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In this work, we explore the properties and shadows of spin-induced scalarized black holes, as well as
investigate how a Ricci coupling influences them. Our findings reveal significant deviations from the Kerr
metric in terms of the location and geodesic frequencies of the innermost stable circular orbit and light ring,
with the former exhibiting more pronounced disparities. The shadows of scalarized black holes exhibit
relatively minor deviations when compared to those of Kerr black holes with the same mass and spin.
Overall, the presence of a Ricci coupling is observed to mitigate deviations from the Kerr metric.
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I. INTRODUCTION

In recent years, there has been significant interest in
modified theories of gravity exhibiting black hole sponta-
neous scalarization [1–3] (see Ref. [4] for a recent review).
They align with general relativity (GR) in the weak-field
regime, where most gravity tests have so far been con-
ducted [5], while also permitting substantial deviations
in the strong-gravity regime. These scenarios challenge
the Kerr hypothesis [6], suggesting that, in certain regimes,
astrophysical black holes may not be described by the
Kerr metric. Black hole spontaneous scalarization is often
studied in scalar-Gauss-Bonnet gravity, where coupling a
real scalar field ϕ to the Gauss-Bonnet invariant, G ¼
R2 − 4RμνRμν þ RμναβRμναβ, induces a tachyonic instability
around Kerr black holes under certain conditions. This
coupling keeps the equations of motion at second order and
evades no-hair theorems [2] (see also [7,8] for reviews),
thus allowing the unstable black hole to scalarize into a new
stationary, non-Kerr geometry.
In the realm of scalar-Gauss-Bonnet theories, black hole

scalarization takes on two distinct forms. When the Gauss-
Bonnet coupling constant α is positive, we encounter
“curvature-induced scalarization” [1,2,9,10]. In this case,

the tachyonic instability is triggered by sufficiently high
curvatures near the horizon. It is more pronounced in
nonspinning black holes because the Gauss-Bonnet invari-
ant is sign definite for the Schwarzschild metric, while it
can become zero and change sign outside the horizon for
Kerr black holes with spins J=M2 ≡ j ≥ 0.5. Hence, close
to the black hole’s horizon, it can contribute positively to
the scalar’s effective squared mass, counteracting the
tachyonic behavior. When the coupling α is negative,
Kerr black holes with spins j ≥ 0.5 become tachyonically
unstable and scalarize in a process known as “spin-induced
scalarization” [3,11–15].
The onset of scalarization is described well as a linear

tachyonic instability and, hence, only interactions that are
quadratic in the scalar contribute to it [16]. Nonetheless, the
instability is quenched by nonlinearity, and hence the pro-
perties of its end point—the scalarized black hole—depend
crucially on nonlinear interactions of the scalar [17–19].
This means that additional couplings, which might not
contribute to the theory linearized around a GR black hole,
might still determine the properties of scalarized black
holes. A characteristic example is a coupling to the Ricci
scalar [19].
We are motivated to incorporate such a coupling by

several factors. First, one would expect it to be present
from an effective field theory perspective as a lower-order
coupling to curvature (in both derivatives and mass
dimensions). Second, it plays a crucial role in making
scalarization compatible with cosmological observations, by
making GR a late-Universe attractor [20]. Third, it improves
the stability of scalarized black holes and mitigates the loss
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of hyperbolicity in radial perturbations [21]. Its positive
effect on well posedness at nonlinear level has also been
demonstrated in the case of spherical collapse [22]. Finally, it
can inhibit scalarization in neutron stars [23], thereby
alleviating potential strong constraints [24].
While the effect of the Ricci coupling on the charge and

properties of spherical black holes that undergo curvature-
induced scalarization is fairly well understood [19,21,22],
its effect on black holes that are expected to develop hair
through spin-induced scalarization is unexplored. This is
the case we want to study here. We will focus on a theory in
which a scalar exhibits quadratic couplings to both the
Gauss-Bonnet invariant and the Ricci scalar. Although this
is not a complete effective field theory, these two coupling
are the ones that break shift symmetry via coupling to
curvature and are expected to have important contributions
for scalarized black holes. Reflection symmetry ϕ → −ϕ
can be invoked to remove the linear coupling of the scalar
with curvature.
Our aim is to explore how spin-induced scalarization can

affect observables, such as the scalar charge and black hole
shadows, for black holes of different masses and to uncover
whether the Ricci coupling strengthens or suppresses
deviations from the Kerr metric. To this end we generate
numerical solutions to the field equations that describe
rapidly spinning, scalarized black holes to high precision.
We determine the properties and features of these solutions,
including the scalar charge, the innermost stable circular
orbit (ISCO), the photon ring, and the shadow, and explore
how they are affected by the size of the Ricci coupling and
the size of the black holes with respect to the characteristic
length scale associated with the Gauss-Bonnet coupling.

II. THEORETICAL SETUP

The theory under consideration in this work is defined by
the following action:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − ð∂ϕÞ2 þ ϕ2

�
α

8
G −

β

2
R

��
; ð1Þ

where α has dimensions of length squared, β is dimension-
less, and we work in units c ¼ G ¼ 1. Motivated by the
results of Ref. [20], we take β ≥ 0, because this sign
ensures that GR solutions are cosmological attractors. The
field equations resulting from varying the action in Eq. (1)
with respect to the metric gμν and the scalar field ϕ are

EGμν ¼ ∂μϕ∂νϕ −
1

2
gμνð∂ϕÞ2 þ

α

2
�R�

μανβ∇α∇βϕ2

þ β

2
½Gμν þ gμν□ −∇μ∇ν�ϕ2; ð2Þ

and

□ϕ ¼
�
β

2
R −

α

8
G
�
ϕ; ð3Þ

respectively, where �R�
μανβ denotes the double-dual of the

Riemann tensor.
Metrics that are solutions to Einstein’s equations in

vacuum together with ϕ ¼ 0 are admissible solutions to
Eqs. (2) and (3). However, these solutions are not neces-
sarily stable. Examining the scalar field equation (3), we
can discern that the combination β

2
R − α

8
G effectively acts

as a squared mass term for the scalar field ϕ and its
perturbations. As we are interested purely in spin-induced
scalarization, we take α to be negative from this point
onward. Then, scalar perturbations around a Kerr black
hole tend to become tachyonic when the black hole’s spin
exceeds a certain threshold, specifically, j ≥ 0.5 [3]. This
occurs because the Gauss-Bonnet invariant of the Kerr
geometry no longer maintains a definite sign for high
enough spins and the combination −αG, entering the
effective squared mass for the scalar, becomes negative
in certain regions close to the horizon, while R ¼ 0. As
demonstrated in Refs. [11,12], this scenario gives rise to
nontrivial scalarized black holes when the coupling con-
stant α is sufficiently negative. In particular, Ref. [11]
considered a quadratic exponential coupling of the scalar to
the Gauss-Bonnet invariant, while Ref. [12] considered a
simple quadratic coupling, as we do in this work. In both
cases, scalarized black holes were observed to be entropi-
cally favored over Kerr black holes with the same mass
and spin.

III. NUMERICAL PROCEDURE

To construct the stationary and axially symmetric black
hole solutions to the field equations (2) and (3), we
will follow the approach of Ref. [25], using a publicly
available code developed by one of us [26]. This code and
approach have been previously used with success, e.g., in
Refs. [25,27–31]. These solutions possess two commuting
Killing vector fields, ξ ¼ ∂t and η ¼ ∂φ, in an adapted
coordinate system. We assume that the metric is circular,
such that an ansatz in terms of four free, dimensionless
functions f, g, h,W of r, θ in quasi-isotropic coordinates is
adequate [32]

ds2 ¼ −f
�
1 −

rH
r

�
2

dt2 þ gh
f
ðdr2 þ r2dθ2Þ;

þ g
f
r2sin2 θ

�
dφ −

WrH
r2

dt

�
2

: ð4Þ

Here, rH is the coordinate location of the event horizon. In
our numerical setup, we employ the compactified radial
coordinate x ¼ 1–2rH=r, mapping the interval ½rH;þ∞Þ to
½−1; 1�. We will consider only the case of an even parity
scalar field, ϕðr; θ − πÞ ¼ ϕðr; θÞ. Therefore all functions
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have definite (even) parity with respect to θ ¼ π=2, and we
consider only the range θ∈ ½0; π=2� in our numerical setup.
We employ boundary conditions as follows: Regularity,

axial symmetry, and parity considerations imply ∂θf ¼
∂θg ¼ ∂θh ¼ ∂θW ¼ ∂θϕ ¼ 0, at θ ¼ 0, π=2. At the hori-
zon (x ¼ −1) our functions obey f − 2∂xf ¼ gþ 2∂xg ¼
∂xh ¼ W − rHΩH ¼ ∂xϕ ¼ 0, where ΩH is the angular
velocity of the horizon. Asymptotic flatness is imposed by
the following boundary conditions at x ¼ 1: f ¼ g ¼ h ¼
1, and W ¼ ϕ ¼ 0. The angular momentum J and the
Arnowitt-Deser-Misner (ADM) mass M can be extracted
from the asymptotic falloffs of the metric functions:
gtt∼−1þ2M=rþOðr−2Þ;gφt∼2Jsin2θ=r2þOðr−3Þ. The
scalar decays as ϕ ∼Qs=rþOðr−2Þ, where Qs is the
scalar charge of the solution. Again, we define j≡ J=M2.
To solve the partial differential equations resulting from

the field equations, we have used the code described in
Ref. [25], which employs a pseudospectral method together
with the Newton-Raphson root-finding algorithm to solve
the nonlinear system (see also Ref. [33]). We expand each
of the functions in a spectral series with resolution Nx and
Nθ in the radial and angular coordinates x and θ, respec-
tively. The spectral series we use for each of the functions
F ðkÞ ¼ ff; g; h;W;ϕg is given by

F ðkÞ ¼
XNx−1

i¼0

XNθ−1

j¼0

cðkÞij TiðxÞ cos ð2jθÞ; ð5Þ

where TiðxÞ denotes the ith Chebyshev polynomial, and

cðkÞij are the spectral coefficients. Note that the angular
boundary conditions are automatically satisfied with this
spectral expansion and need not be explicitly imposed in
the numerical method.
In our setup, we have three input parameters:

ðrH;ΩH;αÞ. We use a resolution of Nx × Nθ ¼ 40 × 8 in
most cases and a higher resolution Nx × Nθ ¼ 42 × 12 for
very large spins. We can estimate the numerical error in our
solutions using a Smarr-type relation given below in
Eq. (8). The estimated error is typically less than
Oð10−8Þ, although errors increase for large spins j and/
or coupling strength. We have only accepted an output of
our solver if the error as estimated by the Smarr-type
relation is Oð10−5Þ or less.

IV. RESULTS

A. Physical properties

In this section we examine some physical properties of
the scalarized black holes, namely the scalar charge Qs,
Hawking temperature TH [34], event horizon area AH,
entropy S, and the location of the corotating light ring
and ISCO and respective geodesic frequencies. The
Hawking temperature TH [34] and event horizon area
AH are given by

TH ¼ 1

2πrH

fffiffiffiffiffi
gh

p ; AH ¼ 2πr2H

Z
π

0

dθ sin θ
g

ffiffiffi
h

p

f
; ð6Þ

where the above expressions are to be evaluated at the
horizon. The entropy of the black hole does not follow the
Bekenstein-Hawking relation, but can be expressed as an
integral over the horizon

S ¼ 1

4

Z
H
d2x

ffiffiffi
γ

p �
1 −

β

2
ϕ2 þ α

4
ϕ2R̃

�
; ð7Þ

where γ is the determinant of the induced metric on the
horizon and R̃ its Ricci scalar. For stationary and axially
symmetric black hole solutions of the theory in Eq. (1), the
Smarr-type relation is [10,25]

M ¼ 2THSþ 2ΩHJ þ
1

8π

Z
d3x

ffiffiffiffiffiffi
−g

p
ϕ

�
□ −

β

2
R

�
ϕ: ð8Þ

In Fig. 1, the domain of existence for spin-induced
scalarized black holes without a Ricci coupling (β ¼ 0)
is depicted in the ð−α=M2; jÞ plane. Various relevant
physical properties are represented as a heat map. The
plots display the scalar charge Qs, entropy S, Hawking
temperature TH, and the horizon area AH of these black
holes. In the insets within these plots, a comparative
analysis is presented between each of these properties
for scalarized black holes and Kerr black holes, when
nonuniqueness holds. It is worth noting that studies of these
four properties in related models have previously been
conducted in Refs. [11,12] and provide an additional,
independent validation of our numerical results. In specific
regions of the parameter space, we have identified solu-
tions with spins reaching up to j ≈ 1.04. In contrast,
Refs. [11,12] have documented solutions with maximum
spins of approximately j ≈ 1.01. We suspect our numerical
method was able to find these highly spinning solutions due
to the use of a spectral method.1

In Fig. 2, the plots pertain to the marginally stable
circular orbits for both massive and massless particles, the
ISCO and the light rings. The ISCO represents the smallest
possible radius for a stable circular orbit of massive
particles and is often considered as the inner boundary
of an accretion disk encircling a black hole. Charged
particles in accelerated motion around the black hole emit
synchrotron radiation, and the characteristics of this radi-
ation are associated with the geodesic frequencies at the
ISCO. Consequently, by examining the ISCO through

1It is a critical open question whether astrophysical black holes
can access this high-spin regime. In GR, dynamical limits on the
spin lie below j ¼ 1, but this may well be different in modified
theories. If this is the case, observational constraints on black hole
spins [35] may become of interest in probing scalarized black
holes.
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accretion disks, it is possible to deduce various physical
attributes of an astrophysical black hole [36]. Light rings
are circular null geodesics, usually unstable, where light
can revolve around a black hole before getting dispersed
toward infinity or entering the event horizon. From an
observational perspective, these light rings hold signifi-
cance in observations conducted by the Event Horizon
Telescope Collaboration [37–40], given their close associ-
ation with the black hole’s shadow. The angular frequency
at the light ring is related to the timescale of the black hole’s
response when subjected to perturbations. The physical
quantities related to the light rings and the ISCO, namely
the location and geodesic frequency, were computed in this
work following Ref. [25].
The first column plots in Fig. 2 compare the perimetral

radius R ¼ ffiffiffiffiffiffiffigφφ
p jθ¼π=2 of the corotating ISCO and light

ring to that of a Kerr black hole. The perimetral radiusR is
a geometrically meaningful coordinate defined such that
the circumference of a circle along the equatorial plane
is 2πR. The comparisons are made in the region of
nonuniqueness. Differences from the Kerr metric increase
with higher spin and coupling strength. The maximum
difference in the perimetral location of the light ring is
RLR=RKerr

LR − 1 ∼Oð5%Þ, while the maximum difference
for the ISCO perimetral location exceeds RISCO=RKerr

ISCO−
1 ∼Oð25%Þ. The second column of plots in Fig. 2 presents

a comparison of the geodesic frequencies ω between the
corotating ISCO and light ring of scalarized black
holes and those of a Kerr black hole. The most signifi-
cant difference is approximately 1 − ωLR=ωKerr

LR ∼Oð25%Þ,
while the deviations for the ISCO are roughly 1 − ωISCO=
ωKerr
ISCO ∼Oð50%Þ. Generically, scalarized black holes are

less compact than Kerr black holes of the same ADM mass.
This is manifested by the event horizon having larger
area and the ISCO and light rings lying at larger radii
(and the corresponding frequencies being lower, i.e., the
timescales larger).
We now examine how a Ricci coupling influences

the properties of scalarized black holes. Our focus on a
Ricci coupling stems from its potential to scalarize larger
black holes with respect to conventional black hole
scalarization models, without conflicting with observatio-
nal data. This is achieved by inhibiting scalarization in
neutron stars [23], thereby complementing its other advan-
tageous features [20–22]. To demonstrate our findings,
we present a series of scalarized black holes with a
relatively high spin, specifically j ¼ 0.97, for various
values of β ¼ f0; 2; 25; 50g, as shown in Fig. 3. Our
qualitative observations hold true for other spin values
that we have examined. At larger Ricci couplings physical
deviations from the Kerr geometry are smaller, and the
scalar charge is suppressed.

FIG. 1. The plot depicts the domain of existence for scalarized black hole solutions (β ¼ 0) in the ð−α=M2; jÞ plane. Various quantities
of interest are displayed as a heat map, organized from left to right as follows: scalar chargeQs, entropy S (top row); horizon temperature
TH , horizon area AH (bottom row). These quantities are properly normalized relative to the black hole’s mass. In general, deviations
from the Kerr metric are larger for larger spins and coupling strengths.
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Heuristically, a large Ricci coupling in the action
requires solutions to have smaller Ricci curvature and thus
be closer to the GR vacuum solution with vanishing Ricci
curvature, i.e., a Kerr black hole. However, there is an
exception to this general trend concerning the event horizon
area AH. For values of β around ∼Oð1Þ, we actually
observe greater deviations compared to Kerr. This pattern
shifts when even higher values of the Ricci coupling are
taken into account, as deviations in AH then start to
diminish. Our hypothesis is that the rise in AH is a response
to offset the negative contribution introduced by the Ricci
coupling on the entropy of scalarized black holes, as
indicated in Eq. (7), meaning that the entropy of a
scalarized black hole exceeds that of a Kerr black hole
with equivalent mass and spin. Also, higher values of the
Ricci coupling widen the domain of existence of solutions
to higher values of the Gauss-Bonnet coupling α.

B. Shadows

Lastly, we explore shadows cast by spin-induced sca-
larized black holes. Before we present our results a few
comments on the size of α are due. One can scale the

coordinates by the black hole mass to render the equations
dimensionless (in units where G ¼ c ¼ 1). α is then
replaced with its dimensionless version α=M2 (β is dimen-
sionless). This is the approach we have followed in the
previous section, and hence our results apply to any black
hole mass. It is clear from these results, however, that
highly spinning scalarized black holes of appreciable
charge only exist when α=M2 is close to 1. For much
smaller values, the tachyonic instability would not be
triggered unless rotation is unrealistically close to the
maximal value [3] and, for larger values, scalarized black
holes only exist for low spins and carry small charges.
Hence, for supermassive black holes, for which shadow
observations are possible through very-long-baseline-
interferometry (VLBI) experiments [37–41], one would
need

ffiffiffiffiffiffijαjp ≳Oð105M⊙Þ.
There are two obvious issues with such a large α. First,

there is the effect it would have on neutron stars, which can
exhibit a tachyonic instability for both signs of α [2,42]. A
value of α that would allow for supermassive black hole
scalarization could either lead to neutron star scalarization
levels that are incompatible with observations [23,24] or

FIG. 2. Domain of existence for scalarized black hole solutions (β ¼ 0) in the ð−α=M2; jÞ plane. Various quantities of interest are
displayed as a heat map, organized from left to right as follows: fractional deviation from Kerr in the location of the light ring,
RLR=RKerr

LR − 1, fractional deviation from Kerr in the geodesic frequency at the light ring, 1 − ωLR=ωKerr
LR (top row); fractional deviation

from Kerr in the location of the ISCO, RISCO=RKerr
ISCO − 1, and fractional deviation from Kerr in the geodesic frequency at the ISCO,

1 − ωISCO=ωKerr
ISCO (bottom row). These quantities are properly normalized relative to the black hole’s mass. In general, deviations from

the Kerr metric are larger for larger spins and coupling strengths. Both the ISCO and light ring of scalarized black holes are positioned
farther from the black hole’s horizon compared to a Kerr black hole, and their geodesic frequencies are correspondingly lower. The
disparities are more pronounced in the case of the ISCO.

SHADOWS AND PROPERTIES OF SPIN-INDUCED SCALARIZED … PHYS. REV. D 109, 104033 (2024)

104033-5



simply render the GR solutions unstable without a scalar-
ized counterpart [23]. The second issue is that black holes
have a minimum size in the model we are considering. A
large αwould mean that the minimum size of black holes is
far larger than a few solar masses, requiring the rather
speculative assumption that gravitational-wave signals
observed by the LIGO/VIRGO/KAGRA Collaboration
are in fact generated by the mergers of some exotic compact
objects. The inclusion of the Ricci coupling can in principle
quench neutron star scalarization and reduce the minimum
mass of black holes, but making both effects strong enough
for such large values of α is likely to require large values of
β as well. The results of the previous section (as well as
those of [19]) show that this would in turn suppress the
scalar charge for black holes.
With the above in mind, we study shadows for three

distinct reasons: first, to demonstrate explicitly that large
values of β make shadows virtually indistinguishable
from those of Kerr black holes; second, because one can
think of shadows as theoretical probes of the geometry
irrespective of their mass; and third, because there might be
scalarization models in which supermassive black holes get
selectively scalarized, without neutron stars exhibiting a
tachyonic instability. An example of such a model for
curvature-induced scalarization was recently presented
in Ref. [31].

To generate simulated images of these black holes, we
employ the publicly available code FOORT [43,44] for
the backward tracing of null geodesics. In our setup, we
positioned an observer off center on the equatorial plane,
θ ¼ π=2, because at this inclination we anticipate the
largest deviations from the Kerr geometry. The observer
is situated at a distance of r ¼ 1000M, with a 15M × 15M
view screen. We tracked a total of 1024 × 1024 trajectories,
following them until they either vanish into the horizon
or escape beyond the celestial sphere, which is also
positioned at r ¼ 1000M. Additionally, we monitor the
number of times a geodesic crosses the equatorial plane to
construct an emission profile, following the model outlined
in Refs. [45,46]. This approach enables us to replicate
realistic images.2

A proper connection to observational data would require
a simulated observation and a fit to the simulated data in the
Fourier plane of the image, while marginalizing over disk
models. Here, we instead only estimate whether or not such
a study would be likely to result in detectable deviations
from the Kerr geometry, given current observational capa-
bilities. To do so, we will employ a straightforward measure
of the size of the black hole shadow: the areal radius,
denoted as R. The areal radius is determined as the radius
of a circle with the same area A as the shadow, math-
ematically expressed as R ¼ ffiffiffiffiffiffiffiffiffi

A=π
p

. This parameter is
directly linked to the measured angular size of the black
hole shadow and is well defined even for noncircular
shadows. Using the areal radius, we introduce two dimen-
sionless quantities to characterize the shadow of a scalar-
ized black hole: the Kerr shadow deviation Δ and the
Schwarzschild shadow deviation δ. These are defined as

Δ ¼ Rscalarized

RKerr
− 1; δ ¼ Rscalarized

RSchwarzschild
− 1: ð9Þ

where Rscalarized is the areal radius of the scalarized black
hole shadow, RKerr is the areal radius for a Kerr black hole
with the same mass and spin, and RSchwarzschild ¼ 3

ffiffiffi
3

p
M.

The Kerr deviation Δ compares the shadow radius of a
scalarized black hole to the shadow of a Kerr black hole
with the same mass and spin, and therefore it is only
defined for spins j ≤ 1. The Schwarzschild deviation δ is
defined for any spin value. In particular, from current
observations, we have [37–40,47]

−18%≲ δðM87Þ≲ 16% ð1σÞ;
−12.5%≲ δðSgr A�Þ≲ 0.5% ð1σÞ: ð10Þ

In Fig. 4, we display simulated images of scalarized
black holes with j ¼ 1 and no Ricci coupling, comparing

FIG. 3. Impact of a Ricci coupling on physical quantities of
interest for scalarized black holes with j ¼ 0.97. These are,
organized from top to bottom as follows: scalar charge Qs,
entropy S, location of the ISCORISCO, geodesic frequency at the
ISCO ωISCO (left column); horizon temperature TH , horizon area
AH , location of the light ring RLR, and geodesic frequency at the
light ring ωISCO (right column).

2We have used the parameters μ ¼ 1, γ ¼ −1.5, σ ¼ 3,
ξ ¼ βr ¼ βϕ ¼ 1.
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them with those of a Kerr black hole. We observe that as we
increase the coupling strength, the shadow boundary of the
scalarized black hole gradually transitions from the char-
acteristic “D shape” associated with extremal Kerr black
holes to a more circular form. However, in terms of shadow
area, the differences remain relatively minor, as illustrated

FIG. 4. Simulated images of black holes with j ¼ 1, for the theory with β ¼ 0, using the emission model of Refs. [45,46]. From left to
right: a Kerr black hole, scalarized black holes with −α=M2 ≈ 3.69 and −α=M2 ≈ 11.47, and a comparison of their shadow boundaries.

FIG. 5. Shadow deviation parameters Δ and δ for a set of highly
spinning black holes in theories with different values of Ricci
coupling. The gray points refer to single overspinning solutions.
The error bands include an estimated numerical error of �0.05%.

FIG. 6. Impact of the Ricci coupling on the shadow boundary
and photon rings (n ¼ 1 and n ¼ 2) of scalarized black holes
with j ¼ 0.97 and −α=M2 ≈ 13.
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in Fig. 5. For all the examined shadows, even those
corresponding to black holes with spins exceeding
j > 1, they fall well within the boundaries in Eq. (10).
The largest deviation in δ is of the order of approxi-
mately Oð−4%Þ.
We have further investigated the influence of a Ricci

coupling on the shadows of scalarized black holes. We find
the same trend we observed previously in other physical
parameters, which is that, as the Ricci coupling increases,
the shadow becomes progressively more similar to that of a
Kerr black hole. This trend is visually depicted in both
Figs. 5 and 6, where we focus on black holes with a spin of
j ¼ 0.97. In these figures, it becomes evident that, for
β ¼ 50, the distinctions between the shadow boundaries of
scalarized black holes and Kerr black holes are practically
negligible. Similar conclusions hold for other observables,
such as the photon rings as shown in Fig. 6 (bottom). It is
worth commenting on photon rings, given that they are
observables that are rather clean probes of the spacetime
geometry and—unlike many other image features—less
contaminated by astrophysical effects. We find that a
scalarized black hole generically has a smaller separation
between subsequent photon rings than its Kerr counterpart,
cf. Fig. 6. If this is a generic feature, holding also, e.g., in
the model in [31], even higher resolution is required to
separate photon rings than in the case of the Kerr spacetime,
posing an added challenge for VLBI observations.

V. CONCLUSIONS

In this study, we have investigated spin-induced scala-
rization of black holes triggered by a quadratic coupling of
a scalar to the Gauss-Bonnet invariant. We have focused on
how properties of such black holes, such as entropy,
horizon area, temperature, and observables, such as the
ISCO, and shadows deviate from their Kerr black hole
counterparts for different values of the couplings. We have
also explored for the first time in the context of spin-
induced scalarization how a coupling to the Ricci scalar
affects all of the above.
In the absence of a Ricci coupling, we find substantial

deviations from the Kerr metric in both physical properties
and observables. For moderate values of the Ricci coupling,
this behavior persists, but for larger values of this coupling,
deviations become suppressed significantly. The scalar
charge tends to be a good probe for deviations in other
observables. Our results are in line with the results of [19]
for curvature-induced scalarization and the effect of the
Ricci coupling on the charge.

The Ricci coupling is expected to be present from
an effective field theory perspective as a lower-order
coupling to curvature (in both derivatives and mass
dimensions). It is beneficial from a phenomenological
perspective as well, by making the scalarization compat-
ible with cosmology [20] and by improving stability [21]
and hyperbolicity [22]. It also quenches scalarization of
neutron stars [23], which would lead to strong con-
straints. Only moderate values of the Ricci coupling
are needed for all of the above in models that lead to
spin-induced scalarization of black holes of a few solar
masses. However, spin-induced scalarization of super-
massive black holes requires orders of magnitude larger
Gauss-Bonnet coupling. This would in turn source strong
tachyonic instabilities for neutron stars and set a mini-
mum mass for black holes above the LIGO/VIRGO/
KAGRA mass range. A large Ricci coupling could
potentially mitigate these issues, but it would also
strongly suppress deviations from Kerr for all
observables.
Based on the above, in observationally viable scenarios

involving spin-induced scalarization from a quadratic
Gauss-Bonnet coupling, we anticipate that any shadow
deviations of scalarized black holes from the Kerr
metric are unlikely to be discernible in current and future
VLBI observations of supermassive black holes. A poten-
tial way out might be models in which supermassive
black holes are selectively scalarized, while solar mass
black holes and neutron stars are not. Such a model was
recently presented in Ref. [31] for curvature-induced
scalarization, and it would be interesting to study whether
similar models exist for the spin-induced case as well. It
would also be interesting to understand whether the
addition of further scalar-curvature couplings and/or scalar
potentials—potentially in a multifield extension of
Horndeski gravity—could alter these findings and allow
us to suppress scalarization in neutron stars, while not
suppressing the scalar charge of scalarized black holes.
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