),
(10)

which can be rewritten, using the structure of the dy-
namical system and the objective function, as

H(z,α,λ, t) =

m
∑

i=1

Hi(zi, αi,λi, t),

where

Hi(zi, αi,λi, t) = fi(zi, t) + λT
i (Aizi + BiαiGi(zi, t)),

with

fi(zi, t) =p(t)Ty
∗i(zi, t) − qiCizi,

y
∗i(zi, t) = Θ̃

T

i (t)zi + ϕi(t),

Θ̃i(t) = (Θ1i(t), ...,Θki(t)),

ϕ̃i = (ϕ1i(t), ...,ϕki(t)).

Note that y
∗i(zi, t) =

∑k
j=1 yji(zi, t) by (2).

Thus the adjoint equation for the i’th input system is

λ̇i(t) = −
∂Hi(zi(t), αi(t),λi(t), t)

∂zi

=CT
i qi − Θ̃i(t)p(t) −AT

i λi(t)

−
∂g(zi(t), t)

∂zi

ḠiαiB
T
i λi(t) (11)

with the matrices previously defined.
Now assume that α∗(t) solves (9) and let z∗(t) be the

associated optimal state obtained by solving the dynami-
cal system with the initial condition z0. The Pontryagin’s
maximum principle then yields the following point-wise
maximization of (10)

H(z∗(t),α∗(t),λ(t), t) = max
α∈Ω(t)

H(z∗(t),α,λ(t), t)

=f(z∗(t), t) + λ(t)TAz∗(t)

+ max
α∈Ω(t)

g(z∗(t), t)

m
∑

i=1

λi(t)
TBiαiḠi,

(12)

where λi(t) is the solution to (11) fulfilling the transver-
sality condition λi(T ) = 0. Hence the optimal input is
located at the boundary of the input set Ω(t) as this
is maximization of a linear problem. Note that α∗(t) is
not dependent on g(z, t) and therefore not the reference
signal. Thus the optimal fuel mixture can be found if
Θji(t), p(t), sign(g(z∗(t), t)), and the system matrices
are known.

IV. Result on Power Plant Scenario

A power plant example which uses the result from
above will be presented in this section. The power plant
is a coal fired plant which is augmented with gas system,
i.e., at first the plant has one input system which is
then expanded to two input systems. Furthermore, the
power plant has two outputs which yield an income of
the plant. These are efficiency and controllability, and
in short they represent the instantaneous production of
electricity and the ability to change production to fit the
current demand for electricity, respectively (see [6] for
further details on the different outputs).

The dynamical system of the two input systems are
captured by the following transfer function

Hi(s) =
1

(τis + 1)3

where τ1 = 90 and τ2 = 60, i.e., the gas system, H2, is
faster than the coal system, H1.

The objective function in this case can be written as

f(z, t) = p1(t)

2
∑

i=1

y1i(z, t) + p2(t)

2
∑

i=1

y2i(z, t) − qTCz,

where p1(t) and p2(t) are price of electricity and con-
trollability, which a known 24 hours into the future, are
extracted from Nordpool, which is a energy marketplace
for Sweden, Denmark and Norway.

The power plant functions yji can be expressed as

y11(z1) = Q1z1 + b1,

y12(z2) = Q2z2 + b2,

y21(z1, t) = ξ1(t)Q1z1 + ξ1(t)b1,

y21(z2, t) = ξ2(t)Q2z2 + ξ2(t)b2,



where zi is the state of input system i and

Q1 = (10.77, 0, 0), Q2 = (18.87, 0, 0),

b1 = −1.76, b2 = 1.85,

ξ1(t) =











0 yr(t) ∈ S1

0.267 yr(t) ∈ S2

0 yr(t) ∈ S3

, ξ2(t) =











0 yr(t) ∈ S1

0.534 yr(t) ∈ S2

0 yr(t) ∈ S3

,

with

S1 = {s ∈ R|0 ≤ s ≤ 200} ,

S2 = {s ∈ R|200 < s < 360} , and

S3 = {s ∈ R|360 ≤ s ≤ 400}

being different operating region of the power plant
where the controllability output has different models.
The quantities in the above equations are obtained from
measurement data and system data provided by DONG
Energy (see [7]–[9], [13] for further details).

The reference to be tracked by y1 is depicted in
Figure 2, where the real data is the solid curve and the
approximation used in this work is the dashed curve.
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Fig. 2. Production reference signal during 24 hours - solid graph
is real data and dashed graph is approximation used in this work.

Figure 3 depicts the solution of the adjoint equation,
the dashed graphs are for input system 1 and the solid
graphs are for input system 2.

By using the adjoint variable to solve (12) the optimal
fuel configuration is computed and α1(t), which is the
ratio of the mixed fuel consisting of coal, is depicted
in Figure 4. As seen in the figure coal is used most of
the day, however, during some periods in the morning
and evening gas is used. During the middle of the day
predictions of the demand for electricity is rather good
and therefore the value of controllability is low. In the
morning and evening the price of controllability is high
and therefore, the gas is in use. The reason is that gas
system is easier to control than coal and it, therefore,
allows for a larger controllability output. The fuel usage
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1
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Fig. 3. Solution to the adjoint equation for the power plant
example. The dashed graphs are for input system 1 and the solid
graphs illustrates the trajectory of the adjoint variable for input
system 2.
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Fig. 4. The optimal fuel configuration illustrated by the graph of
α1(t), i.e., the ratio of the fuel mixture consisting of coal.

strategy from above have been implemented in simula-
tions and the profit of the plant during 24 hours has been
calculated. This is illustrated in Figure 5, both for the
plant using a mixture of fuels, and for the plant using
only coal. The growth of profit is negative most of the
morning until 10:00 with the exception of around 7:00
when gas is used shortly (here the profit of the two fuel
configurations start to deviate). The negative growth of
profit results from the price of electricity as it is lower
than the cost of operating the plant at the given reference
production. At the end of the day the plant using a
mixture of fuels has a profit, which is approximately 17%
larger than the profit of the plant using only coal.

The tracking error of the two configurations are shown
in Figure 6 and they are indeed identical. As seen in the
figure both the plant using only coal and the plant using
a mixture of fuels track the reference equally well.
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Fig. 5. Accumulated profit of the power plant during 24 hours
of operation. The solid graph is the profit for the plant when both
coal and gas is used and the dash graph is profit when only coal is
present.

V. Discussion

In this work the Pontryagin maximum principle has
been applied to a problem dealing with profit maximiza-
tion of a plant capable of using multiple input systems to
generate some commodities. An additional constraint of
tracking a reference with one of the outputs is included
and the optimal mixing of the different input systems has
been found. The optimal mixing signal does not depend
on the reference signal, and thus optimal operation of the
plant can be ensured if only the system matrices for the
input systems and performance specification are known.
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