
 

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental 
Biology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Application of deep learning for the analysis of stomata: A review of 

current methods and future directions 
 

Jonathon A. Gibbs1*, Alexandra J. Burgess1 

 

1Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham Sutton 

Bonington Campus, Loughborough, LE12 5RD, UK 

 

Corresponding author: Jonathon A. Gibbs Jonathon.gibbs1@nottingham.ac.uk 

Alexandra.burgess@nottingham.ac.uk  

 

Highlight 
This review discusses the application of deep learning approaches for the assessment of stomata, 

including variations in the used pipeline; from data collection to parameter extraction. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erae207/7666955 by guest on 16 M

ay 2024



 

 

Abstract 
Plant physiology and metabolism relies on the function of stomata, structures on the surface of 

above ground organs, which facilitate the exchange of gases with the atmosphere. The morphology 

of the guard cells and corresponding pore which make up the stomata, as well as the density 

(number per unit area) are critical in determining overall gas exchange capacity. These 

characteristics can be quantified visually from images captured using microscopes, traditionally 

relying on time-consuming manual analysis. However, deep learning (DL) models provide a 

promising route to increase the throughput and accuracy of plant phenotyping tasks, including 

stomatal analysis. Here we review the published literature on the application of DL for stomatal 

analysis. We discuss the variation in pipelines used; from data acquisition, pre-processing, DL 

architecture and output evaluation to post processing. We introduce the most common network 

structures, the plant species that have been studied, and the measurements that have been 

performed. Through this review, we hope to promote the use of DL methods for plant phenotyping 

tasks and highlight future requirements to optimise uptake; predominantly focusing on the sharing 

of datasets and generalisation of models as well as the caveats associated with utilising image data 

to infer physiological function. 
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Abbreviations 
CNN Convolutional Neural Network 
DL Deep learning 
DLA Deep Learning Aggregation 
FN False negative 
FP False positive 
FPN Feature Pyramid Network 
GANs Generative Adversarial Networks 
HOG Histogram of Gradients 
IoU Intersection over Union 
mAP Mean Average Precision 
ML Machine learning 
PA/ mPA Mean Pixel Accuracy 
R-CNN Region-based Convolutional Neural Network 
TN True negative 
TP True positive 
VGG Visual Geometry Group 
WUE Water Use Efficiency 
YOLO You Only Look Once 
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Introduction 
An increasing population and corresponding increasing demand for food is putting pressure on 

farmers and breeders to ensure future food security goals are met. This is exacerbated by climate 

change projections, which indicate increased warming and drying trends for the upcoming decades 

(IPCC, 2022). Crop yield largely depends on the cumulative rate of photosynthesis as well as the 

availability of water. Therefore, optimising both photosynthesis and water use efficiency (WUE), the 

balance between carbon gain and water lost, are key targets for crop improvement (Long et al., 

2006; Furbank et al., 2015; Condon, 2020). 

As gatekeepers between the plant and its environment,  stomata (singular “stoma”) play a pivotal 

role in determining physiological function and metabolism. Here, we refer to stomata as the 

combination of guard cells and the pore, regardless of whether they are ‘open’, where the swelling 

of guard cells increases the size of the pore, or ‘closed’, where guard cells shrink and pore area 

reduces (Figure 1). Although stomata occupy only 0.3-5% of the leaf epidermal surface, they account 

for up to 98% of gas exchange (Lawson and Blatt, 2014). The appearance of stomata varies across 

species, with guard cells that are dumbbell shaped in monocot grasses, to kidney shaped in the 

dicots. Guard cell morphometry and stomatal density (the number of stomata per unit area) are 

anatomical features that are usually defined during organ development and provide routes to 

altering plant metabolism (e.g. Franks et al., 2015). 

Stomatal traits can be measured using direct or indirect approaches (Beadle et al., 1985). The former 

generally encompasses image- based approaches, and enables the analysis of shape, size and 

orientation of stomata. These morphometric measures are important to support the analysis of 

photosynthesis which is limited by those traits. In comparison, indirect approaches, such as the use 

of porometers, infrared gas analysers or leaf temperature measurements, informs the function of 

stomata including conductance capacity or opening and closure dynamics (e.g. Ceciliato et al., 2019). 

For a full understanding of plant-environment interactions, a combination of both morphometry and 

functional assessment is required. 

The analysis of stomata is a long-standing research area (Joseph, 1805), nonetheless, as recently as 

2017 biologists had few tools to automatically analyse images containing stomata, instead relying on 

manual, labour intensive and error prone methods to extract features. With increases in the 

accessibility and affordability of computing power, recent years have seen a boom in the application 

of deep learning (DL) models (see Box 1) for plant physiological analysis, including the assessment of 

stomata (Thompson et al., 2017; Balacey et al., 2023). Various DL models have been proposed, 

permitting the rapid detection of stomata and thus providing a platform for automated high-

throughput analysis. Most commonly, particularly in the stomata literature, DL methods can be 

broadly categorized as; 1) object detection, which estimates localisation and class of an object within 

a given image, encapsulating it within a box, 2) semantic segmentation, which operates at pixel level 

classifying each individual pixel, for example whole stomatal complex, pore, guard cell or 

background.  (Zhao et al., 2019; Minaee et al., 2022). Semantic methods provide finer-grained 

information with respect to object detection by detecting object boundaries, therefore preserving 

morphology. However, these methods tend to be more computational expensive, require larger 

annotated datasets and is more sensitive to changes in environmental conditions. Additionally, 

though rarely seen in stomata literature, is 3) instance segmentation, which identifies the different 

instances of the same class at pixel level (Hafiz and Bhat, 2020). Ultimately, choosing between each 

of the model types depends on the required level of detail, for example counts and density would be 

more suitable for object detection, as opposed to finer details such as lengths and areas which 

require semantic segmentation.     
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With this paper, we review current publications which apply DL to the analysis of stomata. We 

discuss the different pipelines to obtain image data, common preprocessing steps, differences in the 

main network structures and the outputs, and post-processing steps that lead to stomatal trait 

measurement. We hope to provide an insight into available methods and applications as well as the 

future direction for DL-based analysis of stomatal traits. Through this review, we hope to encourage 

the uptake of deep learning for stomata analysis and facilitate the first step towards improved 

collaborative working and publication of a global dataset.  

Pipelines of stomata analysis 
Extracting stomata morphometry using DL can be broadly classified into four processes; data 

acquisition, pre-processing, deep learning and evaluation, and post-processing (Figure 2). Variation 

exists for each of these steps, with the most common methodologies discussed in more detail in the 

following sections.  

Data acquisition 
Image acquisition of stomata (Figure 2A,B) can be classified into two broad approaches: destructive 

and non-destructive methods. The former damages the leaf material impacting functionality or 

future measurements whilst the latter preserves the leaf in its current state. The choice of data 

acquisition depends upon numerous considerations including plant species, hardware access and 

study aim. Certain plant characteristics, such as thick wax layers, cuticle, or trichomes that protect 

the epidermal layer, may limit the visibility of stomata in some cases.  

The most common method to capture image data is using leaf impressions. Silicone, dental resin 

and/ or nail varnish can be used in isolation or combination to capture surface structure (Gitz and 

Baker, 2009). . Whilst these methods are most commonly cited in the literature, including for the 

training of DL models (see below), it is widely accepted that leaf impressions provide an accurate 

estimate of stomatal density, but permit considerable error when estimating pore or stomatal 

complex dimensions (Matthaeus et al., 2020). An alternative non-destructive approach is the use of 

handheld microscopes to directly image the plant surface in situ (Pathoumthong et al., 2023). If 

captured via video format, this permit the additional analysis of stomatal behaviour, such as 

dynamic changes in aperture size.  

Destructive methods can be used to maximise visibility of stomatal structure, and can help to 

overcome problems associated with artefacts in image data. This often relies on methods to clear 

the tissue of pigments and/ or enhance certain structures using stains. 

Pre-processing- image processing and data annotation 
Pre-processing of image data constitutes an optional step to improve image quality or data 

consistency prior to analysis. Pre-processing may include image processing methods such as 

contrast-limited adaptive histogram equalisation (CLAHE), noise reduction, or manual editing of data 

(Figure 2C).  

For DL application, a series of manual measurements or annotations must be made to obtain a 

ground truth for training. Annotations can be made using freely available software such as LabelImg 

(2018), which is popular for annotating bounding boxes, and PixelAnnotationTool (Bréhéret, 2017) 

for semantic segmentation. Whilst larger datasets are often the most desirable option, this is not 

always feasible and instead methods to increase the size of small datasets are often used. A 

common approach is to use augmentations, applying operations such as blur, flip and rotate to 

images (Gibbs et al., 2019, 2021). This usually occurs after annotation to save time. Such approaches 
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can aid to alleviate overfitting, where the DL model tries to entirely fit the training data, and so 

cannot be readily applied to new, unseen data. Additionally, Generative Adversarial Networks 

(GANs) can be used to generate artificial data, though this requires an initial set of images to train. 

Deep Learning 
Whilst an in-depth insight into each of the deep learning architectures is out of the scope of this 

paper, we do provide an overview of common networks and corresponding publications relevant to 

stomata in Table 1. All of these models take the form of convolution neural networks (CNNs; Box 1). 

These cover both object detection (e.g. AlexNet, YOLO, SSD, R3DET, VGG, R-CNN and MobileNet) and 

semantic segmentation methods (e.g. Mask R-CNN and UNet). 

For all DL models, annotated data is split into train and test data, commonly at a 4:1 ratio. The train 

data is used to train the selected network (Figure 2D; Table 1), whilst the test data is used to 

evaluate the performance of the network. The amount of data required will depend on the network 

selected, the variability of the data set and the number of features present per image. 

The performance of DL can be evaluated by a variety of methods, the most common of which are 

discussed in Box 2. For semantic segmentation, common evaluation metrics include Pixel Accuracy 

(PA) and mean Pixel Accuracy (mPA); F1 score, precision, recall, accuracy and Intersection over 

Union (IoU) apply to both semantic and object detection- based architectures; whilst mean Average 

Precision (mAP) applies only to object detection-based architectures. Whilst evaluation metrics 

provide a good indication of performance on the dataset in question, the same evaluation metrics 

from different networks are not comparable to each other unless the same dataset has been used. 

Similarly, the biological insight that can be obtained from a DL model relies on the accuracy or 

validity of the original data. For example, combining datasets collected using different data 

acquisition methods requires consideration of the potential errors associated with each method.  

Post-processing 
Post processing is performed on the output of the trained DL model. High throughput methods aim 

to automate the estimation stomata morphometry (Figure 3) through various post-processing steps 

these include operations such as ellipse fitting, level set methods, or contour extraction to attempt 

to fine tune the stomata, guard cell or pore perimeter. Alternatively, methods such as blob detection 

can be used for counting and estimating density. Additionally, calculations may be performed, for 

example estimating conductance (e.g. Gibbs et al., 2021), with the results output into a readable 

format. 

Published deep learning methods for the study of stomata 
A review of the literature indicates a total of 43 publications which employ deep learning methods to 

the assessment of stomata over a 6-year period (2017-2023), covering ~25 species, or phylogenetic 

groups, of plants (Table 2). The number of publications has steadily risen per year, with a peak in 

papers during 2021 (Figure 4).  These are diverse, encompassing DL approaches for object detection 

based on bounding boxes, sematic segmentation and/ or other custom outputs (Figure 5). 

Furthermore, the methods used to capture the initial datasets are diverse, although the majority of 

papers use nail varnish- based surface impressions (Table 3).  

Whilst many of the studies focussed on the task of counting stomata and estimating density, fewer 

extract morphological traits, and even less perform comprehensive measurements these traits 

(Table 4). Equally, despite a vast number of high-quality approaches to the detection and analysis of 

stomata, researchers have primarily focused on plant or species-specific implementations, with 
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relatively few studies (e.g. Andayani et al., 2020; Gibbs et al. 2021; Dey et al. 2023; Pathoumthong et 

al., 2023) combining datasets from multiple species.  

 

Object Detection is sufficient for counts and classification but provides limited 

information on stomatal morphometry 
You only look once (YOLO) networks are commonly chosen for object detection (i.e. the combination 

of localisation and classification) due to their efficiency and accuracy. Indeed, for stomata detection, 

YOLO is the most common architecture to be used (Table 1).  

YOLO is available in several versions, spanning the original network to the most recent YOLO-X; most 

of which have been applied, or adapted, to stomata (e.g. Casado-Garcia et al., 2020; Ren et al., 2021; 

Sultana et al., 2021; Yang et al., 2021; Dai et al., 2022; Zhang et al., 2022; Li et al., 2023). Example 

network adaptations include changes to the loss function (Ren et al., 2021); adjustments to the 

network backbone to increase specificity (Zhang et al., 2022); label smoothing to reduce overfitting 

and integration an attention mechanism, a layer to direct attention to specific parts of the data, to 

aid classification (Li et al., 2023). Evaluation metrics differ between studies, however the majority 

report average precision or accuracy values exceeding 93%. 

YOLO networks have been applied to a variety of different species including wheat (Triticum 

aestivum; Yang et al., 2021; Zhang et al., 2022), maize (Zea mays L.; Yang et al., 2021; Ren et al., 

2021), barley (Hordeum vulgare; Casado-García et al., 2020), beans (Casado-García et al., 2020; 

Sultana et al., 2021; Li et al., 2023) and black poplar (Dai et al., 2022). A comparison of three version 

of YOLO (v3, v4 and v5) applied to soybean (Glycine max) found that YOLOv5 was the most accurate 

but that YOLOv3 was the most time efficient, reflecting the common trade-off between time and 

accuracy for DL methods (Sultana et al., 2021). 

Whilst the majority of studies are specific to a single target plant species, LabelStoma (Casado-García 

et al., 2020) aims to provide a more generalised model, enabling augmentations and transfer 

learning for new datasets, thus reducing the number of new images required. Furthermore, their 

published tool aims to make DL methods more accessible for less technical users via  a user-friendly 

interface. 

An alternative to the YOLO networks are Region-based Convolutional Neural Network (R-CNN) 

architectures, which, instead, use a two-stage approach. Single stage detection offers more efficient 

processing making it more suitable for real-time detection, however for the case in stomata, real-

time processing speeds are generally not required. Cowling et al. (2021) applied a Faster R-CNN to 

African rice (Oryza glaberrima), achieving a comparable accuracy scores to the YOLO-based 

methods. Similarly, a Visual Geometry Group (VGG) is a standard Deep CNN which specialises in 

localisation and classification of objects, yield comparable accuracy when applied to stomatal 

analysis (Sakoda et al., 2019; Meeus et al., 2020; Aono et al., 2021). 

With advances in hardware and in DL development, lightweight architectures, i.e. those capable of 

running on devices with less computational power such as handheld devices, have been generated. 

Kwong et al. (2021) use MobileNetv1 to estimate stomatal density in Oil Palm (Elaeis guineensis) and 

utilise image splitting to reduce the memory requirements of the network.  Alternatively, Razzaq et 

al. (2021) combined MobileNetv2 with a single shot detector (SSD) for detection and classification of 

stomata within pre-processed images of quinoa (Chenopodium quinoa). This latter network has also 

been applied within a portable set up consisting of a microscope feed directly connected to a Jetson 

Nano (a portable GPU; NVIDIA, Santa Clara, United States), for real-time detection in wheat (Toda et 
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al., 2021). Together, these published methods present potential for an increase in the affordability 

and accessibility of DL methods, as well as more flexible and portable set ups, which are likely to 

permit in situ analysis. 

Applications of object detection-based methods are varied but often include counts and/or density; 

classification as open or closed; prediction of stomatal area via post network image processing; 

width and height measurements, or; estimates of stomatal conductance (Figure 3; Table 4). 

However, object detection methods present limitations in regards to accuracy of obtaining 

morphological traits. For example, if stomata are not orientated along the horizontal or vertical axes, 

trait measurements may be distorted (Figure 3C). To overcome this, an approach called 

RotatedStomataNet was proposed, which allows bounding boxes to have any rotation ensuring a 

tighter fit around the stomata (Yang et al., 2023). Alternatively, image analysis methods have been 

applied; for example, Histogram of Gradients (HOG) utilised by Toda et al. (2018) in their method 

DeepStomata. 

 

Semantic Methods provide more information of stomatal morphology 
Semantic segmentation results in pixel-level classification of images. This permits the preservation of 

boundaries, or shapes, which, in turn, can lead to more in-depth trait analysis (Figure 3B). Unlike 

object detection-based methods, these have often been used to segment pore and/or guard cells, 

and thus permitting more precise area measurements. For example. over 30 stomatal traits 

including guard cell and stomatal area, length, width, orientation, stomatal evenness, divergence, 

and aggregation index can be yielded in the tool, StoManager1, presented by Wang et al., (2024a). 

StoManager1 is based on a YOLO network which has been subsequently adapted to perform 

semantic segmentation.   

Another popular semantic network is Mask-RCNN, which has been applied to numerous problems in 

stomata literature (Table 1; Song et al., 2020; Beehamanahalli et al., 2021; Costa et al., 2021; 

Jayakody et al., 2021; Sai et al., 2022 Meng et al., 2023). Target species are varied including sorghum 

(Sorghum bicolor; Bheemanahalli et al., 2021), sweet orange (Citrus sineensis; Costa et al., 2021), 

black poplar (Populus nigra; Song et al., 2020), Arabidopsis and barley (Sai et al., 2022).  

Similarly to many of the proposed object detection-based networks, adaptations have been applied 

to semantic networks to improve specificity for stomatal detection. For example, Jayakody et al. 

(2021) expanded on their previous work (Jayakody et al., 2017), combining 16 datasets from 12 

sources, to produce a more generic method for stomata assessment using a Mask R-CNN. They 

proposed a three-stage approach to detecting stomatal boundaries, encompassing 1) pre-processing 

of images to remove colour space biases, which occur when images are captured in different 

conditions; 2) estimation of the stomatal boundaries using a Mask R-CNN with transfer learning; and 

3) reduction in the number of false positives using a statistical filter based on the average stomata 

size and confidence scores. The proposed method achieved an accuracy of 95.1%. Similarly, Zhang et 

al. (2023) adjusted the U-Net architecture by altering the encoder, to introduce an attention 

mechanism, and fine-tuning the optimiser to detect stomata in lettuce (Lactuca sativa). 

Whilst the majority of the reported papers present methods to extract traits, few have applied this 

to answering biological questions, such as determining the impact of irrigation of crop performance 

or predicting potential gas exchange capacity. Bhugra et al. (2019) used a combination of networks 

to investigate the impact of irrigation on rice cultivars by estimating count and density of stomata 

along with pore length, width, and area. Liang et al., (2022) investigated the opening and closure of 
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maize stomata under varying levels of drought using time lapse imaging. Gibbs et al. (2021) 

proposed a method to automatically estimate stomatal morphometry (encompassing both guard cell 

and pore morphometry) in order to estimate anatomical maximum stomatal conductance (gsmax e.g. 

Franks and Beerling, 2009).  

Modern microscopes permit the real time detection or analysis of stomata and so can be used to 

analyse patterns of opening and closing. This was proposed by Sun et al. (2021), alongside an easy-

to-use interface, to study changes in stomatal aperture. Sun et al. (2023) subsequently improved this 

method and proposed StomataTracker: a tool to analyse the circadian rhythm (temporal pattern of 

opening and closing of stomata) applied to wheat. They captured videos of the wheat epidermis, 

which were then separated into their constituent frames for analysis. StomataTracker consists of a 

three-stage process; 1) Multi object Tracking using improved version of the Simple Online and Real-

time Tracking (SORT) algorithm, which applies a lightweight detector (YOLOv3) to detect stoma and 

assign unique IDs; 2) Binary classification of each stoma as open or closed. This permits estimates of 

rest time and circadian rhythm; and 3) Semantic Segmentation to obtain a mask image, enabling 

morphological traits, namely stomatal length, width, area and perimeter, to be estimated (Sun et al., 

2023). 

Less common are methods to estimate the stomatal index as they require the detection of both 

stomata and surrounding epidermal cells. This was addressed by Zhu et al., (2021), who obtained 

stomatal impressions of two wheat varieties. They utilised a Faster R-CNN model to count stomata, 

and a U-Net model to segment the epidermal cell network. Following post processing steps to 

address artifacts in the cell network, they were able to estimate the number of epidermal cells and 

thus calculate stomatal index (Zhu et al., 2021).  

Whilst this review primarily focuses on stomata morphometry analysis, additional literature on 

pavement cell segmentation is also worth noting. LeafNet (Li et al., 2022) is one such example. They 

proposed a DCNN for the detection of stomata and a region merging algorithm to segment the 

pavement cells in Arabidopsis. Comparisons to other pavement cell segmentation methods are also 

discussed (Li et al., 2022). 

 

Alternative DL networks can overcome issues in datasets or provide an alternative 

route to phenotyping. 
Some published DL methods fail to classify as object detection or semantic, but still allow stomatal 

traits to be analysed. These have been applied to a variety of tasks including counting (Fetter et al., 

2019; Hunt et al., 2021), species identification (Andayani et al., 2020; Dey et al., 2023) and data 

improvement (Bhugra et al., 2018). For example, Fetter et al. (2019) developed StomataCounter; a 

DCNN based on AlexNet to estimate stomatal count; trained using four datasets. As opposed to a 

bounding box detection, the DCNN produced a heatmap of potential stoma, with 94% accuracy 

when applied to unseen species, indicating generalisation of the method.  

Bhugra et al. (2018) proposed a 13-layer CNN for the detection and segmentation of pores in rice. 

They focused on the recovery of missing information caused by occlusions by using an inpainting 

algorithm to fill in the missing data. Their proposed method targets many of the challenges 

experienced in microscopic images of surface impressions; namely artefacts or overlapping 

epidermal structures, such as trichomes or papillae; feature rich backgrounds and small stomatal 

sizes. Other challenges include presence of dust or air bubbles, and blur within images, which can 

similarly be addressed using DL approaches (Jayakody et al., 2021).  
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Current limitations of DL methods and future directions 
Literature often reports that the bottleneck in plant analysis and improvement arises due to long 

timeframes associated with phenotyping. Recent interest in DL methods, such as those presented 

here, has been able to greatly reduce these timeframes. However, a bottleneck now exists in 

relation to the availability of datasets, and the ability to equally evaluate methods. DL models 

require an initial annotated dataset for training which can be time-consuming, expensive and the 

generation of image data can lead to large storage requirements. In addition, variability in the 

dataset will determine how generalised it is, and thus what other datasets it can be applied to; i.e. a 

dataset encompassing only a single species captured using a single set up is unlikely to applicable to 

another species or set up, unless similar; a DL model can only “see” what it has “seen” before.   

Variations exist in the pipeline used to generate and analyse data on stomata, encompassing all 

steps from data acquisition to post-processing. For example, for the data acquisition stage, 

Pathoumthong et al. (2023) indicate improved efficiency of using a handheld microscope over nail 

varnish based surface impressions. However, they did not identify a trend as to which acquisition 

method produced better overall estimates of morphology, suggesting species and case specific 

benefits to each method. Therefore, further work is required to determine the optimal pipeline for 

each species and physiological aim.   

Despite the capabilities of DL methodologies, they are not applicable to a wide variety of situations 

and, as such, there still remains a bottleneck in their development. In part this could be addressed 

through the use of Generative Adversarial Networks (GANs), which can be used to generate artificial 

datasets and thus increase the amount of available data (Goodfellow et al., 2014; Cresswell et al., 

2018). Future methods also require development of techniques to accurately and appropriately 

evaluate the proposed networks. For example, Dey et al. (2023) performed an empirical comparison 

of nine deep learning models for the identification of stomata from 11 different tree species, 

spanning eight families. They introduced a normalised leverage factor, which combines accuracy, 

precision, recall, and f1-score to create a more uniform evaluation function to rank approaches. 

However, in order to advance and facilitate wide-spread and rapid stomatal analysis, more shared 

resources need be made available. Pipelines require alternative steps to ensure that they are more 

generic.  

Future research directions requires advancements in terms of the biological implications of the 

results, with a move away from object detection based methods towards semantic segmentation, 

instance segmentation and real-time detection and monitoring of stomatal behaviours. There is also 

a need for the exploration of the 3-Dimensional (3D) traits of the stomatal structure, using data 

collected from sources such as confocal microscopes, optical tomography or surface topography 

measurements (Thompson et al., 2017; Xie et al., 2021; Davaasuren et al., 2022). Initial attempts 

have been made towards this goal. Optical tomography was applied by Xie et al. (2021) to acquire a 

3D model of the leaf epidermis of maize. Their pipeline involved multiple steps, initially flattening 

the 3D model into a single 2D image using gaussian filters and then employing a mask R-CNN 

architecture to segment the stomata and pavement cells. From this, stomata density, width, length, 

and area were estimated, but 3D information was lost.  

Despite the extensive research on stomatal biology, current knowledge is poorly translated into the 

context of field experimentation. This stage will be integral for future yield improvement strategies. 
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This is partly due to the nature of the publications; the majority are targeted as method 

development, with very few applying the proposed method towards answering a biological question. 

However, a number of caveats arise from advancing DL methods for application in biological 

analysis. Whilst DL architectures become more advanced in terms of their capabilities, there is still a 

need to ground truth these generated measurements with actual conductance measurements in 

order to accurately correlate the results with physiological function. This step cannot be 

underestimated, potentially requiring modification of gas exchange equipment for simultaneous 

capture of stomatal apertures. Care must also be taken in which method is used to capture the 

required data on stomatal complexes, for example restricting the use of leaf impressions for density 

measurements as they do not permit sufficient resolution for analysis of dimensions (Matthaeus et 

al., 2020).  

Thus, despite the potential capabilities of semantic based methods, it may be that biologically 

relevant or useful information is currently limited towards more basic phenotypic extraction such as 

density, which can be readily obtained using object detection- based methods. For example, in one 

of the few published works that link stomatal structure to function, Hunt et al. (2021) investigated 

the impact of manipulating light and CO2 concentration on stomatal density and conductance of 

barley.  Whilst they measured stomatal conductance using a gas exchange system, density was 

estimated through DL via custom CNNs to locate and then classify image crops as to whether they 

contain stomata.  

Moving forward, it is encouraged to advocate a stronger link between computer scientists and 

biologists and expand beyond stomatal detection to instead produce methods that reliably measure 

multiple traits. A global dataset will help to eliminate this redundancy and improve effectiveness and 

efficiency. As such, we have generated StomataHub (www.stomatahub.com), a free online resource 

to encourage collaborations and the sharing of datasets. We hope that StomataHub, or other similar 

resources such as that produced by Wang et al. (2024b) (encompassing a dataset of 11,000 

annotated hardwood images), will address this and provide a free open-source approach moving 

forwards.  

 

Conclusion 
In conclusion, DL provides a promising approach for plant phenotyping tasks. Here we present 

details of the 43 published works to date, that apply DL to the analysis of stomata. We discuss the 

variation in the pipeline required, from data generation through to post-processing analysis, and 

describe some of the major networks that have been applied. Whilst the species studied and 

measurements generated are diverse, current restrictions lie in the availability of data, evaluation of 

methods and generalisation of different studies. Future advances will therefore require a shared 

global effort in providing datasets, innovations to link the corresponding phenotypic measurements 

to underlying physiology, as well as enhanced collaboration between biologists and computer 

scientists.
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Box 

Box 1: Overview of Deep Learning and Convolutional Neural Networks (CNNs) 
Deep learning (DL) is a form of machine learning (ML) that teaches computers to process data similar 

to that of the human brain (Pound et al., 2016). DL models are trained to recognise complex patterns 

and to produce accurate insights and predictions, automating tasks that typically require human 

intelligence. 

A Convolutional Neural Network (CNN) is a type of DL network which is optimised to work with 

image, or pixel level, data (Rawat and Wang, 2017). A CNN takes an image as an input, passes it 

through the contained layers, and outputs a prediction that represents the class data designated in 

the training set. As such, CNNs act as basic building blocks for the computer vision task of image 

recognition and segmentation. They consist of a varying number of layers, each of which has 

trainable parameters. Common layers include: 

1) Convolutional layers, which use filters and kernels to produce a more abstract representation via a 

feature map. These filters aim to detect patterns such as edges. The filter passes over the image like 

a scanner and creates a feature map. 

2) Pooling layers act down sample feature maps by summarising the presence of features in patches 

of the feature map. This reduces the dimensionality of the data, with a corresponding reduction in 

computational cost. 

3) Fully connected layers connect neurons in one layer to neurons in another layer. This takes the 

outputs from other layers and classifies pixels, computing scores for each of the class labels. 

The structure of a CNN will vary depending on the data used, the application and the size of the 

network. This leads to a variety of possible network structures.

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erae207/7666955 by guest on 16 M

ay 2024



 

 

Box 2: Evaluation methods for DL architectures 
DL models can be evaluated using different metrics that enable a quantitative measure of the 

performance and effectiveness the given model. For semantic segmentation, metrics such as; Pixel 

accuracy (PA) and mean pixel accuracy (mPA) can provide insight into the accuracy of pixel 

predictions: 

PA denotes the percentage of correctly predicted pixels: 

𝑃𝐴 =  
∑ 𝑝𝑖𝑖

𝑘
𝑖=0

∑ 𝑡𝑖
𝑘
𝑖=0

      (Eq. 1) 

where 𝑝𝑖𝑖  is the total number of pixels both classified and labelled as class 𝑖 and 𝑡𝑖 is the total 

number of pixels labelled as class 𝑖. 

Semantic segmentation deals with a minimum of two classes and therefore mPA is often used to 

represent the class accuracy: 

𝑚𝑃𝐴 =  
1

𝑘
∑

𝑝𝑖𝑖

𝑡𝑖

𝑘
𝑖=0        (Eq. 2) 

However, it is worth noting that a high-class accuracy does not always guarantee superior 

performance if it is at the expense of other classes. 

F1-score, precision and recall are evaluation metrics, used for both semantic and bounding box 

models. Evaluation is based on true positives (TP), where the model correctly predicts the positive 

class; true negatives (TN), where the model correctly predicts the negative class; false positives (FP), 

where the model incorrectly predicts the positive class, and; false negatives (FN), where the model 

incorrectly predicts the negative class. Precision is the ratio of correct annotations relative to the 

total number of annotations (true and false positives): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (Eq. 3) 

Recall is the ratio of correct annotations relative to the total number of ground truth annotations 

(true positives and false negatives): 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (Eq. 4) 

Whereas F1-score is the harmonic mean of precision and recall, allowing a balance between the two, 

thus providing a greater insight into the measure of incorrect annotations: 

𝑓1 =  
2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
       (Eq. 5) 

Accuracy describes how the model performs across all classes, calculated as the ratio between the 

number of correct predictions to the total number of predictions: 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (Eq. 6) 

The intersection over union (IoU) is a number between 0 and 1 that specifies the amount of overlap 

between predicted and ground truth (i.e. manual) annotations. A value of 0 indicates there is no 

overlap, whilst 1 indicates a perfect union of ground truth and prediction.  

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
     (Eq. 7) 
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For object detection methods only, mean average precision (mAP) is a common evaluation metric 

calculated using IoU, a confusion matrix (including TP, FP, FN), precision and recall. 

𝑚𝐴𝑃 =  
1

𝑛
 ∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑛=1           (Eq. 8) 

Where APk is the Average Precision of class k and n is the number of classes. 
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Table Legends 
 

Table 1 : An overview of the main deep learning networks applied to stomata analysis. 

Table 2: Overview of plant species which have been studied using deep learning approaches to 

analyse stomatal traits. 

Table 3: Overview of methods used to generate image data for deep learning analysis of stomata. 

Table 4: Overview of stomatal traits that have been estimated using deep learning methods and 

location of associated network code and datasets (where given)
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Tables 
 

Table 1 : An overview of the main deep learning networks applied to stomata analysis. 
 

Name Type Description Papers Inc. 

AlexNet Object 
detection 

AlexNet, a CNN with 8 layers, is primarily used 
for classification and recognition. It is considered 
one of the most influential papers published in 
computer vision and was heavily behind the 
surge in DL approaches for vision tasks being the 
first to employ a CNN on a GPU.  

(Millstead et al., 
2020) 

YOLO Object 
detection 

YOLO (You Only Look Once), often used for real 
time detection, is one of the most popular DL 
models due to its speed and accuracy. YOLO 
predicts localisation and class probabilities 
simultaneously. 
 
Several versions of YOLO exist including those 
that can be used in combination with 
segmentation algorithms. 

(Casado-García et al., 
2020; Ren et al., 
2021; Sultana et al., 
2021; Yang et al., 
2021; Dai et al., 2022; 
Zhang et al., 2022; Li 
et al., 2023; 
Pathoumthong et al., 
2023; Takagi et al., 
2023; Wang et al., 
2024a) 

SSD Object 
detection 

SSD (Single Shot Detector) is much like YOLO in 
that it only takes a single pass for detecting 
objects within in image and does not use region 
proposal, one of the primary reasons for its 
speed and efficiency.  

(Toda et al., 2021) 

R3Det Object 
detection 

R3Det is a refined single-stage detector rotation 
detector for fast and accurate object detection 
by using a progressive regression approach. It 
works much like YOLO and SSD in that it only 
uses a single stage, however it aims to address 
the issues relating to misalignment of objects 

(Yang et al., 2023) 

VGG Object 
detection 

VGG (Visual Geometry Group) is a standard 
Deep CNN which specialises in localisation and 
classification of objects. Two popular VGG 
architectures exist; VGG-16 and -19, where the 
numbers correspond to the number of layers 
within the architecture. 

(Sakoda et al., 2019; 
Meeus et al., 2020; 
Aono et al., 2021) 

R-CNN Object 
detection 

R-CNN (Region-based Convolutional Neural 
Network) is used for classifying and localising 
objects. R-CNN is a two-stage object detection 
model; proposing a series of regions and then 
evaluating these, determining which class the 
region lies in. 
 
R-CNN has multiple variations though the most 
common are basic R-CNN, fast R-CNN and faster 
R-CNN. 

(Li et al., 2019; Costa 
et al., 2021; Cowling 
et al., 2021; Zhu et 
al., 2021; Liang et al., 
2022) 
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Mask R-CNN Semantic Mask R-CNN extends Faster R-CNN by adding an 
additional operation at the end to predict the 
object mask. It is a semantic and instance 
segmentation technique that performs pixel-
level segmentation on detected objects.  

(Song et al., 2020; 
Bheemanahalli et al., 
2021; Costa et al., 
2021; Jayakody et al., 
2021; Xie et al., 2021; 
Sai et al., 2022; Meng 
et al., 2023) 

MobileNet Object 
detection 

MobileNet is based on a streamlined 
architecture that uses depth wise separable 
convolutions to build lightweight networks 
designed for mobile and embedded vision 
applications. Particularly  beneficial when 
computing power is lacking or unavailable. 

(Kwong et al., 2021; 
Razzaq et al., 2021) 

U-Net Semantic U-Net, originally introduced for medical imaging, 
typically requires less training data than other 
methods, to achieve similar results. It produces 
pixel-wise segmentation and classification. 

(Zhang et al. 2023; 
Gibbs et al., 2021; 
Sun et al., 2021, 
2023; Takagi et al., 
2023) 

Custom CNN Multiple Custom CNN refers to individually made CNNs 
that combine a series of convolutions, pooling, 
and  fully connected layers. Each differ quite 
significantly so refer to each individual paper for 
a more in-depth overview. 
 
Custom CNNs can have any desired output but 
often require extensive expertise. In the papers 
cited here, outputs were in the form of image 
classification, heatmaps and 2D points. 

(Jayakody et al., 
2017; Bhugra et al., 
2018, 2019; Toda et 
al., 2018; Fetter et al., 
2019; Andayani et al., 
2020; Hunt et al., 
2021; Li et al., 2022; 
Dey et al., 2023; 
Zhang et al., 2023) 
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Table 2: Overview of plant species which have been studied using deep learning 

approaches to analyse stomatal traits. 
 

Type Paper 

Apricot (Millstead et al., 2020) 

Arabidopsis (Li et al., 2022; Sai et al., 2022; Takagi et al., 2023; Yang et al., 2023) 

Barley (Casado-García et al., 2020; Hunt et al., 2021; Sai et al., 2022) 

Broadbean (Li et al., 2023) 

Common Bean (Casado-García et al., 2020) 

Dayflower (Toda et al., 2018) 

Gingko (Fetter et al., 2019; Jayakody et al., 2021) 

Grapevine (Jayakody et al., 2017; Millstead et al., 2020) 

Hardwood trees (Wang et al., 2024b) 

Haskap (Meng et al., 2023) 

Herbarium  samples (Meeus et al., 2020) 

Lettuce (Zhang et al. 2023) 

Maize (Aono et al., 2021; Ren et al., 2021; Xie et al., 2021; Yang et al., 2021, 2023; 
Liang et al., 2022; Zhang et al., 2022, 2023) 

Oil Palm (Kwong et al., 2021) 

Orange (Millstead et al., 2020; Costa et al., 2021) 

Periwinkle (Millstead et al., 2020) 

Poplar (Li et al., 2019; Song et al., 2020; Gibbs et al., 2021; Jayakody et al., 2021; Dai 
et al., 2022; Wang et al., 2024a) 

Quinoa (Razzaq et al., 2021) 

Rice (Bhugra et al., 2018, 2019; Cowling et al., 2021; Pathoumthong et al., 2023) 

Orange (Bheemanahalli et al., 2021) 

Soybean (Sakoda et al., 2019; Casado-García et al., 2020; Sultana et al., 2021) 

Sundarbans (F)  (Dey et al., 2023 ; Pathoumthong et al., 2023) 

Tomato (Pathoumthong et al., 2023) 

Turmeric (Andayani et al., 2020) 

Wheat (Gibbs et al., 2021; Sun et al., 2021, 2023; Toda et al., 2021; Yang et al., 
2021; Zhu et al., 2021; Pathoumthong et al., 2023) 
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Table 3 : Overview of methods used to generate image data for deep learning analysis 

of stomata. 
 

Data 
collection 
type 

Method Paper 

Non- 
destructive 

Nail Varnish-
based 
surface 
impressions 

(Jayakody et al., 2017, 2021; Meeus et al., 2020; Millstead et al., 
2020; Bheemanahalli et al., 2021; Costa et al., 2021; Cowling et al., 
2021; Gibbs et al., 2021; Hunt et al., 2021; Kwong et al., 2021; Razzaq 
et al., 2021; Ren et al., 2021; Toda et al., 2021; Zhang et al., 2022, 
2023; Dey et al., 2023; Meng et al., 2023; Pathoumthong et al., 2023; 
Wang et al., 2024a; Yang et al., 2023) 

Direct 
microscope 
imagery 

(Bhugra et al., 2018; Li et al., 2019; Andayani et al., 2020; Song et al., 
2020; Sun et al., 2021, 2023; Yang et al., 2021, 2023; Dai et al., 2022; 
Liang et al., 2022; Sai et al., 2022; Pathoumthong et al., 2023; Takagi 
et al., 2023) 

Destructive Epidermal 
separation 

(Zhang et al.; Casado-García et al., 2020; Aono et al., 2021; Zhu et al., 
2021; Li et al., 2022; Yang et al., 2023) 

Use of leaf 
discs 

(Toda et al., 2018) 

Freezing 
samples in 
liquid 
nitrogen 

(Bhugra et al., 2019) 

Leaf Clearing (Fetter et al., 2019; Sultana et al., 2021) 

Optical 
topometry 

(Xie et al., 2021) 

Printing (Sakoda et al., 2019) 
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Table 4: Overview of stomatal traits that have been estimated using deep learning methods and location of associated network code 

and datasets (where given). 

 
Imag

e 
Stomata Stoma Guard cell Pore 

Code/ data availability 

Publication Class 
Densit

y 
Inde

x 
Coun

t 
g

s 

gsma

x 

Widt
h 

Lengt
h 

Are
a 

Widt
h 

Lengt
h 

Are
a 

Lengt
h 

Clas
s 

Widt
h 

Are
a 

(Jayakody et 
al., 2017) 

   x         x  x x On request 

(Toda et al., 
2018) 

            x x x x On request 

(Bhugra et al., 
2018) 

 x  x         x x x  - 

(Fetter et al., 
2019) 

   x             
Tool available at: 

https://stomata.uvm.edu/ 

(Sakoda et al., 
2019) 

 x  x             On request 

(Li et al., 2019)    x         x  x x On request 

(Andayani et 
al., 2020) 

x                - 

(Meeus et al., 
2020) 

   x             
Network code: Github 
Image data: Zenodo 

(Casado-García 
et al., 2020) 

 x  x   x x         Model and datasets: Github 

(Millstead et 
al., 2020) 

               x On request 

(Song et al., 
2020) 

 x  x         x x x x - 

(Sultana et al., 
2021) 

 x  x             
On request 

Tool at: 
http://stomata.plantprofile.net 

(Kwong et al., 
2021) 

 x  x             On request 

(Bheemanahall
i et al., 2021) 

 x       x        - 

(Gibbs et al., 
2021) 

x x  x  x    x x x x  x x Model and datasets: Github 

(Aono et al., 
2021) 

   x             Code and dataset: Zenodo 
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(Ren et al., 
2021) 

   x             - 

(Razzaq et al., 
2021) 

   x          x   On request 

(Zhu et al., 
2021) 

  x x             - 

(Jayakody et 
al., 2021) 

   x     x        
Network code: Github 

Data on request 

(Sun et al., 
2021) 

 x  x x           x Network code: Github 

(Costa et al., 
2021) 

 x  x          x  x - 

(Yang et al., 
2021) 

   x   x x         Model and dataset: Github 

(Cowling et al., 
2021) 

 x  x             On request 

(Toda et al., 
2021) 

 x  x   x x         On request 

(Hunt et al., 
2021) 

 x               - 

(Xie et al., 
2021) 

 x  x   x x x        Dataset: Illinois data bank 

(Liang et al., 
2022) 

            x  x x 

Trained model available at: 
http://plantphenomics.hzau.edu. 

cn/download_checkiflogin_en.actio
n. 

Source code on request 

(Dai et al., 
2022) 

   x          x   - 

(Sai et al., 
2023) 

            x  x x Network code: GitFront 

(Sun et al., 
2023) 

      x x x        On request 

(Zhang F. et al., 
2023) 

    x  x x         Network code: Github 

(Zhang X. et 
al., 2023) 

   x   x x x        - 

(Dey et al., 
2023) 

x      x x         On request 

(Meng et al.,  x  x            x On request 
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2023) 

(Yang et al., 
2023) 

 x  x   x x        x On request 

(Takagi et al., 
2023) 

   x            x 
Network code and datasets: Github 

and Zenodo 

(Li et al., 2023)  x  x          x   Data available on Zenodo 

(Pathoumthon
g et al., 2023) 

 x              x Datasets available on Github 

(Wang et al., 
2024a) 

 x  x   x x x x x x     On request 
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Figure Legends 
 

Figure 1: Diagram of stomata structure and function in facilitating gas exchange, example dicot. A. 

Surface and transverse view of stomata, encompassing the guard cell and pore, as denoted by the 

box, and accompanying epidermal cells (faded out). B. Internal and external signals confer a 

structural change in stomata to permit gas exchange when the structure is open, and restrict 

exchange when closed. 

Figure 2: Overview of the pipeline for the assessment of Stomata. A. data acquisition encompassing 

either leaf sampling or taking surface impressions, B. image capture, C. optional pre-processing of 

image data, D. training of a deep learning model, or application of a pre-trained model, and E. post-

processing of network outputs. 

Figure 3: Overview of typical measurements performed on image data containing stomata, example 

of a representative dicot leaf. A. Detection of stomata in images can be used for stomata counting or 

assessment of stomatal density. B. Extraction of individual stoma can be used to calculate 

morphometry measurements including areas and dimensions. C. Depending on the deep learning 

network used, bounding box methods may lead to incorrect morphometry measurements if the 

stomata are not orientated along the major axes. Note that this diagram has been slightly re-sized to 

emphasize the difference. 

Figure 4: Histogram presenting the number of deep learning publications applied to stomata over 

the last seven years. 

Figure 5: Histogram presenting the breakdown of deep learning network types applied to stomata. 
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