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Abstract
The usage of glyphosate is increasing worldwide. Glyphosate and its major metabolite, aminomethylphosphonic acid
(AMPA), are of potential toxicological concern in unknown chronic kidney disease (CKDu). As with Cd and other
elements, glyphosate exposure has been reported as risk factor for CKDu in farmers. This study aimed to evaluate the
influence of co-exposure to glyphosate and heavy metals in chronic kidney disease. In this study, the urine samples
from 55 patients with CKD and 100 participants without CKD were analyzed for glyphosate, As, Cd, and Pb
concentrations, and eGFR. Negative associations between glyphosate, AMPA, As, and Cd concentrations in the urine
and eGFR were found for study subjects (p < 0.05). With regard to the effect of co-exposure, the odds ratios (OR) for
subjects with an eGFR of < 60 mL/min/1.73 m2 was significant because of the high Cd concentration (> 1 µg/g
creatinine; OR = 7.57, 95% CI = 1.91–29.95). With regard to the effect of co-exposure, the OR for subjects with an of
eGFR < 45 mL/min/1.73 m2 was significant at high glyphosate concentration (> 1 µg/g creatinine; OR = 1.57, 95% CI = 
1.13–2.16) and As concentration (> 1 µg/g creatinine; OR = 1.01, 95% CI = 1.00–1.02). These results showed that
glyphosate, AMPA, As, and Cd have an effect on CKD; notably, Cd, As, and glyphosate exposure can be important risk
factors after stage 3a of CKD, and that there was a co-exposure effect of As and glyphosate in CKD after stage 3b.
The potential health impacts of glyphosate should be considered, especial for patients with CKD and eGFR below 45
mL/min/1.73 m2.

Introduction
Since the early 1990s, an unknown chronic kidney disease (CKDu) with compelling tubulointerstitial presentations,
called chronic interstitial nephritis, has been reported in agricultural areas of various tropical countries (Jayasumana
et al. 2015b; Jayasumana et al. 2015c; Ruwanpathirana et al. 2019), particularly in developing countries without
certain chronic etiologies, such as diabetes, hypertension, and glomerulonephritis (Jha et al. 2013). CKDu has spread
across rural communities in South Asia, China, and Central America (Correa-Rotter et al. 2014; Jayasumana et al.
2014; Smpokou et al. 2019; Wang, D. et al. 2019). Notably, the overall prevalence of CKDu in Sri Lanka has reached
10% , and is as high as 22.9% in several communities; it is the cause of more than 20,000 deaths
annually (Jayasumana et al. 2015a).

Glyphosate, an organophosphorus pesticide, is used in relatively high amounts worldwide owing to the increased
planting of genetically modified seeds (Duke et al. 2008; Myers et al. 2016); further, the contamination of the crops,
leaf, and seed by glyphosate can be detected in the air, water, and rain (Chang, F. C. et al. 2011; Krüger et al. 2014).
Owing to its low vapor pressure (25°C, 9.8×10−8 mm-Hg), glyphosate is hardly vaporized into air, which can be
adsorbed by the leaves of plants through the soil, and then passed down the phloem to enter the root (Helander et al.
2012). In the eco-environmental system, glyphosate and its major metabolite, aminomethylphosphonic acid
(AMPA) (Bai et al. 2016), are of potential toxicological concern, mainly as a result of the accumulation of residues in
topsoil (Silva et al. 2018; Yang et al. 2015) and the food chain (Bai et al. 2016). Therefore, the major exposure
pathway in humans is through the ingestion of the residuals of glyphosate and AMPA in food (Bai et al. 2016; FSA
2018); the other routes of exposure are inhalation and dermal contact in occupational workers and farmers (Abdul et
al. 2021; Cai et al. 2017; Jayasumana et al. 2015c).

A previous study showed that glyphosate has tumor-promoting potential in mouse skin (George et al. 2010), and the
International Agency for Research on Cancer defined glyphosate as Group 2A (probably carcinogenic to humans) in
2015 (IARC 2015). However, the European Food Safety Authority has suggested that glyphosate does not appear to
be genotoxic and would not be a carcinogen (EFSA 2015). Many recent studies have declaimed that glyphosate has
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adverse effects on human health (Chang, Ellen T. et al. 2016; EFSA 2015; Samsel et al. 2013), including impacts on
antioxidants, reproductive hormones, and gut microbiome (Ruuskanen et al. 2020), and it may cause acute kidney
effects or chronic disease following short-term or long-term exposure (Schaeffer et al. 2020; Tsai et al. 2018;
Wimalawansa, Shehani et al. 2014).

In sugarcane farmers with kidney dysfunction in CKDu-emerging regions of Sri Lanka, urinary beta 2-microglobulin
and serum cystatin C levels were significantly correlated with urinary glyphosate levels, which is potentially relevant
to the subsequent decline in kidney function, as indicated by estimated glomerular filtration rate (eGFR), and albumin
creatinine ratio, and neutrophil gelatinase-associated lipocalin (Abdul et al. 2021). Herrera-Valdes (2019) suggested
that glyphosate specifically affected the kidneys in which farmers/farmworkers were highly exposed. Moderate to
severe coagulative necrosis of hepatocytes and glomerular and renal tubular necrosis were observed when 4.4–750
mg/kg of oral glyphosate was administered daily for 36 weeks in rats (Tizhe et al. 2020). In an in vitro study,
glyphosate was found to reduce cell viability and induce apoptosis and oxidative stress in a dose-dependent manner
in a human renal proximal tubule cell line); this was attributed to the similarity of the chemical structures of
glyphosate and AMPA to glycine and glutamate, which are agonists of the N-methyl-D-aspartate receptor, and further
to result to an imbalance of oxidant and antioxidative products involved in glyphosate-induced renal proximal tubule
epithelium apoptosis (Gao et al. 2019). In addition, glyphosate consumption and acute kidney injury were also
observed in toxic epidermal necrolysis (Indirakshi et al. 2017). Therefore, the adverse effects of glyphosate exposure
on renal dysfunction should be considered.

Metal exposure has been proven to be associated with kidney dysfunction (Sabath et al. 2012; Tsai et al. 2018;
Wimalawansa, S. J. 2016). In Taiwan, the importance of zinc (Zn) and chemical oxygen demand in rivers was
demonstrated in a regression model of CKD; a high CKD prevalence was related to arsenic (As) contamination in
groundwater in Taiwan (Chang, Kuan et al. 2018); and a high As level of ≥ 50 μg/L in drinking water was a risk factor
for end-stage renal disease (Cheng et al. 2018). The higher heavy metal concentrations in farms close to patients'
residences were associated with a higher risk of progression to end-stage kidney disease (Tsai et al. 2018).

Jayasumana et al. (2015b) first reported a new form of CKD among paddy farmers, termed Sri Lankan Agricultural
Nephropathy in 1994. They found that multiple heavy metals and glyphosate may have a synergistic nephrotoxicity.
Meanwhile, they also found that phosphate fertilizers were a major source of inorganic As, which is relevant to CKDu
in the endemic areas of Sri Lanka (Jayasumana et al. 2015a). Moreover, Babich et al. (2020) showed that metals in
drinking water, even at safe levels, can impede kidney development from an early age, which potentiates increased
susceptibility to other agrochemicals, such as glyphosate. The effects of drinking water contaminants on
mitochondria can contribute to the progression of kidney dysfunction. However, no evidence was found for the loss
of kidney function in participants at risk of mesoamerican nephropathy (MeN) (Smpokou et al. 2019). However, other
studies pointed out that there may have been a synergistic effect of glyphosate and hard water on renal injury
through mitogen-activated protein kinases /cytosolic phospholipase A2/arachidonic acid and their downstream
factors (Wang, R. et al. 2021; Zhang et al. 2021).

Above all, the concern of the risk of kidney disease caused by glyphosate is very important when glyphosate
exposure is increasing annually. The aim of this study was to evaluate the influence of co-exposure to glyphosate
and heavy metals on CKD. The impact of glyphosate residues on health is warranted in subgroups sensitive to kidney
dysfunction, especially in those exposed to metals, which are also related to kidney illness.

Materials And Methods



Page 4/19

Subject enrollment
For this cross-sectional study, 55 patients with chronic kidney disease were recruited from the Division of Nephrology
of National Cheng Kung University Hospital (NCKUS) and 100 participants with healthy kidney function were recruited
from Taiwan Biobank (TWB). The study was approved by the Ethics Committee of NCKUS (Tainan, Taiwan, encoded:
A-ER-108-189) and TWB (Taipei, Taiwan, encoded: TWBR10811-05). All participants signed a consent form before
sampling started.

Interviewer-administered questionnaire
Demographic information was obtained using a face-to-face questionnaire-based interview in NCKUS, and the
information on the 100 healthy participants was provided from TWB. Personal characteristics (including sex, age,
height, weight, occupational history, neighborhood geography, and socioeconomics), lifestyle factors (alcohol
consumption, smoking habits, drinking other liquids, etc.), and dietary patterns (consumption frequency and
quantities) were included in the questionnaires. Meanwhile, histories of familial disease were also recorded in the
questionnaires.

Blood serum and urine sampling
In 55 patients with CKD, 1 mL samples of plasma and 7–8 mL of urine were obtained in hospital, stored at 4°C, and
then kept at −80°C until analysis. For the 100 study participants from TWB, 0.8 mL plasma and 2 mL urine were
stored in glass tubes in the dark and kept at −80°C before metal analysis.

Analysis of urine glyphosate concentrations
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the concentration of
glyphosate and AMPA. The concentrations of glyphosate and its metabolite, AMPA, in urine samples were determined
after processing through a liquid–liquid extraction in acidic conditions and analysis using a validated LC-MS/MS
method. In addition, creatinine content was measured to correct for diuresis. Then, 1 mL of urine sample and 100 μL
of the internal standard (IS) solution (containing 1 ng/mL of each IS) were directly extracted with 1 mL deionized
water containing 2% formic acid. The mixture was then vortexed for 3 min, and 1 mL of the mixture was filtered
through a 0.2-μm PTFE membrane filter before LC–MS/MS analysis. The LC-MS/MS analysis was performed using
an Agilent 1200 Infinity HPLC system coupled with an Agilent 6410 triple quadrupole mass spectrometer (Agilent
Technologies, Inc., Palo Alto, CA, USA). The LC separation was conducted using an IC-Pak Anion HR 6 μm, 4.6 mm ×
75 mm LC column (Waters, Milford, MA, USA), at a flow rate of 200 μL/min. The mobile phases were water (A) and
ACN (B), both were in 2% HCOOH. The injection volume was 20 μL. The initial gradient was 10% B; increased to 41% B
at 3 min; to 70% B at 4 min; maintained at 70% B for 4 min; and then returned to 10% B at 10 min. Multiple reaction
monitoring data were acquired and processed in negative and positive ESI modes. The following transitions
(quantification transitions are underlined) were found to be optimal for the detection: glyphosate, 170 > 88/170 > 60;
13C, 15N glyphosate, 172 > 90.1/ 172 > 62.1; AMPA, 110 > 63.1/ 110> 79.1; and 13C, 15N AMPA, 114 > 63.0/ 114 > 79.
The MS-MS nebulizer was set at 40 psi, the dry gas (N2 99.9% pure) flow was set at 10 L/min, and the source
temperature and capillary voltage were kept at 350°C and 4 kV, respectively. Glyphosate and AMPA was quantified
using a developed linear calibration, which spanned over two orders of magnitude, with a working range from the
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lowest reportable value (0.5 ng/mL) to the highest standard (50 ng/mL); R2 > 0.998. Each analysis batch (10
samples) contained a laboratory blank, a pooled sample, a spiked pooled sample, and a repeatedly spiked sample.
The concentration of glyphosate and AMPA in analytical blanks had to be lower than half of the method detection
limit (MDL), at 0.003 and 0.012 μg/L, respectively. A QC check standard was analyzed for each batch to verify that
the instrument remained properly calibrated and the recovery rates were 90%–111%. The recoveries of glyphosate
and AMPA in the spiked samples ranged from 89%–114% and 87%–104%, respectively. The coefficients of variation
of glyphosate and AMPA for the repeatedly spiked samples were both <10%.

Analysis of metal concentrations in the serum and urine samples
Blood sampling and analysis details for metal concentrations are available elsewhere (Batista et al. 2009; Palmer et
al. 2006). Metal contents were analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS; ICP-MS-ELAN
DRC II, PerkinElmer). The recovery efficiencies for Pb, Cd, and As were measured by the addition of a standard
solution to samples, and the recovery rates in blood were 97% (Pb), 101% (Cd), and 102% (As) in urine, as well as
MDLs were 0.047 mg/L (Pb), 0.014 mg/L (Cd), and 0.02 mg/L (As).

Statistical analysis
Metal, glyphosate, and AMPA concentrations were reported in units of μg/g creatinine in urine and μg/L in blood.
SPSS 26 (IBM SPSS Statistics) were used for data management and statistical analysis. Chi-squared tests were used
to examine the frequency distributions of dichotomous variables—gender, smoking status, and drinking status—in
four groups of patients with different stages of CKD. The Kruskal-Wallis and Jonckheere-Terpstra test were used to
compare the differences and trends in age, metal concentrations in the blood, in the urine, and glyphosate and AMPA
concentrations in the four CKD groups. In addition, to assess the effects of co-exposure to glyphosate and metals, we
compared, using logistic regression, the odds ratios (ORs) of different CKDs for participants with different levels of
exposure. Statistical significance was set at p < 0.05.

Results

Demographics and the description of biomarker levels of 155
subjects
The average age of the 105 men and 50 women in the study was 53.1 years of age; 43 subjects were smokers and 15
subjects were drinkers (Table 1). The median glyphosate concentration in urine samples was 0.33 µg/g creatinine (0–
12.13 µg/g creatinine), and the median AMPA concentration was 0.17 µg/g creatinine (0–14.64 µg/g creatinine). For
the exposure biomarkers, the median concentration of As was 34.4 µg/g creatinine (1.12–1020.73 µg/g creatinine),
the Cd concentration was 0.41 µg/g creatinine (0.07–4.66 µg/g creatinine), and the Pb concentration was 4.59 µg/g
creatinine (0.18–62.24 µg/L). As a biomarker of kidney function, the average eGFR was 85.12 mL/min/1.73 m2

(standard deviation: 40.57).

The relationship between exposure biomarkers and eGFR
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We further analyzed the correlation between glyphosate, AMPA, metal concentrations, and biomarkers of kidney
function in Table 2. Negative correlations were shown with glyphosate (β=−0.521), AMPA (β=−0.541), As (β=−0.388),
and Cd (β=−0.580) concentrations and eGFR in the urine samples from the study subjects (p < 0.05), separately
(Table 2). In addition, significant negative associations were also found between the decrease in eGFR and
glyphosate, AMPA, Cd, and As concentrations, even after adjustment for age, sex, and BMI (Table 3).

The relationship between exposure biomarkers and eGFR
Therefore, in the second stage, we categorized all participants into two groups, comprising: subjects without CKD
(eGFR>90 mL/min/1.73 m2), non-CKD; patients with CKD stage 1–3a (60£eGFR<90 mL/min/1.73 m2); stage 3b
(45£eGFR<60 mL/min/1.73 m2); and stage 4–5 (eGFR<45 mL/min/1.73 m2). Significant differences in age and
smoking status were found among the four groups, but without a consistent increase or decrease in trends (Table 4).

For exposure biomarkers (Table 5), the average glyphosate concentrations in urine samples in the non-CKD, and stage
1–3a, 3b, and 4–5 groups were 0.38, 2.67, 2.29, and 3.62 µg/g creatinine, respectively; the AMPA concentrations were
0.25, 2.35, 2.02, and 2.09 µg/g creatinine, the average concentrations of As were 35.11, 95.96, 161.04, and 118.49
µg/g creatinine, and the average concentrations of Cd were 0.41, 1.11, 1.35, and 2.04 µg/g creatinine, respectively.
There were significant differences between all four groups (p < 0.05). In the test for trends in biomarker exposure
among these four groups, trends were found for glyphosate and Cd among these four CKD stages (Figure 1).

Further, dichotomized groups were categorized for eGFR <60, or <45 mL/min/1.73 m2, and ORs of subjects with eGFR
below or above the two groups were calculated from logistic regression analysis. Higher glyphosate values were
significantly related to an increased risk of a decrease in eGFR compared with the glyphosate lower group after
adjustment for age, sex, BMI, and the interaction terms of glyphosate, Cd, and As concentrations. In Model 1, the OR
for eGFR<60 was significant because of the high Cd concentration (> 1 mg/g creatinine; OR = 7.57, 95% CI = 1.91–
29.95) and the OR was greater than 1 for high glyphosate concentrations (> 1 mg/g creatinine; OR = 1.39, 95% CI =
0.90–2.15), but the association was not significant. In Model 2, the OR for eGFR <45 was significant because of the
high glyphosate (> 1 mg/g creatinine; OR = 1.57, 95% CI = 1.13–2.16) and As (> 1 mg/g creatinine; OR = 1.01, 95% CI
= 1.00–1.02) concentrations, but the high Cd concentration (> 1 mg/g creatinine; OR = 1.85, 95% CI = 0.83–4.11) was
not significant. The OR for the decrease in eGFR varied because of the different CKD stages.

Discussion

Biomarker of glyphosate exposure
In the metabolism analysis, the maximum concentrations of glyphosate and AMPA were observed at 2.42–5.16 h
after the intravenous injection of glyphosate (Anadon et al. 2009). A study was designed in which 12 participants
consumed a test meal with a known concentration of glyphosate residue and a lower concentration of AMPA, and the
results showed that the estimated elimination half-life for glyphosate was 9 h (Zoller et al. 2020). Therefore, the
measurements of glyphosate and AMPA in urine samples can be a short-term marker for external exposure.

Mills et al. (2017) have reported that the average glyphosate and AMPA concentrations in the general population of
USA were 0.024 µg/L and 0.314 µg/L, increasing from 0.008 µg/L to 0.401 µg/L in 1993–1996 and 2014–2016 in
the aging healthy population in the United States, whereas a decreasing trend in glyphosate residues in urine in
Germany youngers was found (Conrad et al. 2017). This study and the other one all found that chronically ill patients
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had significantly higher urinary concentrations of glyphosate residues than healthy individuals (Krüger et al.
2014). Moreover, the glyphosate and AMPA concentrations in urine samples from adults and elders in this study were
higher than those found in other countries (Krüger et al. 2014; Mills et al. 2017).

Although a review paper that collected data from seven studies revealed no health concerns because the glyphosate
exposure estimation for general population was far below than “acceptable daily intake“ or “acceptable operator
exposure level”, exposure was predominantly resulted from the occupational and dietary exposure routes in Europe
and North America (Niemann et al. 2015).

Many researchers have reported that glyphosate and AMPA residues were present in soy-based infant formula, maize-
derived food, beer, wine, fruit juice (González-Ortega et al. 2017; Jansons et al. 2018; Rodrigues et al. 2018), and that
glyphosate was detectable in nearly all honey samples in Switzerland (Zoller et al. 2018) and in American mothers’
breastmilk (Honeycutt et al. 2014). Therefore, the evaluation of glyphosate exposure via food consumption in
patients with CKD is important.

With regard to As, higher exposures were found in this study compared with biological monitoring data from urine
samples of other countries (Aguilera et al. 2008; Feng et al. 2015; Morton et al. 2014). For Cd exposure, the urine Cd
concentrations in this study were clearly higher than those of other studies in Western countries (Aguilera et al. 2008;
Baeyens et al. 2014; Heitland et al. 2006; Morton et al. 2014; Tellez-Plaza et al. 2008) and in Thailand (Nishijo et al.
2014), but were equal to those reported by Liao et al. in Taiwan (Liao et al. 2019). Overall, the concentrations of bio-
exposure markers, such as glyphosate, AMPA, Cd, and As, were higher than those of other countries.

Metals, glyphosate exposure and renal function
In discussing the relationship between exposure biomarkers and eGFR, the variation in climate, temperature, air
quality, water quality, and drought, and exposure to fertilizers, soil conditioners, herbicides, fungicides, and pesticides
have been considered as contributing factors for the development of CKD in South Asia (Wilke et al. 2019). For
example, in Thailand, the serum creatinine concentrations were associated with glyphosate use and pesticide
exposure index in the occupational group (Mueangkhiao et al. 2020), which indicated that glyphosate exposure might
be related to renal dysfunction. Meanwhile, an acute kidney injury developed after the ingestion of glyphosate-based
herbicide, indicating epithelial injury in proximal tubules, and glyphosate mitochondrial toxicity was also found
(Kimura et al. 2020). Other environmental contaminants, such as heavy metals (e.g., Cd, As, and Pb) and organic
pesticides (e.g., glyphosate) in the drinking water, even at safe levels, can impair kidney development at an early age;
and may play a role in the childhood onset and progression of kidney dysfunction (Babich et al. 2020). However, in
three cohorts across different phases of child development, the authors confirmed detectable glyphosate in children’s
urine at various ages and stages of development, but found no evidence for renal injury in children exposed to low
concentrations of glyphosate (Trasande et al. 2020). Meanwhile, Gunatilake (2019) suggested that glyphosate’s
synergistic health effects when combined with paraquat, and the continuous high temperatures of lowland tropical
regions could result in renal damage. Glyphosate exposure, such as enhancing the growth of Clostridia species and
ruminal metabolism in vitro (Riede et al. 2016), promotes As toxicity in renal dysfunction (Jayasumana et al. 2015a),
and the low-dose exposure of glyphosate-based herbicides disrupted the urine metabolome and its interaction with
gut microbiota has been dysregulated in related diseases through the commensal microbiome (Hu et al. 2021).
Overall, several pathologies associated with MeN, a type of CKDu, may be linked to glyphosate exposure, such as
altered gut microbiota (Rueda-Ruzafa et al. 2019), increased As toxicity, suppressed synthesis of adrenocorticotropic
hormone, disruption of fructose metabolism, and promotion of dehydration and high serum urate (Seneff et al. 2018).
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For metal exposure, the higher concentrations of Zn and nickel (Ni) in farms close to the residence of patients with
CKD were associated with a higher risk of progression to end-stage kidney disease in Taiwan (Tsai et al. 2018). An
epidemiology study has suggested that high plasma selenium (Se) and low red blood cell Pb levels or Cd levels can
interact to increase the eGFR (20.70, 15.56–26.01 mL/min/1.73 m2) in CKD (Wu et al. 2019). However, a report
showed that the non-association between glyphosate, aluminum (Al), and As exposure and decreased kidney
function in 350 young adults living in area of Central America with an epidemic of MeNs (Smpokou et al. 2019).
Meanwhile, the exposure and risk assessment showed that there was no treatment risk with glyphosate (Honeycutt et
al. 2014; Krüger et al. 2014; Niemann et al. 2015). All of the above studies were retrospective, and used biological
biomarker data for external exposure, and APMA was not included in the above studies. However, in our study, the co-
exposure of As and glyphosate was found in patients after CKD stage 3b. The alternative importance of glyphosate
and Cd or As exposure in the progression of CKD have been seen in patients with CKD stage 3 or above. These results
can respond to the conclusion from Seneff et al. (2018), who reported that the most likely way to prevent end-stage
renal failure in sugarcane workers was to stop the use of glyphosate in Brazil, and that the progression of patients
with CKD into end-stage renal failure may be prolonged by a reduction in glyphosate exposure.

Conclusions
In this study, we observed that glyphosate, AMPA, As, and Cd affected CKD; notably, Cd exposure may be an
important risk factor after CKD stage 3a, and As and glyphosate have a synergistic effect following co-exposure in
patents with CKD beyond stage 3b. Therefore, the potential health risks of glyphosate must be considered, especial
for patients with CKD and eGFR values below 45 mL/min/1.73 m2.

However, a comprehensive analysis of chemical contaminants in the drinking water and the effects of these
compounds and their mixtures on kidney development and function is missing. Therefore, this study is a starting
point for the discussion of the etiology and the progression of kidney disease; and analytical models for alternative
agro-chemicals can provide other insights in future. Furthermore, the relationships should be followed up in a large
population of patients with CKD to increase the power of the statistical analysis and allow consideration of more
factors that co-influence CKD progression.
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Table 1 

Demographic results of all participants
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  Population (N=155)

 Demographics  

Sex 

Men

 

105 (67.7)a

 Women 50 (32.3)a

Age 53.19±16.09b

BMI 25.21±4.46b

Body Weight 69.48±16.14b

Smoking 43 (27.7)a

Drinking 15 (9.7)a

CKD stage  

Non CKD 99 (63.9)a

1 3 (5.45)a

2 10 (6.45)a

3a 11 (7.10)a

3b 15 (9.68)a

4 10 (6.45)a

5 7 (1.02)a

Exposure indicator  

 Glyphosate(µg/L) 1.10 (0, 11.28 )c

 Glyphosate (µg/g creatinine) 1.16 (0, 12.13 )c

 AMPA(µg/L) 0.79 (0.01, 6.73 )c 

 AMPA(µg/g creatinine) 0.86 (0, 14.64 )c

 As (µg/g creatinine) 62.34 (1.12, 508.82 )c

 Cd (µg/g creatinine) 0.78 (0.07, 4.66 )c

 Pb (µg/L) 6.11 (0.08, 62.24 )c

Biomarker of kidney function  

 eGFR (mL/min/1.73m2) 85.06±40.70 b

 Creatinine_urine (g/L) 1.68 (0.33, 3.81)c
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Creatinine_serum (mg/dL) 1.38 (0.40, 9.15)c

a Number and parentheses with percentage

b Mean±SD

c Median and parentheses with Minimum and Maximum

 Table 2 

The correlation among glyphosate, metals and biomarkers of kidney function

N=155

r@

Glyphosate

(µg/g
creatinine)

AMPA

(µg/g
creatinine)

As

(µg/g
creatinine)

Cd

(µg/g
creatinine)

Pb

(µg/L)

Creatinine

(mg/dL)

eGFR

(mL/min/1.73m2)

Glyphosate    0.569** 0.477** 0.723** 0.033 0.538** -0.526**

AMPA     0.471** 0.653** 0.115 0.495** -0.540**

As       0.580** 0.064 0.356** -0.384**

Cd         0.009 0.550** -0.585**

Pb           -0.058 0.067

@ Spearman correlation coefficient * p<0.05, ** p<0.001

Table 3 

The association between different exposure biomarkers and eGFR

Independent variable β p-value@

Glyphosate (µg/g creatinine) ¶ -5.216 0.001*

AMPA (µg/g creatinine) ¶ -2.315 0.070

As (µg/g creatinine) ¶ -0.107 0.002*

Cd (µg/g creatinine) ¶ -18.348 0.001*

¶ Adjustment for age, sex, BMI

@ Linear regression model, * p<0.05

Table 4
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Demographic results of participants in different CKD stage

  CKD stages  Non-CKD 1-3a 3b 4-5 P-value

N= 99 25 14 17  

Sex         0.183c

  Men 64 (64.6)a 15 (60.0)a 12 (85.7)a 14 (82.4)a  

  Women 35 (35.4)a 10 (40.0)a 2 (14.3)a 3 (17.6)a  

Age 45.98±12.51b 65.04±11.02b 71.14±15.84b 63.00±14.90b <0.001*d

BMI 24.78±4.53b 25.66±4.80b 25.58±4.16b 26.72±3.59b 0.362d

Body Weight 69.83±17.52b 67.98±13.68b 67.67±11.27b 71.17±15.23b 0.893d

Smoking 33 (33.3)a 2 (8.0)a 1 (7.1)a 7 (41.2)a 0.012*c

Drinking 9 (9.1)a 2 (8.0)a 1 (7.1)a 3 (17.6)a 0.692c

a Number and parentheses with percentage

b Mean±SD

c Chi-square test

d One-way ANOVA

* p<0.05




 Table 5

 Difference of biomarker levels in different CKD stage
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CKD stages Non-CKD 1-3a 3b 4-5 P-value@

N= 99 25 14 17  

Glyphosate (µg/g creatinine) 0.31±0.22 2.28±2.57 2.33±2.37 3.62±3.64 <0.001**

AMPA (µg/g creatinine) 0.22±0.57 1.95±2.96 1.99±2.34 2.09±3.62 <0.001**

As (µg/g creatinine) 34.12±34.63 109.66±120.55 112.63±61.83 118.49±93.06 <0.001**

Cd (µg/g creatinine) 0.36±0.21 1.46±0.96 1.01±0.70 2.04±1.25 <0.001**

Pb (µg/L) 5.55±3.65 6.77±8.12 6.29±5.65 8.3±14.84 0.751

eGFR (mL/min/1.73m2) 109.15±24.86 64.58±20.74 36.43±4.64 15.88±8.02 <0.001**

Creatinine (mg/dL) 0.78±0.21 1.12±0.33 1.81±0.29 4.80±2.69 <0.001**

Data showed as Mean ± SD, ** means statistical significant different

@ Kruskal Wallis-test

Table 6 

The odds ratio (OR) of eGFR decrease by glyphosate, AMPA, Cd and As levels

N=155 OR (95% CI) p-value@

Model 1:eGFR≧60 vs. <60 ¶    

Glyphosate (µg/g creatinine) 1.388 (0.896-2.150) 0.142

AMPA (µg/g creatinine) 0.959 (0.646-1.424) 0.836

Cd (µg/g creatinine) 7.567 (1.912-29.949) 0.004*

As (µg/g creatinine) 1.006 (0.997-1.015) 0.208

Model 2:eGFR≧45 vs. <45 ¶    

Glyphosate (µg/g creatinine) 1.566 (1.134-2.162) 0.006*

AMPA (µg/g creatinine) 0.998 (0.762-1.307) 0.987

Cd (µg/g creatinine) 1.851 (0.833-4.111) 0.131

As (µg/g creatinine) 1.008 (1.000-1.015) 0.038*

¶Adjustment for age, sex, BMI and interaction terms of glyphosate, Cd and As levels

@Logistic regression model

Figures



Page 19/19

Figure 1

Trend of biomarkers of all participants in different CKD stage
Note: The values with the same superscript letters are
significantly different by Jonckheere Trend-test (p<0.05).


