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Preface: Proceedings of the Symposium on BioMathematics
(SYMOMATH) 2018

The International Symposium on BioMathematics (Symomath) 2018 is jointly organized by
Department of Mathematics, Universitas Indonesia and the Indonesian Biomathematical Society.
It was held on August 31°'- September 2", 2018 at Savero Hotel, Depok, Indonesia.

Symomath 2018 is a multidisciplinary forum for promoting and fostering interactions between
mathematical, biological and related industrial communities in studying various phenomena in
biology, ecology, infectious diseases, medicine, bioengineering, environmental sciences, etc.

The scope of this conference is, but not limited to, in the fields of: Bioinformatics and Systems
Biology, Bioengineering and Synthetic Biology, Dynamics of infectious diseases transmission,
Dynamics of renewable resources, Biological population, Controlling infectious diseases, Bio-
statistics, Utilizing renewable resources in fishery and forestry industries, Bio-mathematics with
economic and conservation issues.

At Symomath 2018, 75 registered participants, 7 Plenary talks, 12 invited talks, 25 participants
and 41 contributed papers were presented at the symposium.

We would like to express our deep appreciation to our sponsors: Universitas Indonesia and
Indonesia Re, and also to Universitas Gunadarma, BPJS Kesehatan and AIA that also support the
symposium.

At the end of this preface, we would like to thanks to all Symomath 2018 committee members
for their hard works and tremendous support, and to all participants.

Proceedings of the Symposium on BioMathematics (SYMOMATH) 2018
AIP Conf. Proc. 2084, 010001-1-010001-1; https://doi.org/10.1063/1.5094264
Published by AIP Publishing. 978-0-7354-1814-1/$30.00
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A Comparison of Continuous Genetic Algorithm and
Particle S warm Optimization in Parameter Estimation of
Gompertz Growth Model

Windarto"®, Eridani' and Utami Dyah Purwati'

' Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Indonesia.

dCorresponding author: windarto @fst.unair.ac.id

Abstract. Genetic algorithm and Particle Swarm Optimization are heuristic optimization methods inspired by genetic principles
and swarm behavior phenomena, respectively. Those two methods are initiated by random generation of initial populations (initial
solutions), fitness evaluation of every solution, solution updating until a termination condition are met. It is well known that
those two methods are not always converge to an optimal solution. Those methods sometimes converge to suboptimal solutions,
solution near the optimal solution. In this paper, continuous genetic algorithm and particle swarm optimization were implemented
to estimate parameters in the Gompertz growth model from rooster weight data cited from literature. Although the best results of
the two models were not significantly differs, we found that the particle swarm optimization method was more robust than the
continuous genetic algorithm. Hence, the particle swarm optimization method is more recommended than the continuous genetic
algorithm.

Keywords: Gompertz growth model, rooster weight dynamic, parameter estimation, particle swarm optimization.

INTRODUCTION

Mathematical models are useful tool to describe many real problems. A mathematical model is usually began by
identification of a real problem. Then one could construct a suitable mathematical model and determining mathemat-
ical solution of the model. Finally, one should interpret mathematical solution of the model into real problem points
of view. A mathematical model might occur in either a deterministic model or a probabilistic (stochastic) model.
Mathematical model validation could be performed whenever relevant data from real phenomena are available. If the
predicted results from a mathematical model fit the real data, then the model is said a good model. When the predicted
results from the model differ significantly the real data, then the model should be improved and modified.

Most mathematical models contain one or more parameters. The parameters should be estimated in order to
accurately perform model simulation. Parameter estimation of a mathematical model could be considered as an opti-
mization problem. Deterministic optimization methods such as conjugate gradient method, Nelder-Mead method or
Newton method could be applied to estimate parameters in a mathematical model whenever analytical solution of the
model could be presented in closed form [1]. Unfortunately, deterministic optimization methods such as Nelder-Mead
or Newton method fail to converge into global minimum of a function if the function has many local minima [2].
Moreover, some mathematical models occur in non-linear ordinary differential equation systems, so exact solution
(closed form solution) of the model could not be determined. In this case, heuristic method such as particle swarm
optimization and genetic algorithm method could be implemented to estimate parameter values from the models.

Particle swarm optimization and genetic algorithm are optimization methods based on a population-based
stochastic search process [3, 4]. Particle swarm optimization methods and modified particle swarm optimization have
been widely applied in many areas, including performance improvement of Artificial Neural Network [5, 6], schedul-
ing problems [7, 8], flowshop scheduling problem [9], traveling salesman problem [10], vehicle routing problem
[11, 12] and clustering technique [13]. Genetic algorithm has been in parameter estimation in poultry growth model
[14, 15] and parameter estimation for dynamical system model [1, 16].

Proceedings of the Symposium on BioMathematics (SYMOMATH) 2018
AIP Conf. Proc. 2084, 020017-1-020017-7; https://doi.org/10.1063/1.5094281
Published by AIP Publishing. 978-0-7354-1814-1/$30.00
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Some authors compared performance of particle swarm optimization and genetic algorithm in some research
are. Yang et al. compared the methods in a Hidden Markov Model training [17]. Wang et al. have been compared
performance of genetic algorithm and particle swarm optimization in relativistic backward wave oscillator [18]. Islam
et al. have compared performance of some nature inspired algorithms including genetic algorithm and particle swarm
optimization in function optimization of some benchmark functions [19]. In this paper, we compared performance of
continuous genetic algorithm and particle swarm optimization in parameter estimation of Gompertz growth model.

The remainder of this paper is organized as follows. Section 2 briefly presents particle swarm optimization
and genetic algorithm procedure. Comparison of particle swarm optimization and genetic algorithm in parameter
estimation of Gompertz growth model will be presented in Section 3. Finally, conclusions are presented in Section 4.

CONTINUOUS GENETIC ALGORITHM AND PARTICLE SWARM OPTIMIZATION

Genetic algorithm is inspired from principles of genetic and natural selection in a life organism. Therefore, many terms
such as gene chromosome, individual, parent, selection, mating, crossover, offspring in genetic algorithm are adopted
from biology. From mathematical point of view a gene represents a variable, while a chromosome or an individual
represents a solution. Genetic algorithm has at least the following elements, namely populations of chromosomes,
selection according to fitness, crossover to produce new offspring, and random mutation of new offspring [20]. Genetic
algorithm diagram is presented in the Figure 1. The diagram is adapted from Haupt and Haupt [2].

Define objective function,
decision variables, GA

l

Generate initial population
(initial solution)

|

Evaluate objective function for
each population

v

Select mates

v

‘ Perform mating ‘

Crossover

Mutation

Termination check

FIGURE 1. Flowchart of continuous genetic algorithm.

020017-2



We can transform an optimization problem into a minimization problem. Here is genetic algorithm procedure for
finding either optimal or suboptimal solution of a minimization problem [2, 16, 20]:
(1) Define the objective function (the cost function) and decision variables related to the optimization problem.
(2) Determine parameter values in genetic algorithm, namely number of generations/number of iteration, crossover

probability, and mutation probability/mutation rate.
(3) Generate 1nitial solutions (initial population) from the search space/solution space.
(4) Evaluate cost function of each solution (individual). In a minimization problem, all individuals are ordered from

the lowest to the highest of objective function value objectivecost to the highest cost.
(5) Select part of individuals for the next generation as parent individuals. Only the best solutions are maintained for

the next generation. The remaining individuals are replaced by better individuals. The selection rate parameter
determines the fraction of all population that survives for the next generation. The typical value of selection rate

parameter is 50%.
(6) Carry out mating process from parent individuals.
(7) Do crossover process to generate offspring individual.
(8) Perform mutation process to part of solutions to generate solutions.
(9) Test termination condition. If the termination condition did not satisfy yet, then go to the fourth step.

A main problem in the genetic algorithm is premature convergence where the solutions converge to a local opti-
mum. The premature convergence occurs when a high fitness solution (individual) quickly dominate the population.
The problem especially occurs in multimodal problems [21, 22]. Hence, genetic algorithm should be implemented
many times to obtain the best solution.

Eberhart and Kennedy developed the particle swarm optimization algorithm in 1995. The algorithm has resem-
blance to genetic algorithm. The algorithm is started by a set random solutions in a solution space. Then the algorithm
searches optimal solution by updating the solutions. However, there are no crossover and mutation process in the par-
ticle swarm optimization algorithm. In the algorithm, potential solutions (particles) are updated in the solution space
by following the current best solution [4].

In the particle swarm optimization method, a solution is represented by position of a particle. We start the particle
swarm optimization by randomly selecting initial solutions in a solution space. Then, we evaluate fitness function of
current position. We update the local best position of a particle whenever fitness value of current particle is better than
the previous best value. We update the global best based on the best fitness value of all particles. Here are the steps of
particle swarm optimization algorithm [4, 23]:

(1) Calculate fitness value of every particle. The fitness function is related to the objective function. In a minimiza-

tion problem, the smaller objective function the the greater fitness value will be.
(2) Update position of local best and global best.
(3) Update particle velocity by using the equation

vi(t + 1) = wy(f) + ciri(Ibest(t) — x;(t)) + cara(gbest(t) — x;(1)), (€))]

Here v;(¢) and x;(¢) are velocity of particle i and position of particle i at time ¢, while lbest(t) and gbest(t) are
local best and global best position at time ¢. Parameters | and r, represent random number between zero and

one with uniform distribution.
(4) Update particle position using the following equation

xi(t+ 1) = x;() + vi(t + 1). 2)

The steps are reiterated some termination condition is met.

In Eq. (1), parameters w, cy, ¢, are inertia weight, cognitive coefficient and social coefficient respectively. The
typical value of w between 0.8 and 1.2, while the typical values of ¢; and ¢, are commonly nearly 2. We can apply
velocity clamping to avoid particles from moving very distant outside the solution space. For a solution space restricted
by the range [Xin, Ximax], the velocity is limited within the range [—Viugxs Vingx] Where vigy = m(Xpax — Ximin) for some
constant m, 0.1 < m < 1. The ending conditions in particle swarm optimization comprises a maximum number of
iterations, a number of iterations since the last update of global best solution, or a target fitness value has reached by
some particles [23].

In a one dimensional problem, particle swarm optimization converges towards a local optimum for a compara-
tively wide range of objective functions. In multidimensional problem, it turns out that the swarm might not converge
towards a local optimum [24]. Convergence of particle swarm optimization to a local optimum is called premature
convergence. The premature convergence is commonly caused by particle velocity decrease in the solution space.
Then the particle velocity decrease causes to a total implosion and eventually fitness stagnation of the swarm [25].
Hence, particle swarm optimization method should be implemented many times to obtain the best solution.
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A COMPARISON OF CONTINUOUS GENETIC ALGORITHM AND PARTICLE
SWARM OPTIMIZATION

In this section, we compared performance of continuous genetic algorithm and particle swarm optimization in pa-
rameter estimation of Gompertz growth model. Gompertz growth model is derived from the following Gompertz

differential equation

D _ ryln(g),y(O) - Yo 3)

Here, y(¢) is population size at time t. The exact solution of the Gompertz differential equation in Eq. (3) could be

represented as
0= £ @
YO explexprt = tup)’

where 1;,; = %ln In YEU . The Gompertz growth model has three parameters namely intrinsic growth (r), carrying

capacity (K), and inflection time (t;,¢) parameter. From biological point of view, the fastest growth of a population

occur at the inflection time.
In this paper, the Gompertz growth model is applied to describe rooster growth where the data is cited from

literature [15, 26]. The rooster growth data is shown in the Table 1.

TABLE 1. Means of the rooster weight data (y).
t (days) vy (grams) t(days) y (grams)

0 37 42 519.72
3 41.74 45 577.27
6 59.19 48 633.59
9 79.94 51 667.18
12 102.96 54 717.17
15 132.13 57 786.35
18 170.18 71 1069.28
21 206.56 85 1326.49
24 250.71 99 1589.71
27 285.27 113 1859.26
30 324.92 127 2015.44
33 372.83 141 2142.31
36 417.41 155 2220.54
39 469.13 170 2262.63

Since y(?) is the rooster weight at time t, then the carrying capacity parameter (K) could be interpreted as the
rooster mature weight or the maximum weight that can be attained by the rooster. Parameters in the Gompertz model
(K, r, tiny) are estimated such that the mean absolute percentage error (MAPE)

MAPE = %;‘yy;ﬂ )

is maximum. Here 7 is number of observation data.

We applied continuous genetic algorithm and particle swarm optimization to estimate parameters in the Gompertz
growth model. Here, optimal parameters in the Gompertz growth model was found from the following search space

Q= {(K, Fotig) € R 2 K € [2000, 50001, € [0,0.1], £, € [30, 100]}. (6)

We applied particle swarm optimization method described in the previous section with the inertia weight param-
eter w = 1, the cognitive coefficient parameter ¢; = 2 and the social coefficient parameter ¢, = 2 respectively. We
also applied continuous genetic algorithm for various mutation rate () namely m = 0.05,0.1,0.2,0.3,0.4,0.5. For
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both algorithm, number of population is set to 100 individuals (particles). We applied both methods for 50 trials while
for every trial the methods were terminated after 500 iterations. The best estimation results of the particle swarm
optimization and the continuous genetic algorithm was presented in the Table 2.

TABLE 2. The best estimation results of the particle swarm optimiza-
tion and the continuous genetic algorithm.

Methods K r tinf MAPE

PSO 2468.54 0.023646 60.68 0.039334
GA (m=0.05) 2445.65 0.023870 60.15 0.039465
GA(m=0.1) 243597 0.023800 60.21 0.039225
GA(m=0.2) 243781 0.023740 60.34 0.039117
GA(m=03) 2468.65 0.023749 60.67 0.039326
GA(m=04) 244490 0.023750 60.41 0.039173
GA(m=0.5) 2468.70 0.023628 60.77 0.039185

m = mutation rate.

Form the Table 2, we found that best result (minimum of MAPE) of the continuous genetic algorithm and the
particle swarm optimization method were not significantly differ. The mean average percentage error for the Gompertz
growth model obtained from the methods were around 3.9 %. The results indicated that the Gompertz growth model
could be applied to describe rooster growth dynamic. It also indicated that particle swarm optimization and continuous
genetic algorithm were successfully implemented in parameter estimation of the Gompertz growth model.

Particle swarm optimization and continuous genetic algorithm are essentially probabilistic methods. Hence,
the two methods will generally produce different optimal/sub optimal solution in every trial/calculation/experiment.
Statistics of the MAPE of the both methods was presented in the Table 3.

TABLE 3. Statistics of Mean Absolute Percentage Error.

Methods Number of Average of Standard Minimum Median Maximum  p-value
trials MAPE deviation

PSO 50 0.045661 ¢ 0.003743  0.039334  0.045548 0.058081

GA (m =0.05) 50 0.092665” 0.051349  0.039465 0.077008  0.267170

GA (m=0.1) 50 0.0936387 0.044163  0.039225 0.087674  0.202533  p-value <
GA (m=0.2) 50 0.084986 7 0.037714  0.039117  0.080257  0.244075 0.0005
GA (m=0.3) 50 0.098225” 0.054169 0.039326  0.084729  0.270992

GA (m=0.4) 50 0.092345% 0.066085 0.039173  0.070386  0.400521

GA (m=0.5) 50 0.091441% 0.051345 0.039185 0.077055  0.325060

m = mutation rate. o )
4% different superscripts showed significant difference between group at the level 0.05.

From the Table 3, we found that the MAPE average of various mutation rate in the continuous genetic algorithm
did not significantly differ. Although the best result (minimum of MAPE) of the continuous genetic algorithm and
the particle swarm optimization method were not significantly differ, the MAPE average of the particle swarm opti-
mization method was smaller than the continuous genetic algorithms one. We also found that the MAPE variance of
the genetic algorithms were more higher than the particle swarm optimization variance. This results indicate that the
particle swarm optimization method was more robust than the continuous genetic algorithm.

CONCLUSIONS

We have implemented particle swarm optimization and continuous genetic algorithm in parameter estimation of the
Gompertz growth model. Although the best results of the two models were not significantly differs, we found that the
particle swarm optimization method was more robust than the continuous genetic algorithm.
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