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A Unified Approach to Nonlinear Buckling Optimization of Cpasite
Structures

Esben LindgaardErik Lund"
Department of Mechanical Engineering, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, Denmark

Abstract

A unified approach to nonlinear buckling fiber angle optirtimaof laminated composite shell structures is presented.
The method includes loss of stability due to bifurcation #imdting behaviour. The optimization formulation is
formulated as a mathematical programming problem and dalsing gradient-based techniques. Buckling of a
well-known cylindrical shell benchmark problem is studimad the solutions found in literature are proved to be
incorrect. The nonlinear buckling optimization formutatiis benchmarked against the traditional linear buckling
optimization formulation through several numerical optiation cases of a composite cylindrical shell panel which
clearly illustrates the advantage and potential of theegareesl approach.

Keywords: Composite laminate optimization, Nonlinear buckling, Dessensitivity analysis, Composite structures,

Limit point buckling, Bifurcation buckling

1. Introduction

The use of fibre-reinforced polymers has gained an eveeasing popularity due to their superior mechanical
properties. Designing structures made out of compositematepresents a challenging task, since both thickisesse
number of plies in the laminate and their relative orientatnust be selected. The best use of the capabilities of
the material can only be gained through a careful selecticheolayup. This work focuses on optimal design of
laminated composite shell structures i.e. the optimal fdy@ntations within the laminate which is a complicated
problem. One of the most significant advances of optimalgiesi laminate composites is the ability of tailoring
the material to meet particular structural requirements \itle waste of material capability. Perfect tailorina
composite material yields only the fftiess and strength required in each direction. A survey afmaptdesign of
laminated plates and shells can be found in [1].

Stability is one of the most important objectiyesnstraints in structural optimization and this also hdtsnany

laminated composite structures, e.g. a wind turbine blddaditionally, stability is regarded as the linear bucglin
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load, but for structures exhibiting a nonlinear responsemwloaded, and especially for shell like structures, the
traditional approach can lead to unreliable predictiorthefuckling load. In the case where nonline@eets cannot
be ignored nonlinear path tracing analysis is necessary.liffg point instability, several standard finite element
procedures allow the nonlinear equilibrium path to be tdacetil a point just before the limit point. The traditional
Newton like methods will probably fail in the vicinity of thamit point and the post-critical path cannot be traced.
More sophisticated techniques, as the arc-length methagtgested by [2] and subsequently modified by [3] and [4]
are among some of the techniques available today for patimgranalysis in the post-buckling regime. Despite such
sophisticated techniques exist, buckling analysis ofl $kelstructures is today still a flicult task which consequently
makes it dfficult to optimize shell structure w.r.t. stability.

For many years a common shell buckling problem, first intazdiby [5] and later appeared in numerous journal
articles, has been a classical example for describing mgcklehaviour of cylindrical shell panels. The example
has been used as a benchmark to investigate advances inicairfieite elements methods for handling load Aamd
deflection reversals in nonlinear buckling problems. Femtiore, it is used to demonstrate the capability of finite
element procedures to traverse such complicated load.paths

Lately, [6, 7] noticed that the solution by [5] and re-prodddoy many other authors through several decades
was incorrect. The incorrect solution only involves symmeatieformation modes and makes the assumption that
limit point buckling occurs. [6, 7] discovered through nuinal studies and related experiments that the former
symmetric solution is incorrect and the existence of b#iticn and asymmetric buckling mode at a lower load level.
Furthermore, [6, 7] concludes that the bifurcation poirdtable which means that the structure is able to carry more
load after bifurcation until, according to [6, 7], a load itrpoint instability is encountered. The results by [6, 7] is
also included and discussed in the book by [8]. Their comgtuabout stability of the bifurcation point turns out to be
incorrect, i.e. the bifurcation point is not stable but @, which demonstrates that buckling analysis of redtiv
simple structures still represent a challenging task. Ttieeesolution of the buckling benchmark problem is shown
in Section 4 where new features of the buckling problem arealed.

Research on the subject of structural optimization of cositpatructures considering stability has been reported
by many investigators. The first work to appear concerneglsitomposite laminated plates and circular cylindrical
shells where stability was determined by solution of budkidifferential equations, see [9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. Later, buckling optimization of composite stures was considered in a finite element framework
where the buckling load was determined by the solution tdittearized discretized matrix eigenvalue problem at
an initial prebuckling point. Optimization of laminatedmposite plates has been studied by [19, 20, 21, 22, 23],
while others considered more complex composite strucasesirved shell panels and circular cylindrical shells, see
[24, 25, 26, 27, 28, 29]. Applications of optimization metisdo stability analysis including nonlinear prebuckling
effects have been very limited. To the best knowledge of theoasitimly the papers by [30, 31, 32] report on nonlinear
gradient based buckling optimization of composite langdgilates and shells where buckling is considered in terms
of the limit load of the structure. Thus there is a lack of optiation procedures that handles bifurcation instability
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including nonlinear prebucklingiects but also optimization procedures that simultanedushgles bifurcation and
limit point instability. Despite bifurcation points, if wtable, in many cases may be transformed into limit points
by introducing imperfections into the system, see e.g. §33,35], whereby only limit points may be concerned in
the optimization formulation in order to optimize the buoklload, a general optimization formulation that handles
both types of instability may prove to be important. In caséstable bifurcation points the method of introducing
imperfections will not work since the stability point singplanish, i.e. the bifurcation point is not converted into a
limit point but vanish and the load response keeps rising\stalso in cases of unstable bifurcation points the method
of introducing imperfections may not be withoutitiulties since a proper choice of imperfections can Ifkcdit.

The latter is shown in Section 4. Furthermore, the type dfiityamay also change during buckling optimization, i.e.
from one optimization iteration to another the stabilitpéymay change from e.g. a bifurcation point to a limit point.
An optimization formulation that operates on the initialisture without imperfections and handles a general type of
stability is needed.

This paper presents an integrated and reliable method fagdiptimization of composite structures w.r.t. a
general type stability, i.e. bifurcation instability anohit point instability, depending on what to appear first be t
equilibrium path. Features for detecting bifurcation peiand limit points during nonlinear path tracing analysis
is developed. The nonlinear buckling formulation desatibe[31] is utilized, i.e. optimization w.r.t. stability is
accomplished by including the nonlinear response by a patting analysis, after the arc-length method, in the
optimization formulation, using the Total Lagrangian fafation. The nonlinear path tracing analysis is stopped
when a stability point is encountered and the critical loa@pproximated at a precritical load step according to
the “one-point” approach, i.e. the fftiess information is extrapolated from one precritical Boim point until
a singular tangent $thess is obtained. Design sensitivities of the critical I&exdor are obtained semi-analytically
by the direct diferentiation approach on the approximate eigenvalue pmobkscribed by discretized finite element
matrix equations. A number of the lowest buckling load festre considered in the optimization formulation in order
to avoid problems related to “mode switching”. The proposexthod is benchmarked against a formulation based
on linear buckling analysis on a shell buckling problem agtbé to clarify the importance of including nonlinear
prebuckling éects in structural design optimization w.r.t. stability.

In this work only Continuous Fiber Angle Optimization (CFAB considered, thus fiber orientations in laminate
layers with preselected thickness and material are chaselesign variables in the laminate optimization. Despite
fiber angle optimization is known to be associated with a comvex design space with many local minima it has
been applied since the laminate parametrization has natthedocus in this work, i.e. the presented method in this
paper is generic and can easily be used with other paramitsbns.

The proposed procedure regarding nonlinear buckling aisaly described in Section 2 together with detection
features applied for discovering stability points durirgpgetrically nonlinear analysis. Derivations of desigmsse
tivities, using the direct approach, of the nonlinear bintkload are presented along with the general type nonlinear
buckling optimization formulation in Section 3. The bencrkshell buckling problemis treated in Section 4 where it
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is shown that the solutions found in literature still are cmtrect and new features of the problem are revealed. Buck-
ling optimization of a composite laminated curved shellgdas considered in Section 5. Conclusions are outlined in

Section 6.

2. Nonlinear Buckling Analysis of Composite Structures

The finite element method is used for determining the noalibeckling load factor of the laminated composite
structure, thus the derivations are given in a finite elernentext.

A laminated composite is typically composed of multiple en&tls and multiple layers, and the shell structures
can in general be curved or doubly-curved. The materiald ursthis work are fiber reinforced polymers, e.g. Glass
or Carbon Fiber Reinforced Polymers (GFRPRP), oriented at a given andlefor thek™ layer. All materials are
assumed to behave linearly elastic and the structural li@inanf the laminate is described using an equivalent single
layer theory where the layers are assumed to be perfectlyeabiogether such that displacements and strains will be
continuous across the thickness.

The solid shell elements used are derived using a continuechamics approach so the laminate is modelled with
a geometric thickness in three dimensions, see [36]. Thaeerlieused is an eight node isoparametric element where
shear locking and trapezoidal locking is avoided by usiregabncepts of assumed natural strains for respectively
out of plane shear interpolation, see [37], and throughtifekmhess interpolation, see [38]. Membrane and thickness
locking is avoided by using the concepts of enhanced asswstnaih for the interpolation of the membrane and

thickness strains respectively, see [39].

2.1. Nonlinear buckling analysis

Structural stabilitypbuckling is estimated in terms of geometrically nonlineaalgses and applies for both bifur-
cation and limit point instability, depending on what to appon the equilibrium path. The proposed procedure for
nonlinear buckling analysis is schematically shown in Eignd consists of the steps stated in Algorithm 1. During
a geometrically nonlinear analysis the fundamental stglgbint is detected if it exists. Two stability situatioase
depicted in Fig. 1, an unstable bifurcation point and a la@dt point. In both cases the stability point is detected by

the procedures described in Section 2.2.

Algorithm 1 Pseudo code for the nonlinear buckling analysis
1: Geometrically nonlinear (GNL) analysis by arc-length noeth

2: Monitor and detect stability point during GNL analysis
3: Re-set all state variables to configuration at load stepjefsre stability point - a precritical point

4. Perform eigenbuckling analysis on deformed configuratidoad step before stability point

Let us consider geometrically nonlinear behaviour of trres made of linear elastic materials. We adopt the Total
Lagrangian approach, i.e. displacements refer to thaimiinfiguration, for the description of geometric nonliriya
4
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Figure 1: Detection of stability point in step 2 and choseecptical equilibrium point for the nonlinear buckling frlem in case of unstable

bifurcation and limit point instability.
An incremental formulation is more suitable for nonlineestgems and it is assumed that the equilibrium at load step
n is known and it is desired at load step+ 1. Furthermore, it is assumed that the current load is inuigret

on deformation. The incremental equilibrium equation ia ffotal Lagrangian formulation is written as (see e.g.
[40, 41])

KT(Dn,’yn) §D = Rn+l _ Fn (1)
where K1(D" ") = Ko+ KL (D" ") + K(D", y") 2)
ie. KI=Ko+KM+K! ®3)

HeresD is the incremental global displacement vecBrglobal internal force vector, arR™! global applied load
vector. The global tangent StiessK consists of the global initial sfhessK, the global stress $fhessK g, and
the global displacement fiinessK['. The applied load vectdR" is controlled by the stage control parameter (load

factor)y" according to an applied reference load ve®or
R"=7"R 4)

The incremental equilibrium equation (1) is solved by thieesral arc-length method after [4, 42].
During the nonlinear path tracing analysis we can at somegezged load step estimate an upcoming critical point,

i.e. bifurcation or limit point, by utilizing tangent infaration. At a critical point the tangent operator is singular
K7(D%y)$; =0 (5)

where the superscrigtdenotes the critical point angl; the buckling mode. To avoid a direct singularity check of
the tangent sfiness, it is easier to utilize tangent information at somevegged load step and extrapolate it to the
5
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critical point. The one-point approach only utilizes infation at the current step and extrapolates by only one point
The stress dfiness part of the tangentftiess at the critical point is approximated by extrapolativeynonlinear

stress sttness from the current configuration as a linear function efidlad factory.
Ko(D%¥%) » AK(D",9") = AK5 (6)

It is assumed that the part of the tangenffiséiss consisting d{|' andK does not change with additional loading,

which holds if the additional displacements are small. Bmgent stiness at the critical point is approximated as
K1(D% 9% = Ko + K[ + K}, (7)

and by inserting into (5) we obtain a generalized eigenvatoblem
(Ko+K[) o) = —1K0 g, (8)

where the eigenvalues are assumed ordered by magnitudéhstighis the lowest eigenvalue argd the correspond-

ing eigenvector. The solution to (8) yields the estimatelfiercritical load factor at load stepas
¥i =" 9

If 21 < 1 the first critical point has been passed and in contiary 1 the critical point is upcoming. The one-point
procedure works well for both bifurcation and limit poinhe closer the current load step gets to the critical point,
the better the approximation becomes, and it convergegtexact result in the limit of the critical load.

In general, for engineering shell structures, the eigem/ploblem in (8) can be fiicult to solve, due to the size
of the matrices involved and large gaps between the distigeinvalues. Forfecient and robust solutions, (8) is
solved by a subspace method with automatic shifting styatégm-Schmidt orthogonalization, and the sub-problem
is solved by the Jacobi iterations method, see [43].

Traditional linear buckling analysis may be considered siswlified version of the more general nonlinear buck-
ling problemin (8). In linear buckling analysis the strugtis assumed to be perfect with no geometric imperfections,
stresses are proportional to the loads, displacementg atability point are small, and the load to be independent
of the displacements. Based on these assumptions on tindeistress dfiening éfects due to mechanical loading
can be evaluated in terms of the displacements determinedibgar static analysis and a simplified version of the

generalized eigenvalue problem in (8) can be establishedexthe displacement Stiess of the system is neglected.

2.2. Detection of critical points

To obtain a good approximation of the critical load by noeéinbuckling analysis the precritical point used for the
approximation have to be located in the neighbourhood ottitieal load. In order to choose a good precritical point
it is therefore necessary to detect stability points dutiriggeometrically nonlinear analysis. Limit points areilgas
detected by monitoring the load factor in the GNL analysssstated in Algorithm 2. When the load factor from two
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Algorithm 2 Pseudo code for limit point detection during GNL analysis
1: if 9" < y™ 1 then

2: Define: y™1 =45

3 endif

successive load steps decreases the previous convergdddtar is defined as the limit load, i.¢?! = Yy @nd the
precritical point for the nonlinear buckling analysis igthy"2.

Bifurcation points are harder to detect than limit pointgréinonlinear buckling analysis according to (8) is per-
formed at precritical stages during the geometrically m@ar analysis as a singularity check on the tangeffihess.
When the critical load factor determined by the nonlineasiding analysis is less than the current load factor, i.e.
A1 < 1.0, a critical point has been passed. If the point is not defasea limit point by the procedure in Algorithm 2
and the fundamental eigenvalue from solving the nonlineakling problem from two successive load steps is less
than one, the stability point is defined as a bifurcation polime procedure applied in this study for detecting bifur-

cation points is stated in Algorithm 3.

Algorithm 3 Pseudo code for bifurcation point detection during GNL gsial
1 if n=1 or y">0.9- ™PPy¢ or n-nApp > nAppMax then

2: Set: nApp=n
3 Compute: (Ko+K[)gj=-1"K] ¢,
4:  Compute: MPPye = aliyn

5. if A7<10 and A}!<1.0 then

6: Define: y"2 =5,
7 end if
8: end if

A nonlinear buckling analysis is always performed for thetfironverged equilibrium point. In order not to
perform nonlinear buckling analysis for every convergeuil@arium point during the GNL analysis some restrictions
have been added, see Algorithm 3. A nonlinear buckling aiglg performed if the current load factgh is larger
or equal to 90% of the value of the critical load facTéPpy‘l’ determined at the previous approximation load step,
nApp, according to the one-point approach. Furthermore, a neatibuckling analysis is performed if the number
of load steps since the previous nonlinear buckling anslgsteedsAppMax. If the fundamental eigenvalue from
the nonlinear buckling problem from two successive loagste less then one, the previous converged load factor
associated with a fundamental eigenvalue larger than onefised as the bifurcation load, i.¢?2 = Yg¢» @nd the
precritical point for the nonlinear buckling analysis bewsy"3.

With the implemented detection features there is a poggibil a special situation. If the arc-length solver during

7
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geometrically nonlinear analysis automatically brandoesn unstable bifurcated solution, the critical point viid
detected as a limit point and not as a bifurcation point. Tiishowever not influence upon the nonlinear buckling
optimization procedure and thus the optimization resuktsithe same equations for nonlinear buckling analysis and
design sensitivity analysis apply for limit points and bdation points. During the numerical studies such a special

situation did not occur.

2.3. Re-initialization of arc-length solver

For efective solution of the nonlinear buckling problem, i.e. getrically nonlinear analysis, detection of stabil-
ity points, and nonlinear eigenbuckling analysis, a ré&afization feature has been incorporated into the argtlen
solver such that large load steps may be applied for the fnstqs the equilibrium path and reduced in the area of
an upcoming stability point. Thus, a better resolution &f @guilibrium path is obtained in the area of interest and a

better precritical equilibrium point may be detected. Thecpdure is stated in Algorithm 4.

Algorithm 4 Pseudo code for re-initialization of arc-length
1 if y" > 0.9 - Py then

2: Reset arc-length with or without adaptivity

3: end if

orrevy € is the fundamental buckling load factor from the previouimjzation iteration. The arc-length in the
arc-length solver can either be set statically having tiheesealue at all load steps or adaptively modified depending
on the number of sub-iterations required for each load sfEpis adaptivity may be turned on offaduring the

re-initialization of the arc-length in the arc-length saiv

3. Design Sensitivity Analysis and Optimization of the Nonlinear Buckling Problem

To accomplish gradient-based optimization of the nonliheakling load factors, the nonlinear buckling load fac-
tor sensitivities must be derived. Only simple eigenvabfe®nservative load systems are considered, but setisiivi

of multiple eigenvalues can be computed using the approastritbed in, e.g., [44].

3.1. Design sensitivity analysis of simple eigenvalues

The eigenvalue problem in (8) is a generalized eigenvaloklem of the form
K¢j = A1jM¢;j, j=12,...,3 (10)

It is assumed that the eigenvectors Breorthonormalized, i.e¢jTM¢,- = 1. This means thapjT (-K5)é; = 1. In

order to obtain the eigenvalue sensitivities, (8) ifalientiated with respect to any design varialalei = 1,...,1,
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assuming that; is simple.
d/lj
day

dKo K] _ﬂ_d(—K?,)) . an

“KMe¢: = —
o-) ¢J ( da| + da| J da1
de;
+(Ko+ K[ = 2j(-KD)) vy
By pre-multiplication of¢JT, make use of th&/-orthonormality of the eigenvectors, the governing equra(B), and

noting that the system matrices are symmetric we obtainifemnealue sensitivities as

da; 1 (dKo dK{ dK?

—=¢ |— i—Z | ¢; 12

day ’(da+da+'da)¢’ (12)
In order to determine the eigenvalue sensiti\%gyfor any of the design variables, i = 1, ..., 1, the derivative of the

element initial stifness matrix, element displacementfatss matrix, and the element stresfratiss matrix have to
be derived, respectively. These derivatives are calalisgei-analytically utilizing central ffierence approximations
on element level and assembled to global matrix derivatiVes approach has been chosen as it is computationally
efficient, easier to implement than analytical sensitivitind & case of fiber angle design variables there are no

accuracy problems.
dko _ Ko(ai + Ag) — ko(a — Aay)

— = 1

da; 2A3g; (13)
Nzs

do _ ko (14)

daj 4 day

ko is the element dfiness matrixAa is the design perturbation, aidgs is the number of elements in the finite
element model associated to the design variaple
Both the stress dfness matrix and the displacementfsiss matrix are implicit functions of the displacements,
i.e. Ky = Ky (D"(a), @) andK]' = K (D"(a), a), which must be considered. The design sensitivitie%éfand%
are evaluated semi-analytically by central finitelience approximations on the element level by
dk)  kD(a + A, D"+ AD") — kI (a; — A, D" — AD")
da; 2Ag;
where the displacement incremeniB" ~ %—?Aai. Thus, the displacement sensitiviﬁg, must be computed. At

(15)

the converged load step we can write the equilibrium equation as
Q"(D"(@),a)=F"-R"=0 (16)

whereQ"(D"(a), a) is the so-called residual or force unbalance. Taking tta tierivative of this equilibrium equation,

with respect to any of the design variabkgs = 1,..., |, we obtain

dQ"  9Q" Q" dD"
= = 17
da  9g " %D day 0 an
oQ" IJF"  OR"
where D" — 3D~ 30" (18)
Q"  IF"  IR"
d = - 19
an 08 0a;  0g (19)

9
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We note that (18) reduces to the tangertrstiss matrix. Since it was assumed that the current load épamtient on

R

son = 0, we obtain

deformation
OF"
opn

By inserting the tangent sfhess and (19) into (17), we obtain the displacement seili:;:iisi\é?'d%n as

=KD (20)

(ndD" R GF"
Tday ~ 0a 04

(21)

For design independent loads, the teﬂﬁ%"q =0.
Thus, all terms have been derived for the evaluation of thereialue sensitivities in (12) and the estimate for the
nonlinear buckling load factor sensitivity at load stejs
dyf  da;
J I n
N 7] 22
g " da’ (22)

3.2. The mathematical programming problem

The mathematical programming problem for maximizing tivedst critical load is a max-min problem. The direct
formulation formulation of the optimization problem carveiproblems related to fierentiability and fluctuations
during the optimization process since the eigenvalues bange position, i.e. the second lowest eigenvalue can
become the lowest. An elegant solution to this problem is &xeruse of the so-called bound formulation, see [45],
[46], and [47]. A new atrtificial variablg is introduced and a new artificial objective functiérnis chosen. An
equivalent problem is formulated, where the previous nigfegbntiable objective function is transformed into a set of
constraints. The optimization formulation in the case afilaate optimization, for a max-min problem with the use

of the bound approach, is formulated as follows

Objective :  maxp
Subjectto: ¥{ 28, j=1....N
(Ko + K + 27KD)¢M =0
%= Ay
ﬁSXiSYi, i=1,...,|
wherex; denote the laminate design variables in terms of fiber angles
The mathematical programming problemis solved by the Metidloving Asymptotes (MMA) by [48]. The closed

loop of analysis, design sensitivity analysis and optittidzais repeated until convergence in the design variahles o

until the maximum number of allowable iterations has beewched.

10
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4. The Cylindrical Shell Benchmark Problem and Solutions

The cylindrical shell panel example was first introduced Blydnd later appeared in numerous journal articles.
The example has been used as a benchmark to investigatecadwvamumerical finite elements methods for handling
load andor deflection reversals in nonlinear buckling problems tfr@rmore, it is used to demonstrate the capability
of finite element procedures to traverse such complicatd paths.

Lately, [6, 7] noticed that the solution by [5] and re-prodddoy many other authors through several decades
is incorrect. The incorrect solution only involves symneetteformation modes and makes the assumption that
limit point buckling occurs. [6, 7] discovered through nuinal studies and related experiments that the former
symmetric solution is incorrect and the existence of b#ition and asymmetric buckling mode at a lower load level.
Furthermore, [6, 7] concludes that the bifurcation poirdtable which means that the structure is able to carry more
load after bifurcation until, according to [6, 7], a load itrpoint instability is encountered. The results by [6, 7] is
also included and discussed in the book by [8]. Their comaiuabout the stability of the bifurcation point turns out
to be incorrect, i.e. the bifurcation point is not stable tstable.

Both the incorrect symmetric and the correct asymmetriatgmi to the benchmark example are presented in order
to clarify the complicated behaviour that may be encountéreshell buckling for even an immediate simple well-
known example. The complicated buckling behaviour for thearical example will therefore pinpoint some of the
challenges in optimizing geometrically nonlinear struetuwith respect to a general type of stability. Furthermore
the stability of the bifurcation point from the asymmetradigion is analysed and the results from [6, 7] is disproved
by numerical results from simulations based on an in-hosarkl optimization code called the MUItidisciplinary
Synthesis Tool (MUST [49]) and the commercial FE program A1$350].

The benchmark problem is an isotropic thin circular cyliodrshell panel of square planform, transversely point
loaded, undergoing large deformations including buckéing post-buckling. Material and geometric properties for
the benchmark problem are given in Fig. 2.

The panel is supported by its two straight axial edges hasipinned fixture that cannot move, i.e. hinged.
The panel is free on the curved circumferential edges. Thgdd constraint is represented in the model by multi
point constraints between the top and bottom edge nodesthemid-surface of the axial edges is restrained in
displacements and rotations inv, w, Ry, Ry but free to rotate about theaxis |,). In the analysis, the shell is
transversely point-loaded at the center of the shell pamkich is applied by two point loads in the negatiye
direction, at the top and bottom node in the centre of the [p&ynmetry considerations have deliberately not been
enforced since a full model is required to fully investighaiteircation buckling. The model consists of 400 equivalent
single layer solid shell finite elements which through mesihvergence studies have been determingiicgent for

adequately capturing the load-deflection and mode evaisifior the benchmark problem.
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Concentrated LoadR

r =2540nm E =31027%5Pa G =11933GPa
| =508mm t =6.35mm v =03
a =0.1rad S = 508mm R = 240N

Figure 2: Geometry, loads, boundary conditions, and nateroperties for the cylindrical shell example. The hingeg@port is related to the mid
surface of the shell, which is realized by multi point coastts between the top and bottom edge nodes of the solidfsfilelements. The shell
is loaded by two point loads in the negatielirection, at the top and bottom node in the centre of thé.sHee top node in the centre of the panel
is constrained against displacements inxhandzdirection. All dimensions refer to the mid surface, whére thickness is denoted by The

shell centerline is also marked on the figure and is repreddnt the bottom mesh grid points.

4.1. Symmetric Solution

The load versus center deflection response from a geomnibtriieanlinear analysis upon the original perfect
system is presented in Fig. 3 together with the original tsewmhuby [5] and the symmetric solution in [6, 7]. The

solutions are in almost perfect agreement.

0.4
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—— Sabir & Lock e | I
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-0.2
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Central Deflection, w, [mm)]

Figure 3: Load-deflection response solutions of the pedgetmetric system.

Both load and deflection are taken positive in the loadingalion. The stability limit is characterized by a load
limit point at a load limit of R p ~ 588N. A path tracing algorithm is needed for this solution as Ho#dd- and
deflection reversals occur. Snap-through would occur ataaeé limit point in load control, and snap-down at the

deflection limit point in deflection control. The path tragialgorithm called the arc-length method after [4] is applie
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in this work.
Spanwise mode shapes along the shell centerline obtainBiU8T are presented in Fig. 4 for several values of

center deflectiony.. Line markers on this deformation plot are the bottom meshpgints of the shell.
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Figure 4: Central spanwise mode shapes fé¢dint values of center deflectiong, obtained by FEA on the perfect symmetric system.

The spanwise mode shapes are symmetric about the centanlihiwading point. After reaching the deflection
limit point atw, ~ 16.9mm a snap-back occurs where both load and center deflectioeaksimultaneously. At
larger values of center deflection, the shell is fully inedr{concave, rather than the convex undeformed shape) and
begins to act like a stretched membrane. This is also evilettie load-deflection behaviour in Fig. 3 where slight

nonlinear stfening is observed for center deflections larger tvar: 22mm.

4.2. Asymmetric Solution

The symmetric solution of the problem makes the assumplianlimit point buckling will occur and does not
consider bifurcation and associated asymmetric bucklioglen Most analyses make this implicit assumption by
symmetry considerations with respect to geometry, loadimresponse by which only4lof the shell is modelled. [6,

7] noticed that the symmetric solution was incorrect andltthere exists a asymmetric solution in terms of bifurcation
at a lower load than the load limit point for the symmetriasian.

Four diferent techniques are applied in this study in order to deteritmne bifurcation point and the associated
bifurcated path. The precisions of thdfdrent techniques are compared individually and to the asgtnicrsolution

by [6, 7]. The four techniques applied to obtain the asymimetilution are classified as

1. Linear buckling analysis
2. GNL analysis of imperfect system
3. Nonlinear buckling analysis at deformed configuratiomperfect system

4. GNL analysis by arc-length method of perfect system witlalgstep size

13
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In engineering applications linear buckling analysis ieenfused as a generalized stability predictor for shell
structures, see e.g. [51]. Within linear buckling analythis structure is assumed to behave linearly up until the
buckling point neglecting all types of nonlinearity. Fons® cases, despite whether the critical point is a bifuroatio
or limit point, the classical theory yields a satisfactorggiction of the buckling load while it in other cases gives
results of little or no value. Typically, linear bucklingawgsis gives poor predictions of limit point instabilitynsie
that type of instability inherently is nonlinear. Since gteuctures analyzed with linear buckling analysis arequrf
with no imperfections of any kind together with the assummiinvolved in the theory, the prediction will typically
be an upper limit for the real collapse load, and the methdldeisefore in literature often stated as non-conservative
in an engineering context, see e.g. [52].

The buckling load estimated by linear buckling analysRiis = 674N and the associated buckling mode is shown
in Fig. 5.

Figure 5: $' buckling mode shape obtained by linear buckling analysis.

The buckling mode from linear buckling analysis is asymioe@nd corresponds to bifurcation buckling. Compar-
ing this buckling loadR g = 674N, with the limit point buckling load of the symmetric systeRip ~ 588N, it seems
that bifurcation buckling will not occur prior to the loadhlit point. In order to precisely verify that bifurcation doe
not occur the second technique is applied. A slightly disgiimperfect system is analysed in order to investigate
whether a secondary equilibrium path exist. This may beraptished by introducing geometric imperfections in the
shell geometry in the form of the first linear buckling modéhaa specified amplitude. The amplitude is defined as
the largest translational component of the first linear bngkmode relative to the thickness of the shell. Geometri-
cally nonlinear analysis of the imperfect system may rewdadther bifurcation occurs onto a secondary bifurcated
equilibrium path. Equilibrium paths of imperfect systemighwdifferent relative imperfection size in relation to the
thickness of the shell are shown in Fig. 6. All equilibriunthpafrom the imperfect systems follow afiirent path
than the one from the perfect system, thus a bifurcationdbramist.

From the solutions of the imperfect systems the problem obsing appropriate imperfections and size for an-
alyzing bifurcation points is apparent. The imperfecticmeshas to be lower than approximately 1% in order not
to change the problem and thereby the solution. Thus therfiegi®n amplitude has to be large enough to induce
bifurcation but also small enough not to change the problétapproximately 518l, the shell bifurcates onto a
secondary branch associated with a dominant asymmetrie nseé Fig. 7.

Bifurcation occurs about 12% below the load limit point foetsymmetric solution, thus this is the preferred
lower energy path. The two reliable imperfect equilibriuaths (0.1% & 1% Imperfect Geo.) show a limit point
in the region of the bifurcation point and do not exhibit a éefilon limit point but rejoins the equilibrium path with
the symmetric response at large values of center deflechiothis region the response is dominated by membrane
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Figure 6: Load-deflection response solutions of the pegfedtimperfect system together with the linear buckling load

stretching with symmetric modes, see Fig. 7. [6, 7] obta@meclmost identical solution by inducing imperfections
by the so-called asymmetric meshing technique (AMT) angsgbent geometrically nonlinear analysis, see Fig. 6.

In order to determine the bifurcation load more preciseby ttird technique is applied. The equilibrium path
is traced by Newton’s method with a fixed load step size of 1%edch converged iteration a nonlinear buckling
analysis, see Section 2, is performed on the current defbeoefiguration as a singularity check on the tangent
stiffness. From this technique the bifurcation point is deteeahito be between 504 and 328The bifurcation point
is marked on Fig. 6 as 56

Applying the fourth technique the bifurcated path is deiesd by geometrically nonlinear analysis of the perfect
system, i.e. without introducing any imperfections. Theiblgrium path is traced by the arc-length method and at
a load step close the bifurcation point the arc-length, rodiiig the step size in the arc-length method, is reduced
dramatically and the step size adaptivity is removed. Witthsa small step size it is possible to trace the branching
from the fundamental to the secondary bifurcated path asshoFig. 8.

By the solution in MUST the entire equilibrium paths are ah¢a by a single arc-length solution with very small
arc-length step size. Initially, the fundamental pathaséd up until the bifurcation point whereby the secondatly pa
is traced. At the second bifurcation point the analysisrretuio the fundamental path which is traced towards the
lower load limit point and through the upper load limit poiwt the first bifurcation point the analysis again returns
to the secondary path. Reaching the second bifurcation fi@ranalysis traces the remaining part of the fundamental
equilibrium path.

The bifurcation point is accurately determined at a loadlle¥ 526N and it is quite clear that the bifurcation point
is unstable, i.e. in load control the structure will at thiulgation point experience a dynamic snap-through onto a

stable configuration which is located on the fundamentailiegum path, see Fig. 9. Due to the many iterations
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Figure 7: Central spanwise mode shapes fiedint values of center deflectiong, obtained by FEA on the imperfect system with imperfection

amplitude of 01%.

needed by this procedure, more thand®® iterations for this example, this numerical procedsimit suited for real
life problems. Furthermore, the location of the bifurcatmmint should be known a prioriin order to activate the small
step size and be chosenfsciently small in order to branch to the secondary path. Qtfsera small arc-length step
size has to be used also for the initial part of the fundanewapailibrium path which results in additional numerical
cost.

This result has been verified by a similar model in ANSYS wigreoded shell elements (Shell91) have been
applied to model the cylindrical shell example. The bifaechpath is by ANSYS also obtained by geometrically
nonlinear analysis by the arc-length method with a very baratlength step size. The results from the shell model
in ANSYS and the results from the solid shell model in MUST iargood agreement, see Fig. 8 and 9.

These results disprove the results published in [6, 7] afi@]iim which it is concluded that the bifurcation point is
stable. [6, 7] and [8] conclude that the bifurcation poindtesble, i.e. bifurcated path is stable and that the stragsur
able to accept more load until a load limit point on the biited path is reached. This is not correct but probably just a
wrong interpretation of the numerical results. The asymimsolution in [6, 7] is obtained by geometrically nonlimea
analysis of an imperfect system. It is correct that the Btalimit of the equilibrium path for the imperfect system i
characterized by a limit point but the bifurcation point fbe imperfect system is non-existing. The bifurcation poin
of the perfect system is merely transformed into a limit pédn the imperfect structure. This statement may also be
verified by comparing the limit point load 528N for the imperfect system with the accurately determinedrbétion
load 526N of the perfect system. Thus the bifurcation point is ungtasld not stable as stated in [6, 7, 8].

In Fig. 10, a three dimensional plot of the equilibrium patins given. The central point load factor is plotted
against the vertical central point deflectiow, and the central point rotation about thexis, R, , respectively. The
central point rotation is calculated by the deflections obapte of neighbouring nodes. The rotation is a measure for

non-symmetric bifurcation mode shape evolutions durirgliog.

16



Postprint version, final version available at httfaki.org10.1016j.compstruc.2010.11.008 E. LINDGAARD ET AL.

0.4,

Fundamental Path - MUST 1 1 1

—=— Secondary Path - MUST ! ! |
~2~ ANSYS (Shell91) ! ! !
—I—- ANSYS (Shell91) Small Step
T T |

0.3

o
)

Central Point Load Factor, v
< 2

! !
| | Point 1
| Lower Load Lim® | | | Oy

‘
10 15 20 25 30
Central Deflection, w, [mm)]

Figure 8: Load-deflection curves of the perfect symmetrigteay for both the fundamental equilibrium path and the sgagnbifurcated path
obtained by MUST and a shell finite element model in ANSYS.

In the load-deflection plane there is the already discugsetilg behaviour on the fundamental equilibrium path
given by the load limit point, but before the correspondingtability with respect tav, is encountered a bifurcation
of equilibrium into the asymmetric bifurcation mode at ttwert marked on the figure takes place.

Initially the shell deflects symmetrically with, increasing nonlinearly with loading, and rotatiorR,c equal to
zero. An unstable symmetric point of bifurcation is reachethe marked point and the shell will snap dynamically
through non-symmetric states typified By # O to a stable configuration on the fundamental equilibriurtihpa
From projections of the equilibrium paths in the load-ristatplane it may be observed that non-symmetric mode
shape evolutions grow and decrease quickly near the firssecwhd point of bifurcation. In the load-deflection plane
the two bifurcated paths coincide and correspond to Fig.BBtla bifurcated paths do not exhibit a deflection limit

point, i.e. the bifurcated paths are stable in defectiortrobn

5. Nonlinear Buckling Optimization of Composite Cylindrical Shell

A composite cylindrical shell example studied both nunedhjcand experimentally by [53, 54] is considered for
fiber angle optimization w.r.t. a general type of stabil¥aterial and geometric properties for the benchmark prob-
lem are given in Fig. 11. The initial shell laminate consits graphite-epoxy (A8501-6) 45°/0°]s layup with
an equal ply thickness of.034mm. Loading and boundary conditions are identical to the ghralblem discussed
previously. Symmetry considerations have deliberatetypeen enforced since a full model is required to fully inves-
tigate bifurcation buckling. The model again consists d 4Quivalent single layer solid shell finite elements which
through mesh convergence studies have been determiffeziesu for adequately capturing the buckling behaviour

of the problem.
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Figure 10: Equilibrium paths of the cylindrical shell in agk dimensional representation.

Various solutions to the initial design of the compositellstieample are given in Fig. 12. The nonlinear equilib-
rium problem features both a limit point and a bifurcatiomnpon the fundamental equilibrium path. The bifurcation
point is reached prior to the limit point, thus this is thefpreed lower energy path. The fundamental path may be
obtained by path following techniques upon the perfectesystvhereas the bifurcated path may be obtained by path
following techniques upon an imperfect structure. Impeéns are applied as described in Section 4. For the imper-
fect system, the bifurcation point is transformed into atlipoint since bifurcation is unstable. The bifurcationmtoi
may also be determined directly for the perfect system hygusther techniques, e.g. by those described in Section 4.
The geometrically nonlinear solution of the perfect systerdenoted the symmetric solution, whereas the solution
which involves the bifurcated equilibrium path is denotieel &symmetric solution.

The equilibrium paths obtained by the in-house analysisaptiinization code MUST are in perfect agreement
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Figure 11: Geometry, loads, boundary conditions, mat@raperties, laminate layup for the composite cylindridatlsexample. The hinged
support is related to the mid surface of the shell, which &ized by multi point constraints between the top and bottolye nodes of the solid
shell finite elements. The shell is loaded by two point loadthée negativey-direction, at the top and bottom node in the centre of thd.shbe

top node in the centre of the panel is constrained againsfedisments in the- andz-direction. All dimensions refer to the mid surface, whére t

total thickness is denoted ly The fiber angles for the laminate layup are measured by thle @ from the shell centerline.

with a similar shell finite element model in ANSYS and numal&plutions from [54, 6, 7]. Linear buckling analysis
yields a good prediction of the bifurcation load factor byicer prediction of the displacements at bifurcation.

During optimization of the cylindrical composite shell seal interesting things might take place. Considering
the equilibrium paths in Fig. 12, optimization of the lowssdbility load may push the bifurcation load towards the
limit point and maybe even above it and as a consequence ttaeuk#urcation point to vanish. Furthermore, iterative
design changes during optimization may also introduce skingkof non-symmetry into the structure in the same
manner as geometric imperfections which changes the hifiorc point on the fundamental path to a limit point on
the equilibrium path of the “imperfect” system. All thessuss are taken care of in the general type nonlinear buckling

optimization formulation presented in Section 2 and 3 amdatestrated by the following optimization cases.

5.1. Case#1 - Laminate Fiber Angle Optimization

The composite laminate shell is optimized with respect tergegal type stability load, i.e. depending on the first
stability point to appear on the fundamental equilibriurthpaifurcation point or limit point, that point is consicset
for optimization. The bound formulation is applied considg the lowest four buckling load factors in order to avoid
problems related to mode switching, i.e. if e.g. the biftimapoint in Fig. 12 is pushed towards the load limit point.
Fiber angles in the laminate layup definition are chosen agdeariables and may vary continuously. This gives a
total of 6 fiber angle design variables.

The starting point for the optimization is the initial laraie layup analyzed previously. The optimization history
is shown in Fig. 13, where both the objective function vaiwe, the estimated critical point value in the nonlinear
buckling analysis, and the detected critical point, i.efutgiation or limit point, are plotted for each optimization

iteration.
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Figure 12: Load-deflection response solutions of the pesigmmetric system, solutions offtBrent imperfect systems with varying imperfection

amplitude, ANSYS Shell91 solution, numerical result frdsd,[6, 7], and linear buckling solution.

During optimization the type of the stability point chandpetween being a bifurcation and a limit point and the
optimization formulation successfully succeed to imprtwe general type stability load. The change in stability is
caused by non-symmetry in the laminate design introducetth®yptimizer. Introduction of non-symmetry in the
laminate layup has the samfiext as imperfections which were discussed in Section 4it tiansforms the unstable
bifurcation point into a limit point. The lowest bucklingdd factors do not get close during optimization thus no
mode switching occur. The stability load of the optimizedida is 1881N and the optimized fiber angle design is
[0.6°/1.4°/-42.6°/434°/—-2.2°/-1.1°].

Traditional linear buckling optimization, consideringetlowest four linear buckling load factors, yields a dif-
ferent result, see the optimization histories in Fig. 14.e Timdamental linear buckling load of the optimized de-
sign is 1126N whereas the more accurately determined stability loadigtesti by geometrically nonlinear analy-
sis yields a stability load of 158N of the linear buckling optimized design, thus linear bueglanalysis severely
underestimates the buckling load of the optimized desigie hear buckling optimized fiber angle design is
[3.7°/-25.0°/545°/-16.3°/-33.9°/13.2°].

During linear buckling optimization the lowest two buclditoad factors gets close and mode switching occur, see
Fig. 14. In order to take care about possible multiple eigires the formulation described in [44] has been applied
since multiple eigenvalues not ardfdrentiable in the common sense and the sensitivities cdrencelculated in the
same manner as for simple distinct eigenvalues. This fatiwil has only been applied when théelience between
the eigenvalues is belowI. Despite very close values between the two fundamergahealues no multiplicity
could be confirmed by inspection of the so-called generdigzadient vectors, see [44].

The two fundamental buckling modes for optimization itenatone predicted by linear buckling analysis are
depicted in Fig. 14 and consist of an asymmetric and symatatiickling mode. The asymmetric mode corresponds to
bifurcation buckling whereas the symmetric mode corredpaa limit point buckling. It is interesting to note that the
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Figure 13: Optimization history of lowest buckling load tiacin optimization case #1. The objective function valu¢éedmined by nonlinear

buckling analysis are plotted together with bifurcationl &mit points detected during GNL analysis.

fundamental buckling mode during optimization switchesMeen these modes, i.e. linear buckling analysis predicts
for some design configurations limit point buckling. Img@otto notice is also that these buckling mode predictions
are artefacts of the ability of the linear buckling formigatto predict stability, i.e. no multiple eigenvalues ocosz
eigenvalues can be predicted by accurate geometricalljnean buckling analysis. Thus, geometrically nonlinear
prebuckling &ects play an important role for this example and unreliablekbng predictions are obtained by the
linear buckling formulation. Furthermore, the generaktyyonlinear buckling optimization formulation yields a rhuc
better design for maximum buckling resistance.

For the nonlinear buckling optimization the re-initialiiwa feature of the arc-length solver is activated during
geometrically nonlinear analysis according to Algorithngiing a total of 15- 19 load steps for each analysis. The
re-initialization feature is activated at a load level opegximately 90% of the critical load resulting in typically
5 - 10 load steps for the remaining part of the equilibrium pattil dhe critical point is reached. The load level
for the chosen equilibrium point for the nonlinear bucklaralysis and design sensitivity analysis, see (8) and (12),
is typically 2— 4% less than the critical load. To investigate the sensgjtiof the nonlinear buckling optimization
procedure with respect to the estimation point, the opttion is performed without the use of the re-initialization
feature of the arc-length solver, resulting in a coarsautimi resolution, i.e. less equilibrium points near theica
point. This results in 8 11 load steps for the geometrically nonlinear analysis aneséimation point at a load around
25% less than the critical load. The stability load of thelim@ar buckling optimized design without re-initializerti
of the arc-length solver is 183N, which only is slightly lower than the buckling load of thetimpized design with the
use of the re-initialization feature. Thus, for this exaenfile nonlinear buckling optimization procedure is not very
sensitive to the chosen precritical equilibrium point fentinear buckling analysis and design sensitivity analysi

However, a fine solution discretization is needed to acelyaletect the critical point load.
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Figure 14: Linear buckling optimization histories of theeh lowest buckling load factors and the two lowest stabitiiodes at optimization

iteration one.

5.2. Case#2 - Laminate Fiber Angle Optimization

For this optimization case the design parametrization gferént from the previous optimization case #1 whereas
the same optimization formulations are applied and studiéeé shell is divided into 4 patches, see Fig. 15. Within a
patch containing a set of finite elements only one fiber angségth variable controls the orientation of the given fiber
layer in the finite element set. This is a valid approach fecpcal design problems since laminates are typically
made using fiber mats covering larger areas. Having 4 patoie$ fiber layers in the laminate layup thus gives a
total of 24 fiber angle design variables. Though, this pateration may yield discontinuities between fiber angles
within the same laminate layer which may not be preferalomfa manufacturing point of view. This problem could

be circumvented with the application of manufacturing ¢@ists.

Figure 15: Parametrization for laminate fiber angle optatian of cylindrical composite shell in optimization cas #

The starting point for the optimization is the initial larate layup analyzed previously. The optimization history
is shown in Fig. 16, where both the objective function valiwe, the estimated critical point value in the nonlinear
buckling analysis, and the detected critical point, i.efutgiation or limit point, are plotted for each optimization
iteration.

During optimization the type of the stability point agairaciyes between being a bifurcation and a limit point and
the change in stability is again caused by non-symmetryaiamminate design introduced by the optimizer.
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Figure 16: Optimization history of lowest buckling load tiacin optimization case #2. The objective function valu¢éedmined by nonlinear

buckling analysis are plotted together with bifurcationl &mit points detected during GNL analysis.

The stability load of the general type nonlinear bucklingimofzed design is 184N and thereby slightly higher
than the stability load obtained in optimization case #lisTsimeaningful since more design freedom exists for the
parametrization applied in this optimization case and &beiptimization result is expected. The linear buckling
optimized design has a linear buckling load of BNband a geometrically nonlinear stability load of 1@S. Again,
geometrically nonlinear prebucklingfects play an important role thus the linear buckling optation formulation

yields less performing optimization results and undemnesties the stability load of the optimized design.

5.3. Case#3 - Sngle Layer Fiber Angle Optimization

The shell is now considered only having a single fiber layaheftotal thickness. The fiber angle in each finite
element is initially set to 90 In the optimization the fiber angle is changed in each firlgéenent giving a total of
400 fiber angle design variables. This parametrizationigntrely physical from a manufacturing point of view but
gives large design freedom in the optimization, nice regmegtion of the design results, and serves only as a nurherica
academic benchmark. Optimization is again performed vagipect to the linear buckling load and the general type
nonlinear buckling load and the results are compared inrdaldetermine the importance of including nonlinear
prebuckling &ects in the optimization formulation. In each case the bdoenahulation is applied considering the
lowest four buckling load factors.

The linear buckling optimized design has a linear bucklwaygl of 1337N and a geometrically nonlinear stability
load of 1631N, and the linear buckling optimized fiber angle design is showFig. 19 left.

The optimization history to the general type nonlinear bingkoptimization is shown in Fig. 17. As for the
previous cases the stability type is dependent on symmettgsign, i.e. limit points are detected when the fiber angle

layout is not perfectly symmetric where non-symmetry in design is introduced by the optimizer. The optimized
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design has a stability load of 22NN and the optimized fiber angle design is shown in Fig. 19 right.

0.4

0.35

Buckling Load Factor, 7§
o o
S~ 9 i 9
o hd o w

o
e

0.05 -Objective function value
4 '| o Detected limit point
eeeee@@&& 1| o Detected bifurcation point
0 .
0 20 40 60 80 100

Optimization Iteration Number

Figure 17: Optimization history of lowest buckling load tiacin optimization case #2. The objective function valu¢éedmined by nonlinear

buckling analysis are plotted together with bifurcatio dimit points detected during GNL analysis. Stability meder optimization iterations

35— 40 are shwon.

During the optimization iterations 35 69 major fluctuations occur in the detected stability loatie Ftability

modes for the optimization iterations 380 are shown in Fig. 17. It may be observed that the stabilagerbetween

iteration 35 and 36, 36 and 37, and 37 and 38, respectivalytotally opposite due to the bifurcated path taken for
the unstable symmetric point of bifurcation, see e.g. Figfdr reference. However, the stability mode between
optimization iteration 38 and 39 are similar whereby thettiations in the optimization history cannot be explained

solely by change in stability mode. In order to investig&is further, geometrically nonlinear analyses have been

performed for the designs according to the optimizatiomtiens 35- 40 and their equilibrium paths, in terms of load

factor,y, versus central point rotatioR;, are plotted in Fig. 18.
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Figure 18: Equilibrium paths of the designs from optimiaatiteration 35- 40 in terms of load versus central point rotation.
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It is immediately noticed that some of the designs have aéptiint prebuckling rotations that are of opposite
sign than the rotations at the stability point. The desigmfioptimization iteration 37 has central point prebuckling
rotations of same sign as the rotations of the stability {poithe optimization iterations 388,40 have the largest
central point prebuckling rotations of opposite sign arst &he lowest stability loads. Yet, none of the above observa
tions may explain the fluctuations in the optimization higtd' he relative design changes from the MMA optimizer
in optimization iterations 35 69 differs from 006%— 0.99% having the largest design changes in the preliminary
iterations and reduced tad®% in iteration 69. The largest design changes involve aimmax change in all fiber
angles of approximately.8>. The reduction in design change is caused by adaptivityrcbot the maximum move
limit of the design variables, i.e. the maximum move limiteoflesign variable is reduced if the design change from
two successive optimization iterations is of opposite skdowever, relatively small design changes in the consitiere
optimization iterations lead to major changes in the stghidad. This indicates that the design space is highly non-
linear in this design area. Fiber angle optimization is kndw be associated with a non-convex design space with
many local minima. Thus, the fluctuations may be avoided byeig the maximum move limit, though increasing
the risk of convergence to a local minimum. This has beenmgited for the present optimization case and more
smooth optimization histories were achieved on the expehkesver stability loads.

The general type nonlinear buckling optimized design israxmately 429% better than the linear buckling
optimized design, thus geometrically nonlinear prebunckkffects play an important role for this example. This is
also noticed by considering the optimized designs in Fig. T8 pattern like designs of fiber angle distribution are

very different despite that most of the fibers for both optimized desage aligned in the circumferential direction.
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Figure 19: Left: Linear buckling optimized design. Righter@&ral type nonlinear buckling optimized design. The hihgiepports are at the left
and right edges of the panels.

The linear buckling optimization formulation succeeds iioying the buckling load despite the inherent linear
assumptions in the formulation and the poor prediction ef‘tteal” stability load which at the optimized design
were underestimated. Yet the general type nonlinear bugldptimization formulation proves to give much better
optimization results, a more reliable prediction of thebsity load, and information about the type of instability.

Linear buckling optimization should be used with cautiod anly in cases where nonlinear prebuckliritgets may
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be neglected or at least the buckling load of the final line&kbng optimized design is verified by a GNL analysis.

6. Conclusions

General type buckling behaviour of composite structuresrefiably be improved by the proposed optimization
method. The method include loss of stability due to bifumragnd limiting behaviour depending on what is en-
countered first on the equilibrium path. A more precise estinthan classical linear buckling analysis is obtained
by performing accurate nonlinear path tracing analysisestitnating the buckling load at a precritical point on the
deformed structure. Features for detecting bifurcatiahlamit points have been developed for this purpose. General
sensitivity formulas for the nonlinear buckling load, déised by discretized finite element matrix equations, have
been derived and the design sensitivities are approximattélte precritical point, thus no exact and troublesome
determination of the exact critical point is necessary.

Shell buckling today is still a challenging task and the ctiogped behaviour that may be encountered can be
difficult to analyze. This has been demonstrated by a thoroughsment of a classical buckling benchmark example
introduced by [5]. The original solution to this immediaienple well-known example was lately proved to be
incorrect by [6, 7] and is also included and treated in thekdmo[8]. But also their solution to the problem turns out
to be incorrect. During the assessment of the shell bendhprablem in this paper it has been shown that the shell
looses its stability due to bifurcation and that the bifti@apoint is unstable and not stable as stated in [6, 7, 8]. In
fact the bifurcation point is an unstable symmetric poinbifdircation.

The general type nonlinear buckling optimization method haen applied successfully in the buckling opti-
mization of a composite cylindrical shell using fiber angéggmetrization. Problems related to local minima and
non-convexity in design space were encountered in one dbteé optimization cases and caused the objective func-
tion value not to increase monotonously. It is well knownttfilder angle optimization contains these issues but
since the optimization method and formulas presented syghper are generic it may easily be applied for more well
behaved parametrizations.

The optimization examples demonstrated the importandeeofibnlinear buckling formulation and that the type
of stability should be considered since it may change dusjtgnization. The bound formulation was applied in the
studies in order to avoid problems related to mode switcliisgveral stability points come close during optimization
Such a situation did however not occur in the general typdimeer buckling optimization despite the type of stability
changed during optimization, i.e. the same mode of stghilds always optimized and depending on symmetry in
design appeared as a load limit point or bifurcation point.

The general type nonlinear buckling formulation was beratked against the traditional linear buckling formu-
lation and much better optimization results were obtaingthle general type nonlinear buckling formulation. The
linear buckling formulation did improve the buckling resisce to some extent despite poor prediction of the stabilit

load. Linear buckling analysis is often used to predictabgity and to optimize structures for maximum buckling
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performance without considering nonlinedieets or type of stability. Precautions should be taken leedqplying
the linear buckling formulation, especially in cases wittinlinear prebuckling path and in cases with limit point
instability.

Using the general type nonlinear buckling optimizatiomiatation, structures can reliably be optimized with
respect to a general type stability, i.e. either bifuraatio limit point stability, and especially in cases where ge-
ometrically nonlinear #ects cannot be ignored. This allows the material utilizatd buckling critical laminated

structures to be pushed to the limit in afig@ent way yet allowing lighter and stronger structures.
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