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1. Introduction 

Snow on roofs gives many practical problems as extra load on the roof, sliding of the snow, 
icing on the roof in gutters, and generation of icicles. Sliding of snow and ice from roofs can 
in worst case kill people and damage property. A better understanding of the physics of snow 
and ice on roof can help in reducing the risk of damages. This research is supported by the 
research foundation at Länsförsäkringar, which is a Swedish banking and insurance alliance 
company.  
    A typical winter problem is snow and ice on roofs. This includes a number of problems that 
are related to building physics and heating of the house. Sloped roofs with external gutters can 
give problems. An example is melting of the snow on the roof and the freezing of the water on 
the overhang. The result is generation of an ice layer along the eaves. The ice layer can result 
in ice dams, so that melting water is collected behind. As the water does not freeze on the roof 
it will give a water pressure on the lower part of the roof. This gives a risk for water leakage 
into the building if the roof is not watertight. Another example is icing and generation of 
icicles on the roof edges.  
    Icicles hanging from the eaves are a serious problem as they can fall down and hit people 
walking beneath. The impact of a falling icicle or ice from ice dams can in the worst case kill 
people. Such incidents have happened in Sweden and Norway. According to Swedish law, it 
is the owner of the building who is responsible for prevention of sliding of snow and ice from 
the building. The Swedish Association of Buildings Owners (Fastighetbranchens Utvik-
lingsforum) has made a report (Snö och is på tak 2004) about the problems of snow and ice on 
roofs. It describes some law cases and examples of contracts with a firm to remove the ice and 
icicles, when they form in the winter. It is very helpful for the building owner as a basis for 
reducing the risk of snow and ice problems but it only sketches the physics behind the 
problem. A better solution is to prevent or at least reduce the risk by a better knowledge of 
snow melting, freezing and icicles generation on roofs. The problem with icing and icicles on 
roof is a complex problem involving architecture, meteorology, glaciology and building 
physics.  
    We can divide roofs in two types: cold (ventilated) roofs and warm (non-ventilated) roofs. 
In warm roofs, it is normal to have internal drainage with downpipes in the building. This 
solution has no or very little risk for icicles. Freezing of the melting water on the roof can still 
be a problem. Ventilated roofs introduce a ventilated gap or roof space to prevent moisture 
problems and to keep the surface of the roof cold. These roofs are in most cases sloped. The 
drainage is external to gutters along the eaves and to downpipes. The result is a high risk of 
ice formation on the overhang at the eave and icicles formation if the melting water freezes 
for instance in the gutter.  
    In this report we present calculations for ventilated roofs with a known inside temperature. 
The inside temperature can be defined in 2 cases: 
    1. The inside temperature is the same as the indoor temperature. We use the indoor 
temperature of the building and the U-value from the interior of the building to outside roof 
surface. This is used if we have no ventilated airspaces in the construction or the ventilation 
with outdoor air is rather low. 
    2. The inside temperature is the same as the attic temperature. 
We use the attic temperature of the building and the U-value from the attic to the outside 
surface of the roof. This must be cases, where the attic temperature is influenced by air flows 
or heat sources. If we have heat sources as heat pipes, ventilation duct or ventilation systems, 
then this will increase the temperature in the attic and give a higher risk of icicles. If the 
construction between the building and the attic is not airtight then we will have an air flow 
from the house to the attic that will increase the attic temperature. If the attic is ventilated with 
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outdoor air, the attic temperature and the risk of icicles will decrease. If the attic temperature 
is around -2 oC or lower in freezing periods, there is no melting and no icicles. 
    If we use the calculation on existing buildings, is it important to decide which case is most 
relevant for the building. As mentioned, the attic temperature can in second case be higher or 
lower than in the first case. 
 

2 Problem 

    Figure 1 shows the considered roof.  The inside temperature below the roof is rT  (around 

20oC or any lower attic temperature) and the exterior or outdoor temperature eT . The width of 

the roof is L  (m) from roof-ridge to overhang. The U-value or thermal conductance of the 

roof (between rT  and the upper, outer side of the roof) is rU  (W/m2,K). The thickness of the 

snow layer, ( ),D t  decreases with time t, if the snow melts due to sufficient heating from the 

indoor temperature rT . The width of the overhang is ohL  and the U-value ohU  (W/m2,K). The 

thermal conductivity of the snow on the roof and overhang is sλ  (W/K,m), and the density of 

the snow is sρ  (kg/m3).  Changes over time of these snow parameters are neglected in this 

study. 
 
 
 

 
 

Figure 1.  Snow on a roof with overhang. The task is to calculate of the melting of snow on 
the roof, and the ensuing ice and icicle formation at the overhang.  

 
   The outdoor temperature is below zero and, in this analysis, constant. By assumption there 

is no melting of snow from above. The U-value of the snow on the roof, s ( ),U t   is varying 

with the snow depth  ( ).D t  The initial snow depth is 0.D  The snow on the overhang does not 

melt, which means the U-value of the snow on the overhang is equal to the initial U-value of 

the snow, s 0/ .Dλ  We have: 
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 s
r e s 00, 0, ( ) , (0) .

( )
T T U t D D

D t

λ
> < = =  (2.1) 

 
    The aim of this study is to calculate of the melting of snow on the roof. The water will flow 
to the overhang and freeze to ice under the snow on the overhang. Part of the water may drip 
or ooze from the lower end of the overhang to form ice and icicles there or leave the overhang 
as water drops. All melted snow ends up as ice again. Our aim is to quantify as function of 
time the melted snow, the formation of ice under the snow on the overhang and the amount of 
dripping water, which gives an upper limit for the ice formation at the outer end of the 
overhang. 
 

3 Melting of snow on a roof 

The snow on the roof will melt from below if the heating from rT  is larger than the cooling to 

eT . Let m ( )g t  (kg/s,m) denote the rate of snow melting on the roof (per meter roof width), 

and m ( )m t  (kg/m) the accumulated amount. The melted water from the roof enters the 

overhang, where it will freeze again due to the cold outdoor temperature that surrounds the 
overhang. Some of the water may drip from the overhang and form ice and icicles at the outer 

end of the overhang.  Let ( )dg t  (kg/s,m) denote the rate of dripping at the outer end of the 

overhang, and d ( )m t  (kg/m) the accumulated amount. We have: 

 

 [ ]m s 0 m d d

0 0

( ) ( ) ( ) , ( ) ( ) .
t t

m t L D D t g t dt m t g t dtρ ′ ′ ′ ′= − = =∫ ∫  (3.1) 

 

The time derivative of m ( )m t  becomes 

 

 m
m s( ) .

dm dD
g t L

dt dt
ρ= = − ⋅  (3.2) 

 

3.1 Heat flows and criterion for snow melting 

The temperature at the roof below the snow layer is equal to ( ) ( )r r s e r s( ) / ( )U T U t T U U t⋅ + ⋅ +  

provided that this temperature lies below zero. There will be melting when the value is 

positive. We study the case when this temperature is positive at the start 0t =  with the snow 

thickness 0(0)D D= : 

  

 
( )s es

r r s e r r e 0

0 r r

(0) 0 or .
T

U T U T U T T D
D U T

λλ −
⋅ + ⋅ = ⋅ + ⋅ > >  (3.3) 

 

The snow thickness limit m ,D  above which melting occurs, becomes:   

 

 
( )s e

m 0 m

r r

, (0) .
T

D D D D
U T

λ −
= = >  (3.4) 
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    The temperature is zero at the roof adjacent to the snow layer, when snow is melting. Let 

rq  (W/m) denote the heat flux through the roof, and e ( )q t the heat flux through the snow layer 

(when the temperature is zero at the boundary between roof and snow): 
 

 ( )
( )s e m

r r r e r

0
0 , ( ) .

( ) ( )

L T D
q LU T q t q

D t D t

λ −
= − = = ⋅   (3.5) 

 

The melting limit mD  and the net heat flux to melt snow are: 

 

 
( )s e m

m r e r

r

, ( ) 1 .
( )

L T D
D q q t q

q D t

λ −  
= − = − 

 
 (3.6) 

 
The snow melts as long as this heat flux is positive: 
 

 m
r e m( ) 0 1 0, ( ) .

( )

D
q q t D t D

D t
− > ⇔ − > >  (3.7) 

 

    The limit for snow melting, m ,D  must lie below the initial snow depth 0D , if melting is to 

occur. The criteria for snow melting are then: 
 

 r e m 0 m 0(0) , ( ) .q q D D D D t D> ⇔ < < ≤  (3.8). 

 

3.2 Differential equation for snow depth ( )D t  

The melting heat flux is equal to the rate of snow melting multiplied by the latent heat of 

melting for snow mh  (334 kJ/kg): 

 

 m
r e r m m m 0( ) 1 ( ), ( ) .

( )

D
q q t q h g t D D t D

D t

 
− = − = ⋅ < ≤ 

 
 (3.9) 

 

Combining (3.2) and (3.9), we get the differential equation for the snow thickness ( )D t : 

 

 m sm
m 0

r

1 , ( ) (0).
( )

h LD dD
D D t D D

D t q dt

ρ
− = − ⋅ < ≤ =  (3.10) 

 

or, introducing a time rt , (3.12):  

 

 r m
0 m

0

1 , (0) , 0 .
t DdD

D D D t
D dt D

− ⋅ = − = > ≤ < ∞  (3.11) 

 

Here, rt  is the time required to melt the snow layer with the initial thickness 0D  for e 0T = , 

i.e. for zero heat flux through the snow: 
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 ( )m s 0 m s 0
r r r r m s 0

r r r

, 0 .
h LD h D

t U T t h D
q U T

ρ ρ
ρ= = − ⋅ = ⋅  (3.12) 

 

3.3 Solution for the inverse relation ( )t t D=  

The above differential equation (3.11) may be solved by considering the inverse relation 

( )t t D= . The equation may be written:  

 

 r r m
m 0

0 m 0 m

1 ,
t t Ddt D

D D D
dD D D D D D D

 
= − ⋅ = − ⋅ + < ≤ 

− − 
 (3.13) 

 

The equation is integrated from any D, m 0 ,D D D< <   to 0D : 

 

 ( ) ( ) ( ) 0r
0 m m

0

ln
D

D

t
t D t D D D D D

D
− = − ⋅ + ⋅ −    (3.14) 

 

Using ( )0 0t D = , we get the basic formula: 

 

 ( ) 0 mm
r m 0

0 0 m

1 ln ,
D DDD

t D t D D D
D D D D

  −
= ⋅ − + ⋅ < ≤  

−  
 (3.15) 

 

The time t  increases to infinity when D  tends to the lower limit mD , where the melting stops. 

The snow thickness ( )D t  is obtained by a numerical inversion of (3.15) for any considered 

time t .  

   Formula (3.15) may be written in a dimensionless form using dimensionless time ,τ  snow 

depth ,d  and melting limit m :d  

 

 m
m

r 0 0

, , .
Dt D

d d
t D D

τ = = =  (3.16) 

 
The dimensionless form of relation (3.15) between time and snow depth becomes: 
  

 m
m m m

m

1
( , ) 1 ln , 1.

t

d
f d d d d d d

d d
τ

 −
= = − + ⋅ < ≤ 

− 
 (3.17) 

 

This function m( , )
t

f d d  is shown in Figure 2. 

    The function m( , )
t

f d d  decreases from infinity to zero in the interval m 1d d< ≤ : 

 

 [ ]m m m m

m

( 0, ) , (1, ) 0; ( , ) .
t t t

d
f d d f d f d d

d d d

∂
+ = ∞ = = −

∂ −
 (3.18) 

 

In the limit e 0T = , mD  and md  are zero, and the snow layer decreases linearly with t : 
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( )0 r r

r

1 /
( ,0) 1 , 0 1; ( ) .

0
t

D t t t t
f d d d D t

t t

− <
= − < ≤ = 

≥
 (3.19) 

 
 
 
 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

ft d 0.9, ( )

ft d 0.8, ( )

ft d 0.7, ( )

ft d 0.6, ( )

ft d 0.5, ( )

ft d 0.4, ( )

ft d 0.3, ( )

ft d 0.2, ( )

ft d 0.1, ( )

ft d 0, ( )

d

 

 

Figure 2.  The function m( , ),
t

f d dτ =  r 0 m m 0/ , / , / ,t t d D D d D Dτ = = = which gives 

( )t t D=  for m 0d =  (the lowest straight line), 0.1, 0.2, ... 0.9  (the rightmost curve). 

 
 

    Equation (3.17) defines the inverse relation, i.e. the relative snow thickness 0/d D D=  as 

function of r/t tτ =  with m m 0/d D D=  as parameter: m( , ).
d

d f dτ=  This function is shown in 

Figure 3. The set of curves is the same as in Figure 2, but the axes are interchanged. For any 

considered τ  and md , we have to calculate the root to the equation m( , ) 0
t

f d d τ− =
 
to 

determine d: 
 

 m m m m( , ) ( , ); ( ( , ) , ).t d t d

d

f d d d f d f f d dτ τ τ τ= ⇔ = =
�����

 (3.20) 

 

The root may be somewhat difficult to determine numerically for d close to m.d  The 

following approximation may then be used:  
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( )m m

m m m m

1 /
( , ) (1 ) , 3, 0 1.d

d d
f d d d e d

τ
τ τ

− −
= + − ⋅ > < <  (3.21) 

 

This relation is obtained from (3.17) by putting md d=  in the second right-hand term. The 

error is smaller than 0.000 06  for 3.τ >   

 
 

 

Figure 3. The function m( , ),
d

d f dτ=  the snow thickness 0/d D D=  as function of r/t tτ =  

with m m 0/d D D=
 
as parameter; m 0d =  (the lowest straight line), 0.1, 0.2, ... 0.9  (top curve). 

 
 

    We will need the derivative of m( , )
d

d f dτ=  with respect to .τ  We have from (3.18): 

 

 [ ]
[ ]

m m
m

m
m

1
( , ) 1 .

( , )
( , )

d

d
t

d d d
f d

d f d
f d d

d d

τ
τ τ

τ

 −∂
= = − = − − ∂∂  

∂

�����

�����

 (3.22) 

 

3.4 Melted snow m ( )m t  

The accumulated amount of melted snow at time t  is from (3.1): 
 

 ( ) ( )m s 0 0 0 s 0( ) ( ) 1 ( ) , .m t L D D t m d t m LDρ ρ= − = ⋅ − =  (3.23) 
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Here, 0m  (kg/m) the initial amount of snow on the roof. The total amount of melted snow 

mM  (kg/m) is obtained for very large t : 

 

 ( ) ( )m s 0 m 0 m1 .M L D D m dρ= ⋅ − = ⋅ −  (3.24) 

 
    Equation (3.23) may be written in dimensionless form:  
 

 m
m m m m m

0

( )
1 ( ) ( , ), ( , ) 1 ( , ).

d

m t
d t m d m d f d

m
τ τ τ′ ′= − = = −  (3.25) 

 

The dimensionless snow depth 0( ) ( ) /d t D t D=  is shown in Figure 3. We get directly the 

accumulated amount of melted snow by changing to m m1 ( ) ( , )d t m dτ′− =  on the vertical axis. 

See Figure 4. 
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Figure 4. Accumulated amount of melted snow, m 0 m m( ) / ( , ),m t m m dτ′=  as function of τ  with 

md  as parameter; m 0d =  (upper straight line), 0.1, 0.2, ... 0.9  (bottom curve). 

 
 
   Combining (3.23) and (3.11), we have: 
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 0m m

s r

1
1

( )

Ddm DdD

L dt dt t D tρ

 
⋅ = − = ⋅ − 

 
 (3.26) 

 

Integration over 0 t t′≤ ≤  gives 
 

 0
0 m

r 0

( )
( )

t
D dt

D D t t D
t D t

 ′
− = ⋅ − ⋅ 

′ 
∫ , (3.27) 

 

or, inserting ( )t t D=  from (3.15): 

 

 0 mm m
r

0 m0

ln .
( )

t
D DD D

dt t
D t D D D

 −
′ = ⋅ ⋅  

′ − 
∫  (3.28) 

 
This relation will be used below. 
 
 

4 Freezing in the overhang  and dripping from it 

The melted snow m ( )g t  will flow down the sloped roof into the overhang, where the 

surrounding temperature eT  is below zero. See Figure 1. All water will freeze below the snow 

in the overhang as long as the water influx is small. There is an upper limit above which part 

of the water freezes and the rest d ( )g t drips from the overhang. This latter part, the dripping 

flow, may leave the overhang as water drops, or create icicles and ice at the lower end of the 
overhang. 
 

4.1 Heat balance in overhang. Dripping limit 

In the case of dripping, the heat balance for the overhang ( )d ( ) 0g t >  is: 

 

 ( ) ( )m d m oh oh oh e( ) ( ) , 0 .g t g t h q q K T− ⋅ = = ⋅ −  (4.1) 

 

Here, ohq  (W/m) is the heat flux from the ice/water layer of zero temperature under the snow 

on the overhang through the snow upwards and through the overhang roof downwards. The 

factor ohK  (W/(Km)) is the thermal conductance between the ice/water layer in the overhang 

and the surrounding air with the temperature eT . This heat flux gives the freezing capacity of 

the overhang. Assuming that the thickness of snow on the overhang is equal to the initial 

value 0D  with the U-value s 0/ ,Dλ we have: 

 

 s
oh oh oh oh

0

.K L L U
D

λ
= ⋅ + ⋅  (4.2) 

 
    From (3.2) and (3.9)  we have: 
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 m
m m m r e( ) ( )

dm
h g t h q q t

dt
⋅ = ⋅ = −  (4.3) 

 
This expression is inserted in (4.1) and we get  
 

 d
m d m r e oh( ) ( ) .

dm
h g t h q q t q

dt
⋅ = ⋅ = − −  (4.4) 

 
Dripping occurs when this expression is positive, and the expression becomes zero at the 

dripping limit d :t t=
 

 

 r e oh r e d oh( ) 0; ( ) 0.q q t q q q t q− − > − − =  (4.5) 

 
    Below, we will analyze these conditions for freezing in the overhang and dripping from the 
overhang in two ways. In the first analysis, we use (3.5), right:  
 

 r oh m
r e oh r

r

( ) 0.
( )

q q D
q q t q q

q D t

 −
− − = ⋅ − ≥ 

 
 (4.6) 

 

The above heat flux is never positive for r ohq q≤ . The conditions at the dripping limit 

become: 
 

 r oh m
r oh

r d

and .
( )

q q D
q q

q D t

−
> =  (4.7) 

 

The snow thickness d d( )D t D=  at the dripping limit is now: 

 

 ohr m
d m r oh

r oh r d

, ; 1 .
qq D

D D q q
q q q D

= ⋅ > = −
−

 (4.8) 

 

We note that the dripping limit is larger than the melting limi: d m .D D>  

    There are now three cases to consider: no melting, melting, and melting and dripping. The 

possibilities are illustrated in Figure 5. The snow thickness ( )D D t=  divided by the melting 

limit mD  is given by the horizontal axis, and the vertical axis gives the heat flux ratio oh r/ .q q  

In the melting region, snow melts on the roof and freezes again to ice in the overhang. The 
curve for the dripping limit is from (4.8) given by: 
 

  

( )oh d mm
d,lim d m d,lim d,lim

r d d m

/ 1
1 / , (1) 0, ( ) 1.

/

q D DD
f D D f f

q D D D

−
= − = = = ∞ =  (4.9) 

 

This curve increases from zero to one as m/D D  increases from one to infinity.   

     We have now three possibilities: 
 

1. No melting:  m/ 1D D ≤  
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2. Melting without dripping for m/ 1D D >  and oh r/ 1,q q >  and  for m d m1 / /D D D D< <  

and    oh r/ 1.q q <  

3. Melting and dripping: d m m 0 m/ / /D D D D D D< <  and oh r/ 1.q q <  

 

    The initial snow depth is 0(0) .D D=  There is no melting if 0 m.D D<  The lines A, B and C 

show what happens for a certain 0 m.D D>  A and B: melting from 0D  to m.D  C: melting and 

dripping for d 0 ,D D D< <  and melting only with ice accumulation at the overhang for 

m d .D D D< <
 

 
 

 
 

Figure 5. Regions of no melting, melting, melting and dripping. 
 
 

    
In the second analysis of freezing in the overhang and dripping from overhang, we use the 

initial heat flux through the snow e0 e (0)q q=  and rewrite e ( )q t  in the following way, (3.5): 

 

 
( )s ee0

e e0 e r m

0

( ) , (0) .
( )

L Tq
q t q q q d

d t D

λ −
= = = = ⋅  (4.10) 

 
The dripping criteria (4.5) are then: 
 

 e0 e0
r oh r oh d d

d

0; 0, ( ).
( )

q q
q q q q d d t

d t d
− − > − − = =  (4.11) 

 
The condition for dripping at the initial time is: 
 

 e0 e0 oh
r oh

r r

0 or 1 .
1

q q q
q q

q q
− − = = +  (4.12) 

 

Figure 6 shows a coordinate system with the axes e0 r/ .q q  and e0 r/ .q q  Each point represents 

a set of heat fluxes r e0 oh, and .q q q  In the triangular region below the line (4.12), right, there 
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is melting and dripping, and in the region above the triangle there is melting without dripping. 

To the right of e0 r m/ 1q q d= =  no melting takes place.  

 
 
 
 
 

 
 

Figure 6.  Melting and dripping depending of the heat fluxes r e0 oh, and .q q q  

 
 
 

 
 

Figure 7.  Dripping limit d ,d  (4.14), as lines in a plane with the axis e0 r m oh r/ and / .q q d q q=  

 
 
    The dripping limit (4.11), right, may be written in the following way: 
 

 e0 oh oh m

r d r r d

1 0 or 1 .
q q q d

q d q q d
− − = = −  (4.13) 
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The relation between m e0 r/d q q=  and oh r/q q  is, for any constant d ,d  a straight line. It goes 

through the point ( )1 0,1P =  and has the slope d1/ .d−  The line cuts the horizontal axis in the 

point ( )d d ,0 .P d=  See Figure 7, left.  All points along the line have the same dripping limit 

d :d  

 

 e0m
d m d

oh r r oh

, 0 1.
1 /

qd
d d d

q q q q
= = < < <

− −
 (4.14) 

 

It is seen from Figure 7, left, that the lines fall inside the triangle ( ) ( )1, 1,0 , 0,0P  for d0 1.d< <  

For dd  outside this interval, the line lies wholly outside the triangle. Then there is no 

dripping. Figure 7, right, shows the dripping limit as straight lines through ( )1 0,1P =  for 

d 0.2, 0.4, 0.6, 0.8, and 1.d =  For d 1d =  along the line from 1P  to ( )1,0 ,  the dripping limit 

coincides with the initial snow depth: d 0D D= .  

 
 

4.2  Dripping water 

From (4.4)-(4.7), and from (3.12) and (3.23), right, we have: 
 

 d s 0 0r m m r

m d m r r

, .
( )

dm LD mq D D q

dt h D D t h t t

ρ 
= ⋅ − = = 

 
 (4.15) 

 

We see that dripping occurs for d 0D D D≤ ≤ . 

     Integration of (4.15) with d (0) 0m =  gives 

 

 0 m m
d

r d 0

( )
( )

t
m D D

m t t dt
t D D t

 
′= ⋅ ⋅ − 

′ 
∫  (4.16) 

 
Using (3.28) we get: 
 

 0 0 mm m
d r m d 0

r d 0 m

( ) ln , .
( )

m D DD D
m t t t D D D D

t D D D t D

  −
= ⋅ ⋅ − ⋅ ⋅ < ≤ ≤  

−  
 (4.17) 

 

We may eliminate t, (3.15), to get dm  as function of ( )D D t= :  

 

 0 mm m m
d 0

d 0 d 0 m

( )
( ) 1 1 ln

( )

D DD D DD t
m t m

D D D D D t D

      −
= ⋅ ⋅ − − − ⋅      

−     
 (4.18) 

 
    The dripping may be expressed in dimensionless from. We use dimensionless quantities for 
snow depth: 
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 dm
m d

0 0 0

( )
( ) , , .

DDD t
d t d d

D D D
= = =  (4.19) 

 
Then we have: 
 

            d 0 d m d d m m d d m( ) ( , , ), ( ) ( , ), ( , ) 1.m t m m d d d t f d d d f dτ τ τ′= ⋅ = < ≤ ≤  (4.20) 

 

        ( )m m
d m d d m d m d

d d m m

1
( , , ) 1 ( , ) ln , 0 .

( , )

d d
m d d f d d d

d f d d
τ τ τ τ

τ

  −
′ = ⋅ − − − ⋅ ≤ ≤  

−  
 (4.21) 

 

The dripping stops when d m d( ) ( , )d t f d dτ= = . The corresponding time d d r/t tτ =  is from 

(3.16)-(3.17): 
 

 m
d d m d m

d m

1
( , ) 1 ln .

t

d
f d d d d

d d
τ

 −
= = − + ⋅  

− 
 (4.22) 

 

The increase of the accumulated melted snow d ( )m t  stops at this time: 

 

 d d d d d m d d d m d d( ) ( ), ; ( , , ) ( , , ), .m t m t t t m d d m d dτ τ τ τ′ ′= ≥ = ≥  (4.23) 

 

The maximum value d d m d d m d( , , ) ( , ),m d d M d dτ′ ′=  (4.31), is discussed further in Section 3.4.   

 
 
 

 
Figure 8. Amount of melting m ( ,0.5)m τ′  and dripping d d( , 0.5, )m dτ′   

for m 0.5d =
 
 for a few dd . The dots show the points d d( , ).Mτ ′  
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     Figure 8 shows a few curves d m d( , , )m d dτ′  for m 0.5d = . The top curve shows the melted 

snow m ( ,0.5),m τ′  which increases from zero to m1 0.5.d− =  The other curves show 

d d( , 0.5, )m dτ′  from (4.21) for d 0.51d =  (top curve), 0.55, 0.6, 0.7, 0.8, 0.9  (bottom curve). 

The dots show the total dripping d ,M ′  (4.31), that occurs at the time d ,τ  (4.22). The curves 

for dripping are horizontal after that time.  
 
 
 
 

4.3 Freezing in overhang 

    The difference between melted snow and dripping water is accumulated as ice in the 
overhang: 
 

 oh m d( ) ( ) ( ).m t m t m t= −  (4.24) 

 
We have from (4.3) and (4.4): 
 

 ( )oh oh oh
m r e r e oh d

m

( ) ( ) , 0
dm dm q

h q q t q q t q t t
dt dt h

⋅ = − − − − ⇒ = ≤ ≤  (4.25) 

 
The accumulated ice at the overhang increases linearly as long as water is dripping: 
 

 oh oh 0 m
oh 0 d

m r r d r

( ) 1 , 0 .
q q m D t

m t t t m t t
h q t D t

 
= ⋅ = ⋅ ⋅ = ⋅ − ⋅ ≤ ≤ 

 
 (4.26) 

 
Here, (4.15), right, and(4.8), right, is used. This linear increase means that the full heat flux 

ohq  is used to freeze melting snow. After the time when dripping has stopped only a fraction 

of this heat flux is needed to the freeze the melted water in an upper part of the overhang. The 
temperature under the snow in the outer part of the overhang will fall below zero. In 
dimensionless form (4.26) becomes: 
 

 oh m
oh d

0 d

( )
( ) 1 , 0 .

m t d
m

m d
τ τ τ τ

 
′ = = − ⋅ ≤ ≤ 

 
 (4.27) 

 

     Figure 9 shows as an example the case m 0.4d =  and d 0.6.d =  The top curve shows the 

melted snow, (3.25), which increases from zero to 1 0.4 0.6− = . The middle curve shows the 
ice in the overhang, (4.24), and the bottom curve the dripping from the overhang, (4.21). The 

dripping increases to the maximum d 0.12M ′ =  given by (4.30)-(4.31). The maximum is 

attained at d 0.84τ =  given by (4.22).  
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Figure 9. Amount of melting, m m( , ),m dτ′  freezing in the overhang, oh ( ),m τ′  and dripping, 

d ( ),m τ′
 
for the case m 0.4d =  and d 0.6d = . Dots (P): dτ τ=  and d d oh oh, .m M m M′ ′ ′ ′= =  

 
 

4.4 Total amounts of melting, freezing and dripping 

The total amount of melted snow (kg/m) is from (3.24): 
 

 m 0 d d m, 1 .M m M M d′ ′= ⋅ = −  (4.28) 

 
In the case without dripping, we have 
 

 d oh m oh r 0 d r oh0, for , and for , .M M M q q D D q q= = > < <  (4.29) 

 
     The total amount of dripping water is given by:   
 

 d d d 0 d m d m d( ) ( , ), 0 1.M m t m M d d d d′= = ⋅ < < <  (4.30) 

 

The function d m d( , )M d d′ , which gives the dimensionless total amount of dripping water, is 

obtained from (4.21) for dτ τ=  and d d m d( , ) :f d dτ =  

 

 ( )m m
d m d d d m m d

d d m

1
( , ) 1 ln , 0 1.

d d
M d d d d d d d

d d d

  −
′ = ⋅ − − − ⋅ < < <  

−  
 (4.31) 

 
The total amount of ice in the overhang is: 
 

 oh m d 0 oh m d m d( , ), .M M M m M d d d d′= − = ⋅ ≤  (4.32) 
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 m m
oh m d m d m d m

d d m

1
( , ) 1 ( , ) 1 1 ln .

d d
M d d d M d d d

d d d

    −
′ ′= − − = − + ⋅    

−    
 (4.33) 

 

The functions d m d( , )M d d′  and oh m d( , )M d d′  are defined in a triangular region, and we have: 

 

 d m d oh m d d m m d( , ) ( , ) 1 , 0 1.M d d M d d M d d d′ ′ ′+ = = − < < <  (4.34) 

 

Figures 10 and 11 show these two functions for d 0.1d =  (leftmost curve), 0.2, ,0.9, 0.95…  

(rightmost curve). The dashed line shows the limit m1 .d−  On the boundaries of the triangular 

region we have in accordance with the sum (4.34): 
 

 

d d oh d d

d m oh m m m

d m m m oh m m m

(0, ) 0, (0, ) 1, 0 1;

( ,1) 0, ( ,1) 1 , 0 1;

( , ) 1 , ( , ) 0, 0 1.

M d M d d

M d M d d d

M d d d M d d d

′ ′= = < <

′ ′= = − < <

′ ′= − = < <

 (4.35) 
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Figure 10. The function d m d( , )M d d′  for the total amount of dripping from the overhang. 
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Figure 11. The function oh m d( , )M d d′  for the total amount of ice in the overhang. 

 
 

5 Overview and summary 

The above analysis and the most important formulas are summarized in this section. 
 

5.1  Melting of snow on the roof 

The primary parameters are shown in Figure 1. The heat flux from the inside of the roof, r ,q  

the initial snow depth, 0 ,D  the initial amount of snow on the roof, 0m  (kg/m), and the time rt  
to fully melt the initial snow layer with the heat flux rq  are:    

 

 ( ) m 0
r r r r 0 0 s 0 r

r

0 , (0) , , .
h m

q LU T T D D m LD t
q

ρ= > = = =  (5.1) 

 
    There is a certain melting limit above which the heat flux from the inside is larger than the 
heat flux through the snow.  The snow on the roof melts when the snow depth lies above the 

melting limit m :D   
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( )

( )s e

m e

r

( ) , 0 .
L T

D t D T
q

λ −
> = <  (5.2) 

 
There is no melting if the initial snow depth lies below the melting limit. The snow depth 

( )D t  decreases with time as the snow on the roof melts. We have derived an explicit formula 

for the time as a function of the snow depth, (3.15): 
 

 ( ) 0 mm
r m 0

0 0 m

1 ln , .
D DDD

t D t D D D
D D D D

  −
= ⋅ − + ⋅ < ≤  

−  
 (5.3) 

 
The time t increases from zero to infinity as the snow thickness decreases from the initial 

value 0D  to the melting limit mD   (for m 0D D<  ). This relation and other relations below 

may be formulated with a few dimensionless variables. 

    We will use dimensionless time ,τ  snow depth ,d  melting limit m ,d  and dripping limit 

d :d       

 

 dm
m d

r 0 0 0

, , , .
DDt D

d d d
t D D D

τ = = = =  (5.4) 

 
Eq. (5.3) becomes in dimensionless form 
 

 m
m m m

m

1
( , ) 1 ln , 1.t

d
f d d d d d d

d d
τ

 −
= = − + ⋅ < ≤ 

− 
 (5.5) 

 

This relation is shown in Figure 2. The inverse relation m( , )
d

d f dτ=  is readily plotted by 

interchanging the axes, Figure 3. In the computer programs, it is obtained by a numerical 

solution of (5.5) to get m( , )
d

d f dτ=  for any τ  and m .d  Equation (3.21) is used for 3.τ >  

    The melted snow, m ( ),m t  is directly obtained from the snow depth ( )D t : 

 

 m 0 m 0

0

( )
( ) 1 , ,

D t
m t m D D D

D

 
= ⋅ − < ≤ 

 
 (5.6) 

 
or, using dimensionless variables, 
 

     m 0 m m m m m m( ) ( , ), ( , ) 1 ( , ), 0 , 1.
d

m t m m d m d f d d dτ τ τ τ′ ′= ⋅ = − ≤ < ∞ < ≤  (5.7) 

 

The dimensionless relation 0 m m( ) / ( , )m t m m dτ′=  for the melted snow is shown in Figure 4. 

The total amount of melted snow is obtained for mD D= : 

 

 m 0 m m m, 1 .M m M M d′ ′= ⋅ = −  (5.8) 
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5.2  Freezing and dripping at the overhang 

The water from the melted snow freezes again below the snow on the overhang , which is 

exposed to the cold outdoor temperature e 0.T <   All melted water freezes if rq  is smaller than 

the heat flux ohq  from the freezing water in the overhang. For r oh ,q q>   some of the melted 

water may drip from the overhang or form ice and icicles when the snow depth lies above the 

dripping limit d .D  We have from (3.6), right, (4.8) and (4.1):    

 

 
( )

( ) ( )s e r
m d m r oh oh oh e

r r oh

, , .
L T q

D D D q q q K T
q q q

λ −
= = ⋅ > = ⋅ −

−
  

 (5.9) 

 

The thermal conductance of the overhang ohK  is given by (4.2). Dripping with the ensuing ice 

and icicle formation at the outer end of the overhang will occur if two conditions are fulfilled: 

r ohq q>  and d 0 .D D<  Otherwise there is no dripping.   

    We consider in this section the case when dripping occurs. Then we have  
 

 m d 0 m d, 1.D D D d d< < < <  (5.10) 

 

 Part of the melted snow, oh ( ),m t  freezes in the overhang and the rest, d ( ),m t  drips or end up 

as ice and icicles:  
 

 m oh d( ) ( ) ( ).m t m t m t= +  (5.11) 

 
The dripping stops at the time when the snow thickness is equal to the dripping limit 

d d( ) :D t D=      

  

 d d d r d m m d( ) ( , ), 1.
t

D t D t t f d d d d= ⇔ = ⋅ < ≤  (5.12) 

 
The accumulated amount of dripping is from (4.19)-(4.21) 
 

 d m 0 mm
d 0 d

d 0 0 m

( )
( ) 1 ln , 0 .

( )

D D D DD D t
m t m t t

D D D D t D

  − −
= ⋅ ⋅ − − ⋅ ≤ ≤  

−  
 (5.13) 

 
The total amount of dripping becomes 
 

 d d d 0 d m d m d( ) ( , ), 0 1.M m t m M d d d d′= = ⋅ < < <  (5.14) 

 

The dimensionless function d m d( , )M d d′  for the total dripping becomes:  

 

 ( )m m
d m d d d m

d d m

1
( , ) 1 ln .

d d
M d d d d d

d d d

  −
′ = ⋅ − − − ⋅  

−  
 (5.15) 

 

The accumulated dripping does not change after the time d :t   
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 d d d d d( ) ( ) , .m t m t M t t= = ≤ < ∞  (5.16) 

 
    The accumulated ice in the overhang is obtained from (5.11), (5.13) and (5.7). It increases 
linearly during the period of dripping: 
 

 oh d m
oh m d oh 0 d

m d r

( ) ( ) ( ); ( ) , 0 .
q d d t

m t m t m t m t t m t t
h d t

−
= − = ⋅ = ⋅ ⋅ ≤ ≤  (5.17) 

 
The total amount of ice in the overhang is: 
 

 oh m d 0 oh m d( , ).M M M m M d d′= − = ⋅  (5.18) 

 

The dimensionless function oh m d( , )M d d′  for the total amount of ice under the snow on the 

overhang becomes:  
 

 oh m d m d m d( , ) 1 ( , ).M d d d M d d′ ′= − −  (5.19) 

 

The functions d m d( , )M d d′  and oh m d( , )M d d′  are shown in Figures 10 and 11.  

 

5.3  A few examples 

Let us consider a few examples. We use the following input data: 
 

            

o o

r e oh 0

3 2

s s oh

20 C, 10 C, 8 m, 0.4 m, 0.2 m,

0.0 W/ (m,K), 200 kg/ m , 2.0 W/ (m , K).

T T L L D

Uλ ρ

= = − = = =

= = =
 (5.20) 

 
In the first example we consider a roof with poor thermal insulation or large U-value:  
 

2

r

m 0 r oh

oh r d d

1.0 W/ (m , K)

0.030 m, 320 kg/ m, 160 W/ m, 0.92 W/ (m,K),

9.2 W/ (m,K), 7.7 days, 0.032 m, 11.8 days.

U

D m q K

q t D t

= ⇒

= = = =

= = = =

 (5.21) 

 
Figure 12 shows the decreasing snow depth from 0.02 m to the melting limit Dm=0.030 m. 
    Figure 13 illustrates the melting and dripping in the considered example. We get from our 
formulas: 
 

 

m oh d

d oh d

272 kg/ m, 31 kg/ m, 241 kg/ m,

11.8 days ( ) 30 kg/ m.

M M M

t m t

= = =

= =
 (5.22) 

 
 There are in  Figure 13 two horizontal lines, three curves and two points (a circle and a 
square) in the figure. (The five t on the horizontal axis are at the time in days for the top five 
functions on the vertical axis, while the two tdd give the dripping limit in hours for the two 
points.) The top horizontal line shows the total amount of melting snow Mm=272 kg/m. The 
first curve (top) shows the accumulated amount of melted snow mm(t) after t days. The second 
curve from top gives the accumulated amount of dripping water, md(t), and the lowest curve 
the accumulated amount of ice in the overhang, moh(t). The curve for dripping water increases 
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up to the dripping time limit td=11.8 days. After that, the value is the constant and equal to 
Md=241 kg/m. The lower horizontal line shows the total amount of ice in the overhang, 
Moh=31 kg/m. The second point (a square) shows the accumulated amount of ice in the 
overhang at the time when dripping stops, moh(td)=30 kg/m. The curve moh (t) is a straight  
line until the time td. 
 
 
 

 
Figure 12. Snow depth as function of time (in days) down to the melting limit Dm=0.030 m 

 
 
 

 
Figure 13. Accumulated melting of snow, ice in overhang and dripping  

as functions of time (in days). 
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    In the second example we consider a roof with fair thermal insulation or intermediate U-
value:  
 

2

r

m 0 r oh

oh r d d

0.3 W/ (m , K)

0.1 m, 320 kg/ m, 48 W/ m, 0.92 W/ (m, K),

9.2 W/ (m,K), 26 days, 0.124 m, 28 days.

U

D m q K

q t D t

= ⇒

= = = =

= = = =

 (5.23) 

 
Figure 14 shows the decreasing snow depth from 0.02 m to the melting limit Dm=0.01 m. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Snow depth as function of time (in days) down to the melting limit Dm=0.1 m 

 
 
    Figure 15 illustrates the melting and dripping in this example. We get from our formulas: 
 

 

m oh d

d oh d

160 kg/ m, 105 kg/ m, 55 kg/ m,

28 days ( ) 68 kg/ m.

M M M

t m t

= = =

= =
 (5.24) 

 
 There are in  Figure 15 two horizontal lines, three curves and two points (a circle and a 
square) in the figure. The top horizontal line shows the total amount of melting snow Mm=160 
kg/m. The first curve (top) shows the accumulated amount of melted snow mm(t) after t days. 
The other two curves give the accumulated amount of dripping water, md(t), and the 
accumulated amount of ice in the overhang, moh(t). The curve for dripping water increases up 
to the dripping time limit td=28 days. After that, the value is the constant and equal to Md=55 
kg/m. The lower horizontal line shows the total amount of ice in the overhang, Moh=105 
kg/m. The second point (a square) shows the accumulated amount of ice in the overhang at 
the time when dripping stops, moh(td)=68 kg/m. The curve moh (t) is a straight  
line until the time td. 
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Figure 15. Accumulated melting of snow, ice in overhang and dripping  
as functions of time (in days). 

 
 
    In the third example we consider a modern roof with good thermal insulation or low U-
value:  
 

 

2

r m0.15 W/ (m , K) 0.2 mU D= ⇒ =  (5.25) 

 
This means that the melting limit and the snow depth are equal. There is no melting.  
 
 

6 Window on the roof 

There may be a window on the roof. This is an interesting complication that is studied in this 

section. The length of the window is w ,L  and the length of the remaining roof below and 

above the window is  rL′  and r r ,L L′−  respectively. The total roof length from ridge to 

overhang is r w ,L L+  and the roof length excluding the window r .L  See Figure 16. 

    The notations of Figure 1 for a roof without a window are used. The thickness of the snow 

on the roof is r ( )D t  and on the window w ( ).D t  The U-value or thermal conductance of the 

window (between rT  and the upper, outer side of the window) is wU  (W/m2,K). We assume 

that w r ,U U>  so that the melting of snow is faster on the window: w r( ) ( ).D t D t<   

    The snow melting on the roof above and below the window is identical, and the position of 

window defined by rL′  does not matter. The analyses and formulas do not depend on r .L′
 
The 

window occupies a certain width of the roof. Outside the window area (perpendicular to the 
cross-section of Figure 12) the previous analyses for a roof is valid. Here we consider a unit 
width of roof and window.  
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Figure 16. Melting of snow on a roof with a widow. 
 
 

6.1  Melting of snow on the roof and on the window 

The accumulated amounts of melted snow on roof and window are directly obtained from the 
snow depth. We have as in (3.23): 
 

 ( ) ( )mr r s 0 r mw w s 0 w( ) ( ) , ( ) ( ) .m t L D D t m t L D D tρ ρ= − = −  (6.1) 

 

The initial snow depth on roof and window is 0.D  We have for dimensionless snow depth: 

 

 wr
r w r w

0 0

( )( )
( ) , ( ) ; (0) 1, (0) 1.

D tD t
d t d t d d

D D
= = = =  (6.2) 

 

 ( ) ( )mr r s 0 r mw w s 0 w( ) 1 ( ) , ( ) 1 ( ) .m t L D d t m t L D d tρ ρ= ⋅ − = ⋅ −  (6.3) 

 
    The total amount of melted snow becomes: 
 

 [ ]m mr mw 0 r r w w( ) ( ) ( ) 1 ( ) ( ) .m t m t m t m L d t L d t′ ′= + = ⋅ − ⋅ − ⋅  (6.4) 

 

Here, 0m  (kg/m) is total initial mass of snow on roof and window, and wL′  the relative length 

of the window:  
 

 ( ) wr
0 r w s 0 r w

r w r w

, , .
LL

m L L D L L
L L L L

ρ ′ ′= + = =
+ +

 (6.5) 

 



 30 

The sum of rL′  and wL′  is 1, so rL′  is directly obtained from w :L′    

 

 r w r w1, 1 .L L L L′ ′ ′ ′+ = = −  (6.6) 

 
    The relative snow depth for roof and window is obtained from the formulas in Section 2.3 
applied for the data of roof and window. We have from (3.20), (3.17), (3.16), (3.12) and (3.4) 
 

 r r mr w w mw( ) ( / , ) ( ) ( / , ).
d d

d t f t t d d t f t t d= =  (6.7) 

 

 m s 0 s e m s 0 s e
r mr w mw

r r r r 0 w r w r 0

( ) ( )
, , , .

h D T h D T
t d t d

U T U T D U T U T D

ρ λ ρ λ− −
= = = =  (6.8) 

 
The explicit formula for the accumulated amount of melted snow is now: 
 

 [ ]m 0 r r mr w w mw( ) 1 ( / , ) ( / , ) .d dm t m L f t t d L f t t d′ ′= ⋅ − ⋅ − ⋅  (6.9) 

 

    Using the dimensionless time r/ ,t tτ =  we have: 

 

         m 0 m r m r mr w mr mw mw( ) ( / ), ( ) 1 ( , ) ( / , ).
d d

m t m m t t m L f d L f d d dτ τ τ′ ′ ′ ′= ⋅ = − ⋅ − ⋅ ⋅  (6.10) 

 
Here, we use the relations: 
 

 w r mr mr r mr
r w

r w mw mw w r w r mw

, .
U t d d t dt t t

t t
U t d d t t t t d

= = ⇒ = ⋅ = ⋅ = ⋅  (6.11) 

 

The dimensionless amount of melted water, m 0 m( ) / ( ),m t m m τ′=  becomes a function of the 

dimensionless time τ  with three parameters: mr mw w, and .d d L′   

    The total amount of melted snow mM  (kg/m) is obtained for very large t : 

 

 ( ) ( )m 0 m m mr mw w w mr w mw, , , 1 1 .M m M M d d L L d L d′ ′ ′ ′ ′= ⋅ = − − ⋅ − ⋅  (6.12) 

 

6.2 Criteria for dripping 

The heat flux from the interior minus the heat flux over the snow layer to the exterior melts 
the snow on roof and window. The heat balance for melting of snow on the roof is from(3.5), 
(3.9) and (3.2) : 
 

 r s emr
m r r r r r r r

r

( )
, .

( )

L Tdm
h LU T q LU T

dt D t

λ −
⋅ = − =  (6.13) 

 

Here, rq  is the heat flux through the roof from the interior. The corresponding relations for 

the window become: 
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 mw w s e
m w w r w w w r

w

( )
, .

( )

dm L T
h L U T q L U T

dt D t

λ −
⋅ = − =  (6.14) 

 

    We introduce special notations for the heat fluxes at the initial time 0t =  through the snow 
on the roof and the window, and their sum:  
 

 r s e w s e
e0r e0w e0 e0r e0w

0 0

( ) ( )
, , .

L T L T
q q q q q

D D

λ λ− −
= = = +  (6.15) 

 
We get the relations: 
 

 
( )r w s e e0r e0w

e0 r w

0 e0 e0

( )
, , .

L L T q q
q L L

D q q

λ+ −
′ ′= = =  (6.16) 

 
We note the further relations: 
 

 e0 r mr w mw r r w w m 0, .q q d q d q t q t h m= ⋅ + ⋅ ⋅ + ⋅ = ⋅  (6.17) 

 
    The heat balances for melting of snow on roof and window may now be written:  
 

 e0r e0rmr mr
m r r mr

r r r

1 , .
( ) ( )

q qdm d
h q q d

dt d t d t q

 
⋅ = − = ⋅ − = 

 
 (6.18) 

 

 mw e0w mw e0w
m w w mw

w w w

1 , .
( ) ( )

dm q d q
h q q d

dt d t d t q

 
⋅ = − = ⋅ − = 

 
 (6.19) 

 
The total heat balance for snow melting is now: 
 

 mw e0r e0wm mr
m m m r w

r w

,
( ) ( )

dm q qdm dm
h h h q q

dt dt dt d t d t
⋅ = ⋅ + ⋅ = + − −  (6.20) 

or 

 wm r
m r w e0

r w

.
( ) ( )

Ldm L
h q q q

dt d t d t

 ′′
⋅ = + − ⋅ + 

 
 (6.21) 

 
    Dripping occurs when the net heat flux to melt snow exceeds the cooling heat flux from the 
overhang: 
 

 wm r
m oh r w e0 oh

r w

.
( ) ( )

Ldm L
h q q q q q

dt d t d t

 ′′
⋅ ≥ ⇔ + − ⋅ + ≥ 

 
 (6.22) 

 

The factor after e0q  is  equal to 1 for 0.t =  The criterion for dripping at the initial time 0t = , 
and the criterion for no dripping are then  
 

  r w e0 oh r w e0Dripping at 0 : ; No dripping : .t q q q q q q q= + − > + <  (6.23) 
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All melted water from roof and window freezes on the overhang without dripping in the case 
of  no dripping. We introduce a dimensionless dripping parameter:  
 

 oh
oh

r w e0

.
q

q
q q q

′ =
+ −

 (6.24) 

 
The dimensionless heat loss from the overhang as defined above is smaller than one (and 
larger than zero) when dripping occurs: 
   

 r w e0 oh oh0 1.q q q q q′+ − > ⇔ < <  (6.25) 

 

    The dripping stops at the time d :t
 

 

 r w oh wm r
d m oh

e0 r d w d
d

: or .
( ) ( )

t t

q q q Ldm L
t t h q

dt q d t d t=

′′+ −
= ⋅ = = +  (6.26) 

 
The left-hand ratio of heat fluxes may be written in the following way: 
 

 
( )( )r w e0 ohr w oh

d

e0 e0

1
1 .

q q q qq q q
q

q q

′+ − −+ −
′ = = +  (6.27) 

 
We have from (6.18), (6.19) and (6.16): 
 

 e0r w w wr r

e0 mr e0 mr e0 mw e0 mw

, .
q q q Lq L

q d q d q d q d

′′
= = = =  (6.28) 

 
So we have: 
 

 ( )wr
d oh oh r w

mr mw

1 , 1 .
LL

q q q L L
d d

 ′′
′ ′ ′ ′ ′= + + ⋅ − = − 

 
 (6.29) 

 

    Let dτ  denote the dimensionless time when dripping stops: 

 

 d r d w r d mr mw/ , / / .t t t t d dτ τ= = ⋅  (6.30) 

 

The equation to determine dτ  is now from (6.26), right:  

 

 wr
d d d oh mr mw w

d mr d mr mw mw

d

( , , , ).
( , ) ( / , )

( )

d d

LL
q q d d L

f d f d d d

h

τ τ
τ τ

τ

′′
′ ′ ′= + ⇒ =

⋅
���������������

 (6.31) 

 

Here, dq′  is given by (6.29). The time when dripping stops was given explicitly by (4.22) in 

the case without window. Here, we have to solve the above equation.  The dimensionless 
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dripping time dτ  depends on the four parameters oh mr mw w, , and .q d d L′ ′  Dripping occurs in 

the interval oh0 1,q′< <  while dτ  may vary from zero to infinity. At the interval ends we have: 

 

          

wr
oh d d

w wr r
oh d d

mr mw mr mw

1: 1, (0) 1 (0) ;
1 1

0 : , ( ) ( ) .

LL
q q h h q

L LL L
q q h h q

d d d d

′′
′ ′ ′= = = + = ⇒ =

′ ′′ ′
′ ′ ′= = + ∞ = + ⇒ ∞ =

 (6.32) 

 

This means that d oh mr mw w( , , , )q d d Lτ ′ ′  varies from zero to infinity when ohq′  goes from 1 to 0: 

  

          d mr mw w d mr mw w(1, , , ) 0, (0, , , ) .d d L d d Lτ τ′ ′= = ∞  (6.33) 

 

6.3 Freezing in overhang and dripping at the outer end 

The accumulated melted snow is equal to the freezing in the overhang and the dripping: 
 

 m oh d( ) ( ) ( ).m t m t m t= +  (6.34) 

 
The corresponding dimensionless quantities are denoted by prime: 
 

 m 0 m oh 0 oh d 0 d( ) ( ), ( ) ( ), ( ) ( ).m t m m m t m m m t m mτ τ τ′ ′ ′= ⋅ = ⋅ = ⋅  (6.35) 

 
    During the dripping period, there is a constant freezing of melted water in the overhang 

determined by the overhang heat loss oh :q   

 

 

oh oh
d m m 0 oh

r

oh oh oh r
oh oh oh

m 0 m

1
0 :

( ) , , .

dm dm
t t h h m q

dt d t

q dm q t
m t t q q

h d m h

τ

τ
τ

′
≤ ≤ ⋅ = ⋅ ⋅ = ⇒

′ ⋅
′′ ′′= ⋅ = ⋅ =

⋅

 (6.36) 

 
The accumulated amount of ice in the overhang increases linearly in time. The slope for the 
dimensionless increase becomes: 
 

          

( )
( )

( )

( )

oh r w e0 oh r w e0oh r m s 0
oh

mw0 m r w s 0 m r r
r w

mr

oh mr r w e0 wr
oh mr

e0r e0w e0 e0

1 .

q q q q q q q qq t h D
q

dm h L L D h U T
q q

d

q d q q q qq
q d

q q q q

ρ

ρ

′ ′⋅ + − ⋅ + −⋅
′′ = = ⋅ = =

⋅ + ⋅
+ ⋅

′ ⋅ ⋅ + −  
′= ⋅ ⋅ + − 

+  

 (6.37) 

 
In the last expression (6.28) is used.  So we have the formula: 
 

 wr
oh oh mr

mr mw

1 .
LL

q q d
d d

 ′′
′′ ′= ⋅ ⋅ + − 

 
 (6.38) 
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    The dimensionless amount of ice in the overhang during the dripping period is now: 
 

 oh oh d( ) , 0 .m qτ τ τ τ′ ′′= ⋅ ≤ ≤  (6.39) 

 
The dimensionless amount of dripping is equal to the difference between snow melting and 

the freezing in the overhang. The dripping stops at the time d .τ τ=
 
So we have: 

 

 
m oh d

d

d d d

( ) 0
( ) .

( )

m q
m

m

τ τ τ τ
τ

τ τ τ

′ ′′− ⋅ ≤ ≤
′ = 

′ < < ∞
 (6.40) 

 

Here, the constant value from the time dτ  and onwards becomes: 

 

 d d m d oh d d( ) ( ) .m m q Mτ τ τ′ ′ ′′ ′= − ⋅ =  (6.41) 

 
The melted snow is given by (6.9)-(6.10) and the dripping by (6.40) and (6.35), right. The 
difference gives the freezing in the overhang for all times: 
  

 oh m d( ) ( ) ( ), 0 .m m mτ τ τ τ′ ′ ′= − ≤ < ∞  (6.42) 

 
    For the total amounts we have: 
 

          m oh d m 0 m oh 0 oh d 0 d, , , .M M M M m M M m M M m M′ ′ ′= + = ⋅ = ⋅ = ⋅  (6.43) 

 
From (6.41) and (6.10) we get: 
  

          ( )d oh mr mw w r d mr w d mr mw mw oh d, , , 1 ( , ) ( / , ) .d dM q d d L L f d L f d d d qτ τ τ′ ′ ′ ′ ′ ′′= − ⋅ − ⋅ ⋅ − ⋅  (6.44) 

 

Here, dτ  is the solution to (6.31), and ohq′′  is defined by (6.38). Finally we have from (6.43) 

 

 ( ) ( ) ( )oh oh mr mw w m mr mw w d oh mr mw w, , , , , , , , .M q d d L M d d L M q d d L′ ′ ′ ′ ′ ′ ′ ′= −  (6.45) 

 

Here, mM ′  is given by (6.12).  

 

6.4 Summary of formulas 

The following dimensionless quantities are used: 
 

 

m s 0 wr
r r w

r r r r w r w

s e s e
mr mw

r r 0 w r 0

, , , ,

( ) ( )
, .

h D LLt
t L L

t U T L L L L

T T
d d

U T D U T D

ρ
τ

λ λ

′ ′= = = =
+ +

− −
= =

 (6.46) 

 
The melting of snow on roof and window is: 
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( )m 0 m r 0 r w s 0

m r mr w mr mw mw

( ) ( / ), ,

( ) 1 ( , ) ( / , ).d d

m t m m t t m L L D

m L f d L f d d d

ρ

τ τ τ

′= ⋅ = +

′ ′ ′= − ⋅ − ⋅ ⋅
 (6.47) 

 

Here, m( , )
d

f dτ  is given by the inverse to (3.17) in accordance with (3.20).   

    The criterion for dripping is:   
 

  ( )r w e0 oh oh oh r w e0 oh; , 0 1.q q q q q q q q q q′ ′+ − > = ⋅ + − < <  (6.48) 

 

The dimensionless dripping limit dτ  is the solution to the equation: 

 

 ( )w wr r
d oh oh

d d mr d d mr mw mw mr mw

1 .
( , ) ( / , )

L LL L
q q q

f d f d d d d dτ τ

 ′ ′′ ′
′ ′ ′+ = = + + ⋅ − 

⋅  
 (6.49) 

 
It becomes a function of four parameters: 
 

 ( )d d oh mr mw w r w( , , , ), 1 .q d d L L Lτ τ ′ ′ ′ ′= = −  (6.50) 

 

Dripping occurs during the time d0 .τ τ≤ <  

     The dimensionless accumulated masses are given by:   
 

 m 0 m oh 0 oh d 0 d( ) ( ), ( ) ( ), ( ) ( ).  m t m m m t m m m t m mτ τ τ′ ′ ′= ⋅ = ⋅ = ⋅  (6.51) 

 
The accumulated dripping is given by: 
 

 
m oh d wr

d oh oh mr

d d mr mw

( ) 0
( ) , 1 .

m q LL
m q q d

M d d

τ τ τ τ
τ

τ τ

′ ′′− ⋅ ≤ ≤  ′′
′ ′′ ′= = ⋅ ⋅ + −  ′ < < ∞  

 (6.52) 

 

Here, dM ′  is defined in (6.54). The accumulated ice in the overhang is given by: 

 

 oh m d( ) ( ) ( ), 0 .m m mτ τ τ τ′ ′ ′= − ≤ < ∞  (6.53) 

 
    The total amounts of melted snow, ice in the overhang and dripping are given by: 
 

 

m 0 m oh 0 oh d 0 d

m oh d m r mr w mw oh m d

d r d mr w d mr mw mw oh d

, , ,

, 1 , ,

1 ( , ) ( / , ) .
d d

M m M M m M M m M

M M M M L d L d M M M

M L f d L f d d d qτ τ τ

′ ′ ′= ⋅ = ⋅ = ⋅

′ ′ ′ ′ ′ ′= + = − ⋅ − ⋅ = −

′ ′ ′ ′′= − ⋅ − ⋅ ⋅ − ⋅

 (6.54) 

 

6.5 An example 

We consider an example with a window on the roof with the following input data: 
 

            

o o

r e r w oh 0

3 2

s s r w oh

20 C, 10 C, 6.5 m, 1.5 m, 0.6 m, 0.2 m,

0.0 W/ (m, K), 200 kg/ m , 0.2, 3.0, 2.0 W/ (m , K).

T T L L L D

U U Uλ ρ

= = − = = = =

= = = = =
(6.55) 
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Figure 17 shows the decreasing snow depth from 0.2 m to the melting limits Dmr=0.12 m for 
the roof and Dmw=0.01 m for the window. The time scales are in days and days times 30, 
respectively. We see that the melting on the roof has a much longer time scale due to the 
better insulation. 
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Figure 17. Snow depth as function of time down to the melting limit Dmr=0.12 m for the roof 

in days and down to the melting limit Dmw=0.01 m for the window in days times 30.  
 

 
    Figure 18 illustrates the melting and dripping in the considered example. We get from our 
formulas: 
 

 

m oh d d161 kg/ m, 105 kg/ m, 56 kg/ m, 3.3 days.M M M t= = = =  (6.56) 

 
The upper graph shows the accumulated amount of melted snow mm(t) (top curve), the 
accumulated amount of dripping water and the accumulated amount of ice in the overhang, 
moh(t). (lowest curve) during the first 5 days. The increase of dripping water md(t) is constant 
up to t=td. 
    The lower graph shows these curves during the first 100 days. The curves for md(t) and 
moh(t) cross each other at t=20 days. The horizontal dashed lines show the total amounts 
Mm=161and Moh=105.  
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Figure 18. Accumulated melting of snow, ice in overhang and dripping  

as functions of time (in days). 
 
 

7 Concluding remarks 

The mathematical models in this paper provide a calculation method for melting of snow, 
freezing on the overhang and dripping from the roof. The diagrams make it possible to 
compare different roof solutions and see the effect of changing some of the parameters. This 
is useful in evaluation of risk for icicles on roofs. It is seen that thermal insulation of the roof 
and ventilation of an open attic is very important to avoid problems with icicles. Roofs with a 
window (skylight) in the roof will always give more melting water than roofs without and 
give a higher risk of icicles. Examples on the use of the method will be presented at the 9th 
Nordic Symposium of Building Physics in Tampere 2011. 
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Nomenclature 

 

d  dimensionless thickness of the snow layer, 0/d D D=  - 

dd  dimensionless limit for dripping, d d 0/d D D=  - 

md  dimensionless snow thickness limit, m m 0/d D D=  - 

( )D t  thickness of snow on the roof at time t m 

0D  initial thickness of snow on the roof at time 0t =  m 

mD  snow thickness limit above which melting occurs, (3.4)  m 

dD  snow thickness limit above which dripping occurs, (4.8), left    m 

m( , )
t

f d d  dimensionless function for time as function of snow depth,  

 (3.16)-(3.17)    - 

m( , )
d

f dτ  dimensionless snow thickness, (3.20); inverse to m( , )
t

f d dτ =  - 

m ( )g t  rate of snow melting    kg/(s,m) 

d ( )g t  rate of water dripping from overhang to form ice, icicles or drops    kg/(s,m) 

mh  latent heat of melting the snow, m 334 000h =  J/kg 

ohK  thermal conductance in the overhang with its snow cover  

 from the ice under the snow to the outside air, (4.2) W/(Km) 
L  roof length (from ridge to overhang) m 

ohL  length of overhang m 

rL  length of the roof (above and below the window) m 

wL  length of window on the roof m 

d ( )m t  accumulated dripping at time t  kg/m 

d ( )m τ′  dimensionless accumulated dripping, (4.21) - 

m ( )m t  accumulated melted snow at time t  kg/m 

m ( )m τ′  dimensionless amount of melted snow, (3.25) - 

oh ( )m t  accumulated ice at the overhang from melted snow at time t  kg/m 

oh ( )m τ′  dimensionless accumulated ice at the overhang - 

0m  initial mass of snow on the roof, (3.23), right kg/m 

dM  total amount of melted snow that drips from overhang kg/m 

dM ′  dimensionless total amount of dripping from overhang - 

mM  total amount of melted snow on the roof kg/m 

mM ′  dimensionless total amount of melted snow on the roof - 

ohM  total amount of ice on the overhang kg/m 

ohM ′
 

dimensionless total amount of ice on the overhang, - 

dq′  the heat flux ratio (6.27) and (6.29) for the dripping limit (6.31) - 

e ( )q t  heat flux from the melting zone the through the snow, (3.5), right W/m 

e0q  heat flux the through the snow with the initial thickness 0D  W/m 

iq  heat flux from the interior to melt the snow on the roof, (3.5), left W/m 
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ohq  heat flux to freeze water under the snow on the overhang W/m 

ohq′  relative heat flux to freeze water on the overhang, (6.24) W/m 

ohq′′  slope for dimensionless freezing on the overhang, (6.38) W/m 

t  time s 

rt  time to melt all snow with the  thickness 0D  for e 0T = , (3.12) s 

dt  time when dripping stops, (4.22) s 

rT  interior temperature (below roof insulation) oC 

eT  exterior temperature  oC 

rU  U-value of the roof W/(m2,K) 

ohU  U-value of the overhang W/(m2,K) 

s ( )U t  U-value of the snow on the roof at time t W/(m2,K) 

 
 
 

sλ  thermal conductivity of snow on roof W/(m,K) 

sρ  density of snow on roof kg/m3 

τ  dimensionless time, r/t t  - 

dτ  dimensionless dripping limit, (4.22) - 

 
 
 
The subscripts d, e, m, oh, r, s, w and 0 refer to dripping, exterior temperature, melting, 
overhang, roof, snow, window and initial time, respectively. The subscript d  (in italics) in 

m( , )
d

f dτ
 
refers dimensionless snow depth d, and not to dripping. A prime is often used to 

denote the dimensionless form of a quantity. In the case with a window on the roof, a second r 
or w is added in the subscript whenever appropriate.  
 
 


