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Optimization Formulations for the Maximum Nonlinear Buckl ing Load
of Composite Structures

Esben Lindgaard - Erik Lund

Abstract This paper focuses on criterion functions for gra-through a process of design optimization such that the ma-
dient based optimization of the buckling load of laminatedterial properties are tailored to meet particular strusttee-
composite structures considering different types of bingkl quirements with little waste of material capability. A sur-
behaviour. A local criterion is developed, and is, togethewvey of optimal design of laminated plates and shells can
with a range of local and global criterion functions from lit be found in Abrate (1994). This work focuses on optimal
erature, benchmarked on a number of numerical exampletesign of laminated composite shell structures i.e. thie opt
of laminated composite structures for the maximization ofmal fiber orientations within the laminate which is a com-
the buckling load considering fiber angle design variablesplicated problem. Laminated composite shell structures in
The optimization formulations are based on either linear oservice are commonly subjected to various kinds of com-
geometrically nonlinear analysis and formulated as mathepressive loads which may cause buckling. Hence, structural
matical programming problems solved using gradient baseistability becomes a major concern in designing safe and
techniques. The developed local criterion is formulatethsu reliable laminated composite shell structures.
it captures nonlinear effects upon loading and proves lisefu  In many works, e.g. Jones (2006), the buckling load is
for both analysis purposes and as a criterion for use in nonypically defined as the load at which the current equilibriu
linear buckling optimization. state of a structural element or structure suddenly changes
from a stable to unstable configuration, and is, simultane-
ously, the load at which the equilibrium state suddenly ¢fean
from that previously stable configuration to another stable
configuration. This may or may not be accompanied with
large response, i.e. deformation or deflection. The bugklin
load is the largest load for which stability of equilibriurh o
1 Introduction a structural element or structure exists in its originaliequ
librium configuration. Considering simple/distinct stéii
Composite materials are mostly used in applications insgropoints this definition of buckling only concerns the parsela
and mechanical industries where their superior stiffiess- sified as buckling with stability points in Fig. 1. The addi-
weight or strength-to-weight ratios are critical. Desigmi  tional classification of simple stability points, given iigF1,
structures made out of composite material represents a chasg well-known and printed in many textbooks, such as Thomp-
lenging task, since both thicknesses, number of plies in theon and Hunt (1973); Jones (2006). For limit point buckling,
laminate and their relative orientation must be selectée. T the buckling load is the load at the limit point and seen as a
best use of the capabilities of the material can only be gainemaximum point in a load-deflection diagram. In case of bi-
through a careful selection of the layup. This may be achievéurcation buckling, the buckling load is the load at the bifu
cation point where another equilibrium path, referred to as
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of a structure that according to the above definition do not

Buckling
buckle. A collection of such measures to define a buckling
————— a load, in according to Jones (2006) a non-buckling event,
‘Wiowt Smoiiyy  for use in experimental studies are described in Singer et al
Points F’[t (1998); Jones (2006).

To demonstrate that the above discussed structural be-
haviour not strictly may be classified as buckling the sub-
category is connected loosely to buckling by a hatched line
in Fig. 1. However the term buckling without stability point

- - ! will be used in this paper to classify these types of stradtur
Symmetric Asymmetric :
// behaviour.

Research on the subject of structural optimization of com-

| \ /\
\ \ / N\ ,l . . . . .
\ N\ SN A posite structures considering stability points has been re
Unstable N Selle 7 mperfecton ported by many investigators. In a finite element framework
N\ ~N 7/ //
So T~ 7

many authors, such as Lin and Yu (1991); Hyer and Lee
Imperfection= (1991); Hu and Wang (1992); Walker et al (1996); Mateus

Fig. 1 Buckling classification considering simple stability psinm- et al (1997); Walker (2001); Foldager et al (2001); Hu and
perfections may change the type of buckling as marked by ¢lle r Yang (2007); Topal and Uzman (2008); Lund (2009); Topal
hatched lines. (2009), have considered buckling optimization of compos-

ite structures where the buckling load was determined by
ture that in its original perfect configuration is charaied  the solution to the linearized discretized matrix eigeneal
by bifurcation buckling is with added imperfections either problem at an initial prebuckling point, i.e. the linear kuc
converted into a limit point instability or stable post buck ling load. Moita et al (2000); Lindgaard and Lund (2010a);
ling without having any stability point. Structural behewnt  Lindgaard et al (2010) reported on nonlinear gradient based
belonging to buckling without a stability point does in this buckling optimization of composite laminated plates ansllsh
study include imperfect structures with originally stable  where buckling is considered in terms of the limit load of
furcation a.k.a. stable post buckling, structures devafpp the structure. Lindgaard and Lund (2010b) presented an op-
visual local buckling or wrinkles upon loading without bi- timization formulation that simultaneously handles bifaw
furcation or limiting behaviour, and structures with gedme tion and limit point instability including geometricallyom-
rically nonlinear (GNL) behaviour with considerable geom-linear prebuckling effects.
etry changes upon loading that acts in the same way as im- |_ee and Hinton (2000) studied linear strain energy min-
perfections. The latter case is well-known and discussed e.imjzation of shells with sizing and shape variables conside
by Brush and Almroth (1975); Bushnell (1985) in relation toing the improvement in nonlinear buckling limit load. They
buckling of compressed cylinders with cutouts. As discdssefound for some examples an improvement in the nonlinear
by Brush and Almroth (1975); Bushnell (1985) an initially buckling load and for others a decrease and argued for the
straight cylinder with cutouts changes geometry upon comimportance of accurately checking the stability limit of-op
pression and the structure bends near the cutouts such thaiized shell structures by geometrically nonlinear asisly
local buckling alike pattern starts to develop. Stiffnesest Overgaard and Lund (2005) applied local criterion func-
in these regions as the local buckling alike pattern growds antjons, in terms of geometrically nonlinear determined prin
the load is redistributed to other regions and the cylinger i cjpa| element strains at a specified load level, in order to
able to carry far more loading before failure. improve the buckling resistance of a laminated composite

Considering the given definition of buckling these typeswind turbine blade.

of structural behaviour do certainly not fall within the cat Limited investigations have been devoted to buckling
egory of buckling since no change in stability takes placeoptimization of composite structures having buckling with
Such types of structural behaviour may be classified as puiut stability points although this type of buckling often is
structural nonlinear displacement mode evolutions upaddo encountered for real structures. Buckling without stapili
ing. Nevertheless, the term buckling is often used in thgoint may in some cases not be critical for the overall struc-
characterization of these types of structural behaviohis T tural integrity since the load can be redistributed and the
incoherency also exists in buckling experiments of platestructure can continue to carry loading. For other strestur
where difficulties arise in determining a definite bucklingespecially for laminated composite structures, local buck
load since the plates inherently are imperfect and thegeforing and visual wrinkling may be crucial since it may gov-
do not exhibit a stability point. In literature, several mea ern the ultimate strength of the structure. Overgaard et al
sures have been proposed in order to define a buckling 1og@010) describes failure in a flapwise bending loaded wind
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turbine blade, i.e. a large laminated composite structase, 2 Buckling analysis and detection

a sequence of failure events where the first is delamination

in the composite laminate triggered by local buckling andThe finite element method is used for determining the buck-
subsequently compressive fibre failure. It could also be poding load of the laminated composite structure, thus theveler
tulated that a structure undergoing severe load redistoibu  tions are given in a finite element context.

due to the development of a local buckling pattern is un- A laminated composite is typically composed of multi-
healthy and operates in a manner, i.e. is carrying loadingyle materials and multiple layers, and the shell structcaes
that is not intended by the design engineer. Thus, there isia general be curved or doubly-curved. The materials used
lack of optimization formulations that is able to deal with in this work are fiber reinforced polymers, e.g. Glass or Car-
buckling without stability points. Furthermore, it is usak  bon Fiber Reinforced Polymers (GFRP/CFRP), oriented at
how well the different existing optimization criteria perfn ~ a given anglé);, for the k™" layer. All materials are assumed
compared to one another and to the type of buckling. to behave linearly elastic and the structural behaviouhef t

This paper deals with the above mentioned problems an@minate is described using an equivalent single layer the-
benchmarks a number of objective functions in the attemp®ry Where the layers are assumed to be perfectly bonded to-
to maximize the buckling resistance on a range of differgether such that displacements and strains will be continu-
ent numerical examples of laminated composite structure@Us across the thickness.
characterized by different types of buckling. Bucklinghwit The solid shell elements used are derived using a contin-
stability point of the limit point type and buckling without Uum mechanics approach so the laminate is modelled with a
stability point is considered. The already mentioned globageometric thickness in three dimensions, see Johansen et al
and local buckling criteria from literature are appliedfiet (2009). The element used is an eight node isoparametric ele-
benchmark study and a new local criterion is developed anfhent where shear locking and trapezoidal locking is avoided
presented. Linear and geometrically nonlinear analysis i8Y using the concepts of assumed natural strains for respec-
applied for the different criteria in order to investigabet tively outof plane shear interpolation, see Dvorkin andigat
importance of including geometrically nonlinear prebuck-(1984), and through the thickness interpolation, see Harna
ling effects. The developed local criterion is based on geo@nd Schweizerhof (2002). Membrane and thickness locking
metrically nonlinear analysis and formulated such it distec iS avoided by using the concepts of enhanced assumed strain
and captures local nonlinear effects upon loading. It is refor the interpolation of the membrane and thickness strains
ferred to as the nonlinearity factor criterion. Design $ens respectively, see Klinkel et al (1999).
tivities of all buckling criterion functions are obtaineeisi-
analytically by either the direct differentiation apprbaar
by the adjoint approach and the optimization problems aré-1 Linear buckling analysis

set up as mathematical programming problems solved by a ) o ) _ )
gradient based optimization algorithm. Linear buckling analysis is a classical engineering method

In this work only Continuous Fiber Angle Optimization for determining the buckling load of structures. The method

(CFAOQ) is considered, thus fiber orientations in laminat ive_s_num_ericgl in_expensive predic'_[ions of buckling with
layers with preselected thickness and material are chasen atabllljcy.pomt, l.e. singular tangent-suffness.- For i;btfpc-

. . : . Lo . tures it is often used as a generalized stability predietor,
design variables in the laminate optimization. Althouglefib

angle optimization is known to be associated with a non_descrlbed in Almroth and Brogan (1972), when the stability

. . - . I;:l)oint is of bifurcation or even limit point type. Linear buck
convex design space with many local minima it has bee . . . .
ling analysis is based upon linear static analysis where the

applied since the laminate parametrization has not been the . S . .
focus in this work, i.e. the presented methods in this pa esrtatlc equilibrium equation for the structure may be writte
; p pap
are generic and can easily be used with other parametriza-
tions. KQD - R (1)

The governing equations for linear and nonlinear buck-
ling analysis are presented in Sect. 2 together with featureHereD is the global displacement vectd,, is the global
applied for buckling detection during geometrically norli initial stiffness matrix, an® the global load vector.
ear analysis. The different buckling objective functiops a Based on the displacement field, obtained by the solution
plied in the benchmark study are presented in Sect. 3 and the (1), the element layer stresses can be computed, whereby
optimization formulations are stated in Sect. 4. The benchthe stress stiffening effects due to mechanical loading can
mark study of the different buckling objective functiongar be evaluated by computing the initial stress stiffness imatr
conducted upon a series of numerical examples of laminatel{ ,. By assuming the structure to be perfect with no geomet-
composite structures in Sections 5, 6, and 7. Conclusi@ns aric imperfections, stresses are proportional to the loaels,
outlined in Sect. 8. stress stiffness depends linearly on the load, displacEmen
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at the critical/buckling configuration are small, and thedo converged load step estimate an upcoming critical poat, i.
is independent of the displacements, the linear bucklingpr bifurcation or limit point, by utilizing tangent informatn.
lem can be established as At a critical point the tangent operator is singular

(KO + )\] KO‘) ¢] = 05 j = 17 25 LR J (2) KT(DC7’YC)¢j =0 (7)

where the eigenvalues are ordered by magnitude, such thahere the superscript denotes the critical point ang,
A1 is the lowest eigenvalue, i.e. buckling load factor, @nd  the buckling mode. To avoid a direct singularity check of
is the corresponding eigenvector i.e. buckling mode. In genthe tangent stiffness, it is easier to utilize tangent infar
eral, for engineering shell structures, the eigenvalublpra  tion at some converged load ste@nd extrapolate it to the
in (2) can be difficult to solve, due to the size of the matri-critical point. The one-point approach only utilizes infoa-
cesinvolved and large gaps between the distinct eigersialudion at the current step and extrapolates by only one point,
For efficient and robust solutions, (2) is solved by a subspacsee Brendel and Ramm (1980); Borri and Hufendiek (1985).
method with automatic shifting strategy, Gram-Schmidt or-The stress stiffness part of the tangent stiffness at ttieadri
thogonalization, and the sub-problem is solved by the Jacolpoint is approximated by extrapolating the nonlinear stres
iterations method, see Wilson and Itoh (1983). stiffness from the current configuration as a linear furrctio
of the load factory.

2.2 Nonlinear buckling analysis K, (D% 7) = AKq(D",7") = AKg (8)

Better predictions of structural buckling with stabilitgipts !t Is assumed that the part of the tapgent s.tllffness co_nsust—
ing of K} andK, does not change with additional loading,

than that available by linear buckling analysis may be acde =~ ~. . . .
by nonlinear buckling analysis. The method incorporates gewh|ch holds if the additional displacements are small. The

ometrically nonlinear analyses and applies for both b#trc tangent stifiness at the critical pointis approximated as
tion and limit point instability, depending on what to appea K1 (D% %) ~ Ko + K} + \K” (9)
on the equilibrium path.
Let us consider geometrically nonlinear behaviour of str@nd by inserting into (7) we obtain a generalized eigenvalue
tures made of linear elastic materials. We adopt the Totgproblem
Lagrangian approach, i.e. displacements refer to thealniti n n
configuration, for the description of geometric nonlingari (Ko +Ki) ¢ = —AKo¢; (10)

An incremental formulation is more suitable for nonlinear,yhere the eigenvalues are assumed ordered by magnitude
problems and it is assumed that the equilibrium at load steg,cp, that\; is the lowest eigenvalue amgi the correspond-

nis known and itis desired at load step:- 1. Furthermore, jnq eigenvector. The solution to (10) yields the estimate fo
it is assumed that the current load is independent on defofpe critical load factor at load stepas

mation. The incremental equilibrium equation in the Total
Lagrangian formulation is written as (see e.g. Brendel and; = ;7" (12)

Ramm (1980); Hinton (1992 ) . : :
( ) ( 2 If Ay < 1 the first critical point has been passed and in con-

Kr(D",4")éD = R"T! — F" (3) trary A\; > 1 the critical point is upcoming. The one-point
Kr(D", ") = Ko + Ki,(D",7") + Ko (D",7")  (4) procedure works well for both bifurcation and limit points.
The closer the current load step gets to the critical pdiet, t
better the approximation becomes, and it converges to the

HeresD is the incremental global displacement veclpf, ~ €xactresultin the limit of the critical load.
global internal force vector, anR™t! global applied load
vector. The global tangent stiffneKs;. consists of the global
initial stiffnessK, the global stress stiffneds’;, and the
global displacement stiffneds}. The applied load vector
R™ is controlled by the stage control parameter (load fac
tor) v™ according to an applied reference load ve®or

K4 =Ko + K} + K (5)

2.3 Buckling detection in GNL analysis

Several different stop criteria are applied for the GNL anal
yses from which an equilibrium point is determined for the
design sensitivity analysis (DSA) during the optimization
R" = "R (6) See Table 1. In the case of buckling with a stability point
in the form of a limit point, a limit point detector criterion
The incremental equilibrium equation (3) is solved by themay be used. The limit load is simply detected by moni-
arc-length method after Crisfield (1981). toring the load factor in the GNL analysis, see (3). When
During the nonlinear path tracing analysis we can at somthe load factor from two successive load steps decreases the
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previous converged load is defined as the limit load. A bifur-3 Buckling objective functions
cation point detector, as described in Lindgaard and Lund
(2010b), may be applied in case of bifurcation buckling.A range of different objective functions are investigatad a
For bifurcation point detection nonlinear buckling anadys considered for the maximum buckling resistance. The ob-
is performed at precritical stages during GNL analysis as gective functions are described in the following and com-
singularity check on the tangent stiffness. Since bucklihg ments about the design sensitivity analysis of the differen
structures due to bifurcation is not concerned in the ptesem®bjective functions are given. The equations for the design
paper this has not been further addressed. sensitivity analysis are stated in Appendix A.
For the design sensitivities of all objective functions in-
volving geometrically nonlinear analyses it is assumed tha

Table 1 Stop criteria applied for buckling detection in GNL anadysi the applied loads are independent of design changes and dis-

With stability point placements. This is true in the case of laminate optimiza-
Limit point detection tion yvith fiber angle design variables and With_ cpnservative
Bifurcation point detection loading, i.e. no follower loads. Furthermore, it is assumed
Without stability point that the end load level for the design sensitivity analysis i

At load level fixed. The latter is not always true since the final load level i

At maximum displacement some GNL analyses are determined by a GNL stop criterion
At maximum nonlinearity factosgni which is not based on a constant load level, see Table 1. If

constant load level is not assumed very complicated and nu-
merical costly design sensitivity analysis has to be indoke
In the case of buckling without any stability point other see Noguchi and Hisada (1993). Applying the fixed load as-
stop criteria for the GNL analysis are needed. The GNLsumption the design sensitivity analysis becomes more sim-
analysis may be proceeded towards a certain load level. Evéde and numerical efficient since the sensitivities can be ob
though buckling is not detected by this stop criterion it istained solely by information at the final equilibrium poitit.
applied in the study to investigate the effect of having thethe optimization procedures applying this assumption con-
chosen equilibrium point for the DSA located closely or farverge towards a constant load level the assumption becomes
away from the buckling point. A simple maximum displace- valid.
ment criterion monitoring the maximum displacement dur-
ing GNL analysis is also applied as a stop criterion for the3 1 Linear compliance
GNL analysis. Since buckling of a structure typically caise

the displacements to increase disproportionate in cor2r1par||'_inear compliance”;, is defined as the work done by the

s_on to the load this cr|ter|or_1 ma)_/ be able tc_) d(_atect bUCkEipplied loads at the equilibrium state expressed in terms of
ling. At last a so-called nonlinearity factor criteriotgy,

the linear static equilibrium equation stated in (1).
is developed and applied in the study, see (12). The criterio q q @

is formulated such it detects local nonlinear effects in theC(D) = RTD (13)
structural behaviour during loading. Buckling of struesir
are in many cases associated with nonlinear effects and e
tensive load redistribution which has been the motivatayn f
the developed criterion. The criterion is based on theifvact
between the principal element strain and the load facta. Th
relative change in the fraction from the initial load stefo

the current load step defines the element nonlinearity fac-
tor.

§.2 Nonlinear end compliance

Nonlinear end complianc€y is defined as the work

done by the applied loads at the equilibrium state at the final

load stepn expressed in terms of the nonlinear incremental

equilibrium equation stated in (3).

er/" — et/ az CewrDnRY= (R")"D" (14)

ei/7! The expression for the nonlinear end compliance in (14)
The nonlinearity factor for linear behaviourdgy. =  is in general dependent on both the displacemédntsand

1.0 and larger than one when nonlinear behaviour occurghe external loadR™ at the final load step. Considering

The stop criterion based on the nonlinearity factor may belesign changes the nonlinear end compliance criterion ap-

activated for all elements in the numerical model or onlyplied in this study is only considered dependent upon the

elements belonging to certain parts of the structure. Notdisplacement®” at the chosen load stepwhereas the ap-

that all stop criteria described for buckling without stabi plied loadR™ is considered independent upon design changes,

ity points, see Table 1, also may be applied in the case dfe. Con (D™ (a), R™) where the design variables, i =

buckling with stability point. 1,...,1I, are collected im.

eeonL = 1+
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3.3 Nonlinear first principal element strain 4 Optimization formulations

An objective function based on the first nonlinear principalA range of different optimization formulations is applied i
element straing4, is applied in the study since local buck- the study in the attempt to improve the buckling resistance
ling of structures typically is related to large increasdist  of a composite structure. The design variables in the numer-
placements of certain parts of the structure which evelytual ical studies are fiber angles in the laminate layup of a lam-
may result in high strains. Thus, minimizing the elementinated composite structure. The optimization problems are
strains may prove to be a way of improving the bucklingall formulated as either a max-min problem or a min-max
resistance of a structure. For every converged load step problem. The direct formulation of the optimization prob-
in (3) the element strain tensor may be calculated on baslem can give problems related to differentiability and fluct

of the displacement field from which the principal elementations during the optimization process since, e.g. thereige
strains can be expressed. values in the linear buckling problem may change position,
i.e. the second lowest eigenvalue can become the lowest. An
elegant solution to this problem is to make use of the so-
called bound formulation, see Bendsge et al (1983); Taylor
and Bendsge (1984); Olhoff (1989). A new artificial vari-

. . . able is introduced and a new atrtificial objective function
The element nonlinearity factorgn,, defined by (12) be- : . .
y GNL y (12) is chosen. An equivalent problem is formulated, where

tween an initial load step and the current load step is als§j . ; : o o

. o S . e previous non-differentiable objective function isnsa

implemented as objective functionin the study. As expldine . . . :
fgrmed into a set of constraints. Considering a generalimult

earlier, buckling of structures is in many cases associated . . ) . .
. . . o objective functionF; containing/ Nz function values, the

with nonlinear effects and extensive load redistributibime : .

: . . o . mathematical programming problem may be formulated as
element nonlinearity factor is a local criterion that is elev
oped such it detects nonlinear effects during loading, thus o )
minimizing the element nonlinearity factor may improve the ~ Objective: gaﬁx g or Crln'g 8
buckling resistance of a structure. ’ ’

3.4 Element nonlinearity factor

Subjectto: F; > for F; <pB, j=1,...,Np

a; <a; <a;, i=1,...,1
3.5 Linear buckling
. . . . ) wherea; denote the laminate design variables in terms of

The linear pgcklmg Ioad.|s obtameq asthe 'QWGSt g|gem/aluﬁber angles. In case of an objective with many local criterio
of (2)' Trad|t|onally, the I|-near. buckling load is c-onS|dd.ras functions, such as min-max nonlinear first principal eletmen
objective when the task is to improve the buckling resistanc rain, an active set strategy is employed in order to reduce
of structures and therefore applied in the study as a frame ?If:e number of local criterion functions. Only criterion fin
reference. tions with a value larger thaf0% of the maximum crite-

ria function are included in the active set. The mathemhtica

programming problems are solved by the Method of Moving
3.6 Nonlinear buckling Asymptotes (MMA) by Svanberg (1987). The closed loop of

analysis, design sensitivity analysis and optimizatioreis
The nonlinear buckling load is determined at a precriticapeated until convergence in the design variables or urgil th
load level using the one-point approach by solving the eigenmaximum number of allowable iterations has been reached.
value problem in (10) and estimating the buckling load by  The numerical efficiency of the different optimization
linear extrapolation in (11). Better predictions of the kbuc formulations depends on the analysis method and the design
ling load are generally obtained by nonlinear buckling anal sensitivity analysis utilized. Please refer to Appendixoh f
ysis compared to the traditional linear buckling analysisdetails about the design sensitivity analysis. Obviously,
Conversely is nonlinear buckling analysis more complidate ear analysis is more attractive than geometrically noaline
and numerical expensive than linear buckling analysisesincanalysis in terms of computational cost. The design sensi-
it requires geometrically nonlinear analysis to trace tinge tivity analyses of the linear and nonlinear buckling loa€ ar
librium path. The nonlinear buckling load is formulated ascomparable in computational cost but are the most numer-
an objective function by the procedures originally progbse ical demanding of all objective functions considered. The
in Lindgaard and Lund (2010a); Lindgaard et al (2010). Thecomputational cost of the design sensitivity analysis ef th
expressions for the design sensitivities are as for therothelement nonlinearity factor and the nonlinear first priatip
objective functions described in Appendix A. element strain are less than the linear and nonlinear buck-
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ling load but higher than the linear and nonlinear complanc by visual inspection of the equilibrium curve. The equilib-
since the displacement sensitivities need to be computed. rium path for the initial imperfect plate is shown in Fig. 3.
The buckling load is defined when the displacement starts

to grow rapidly, i.e. the equilibrium path changes direatio
5 Numerical example: laminated composite imperfect from the initial part of the path.

late . Lo :
P A range of different optimization formulations for the

The clamped composite laminated plate subjected to a dig2XIMum buckling resistance is benchmarked upon the ex-

tributed compression load, see Fig. 2, is a structure treat hd@tmple. The fiber angle in all six fiber layers are used as de-

a stable symmetric point of bifurcation. The bifurcatioado sign variables. An optimization formulation involving non

for the perfect plate estimated by a linear buckling analysi linear bupkling analygi.s canpot bg used singe buck-lin-g ap-
pears without a stability point. Linear buckling optimiza-

is 438k Pa. According to Fig. 1 introductions of imperfec- ~~“" ’ )
tions remove the stability point and changes the structurd|on 1S applied as a frame of reference although no stabil-

response to a single stable equilibrium path without a stabi ity point is presen-t. The optlmlzatlor? formqlatlons bench-
marked upon the imperfect composite laminated plate ex-

ity point. .
ample are stated in Table 2.
I Nine different optimization approaches are applied in
" " the buckling optimization of the imperfect laminated com-
«— z posite plate. Optimization formulation number one and two,
D — see Table 2, applies linear analysis while the others atiliz
§ — 3 geomgtric nqnlinear analysis. For t_he optimizatiops vyiih g
S — ometric nonlinear analysis three different stop critedaé
X «— 2 been applied to terminate the geometric nonlinear analysis
g \l D ’g b For e.g. the compliance minimizations, optimization formu
i s lation number three always complete the GNL analysis to
3 <—§ the same load level, namely a load &0k Pa which is
§ — F slightly above the buckling load of the initial design. For
DI optimization formulation four and five the GNL analysis is
y «— Il performed towards different load levels at each optimiza-
'\ tion iteration and controlled by a maximum displacement
Fixed in z and a maximum nonlinearity factor criteriagy., respec-
: x tively. The threshold values for these stop criteria are set
such that the reached load level in the GNL analysis is close
L =5m b=5m t = 20mm to the buckling load. The threshold value for the maximum
gz ::33%2?% gzy::EGZ ;2%555“ ves zg 099 displacement: in z-direction is set tarmm and the maxi-
|nﬁiza| layup = [900/80/00}2 e mum nonlinearity factor is set tagn. = 20. Optimization

) .y N formulation number six and seven minimize the maximum
Fig. 2 Geometry, loads, boundary conditions, and material ptgser

for the laminated composite plate example. The total téskrof the  firSt principal strainsg,, whereas optimization formulation
plate is denoted by and the layup has an equal ply thickness. Theeight and nine minimize the maximum nonlinearity factor,
fundamental buckling mode is also shown in contours on tagepl ¢\

The plate is modelled by00 equivalent single layer solid shell finite o o ]
elements. The equilibrium curves of the optimized designs accord-

ing to the approaches stated in Table 2 are shown in Fig. 3.
This characteristic is utilized to construct a simple exam-AImOSt all optimization approaches lead towards designs

ple for which buckling appears without any stability points with nearly the same eq_umbrlum pa'_[h and on_ly minor dif-
Geometric imperfections according to the first linear buck_ference_s a_re traceable in the buckling load improvements
ling mode, see Fig. 2, is superimposed upon the geometr?hown inFig. 4.

with a specified amplitude. The amplitude is defined as the The laminate designs for all optimization approaches are
largest translational component of the first linear buaklin driven towards zero degrees fiber angles in all design layers
mode relative to the thickness of the plate. For this examplelowever for optimization approach four, six, and eight the
an imperfection amplitude df% has been applied to gener- fiber angle in design layer four for the optimized designs
ate an example that buckles without a stability point. Sincés around60° and for optimization approach nine the fiber
buckling for the imperfect plate appears without any stabil angle in design layer three and four ar89° and104°, re-

ity point the buckling load has to be manually determinedspectively.
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Table 2 Optimization formulations applied in the buckling optiration of the imperfect laminated composite plate.

Objective function

Analysis method

Stop criterion

Max Min Linear Buckling
Min Linear Compliance
Min Compliance

Min Compliance

Min Compliance

Min Max e

Min Max e

Min Max egnL

Min Max egni

©CONOOA~WNE 3%

Linear -
Linear -
GNL Load
GNL Disp.
GNL EGNL

GNL Disp.

GNL EGNL

GNL Disp.

GNL EGNL

1600

1400

1200

1000

800

Load [kPa]

600 Initial Design
1. Max Min Linear Buckling --------
2. Min Linear Compliance -+

400 3. Min Compliance at Fixed Load (Load = 550kPa) .
4. Min Compliance at Updated Load (Disp. = 7mm) - -~

5. Min Compliance at Updated Load (g = 20) -~~~
200 6. Min Max ¢, at Updated Load (Disp. = 7mm) - - - -

7. Min Max ¢, at Updated Load (g = 20)

8. Min Max g at Updated Load (Disp. = 7mm) ----------

9. Min Max £gnL at quated Load (EGNL‘ =20) -~

0 10 20 30 40 50
Displacement - u (mm)

Fig. 3 Load-deflection curves of the initial laminate compositsige
and of the optimized designs obtained by the benchmarkethizpt
tion formulations. The displacement is measured at mid spathe
loaded side of the plate and positive in the loading directio

100

80

60

Buckling Load Improvement in %

20

1. Max Min Linear Buckling
2. Min Linear Compliance

5. Min Compliance
3. Min Compliance
4. Min Compliance
8. Min Max g

9. Min Max ggn
7. Min Max g
6. Min Max g,

0

6 Numerical example: laminated composite U-profile

The laminated composite U-profile is an example of a real
structural engineering element. Geometry, loading, anchtde
ary conditions are identical to a model analyzed by Klinkel
et al (1999); Lindgaard and Lund (2010a); Lindgaard et al
(2010). The U-profile is clamped at one end and point loaded
in an upper corner node at the other end with a foice
250k N. A total of 432 equivalent single layer solid shell fi-
nite elements is used in the numerical model.

7 "]

Geometry:

L = 36m

t ={0.05;0.15}m
b =2.025m

h = 6.05m

t

Fig. 5 Geometry, loads, boundary conditions, and element coatelin
systems for numerical model of the U-profile.

Two thickness configurations of the U-profile are con-
sidered, i.et = {0.05;0.15}m. This leads to two different
types of buckling behaviour. The first configuration which
defines case 1 buckles due to a limit point instability wherea
case 2 buckles without any stability point, see e.g. Fig. 1.
The laminate layup consists ¢tini-directional E-glass/epoxy

Fig. 4 Buckling load improvement in percent of the imperfect lami- fiber layers each of equal thickness, see properties of the

nated composite plate for the benchmarked optimizationddations.

processed material in Table 3.
The fiber orientation is related to the element coordinate
system,(z., ye, z¢), in each finite element. The fiber orien-

All the benchmarked optimization formulations give sat-tation is measured counterclockwise from thaxis in the
isfactory results and are nearly equally good in increasingy-plane of the element coordinate system. The element co-
the buckling resistance for the imperfect laminated composordinate system for the finite elements in the web and each

ite plate.

flange, respectively, is depicted in Fig. 5. The fiber orienta
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Table 3 Processed material properties for U-profile. 0 * ' '

T

T
GNL - Initial design
1% linear buckling load -~

E-glass/epoxy

250

Ey 30.6 GPa E, 8.7 GPa
B, 8.7GPa vy 0.29
Vs 0.3 Vyz 0.3 200

G.y 324GPa G,. 3.24GPa
Gy,. 29GPa p 1686 kg/n# ol

100

tion of each layer for the web and each flange, respectively, /
is considered constant and the layer stacking is done from |/
inside out. The initial layup definition for the U-profile is

stated in Table 4. 0 ‘ ‘ ‘ ‘
0 0.5 1 1.5 2
Displacement - w
Table 4 Layup defi_nition for the U-profile. Each layer in the laminate Fig. 6 Linear buckling load and load displacement curve from geo-
layup has equal thickness. metrically nonlinear analysis of U-profile.

Load [kN]

Layup definition
Top Flange (0°,45°, —90°, —45°)
Web (90°,135°,0°,45°)
Bottom Flange (45°,90°, —45°,0°)

The fiber angles in the layup definition are used as lam-
inate design variables in the benchmark study of the differ-

variables.

. Fig. 7 15t linear buckling mode shape and displacement field at dif-
6.1 U-profile case 1 ferent load steps during the geometrically nonlinear asislyNote that
the displacement fields correspond to the marked equitibgaints on
Initial analysis of the U-profile with a thicknesstof 0.05m  the load displacement curve in Fig. 6.
shows buckling of the structure due to a limit point instabil
ity. The linear buckling load and the equilibrium curve from Those with load based stop criterion continue the GNL anal-
a geometrically nonlinear analysis are depicted in Fig. 6ysis until a certain load level is reached. A loadl@bk N
Linear buckling analysis is unable to predict the limit goin is used in the load based stop criterion. For the optimiza-
instability and overestimates the buckling load27%. tion formulations with a stop criterion for the GNL analysis
The geometrically nonlinear analysis predicts bucklingbased on either a limit point detector or a maximum non-
due to a limit point instability where the structure buckkes linearity factoregni, the GNL analysis may be terminated
the top flange near the fixed support, see Fig. 7. In contrargt different load levels for each optimization iteratiomer
linear buckling analysis predicts bifurcation bucklinggdo ~ maximum nonlinearity factor is set 1& in the stop criterion

collapse in the web section at the free end. which for the initial laminate design is reached at a load of
The optimization formulations stated in Table 5 are bench66kN .
marked upon the U-profile with a thickness tof= 0.05. Load-deflection curves of the optimized designs are col-

Since the structure buckles due to a limit point stability,lected in Fig. 8 and the buckling load improvement by the
a stability point is present, thus optimization formulaso benchmarked formulations are shown in Fig. 9. All the op-
based on linear and nonlinear buckling analysis may be agimized designs maintain the same buckling type, i.e. limit
plied. Note that the numbering of the optimization formu-point instability, and all optimization formulations mayea
lations for this numerical example, see Table 5, is differento improve the buckling load.
from that of the previous example, see Table 2. The poorest performing optimization formulations are
For the optimization formulations involving geometri- those based on linear analysis, i.e. optimization formula-
cally nonlinear analysis three different stop criteriadnbeen tion one and three. The best performing optimization for-
applied to terminate the geometrically nonlinear analysismulation is number two which is based on the nonlinear
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Table 5 Optimization formulations applied in the buckling optirion of the U-profile case 1.

#  Objective function Analysis method  Stop criterion
1. Max Min Linear Buckling Linear -

2. Max Min Nonlinear Buckling GNL Limit Point
3. Min Linear Compliance Linear -

4.  Min Compliance GNL Load

5.  Min Compliance GNL Limit Point
6. Min Maxe; GNL Limit Point
7. Min Max egnL GNL Load

8. Min MaxegnL GNL Limit Point
9. Min Max EGNL GNL EGNL

250 35

30

200

25

150
20 -

Load [kN]

100

Initial Design

1. Max Min Linear Buckling --------

2. Max Min Nonlinear Buckling at Updated Load (Limit Point) - -~
3. Min Linear Compliance

50 4. Min Compliance at Fixed Load (Load = 125kN) ----

5. Min Compliance at Updated Load %Limit Point; """
§ 6. Min Max ¢, at Updated Load (Limit Point

7. Min Max gy at Fixed Load (Load = 125kN) ----------

8. Min Max ggyy_at Updated Load (Limit Point)

9. Min Max gL at Upd§ted Load gEGNL = 15)‘ ————————

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Displacement - w

Buckling Load Improvement in %

6. Min Max &,

5. Min Compliance

9. Min Max ggp

8. Min Max ggp

2. Max Min Nonlin Buck

(5}
T
1. Max Min Lin Buck
3. Min Lin Com.
7. Min Max ggn
4. Min Compliance

0

Fig. 8 Load-deflection curves of the initial laminate compositsige Fig. 9 Buckling load improvement in percent of the U-profile case 1
and of the optimized designs obtained by the benchmarkethizpt by the benchmarked optimization formulations.
tion formulations.

buckling load. Among the optimization formulations based
on the minimization of the maximum nonlinearity factor
those stopped close to the stability point yield the best per
formance. This observation also holds for the optimization
formulations based on geometrically nonlinear compliance
minimization. This means that the performance of optimiza-
tion formulations having same objective function can béeah
according to the stop criterion applied in the GNL analysis
i.e. limit point,egnL, and load.

Fig. 10 18tlinear buckling mode shape and post buckling displacement
field for the initial design of the U-profile case 2.

The benchmarked optimization formulations are stated
in Table 6. Although no stability point is present for the
example the optimization formulation based on the linear

The U-profile is again considered with same properties aBuckling load is attempted. The fundamental linear bueklin
in case 1 except the thickness which is changed te mode for case 2 is differently from that determined in case 1.

0.15m. With this configuration the structure buckles without T"€ fundamental linear buckling mode for the initial design
a stability point, i.e. the equilibrium path keeps rising-st of U-profile case 2 is shown in Fig. 10. The linear buckling
bly without any bifurcation or limit point. The equilibrium Mede is very similar to the geometrically nonlinear defor-
path for the initial laminate design is shown in Fig. 11. TheMation shape and is best described as a flexural-torsional
U-profile buckles visually in the top flange near the fixedPUckling mode.

support as in case 1, see Fig. 10. The equilibrium point the For optimization formulation number three and four a
buckle starts to develop is marked on the equilibrium path irstop criterion based on the maximum nonlinearity factor is
Fig. 11. applied to terminate the GNL analysis. The maximum non-

6.2 U-profile case 2

10
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linearity factor is set td 00 which for the initial design is
reached at a load d600k N .

The equilibrium curves of the optimized designs obtained
by the benchmarked optimization formulations are collec-
tively shown in Fig. 11. The load level at which a buckle
starts to develop in the top flange is marked on the equilib-
rium curves and is purely determined by visual inspection of z.
the deformation shape. Considering this point as the buck- *¢
ling load, the best improvement is obtained by optimization

formulation number four that minimizes the maximum non-
linearity factor in the structure. Surprisingly, the seddest

,,,, to
—+ h
Geometry:
R L=17m
b =0.5m t1
h =1.2m

{t1;ta;t3} = {1;3;1.5}10 %m

design is obtained by optimization formulation number onerig. 12 Geometry, loads, boundary conditions, and element coatelin
that maximizes the linear buckling load, despite the absencsystems for the numerical model of the box-profile.

of a stability point.

2500

2000

%

1500

Load (kN)

1000

L. Initial Design
500 k- 1. Min Lin Buck
/ 2. Min Lin Compliance -
J/ 3. Min Compliance at Updated Load (egy, = 100) -~~~
7 4. Min Max ey at Updated Load (g = 100)
Buckling Pqints *

0 I I I
0 0.5 1 1.5 2

Displacement - w

25 3

Fig. 11 Load-deflection curves of the initial laminate composite de
sign and of the optimized designs obtained by the benchrdargé-
mization formulations for U-profile case 2.

Using the optimization formulations based on minimum

structural parts in the box-profile, see Table 7. The mate-
rial properties of the uni-directional E-glass/epoxy alen-

tical to those used for the U-profile example, see Table 3.
The fiber orientation is again related to the element coordi-
nate systemz., y., z. ), in each finite element and the same
orientational definition of the fiber layers as used for the U-
profile is applied. The element coordinate system for the fi-
nite elements for the webs and flanges are shown in Fig. 12.
The fiber orientation of each layer for each of the five struc-
tural parts is considered constant throughout the length of
the profile and the layer stacking is done in accordance with
the z.-axis. The fiber angles in the layup definition are used
as laminate design variables in the benchmark study of the
optimization formulations which gives a total 26 design
variables.

Initial analyses of the box-profile show that the structure
buckles without any loss of stability and without any points
of stability, i.e. limit point or bifurcation point. The lah
deflection curve of the initial design obtained by a geomet-
rically nonlinear analysis is depicted in Fig. 15 and defor-

compliance, i.e. optimization formulation two and three, amation shapes at different load levels are shown in Fig. 13

stability point in the form of a limit point is introduced dur
ing optimization. The compliance minimization based on

together with the first linear buckling mode.

GNL analysis performs better than the linear compliance op-

timized design which again demonstrates the importance of

including nonlinear prebuckling displacements.

7 Numerical example: laminated composite box-profile

The laminated composite box-profile depicted in Fig. 12 i
clamped at one end and point loaded at the other end. T
box-profile is divided into five structural parts which castsi
of two webs and three flanges. A total tH80 equivalent
single layer solid shell finite elements is used in the numeri
cal model.

11

Fig. 13 1% linear buckling mode shape and displacement field at dif-
ferent load steps during the geometrically nonlinear aisl\Note that
The laminate layup consists ¢fini-directional E-glass/epydisplacement fields correspond to the marked equitibpoints

fiber layers, each of equal thickness, for each of the fivéﬁogl?_zlznd_l%km on the load displacement curve in Fig. 15 for
the initial esign.
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Table 6 Optimization formulations applied in the buckling optirion of the U-profile case 2.

#  Objective function Analysis method  Stop criterion
1. Max Min Linear Buckling Linear -
2. Min Linear Compliance Linear -
3. Min Compliance GNL EGNL
4. Min Max egnL GNL EGNL

Table 7 Layup definition for the box-profile. Each layer in the lami-
nate layup has equal thickness.

1. 163E+000
1. 15164000
1. 140E+000
1. 128E+000
1. 116E+000
1. 105E+000
1. 093E+000
1. 081E+000
1. 070E+000

1. 754E+000
1. 700E+000
1. 646E+000
1. 592E+000
1. 538E+000
1. 484E+000
1. 431E+000
1.377E+000
1. 323E+000

Layup definition
Top Flange (0°,90°,90°,0°)
Middle Flange (0°,90°,90°,0°)
Bottom Flange (0°,90°,90°,0°)
Right Web (0°,90°,90°,0°)
Left Web (0°,-90°, —90°,0°)

1. 058E+000
1. 047E+000
1. 0354000
1. 023E+000
1. 012E+000
1. 000E+000

1. 269E+000
1. 215E+000
1. 161E+000
1. 108E+000
1. 054E+000
1. 000E+000

EREDODODEOO0OOEE
EREDODODEOO0OOEE

1. 754E+000
1. 7004000
1. 646E+000
1. 59264000

1. 238E+000
1. 221E+000
1. 204E+000
1. 187E+000

At a load level of80k N a visual buckle initiates in the
bottom flange and enhances with additional loading and
buckling pattern propagatesin the bottom flange in the kengt
direction of the box-profile. The initiation of buckling ihe
bottom flange results in a stiffness decrease for the struc-
ture which immediately may be observed by the change in
slope for the load-deflection curve of the initial desigre se o _
Fig. 15. The buckling ntiaton s a aleady mentioned nof 0 4 705,01 onineary Beoren, o 81 emr o
connected to any stability point. This has been verified by, e is seen from the rear end.
singularity checks upon the tangent stiffness matrix dyrin
GNL analysis, i.e. no singular points could be found.

At buckling, the bottom flange loses its stiffness and
thereby its load carrying capability and load redistriboti buckling load. Since the nonlinearity factor is largesttfo

occurs from the bottom flange to the other structural Pars e ments in the middle flange that are far away from the

in the box-profile. The load carried by the bottom flange Sstructural part that buckles, i.e. the bottom flange, it is at

mainly redistributed to the webs and the middle flange. Th‘:fempted both to minimize the maximum nonlinearity fac-

r_nid(_jle flange is prior to buckling almOSt unloand since ittor for all elements in the model and to minimize the maxi-
lies in the negtral plane. A_\ft_er buckling the position of _themum nonlinearity factor for only the elements in the bottom
neutral plane is shifted so it lies between the top and m'ddlﬁange. The optimization that operates on all elements in the

flange, i.e. the middle flange becomes compression Ioadeﬁ10del is referred to as Min Max Globaky, whereas the

The '9ad red|str|put|(?n that occurs in coqnectlon with theoptimization that only operates on the elements in the bot-
initiation of buckling in the bottom flange is well captured

. . L o tom flange is referred to as Min Max Lo . The sto
by the nonlinearity factoign, Which is plotted in Fig. 14 9 cabn, P

. . criterion,egni, in the GNL analysis is for local detection set
:‘rc])irti:edssl:g::ber layers at the buckling load&fk N for the to cen. = 1.5 and for global detection set tasy = 2.9

_ _ _ which both are reached after visual buckling at a load level
~ The nonlinearity factoken, is largest for the elements  ¢jose to the buckling load. The threshold values for the non-
in the middle flange since those elements initially are aljinearity factor used in GNL analyses are reached at approx-

most unloaded, thus a large change occurs in the principghately 85k N for the initial design which is just above the
strain relative to the load factor. Also the elements in the\/isually determined buckling load Dk N.

rear end of the bottom flange have nonlinearity factors dif-

ferently from1 since the bottom flange buckles and load re-  Although no stability point exists for the box-profile an

distribution occurs whereby the compressive principalistr  optimization that maximizes the minimum linear buckling

relative to the load factor is reduced. load is attempted. This is done since the fundamental lin-
The optimization formulations stated in Table 8 are benckar buckling mode is very similar to the GNL post buckling

marked upon the box-profile in the attempt to maximize thedeformation shape, see Fig. 13.

1. 538E+000
1. 4B4E+000
1. 43164000
1. 377E+000
1. 323E+000
1. 269E+000
1. 215E+000
1. 161E4000
1. 108E+000
1. 054E+000
1. 000E+000

1. 170E+000
1. 153E+000
1. 136E+000
1. 119E+000
1. 102E+000
1. 085E+000
1. 068E+000
1. 051E+000
1. 034E+000
1. 017E+000
1. 000E+000

EREDODODEOO0OOEE
EREDODODEOO0OOEE

12
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Table 8 Optimization formulations applied in the buckling optimion of the box-profile.

#  Objective function Analysis method  Stop criterion
1. Max Min Linear Buckling Linear -

2. Min Linear Compliance Linear -

3. Min Compliance GNL Locatgne
4. Min Max Globalegn. GNL Globalegn.
5.  Min Max Localegn. GNL Local egni

Equilibrium curves of the optimized designs obtained bythe nonlinearity factorssgn., for all elements are highly
the optimization formulations stated in Table 8 are collec-affected by buckling initiation in the bottom flange, not all
tively shown in Fig. 15. local criterion functions are capable of representing ttéis
lation. For the elements in the structural area of instgbili
there is a better correspondance between the local criterio
functions based on the nonlinearity factor and the buckling
initiation. This statement is also emphazised by the featt th
the global level ot gy is lower at the buckling point for the
local egni Optimized design than for the buckling point for
the globakgn. optimized design.

200 T

150

100

Load (kN)

8 Conclusions

50 | e f/‘r' Initial Design

y 2 Min Lin Cornplan " In this work a range of different criterion functions for the
v 3. Min Compliance at Updated Load (Local gy = 1.5) ———~ . . . . .
v 4. Min Max Global &y at Updated Load (Global ey =2.9) -~ maximum buckling resistance of laminated composite struc-
P 5. Min Max Local €5y at Updated Load (Local EGNL = !.5) rrrrr ) K .
o 2 ‘ ‘ ‘ Buckling Points turesis benchmarked upon different numerical examples hav

0 0.05 0.1 0.15 0.2 0.25
Tip Displacement (m)

ing different buckling behaviour. The majority of the crite
Fig. 15 Load-deflection curves of the initial laminate composite de rion functions applied in the benchmark StUij I_S from Ilt_er-
sign and of the optimized designs obtained by the benchrdaspe-  @ture and concerns both local and global criterion funstion
mization formulations for the box-profile. based on either linear or geometrically nonlinear analysis
new local criteria function in terms of an element quantty i
presented and is formulated such it gives a measure for local
Both optimization formulations based on minimum com-nonlinear effects upon loading and referred to as the elemen
pliance, i.e. linear and GNL, yield almost the same equilibnonlinearity factor. The maximum buckling load is obtained
rium curve and only little improvement in the buckling load by gradient based optimization and the design sensitvitie
may be observed. The buckling load is increased%yand  for all criteria are determined semi-analytically by eittee
8% by the design based on minimum linear compliance andirect differentiation method or by the adjoint approach.
minimum GNL compliance, respectively. As expected, the  |n the benchmark study buckling with stability point of
overall stiffness of the structure is increased by the ogm  the limit point type and buckling without stability pointer
tions based on minimum compliance. concerned. The latter type may in principle not be classi-
Considering the design obtained by the maximum linfied as buckling since loss of stability does not take place.
ear buckling load a buckling load improvementif% is  Though, the term buckling is in many cases used to describe
achieved. Thus an optimization formulation based on globaé.g. behaviour of imperfect structures with initially de@ab
stability as the case for optimization formulation numberbifurcation a.k.a. stable post buckling, structures dmvielg
two, see Table 8, is able to increase the buckling load evevisual local buckling or wrinkles upon loading without bi-
when no global stability point is present. furcation or limiting behaviour, and structures with ge¢ime
The buckling load improvement by optimization formu- rically highly nonlinear behaviour with considerably geom
lation number four and five i85% and80%, respectively. etry changes that act in the same manner as imperfections.
Thus optimization formulation five that operates directhpn From the benchmark study it is found that different cri-
the elements in the structural part where the buckle ieisiat terion functions should be applied depending on the type
gives a much better buckling load improvement than the opef buckling in order to obtain the best buckling load im-
timization formulation that operates on the maximum nonprovement and thereby the best performing structural de-
linearity factor of all elements within the model. Although sign. In general do optimization formulations includingiro

13
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linear prebuckling effects by geometrically nonlinearlgna Foldager JP, Hansen JS, Olhoff N (2001) Optimization of tnekbing
sis give better results than those based on linear analysis. load for composite structure taking thermal effects intooaet.

it oo ; ; Struct Multidiscip Optim 21:14-31
For structures exhibiting a limit point type buckling the Harnau M, Schweizerhof K (2002) About linear and quadrasialiti-

criterion based on the nonlinear buckling load is favoured.  ghe| elements atlarge deformations. Compt Struct 8@paD5—
This criterion works directly upon the limit point load and 817
the method includes accurate nonlinear path tracing aisalysHinton E (ed) (1992) NAFEMS Introduction to Nonlinear FiiEle-

: : : . - ment Analysis. Bell and Bain Ltd, Glasgow, ISBN 1-874376>00
where the buckling load is estimated at a precritical pomt o Hu HT, Wang SS (1992) Optimization for buckling resistande o

the deformed configuration. The estimation point is always  fiper-composite laminate shells with and without cutoutsmPos
chosen close to the real buckling point for a precise esémat  Struct 22(2):3-13
of the nonlinear buckling load and the nonlinear bucklingHu HT, Yang JS (2007) Buckling optimization of laminated iny!

load design sensitivities. Compared to the other criterion g';_c???'ffggés subjected to axial compressive load. CompugS

functions benchmarked, the nonlinear buckling load critetjyer Mw, Lee HH (1991) The use of curvilinear fiber format to-im
rion is far superior in the case of limit point buckling. prove buckling resistance of composite plates with cewiratilar
For cases where buckling alike patterns develop with the  holes. Compos Struct 18(5/6):239-261

absence of a stability point, i.e. buckling without a stabil Yo"ansen L, Lund E, Kleist J (2009) Failure optimization ebigetri-
cally linear/nonlinear laminated composite structureagia two-
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A Design sensitivity analysis
A.1 Linear displacement sensitivity

The displacement senauvn@}? are computed by direct differentia-
tion of the static equilibrium equation, see (1), w.r.t. @ida variable

a;,i=1,...,1.
aD dK dR

Ko— = ——2 ===, (15)
da; da; da;

The displacement sensmvng'Q can be evaluated by backsubstitution
of the factored global initial stiffness matrix in (15). Thetial stiff-
ness matrix has already been factored when solving the gtatblem

in (1) and can here be reused, whereby only the new terms aigtite
hand side of (15), called the pseudo load vector, need tolbelated.
Note that the force vector derlvatlvge, is zero for design indepen-
dent loads as in the case for CFAO. The global initial steBenatrix
derlvatlvesdKO
by central dlfference approximations and assembled toadlotatrix
derivatives.

dko - kO(ai + Aai) — ko(ai — Aai) (16)
da; - 2Aa;

NO/S
K ‘L dk
Mo _sodo o a7)
da; ! da;

ko is the element initial stiffness matrixia; is the design perturba-

are determined semi-analytically at the element level

vector. Taking the total derivative of this equilibrium edjon with re-

spect to any of the design variablesi = 1, ..., I, we obtain
n n n n
Q" _ 9Q"  9Q" dD" _ (19)
da; da; oD"™ da;
where oQ = oF" IR (20)
oD™  9D"  9D"
n n n
ang Q" _OF" R 1)
da; da; da;

We note that (20) reduces to the tangent stiffness matriceSit is
assumed that the current load is independent of deforma%%a =
0, we obtain

OF™

T (22)

oDn

By inserting the tangent stiffness and (21) into (19), weaobthe dis-
placement sensitivitie§2— as

OR™

_ _ OF"
" da;

da;

dD™
K7t
da;

(23)

The partial derivative of the load vectoﬁ”— can explicitly be ex-
pressed by two terms by taking the partlal derivative to (6)

oR"™
da;

-7 da;

oy"
da;

R

+

(24)

For design independent Ioacg‘i = 0 and for a fixed load level

o

determlned at the element level by central difference apprations
and assembled to global vector derivatives.

A.3 Linear compliance

The design sensitivity of linear compliance is obtained pplgng
the adjoint approach, see e.g. Bendsge and Sigmund (2003J;dnd
Stegmann (2005), and obtaining the sensitivity with respeany de-
sign variablea;,i = 1,...,I as

T+ dKo
da;

=-D D

(25)
The global initial stiffness matrix denvatlveg‘—Q are determined semi-
analytically at the element level by central difference ragpnations
and assembled to global matrix derivatives as in (16) anf (17

A.4 Nonlinear end compliance

The design sensitivity of nonlinear end compliance at a emyed load
stepn with respect to any design variable, i = 1, ..., I, is obtained

tion, and V¢ is the number of elements in the finite element modelpy, the adjoint approach, see e.g. Bendsge and S|gmund (2003)

associated to the design variable

A.2 Nonlinear displacement sensitivity

The nonlinear displacement sensitivities are computedobgidering
the residual or force unbalance equation at a convergedstepa,

Q" (D"(a),a) =

whereQ™ (D™ (a), a) is the so-called residual or force unbalangg,
is the global internal force vector, aml” is the global applied load

"_R"=0 (18)
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OF™
da;

dCoNL

— AT Q" _
da;

a da;

_OR"
da;

(5 )

Assuming the end load fixed and independent of design chamges
have thatf’R = 0. The adjoint vectoi, which is not to be confused

with the elgenvector is obtained as the solution to theiatigmuation

(26)

KiA=—-R" (27)
The partial derivatives in the right hand side of (26) areedeined at
the element level by central difference approximations assémbled

to global vector derivatives.

= 0. The pseudo load vector, i.e. the right hand side to (23), is
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A.5 Nonlinear first principal element strain

The design sensitivities of the first principal eIementiatr%%, are
determined semi-analytically by forward differences a #lement
level.

deq 1 (D" + AD™) — &1 (D")

~ 28
da; Aa; (28)

The displacement field is perturbed via the calculated digyhent
sensitivities in (23) such thaAD" ~ 92~ Aq,.

A.6 Element nonlinearity factor
The design sensitivities of the element nonlinearity faeten. , are de-
termined semi-analytically by forward differences at thesreent level.

deene  eenL(D! + AD!, D™ + AD™) — egn (D!, D)
da; - Aa;

(29)

It is assumed that the initial load level and the final loaclare fixed
whereby the perturbed element nonlinearity factor is deitezd by

een(D'+AD!, D™ + AD") = (30)
e?(D™ + AD")/y" —e1(D! + ADY) /4!

1
- sI(D1 + AD1)/71

Since the element nonlinearity factor is determined byrimfation at
two equilibrium points, i.e. the initial load step and theafistepn,
the displacement sensitivities have to be calculated &t loaid steps
by (23). The perturbation of the displacement fields at bojiild-
rium points may then be evaluated lyD" =~ %Aai andAD! ~

le .
EA‘”’ respectively.

A.7 Linear buckling

The linear buckling load factor sensitivities may be defasd by

axj oy (dKo _dKC,>

da; J

P (31)

where the eigenvalue problem in (2) has been differentiatitial re-
spect to any design variable;,: = 1,. .., I, assuming thak; is sim-
ple, see e.g. Courant and Hilbert (1953); Wittrick (1962)eTlobal
matrix derivatives oK, andK, are determined semi-analytically at
the element level by central difference approximations assembled
to global matrix derivatives, see (16) and (17). The stréffaess ma-
trix is an implicit function of the displacement field, i, (D(a), a),
thus both displacement field and design variables need tetberped
in the element central difference approximation. The dispinent field
is perturbed via the calculated displacement sensitsvitig(23) such
that AD™ ~ %Aai.

A.8 Nonlinear buckling

The nonlinear buckling load factor sensitivities at loagjpst are de-
termined by

dA; o (dKo dK{ dK% )

I 1 by g ; 32
da; ¢J ( da; + da; tA da; 2 (32)
and

s d\;

_J _ 29 n 33
da; da; 7 (33)
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where the eigenvalue problem in (11) has been differentiafi¢h re-
spect to any design variable;,: = 1, ..., I, assuming thak; is sim-
ple, see Lindgaard and Lund (2010a). It is assumed that thkldiad
level is fixed and that the nonlinear buckling load has be¢erdened

at load step: by evaluation of (10) and (11). The global matrix deriva-
tives of Ko, K7, andK7 are determined in the same manner as for
the linear buckling load sensitivities, i.e. semi-anagticentral differ-
ence approximations at the element level and assembly balgioatrix
derivatives.



