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A composite scaffold was successfully fabricated using p-tricalcium phosphate (fTCP), which is extracted from
limestone by first sintering and then reacting it with phosphoric acid through wet precipitation method. The
resultant substance is then mixed with chitosan and gelatin. This novel method utilizes limestone, which is
abundant in nature, This study optimizes the composite scaffold fabrication by using fTCP from limestone and
evaluating the effeet of glutaraldehyde on scaffold characteristics. The freeze-drying method was used to obtain a
porous scaffold. The compressive strength of the cross-linked scaffolds (3.3 = 0.3 MPa) was significantly higher
than that of scaffolds without glutaraldehyde (1.7 = 0.2 MPa). In contrast, the porosity of the cross-linked
scaffolds was lower (85.8 £ 0.8 %) than the non-cross-linked scaffolds (89.1 = 0.4 %). It is clear that the

porosity had a considerable impact on the comp

ive strength, wt lower porosity led to a higher

compressive strength. In conclusion, glutaraldehyde is an effective cross-linker for the fabrication of chito-
san-gelatin-fTCP composite scaffolds and significantly improves their compressive strength.

1. Introduction

Chitosan, a polysaccharide biopolymer, when mixed and cross-
linked with gelatin, can produce bone scaffolds with improved bioac-
tivity and mechanical properties [1,2]. Glutaraldehyde is prevalently
used as a cross-linker for chitosan and gelatin because of its ability to
bond to their amine groups [1,2], thereby enhancing their mechanical
strength. Lou et al. [2] reported excellent porosities by incorporating
chitosan and gelatin through the freeze-drying method. However, the
resulting mechanical strength was considered too low for clinical
application.

Several reports have noted that adding inorganic materials, such as
calcium phosphate materials, could result in higher mechanical strength
[1]. The p-tricalcium phosphate (FTCP) has higher solubility than hy-
droxyapatite leading to rapid degradation and it is expected to be
quickly replaced by new bone [3-5].

Pu'ad et al. [6] reported the utilization of natural sources to fabricate
calcium phosphate materials such as hydroxyapatite. One of the natural
sources used was limestone. Limestone, which mainly contains calcium
carbonate and is abundantly available worldwide, could be the calcium
source for manufacturing calcium phosphate ceramics, not only
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hydroxyapatite but also fTCP [6.7]. Thus, the utilization of limestone
could be an inexpensive alternative for PTCP preparation. The drawback
of using limestone as the precursor is the possibility of contamination by
other elements. Ratnasari et al [8] successfully synthesized fTCP pow-
der from limestone through sintering and reaction with phosphoric acid
through wet precipitation method. However, the presence of other ele-
ments would contaminate the purity of pPTCP, which might further affect
the properties of the obtained bone scaffold.

Despite the lack of purity in pPTCP, because of the massive potential of
limestone, the authors expected to evaluate the feasibility of this ma-
terial during the fabrication of a scaffold. Furthermore, in order to
optimize the properties such as porosity and mechanical strength, the
authors tried to evaluate the addition of glutaraldehyde as the cross-
linker.

The purpose of this study was to fabricate a composite scaffold using
chitosan and gelatin, which was incorporated with fTCP extracted from
limestone to improve the mechanical property. The effect of glutaral-
dehyde addition as a cross-linker on the characteristics of the composite
scaffolds was also evaluated.
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Fig. 1. The photographs of (a) PTCP-CG and (d) pTCP-CG-GA scaffolds. SEM images of (b, ¢) pPTCP-CG and (e, ) pPTCP-CG-GA scaffolds in low and high magnification.

2. Material and methods
2.1. Sample preparation

The PTCP powder used to fabricate the scaffolds were made by the
Center for Ceramics in Indonesia via a method previously reported [7].
Briefly, calcium hydroxide was made from limestone through sintering
and wet milling, then mixed with phosphoric acid through wet precip-
itation and sintered at 1000 °C to obtain the fTCP powder.

Chitosan powder (medium molecular weight; Sigma Aldrich, USA)
dissolved in 2% acetic acid solution and stirred at 45 “C for 10 min.
Then, gelatin (Type B; Sigma Aldrich, USA) was dissolved in distilled
water (W/P = 2), added to the chitosan solution and stirred, followed by
the addition of PTCP, which was manually mixed. One group of samples
was treated with 0.25% glutaraldehyde (PTCP-CG-GA) at a concentra-
tion of 5 vol% relative to the total mixture, and the other was without
glutaraldehyde (TCP-CG). The composition was chitosan:gelatin:fTCP
= 15:15:70%. After mixing, the slurry was poured into a mold (diameter
= 6 mm, height = 11 mm) and freeze-dried (Freeze-dryer; VirTis
Benchtop K, SP Industries, USA). The scaffolds were then washed and
neutralized using sodium borohydride and sodium hydroxide solutions,
respectively.

2.2, Characterization

Samples were analyzed using X-ray diffractometry (XRD; X' Pert PRO
PANanalytical: X'Pert3MRD, Malvern Panalytical, United Kingdom) at
40 kV and 30 mA and scanned over the diffraction angle (20) range from
15° to 40°. Fourier-transform infrared (FT-IR; Nicolet iS10 FTIR Spec-
trometer, Thermo Fisher Scientific, USA) spectroscopy was conducted to
determine the functional groups. Scaffolds were coated with Au/Pd, and
observed by scanning electron microscopy (SEM; FEI Inspect™ S50, FEI,
USA).

The compressive strength was measured using a universal testing
machine (Autograph; AGS-X, Shimadzu, Japan) with a crosshead speed
of 1 mm/min (n = 6). The percentage of the sample porosity was
calculated by subtracting the relative density (%) from 100%. The
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Fig. 2. The XRD patterns of fTCP standard, pTCP from limestone, fTCP-CG
scaffold, PTCP-CG-GA scaffold, chitosan, and gelatin reference.

relative density was obtained by calculating the sample bulk density and
theoretical density of PTCP, chitosan, and gelatin (Eqs. (1) and (2))[8].
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Fig. 3. The FT-IR spectra of chitosan and gelatin reference, fTCP-CG, fTCP-CG-GA scaffolds, and pTCP reference. (a: phosphate; *: amide [; @: amide II).

z::};rlasive strength and porosity of the fTCP-CG and fTCP-CG-GA scaffolds.
Sample Compressive strength (MPa) Porosity (%)
Mean sD p-value Mean sD p-value
[fTCP-CG 17 0z = 0.0001 B9.1 0.4 <0.0001
[TCP-CG-GA a3 03 B5.8 0.8
n=6.
Total porosity(%) = 100 — relative densitv(%) (2)

For statistical analysis, one-way analysis of variance (ANOVA) with
post hoc test of Fisher's least significant difference (LSD) was performed
using the Kaleidagraph Version 4.01 software (Synergy Software,
Reading, PA, USA) (p < 0.05).

3. Results

The cross-linked composite scaffolds exhibited visible shrinkage
compared to the non-cross-linked scaffolds (Fiz. 1a,d). Interconnected
porosity was confirmed by the cross-sectional SEM images of the scaf-
folds (Fiz. b, ¢, e, f). The morphologies of the two samples were
different: the cross-linked scaffolds had a sturdier structure (Fig. le, f)
than the non-cross-linked scaffolds (Fig. 1b, c). The average pore size of
the cross-linked scaffolds (302.2 ym) was lower than that of the non-
cross-linked ones (328.4 pm).

Fig. 2 shows the XRD patterns of both pPTCP-CG and pTCP-CG-GA,
which correspond to the fTCP reference. The broad peaks corresponding
to chitosan or gelatin were absent in the XRD patterns of the composite
scaffolds, which may be due to their small amounts.

The FT-IR spectra (Fig. 3) of both the samples showed the presence of
amide I (C=0)at 1637 cm™! (PTCP-CG) and 1638 cm! (PTCP-CG-GA),
and amide II (N—H) bands at 1545 cm~' (PTCP-CG) and 1541 cm™'
(PTCP-CG-GA) corresponding to chitosan and gelatin. In magnified
spectra of pPTCP-CG-GA, a peak indicating an imine (C—=N) band was
present and merging with the amide [ band. In addition, phosphate

bands with the highest peaks at 1017 em™* (fTCP-CG) and 1016 cm ™}
(PTCP-CG) corresponding to the tricalcium phosphate compound were
also observed.

Table 1 shows the compressive strength and porosity of the samples.
The compressive strength of pfTCP-CG-GA was significantly higher than
that of pPTCP-CG. On the contrary, the porosity of the samples with
glutaraldehyde was lower than of those without glutaraldehyde.

4. Discussion

The scaffold used in this study was composed of 70% PTCP derived
from limestone as the inorganic material mixed with 30% chitosan and
gelatin as the biopolymers. This study employed a 1:1 ratio of chitosan
and gelatin. However, differences were noted when glutaraldehyde was
introduced as a cross-linker. Composite scaffold containing glutaralde-
hyde have significant better mechanical property and better structural
form in terms of porous structure.

The overlapping peaks of the imine (C—=N) band and amide [ band
(Fig. 3) may indicate the cross-linking reaction in the PTCP-CG-GA
scaffold. The presence of imine is a result of the cross-linking reaction
between chitosan and gelatin, where the aldehyde groups of glutaral-
dehyde create a bridge that bonds with the amine groups of chitosan and
gelatin [1].

Bonds created by cross-linking also increase the viscosity of the
mixture, leading to the formation of a firm solid structure. Thus, the
solid structure was not damaged during the separation of the solid and
liquid phases upon freezing and resulting in smaller macropore sizes and
smaller porosity value, unlike the non-cross-linked scaffolds. However,
as bonds were formed, the structure was found to shrink, and the volume
of the scaffolds was found to decrease. In addition, strong bonds
distinctly increased the compressive strength, which was significantly
higher for the cross-linked scaffolds (3.3 + 0.3 MPa) than the non-cross-
linked scaffolds (1.7 &+ 0.2 MPa), which is comparable to the compres-
sive strength of cancellous bone (2-12 MPa) [9].

Besides the functional group bonding, porosity also affects the me-
chanical strength. A higher density and thicker walls on the firm cross-
linked scaffolds result in a higher compressive strength. It is observed
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that more uniformed pores and a smaller pore size result in a higher
resistance to the compression force than the less firm and less uniform
pores of the non-cross-linked scaffolds.

In conclusion, a composite scaffold was successfully fabricated using
chitosan, gelatin, and limestone-extracted PTCP. The addition of
glutaraldehyde as a cross-linker significantly decreased the porosity and
increased the compressive strength of the scaffold making it suitable for
bone tissue engineering.
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