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Abstract

This brief deals with the satisfaction of the daily cooling demand by a hybrid system
that consists of a vapour-compression refrigeration cycle and a thermal energy stor-
age (TES) unit, based on phase change materials. The addition of the TES tank to the
original refrigeration plant allows to schedule the cooling production regardless of
the instantaneous demand, given that the TES tank can store cold energy and release
it whenever deemed appropriate. The scheduling problem is posed as an optimization
problem based on mixed-integer non-linear programming (MINLP), since it includes
both discrete and continuous variables. The latter corresponds to the references on the
main cooling powers involved in the problem (cooling production at the evaporator
and TES charging/discharging), whereas the discrete variables define the operating
mode scheduling. Therefore, in addition to the hybrid features of the physical plant,
a hybrid optimal control strategy is also proposed. A receding horizon approach is
applied, similar to model predictive control (MPC) strategies, while economic cri-
teria are imposed in the objective function, as well as feasibility issues. The TES
state estimation is also addressed, since its instantaneous charge ratio is not measur-
able. The proposed strategy is applied in simulation to a challenging cooling demand
profile and the main advantages of the MINLP-based strategy over a non-linear MPC-
based scheduling strategy previously developed are highlighted, regarding operating
cost, ease of tuning, and ability to adapt to cooling demand variations.
KEYWORDS:
Refrigeration system; Thermal energy storage; Phase change materials; Mixed-integer non-linear pro-
gramming; Scheduling

1 INTRODUCTION

Refrigeration cycles based on vapour compression constitute the worldwide leading technology for cooling issues, i.e. air condi-
tioning, medium-temperature refrigeration, and freezing. Very different areas demand controlling room temperature, for instance

0Abbreviations: MINLP, mixed-integer non-linear programming; TES, thermal energy storage; MPC, model predictive control.
0This is the peer reviewed version of the following article: Bejarano, G., Rodríguez, D., Lemos, J. M., Vargas, M., Ortega, M. G. (2020). MINLP-based hybrid strategy

for operating mode selection of TES-backed-up refrigeration systems. International Journal of Robust and Nonlinear Control, 30, 6091-6111, which has been published in
final form at https://onlinelibrary.wiley.com/doi/10.1002/rnc.4674. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions
for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or
by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on
Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other
than Wiley Online Library must be prohibited.

https://onlinelibrary.wiley.com/doi/10.1002/rnc.4674


2 GUILLERMO BEJARANO ET AL.

for human comfort, food storage and transportation, industrial processes, etc., where a wide power range is involved, from less
than 1 kW to above 1 MW1. It is stated that about 30% of the total energy all over the world is consumed by Heating, Ventilating,
and Air Conditioning (HVAC) systems, as well as refrigerators and water heaters2. Therefore, the weight of the refrigeration
processes on energy and economic balances is not in any way negligible3. Indeed, regarding supermarkets and grocery stores,
they are known to represent one of the largest consumers in the energy field, being 60% of their consumption linked to refrig-
eration processes4. Furthermore, it is reported that their average energy intensity is up to 500 kWh/m2 a year in USA, that
corresponds to more than twice the energy consumed by a hotel or an office building5.

Great effort has been made over the last decades to improve the overall energy efficiency of current refrigeration systems
and reduce their environmental impact, through enhanced design of equipment (heat exchangers, compressors, valves, etc.), use
of environmental-friendly refrigerants, and the application of advanced control and optimization strategies6,7. Furthermore, in
recent years, a novel line of research regarding cold-energy management has been developed. Adding a thermal energy storage
(TES) system to the canonical refrigeration cycle offers a number of advantages already exploited in thermal energy applications,
for instance in distributed solar collector fields8,9,10. Since the TES system acts as an energy buffer, it is no longer necessary to
produce exactly the required cooling demand at every moment. This feature allows to streamline the system capacity, in such
a way that one can count both on the refrigeration cycle itself and on the cold energy already produced and stored in the TES
system in order to address peak-demand periods. It also implies that the refrigeration cycle can work in more advantageous
conditions to improve sustainability and efficiency. An additional advantage that arises from the decoupling of demand and
production is the opportunity of scheduling the cooling generation to reduce the daily operating cost, considering the energy
price and the market fluctuations (peak-shifting)11,12. This work is focused on the latter advantage, being the remaining ones
more linked to the design stage.

Many commercial and under development solutions choose phase change materials (PCM) instead of sensible-heat ones for
the TES system, as reported in some complete reviews13,14. The main reason is related to thermodynamic properties, fitting
better to energy storage in the case of PCM: higher heat capacity and minor temperature variations in latent state. In addition to
the material, other differentiating factors between the diverse technologies are the encapsulation and the interface between the
PCM and the heat transfer fluid (HTF), prevailing the packed bed technology over other layouts15,16.

Regarding cold-energy management, different strategies have been proposed in the literature. For instance, three works by
Wang et al.17,18,19 address the design, modelling, and control of a large-scale HVAC plant backed up by a ring of PCM-based
TES tanks. Whereas the first work undertakes the system design and the second one addresses modelling, the third work by
Wang et al. presents a control strategy based on activation and deactivation of the TES tanks, where a measure of the overall
performance is intended to be maximized. Moreover, Mossafa et al.20 rely on an exergy analysis to develop a management
strategy consisting in combining alternatively the different PCM modules backing up the HVAC system.

Other works apply techniques based on model predictive control (MPC) to energy management of TES-backed-up refrigera-
tion systems in different applications. Shafiei et al.21 propose a MPC strategy for a large-scale refrigeration plant, where the main
objective is to track a given reference on the electric energy consumption. An optimization problem is posed, where the reference
on the evaporating temperature is calculated as a virtual control variable, using an estimation on the energy stored and released
from the TES tank. Moreover, Deng et al.22 consider the optimal scheduling problem for a campus central plant equipped with
a bank of multiple electrical chillers and a thermal energy storage. At each time step, the MPC problem is represented as a
large-scale mixed-integer non-linear programming (MINLP) problem. In order to ensure the computational tractability of the
problem, a suboptimal solution is proposed, where the optimal TES operation profile is obtained by solving a dynamic program-
ming problem at every horizon, and the optimal chiller operations are obtained by solving a mixed integer linear programming
(MILP) problem at every time step with a fixed TES operation profile.

MPC-based management strategies have also been applied to TES-backed-up refrigerated freight transport. For instance,
Shafiei et al.23 study a configuration where the TES tank is arranged in parallel with the refrigeration cycle; a prediction on the
cooling demand is computed using the delivery route profile, traffic information, and weather forecast. Furthermore, another
different configuration where the TES tank is arranged in series is analysed by Schalbart et al.24. In this configuration, the
refrigeration cycle charges the TES tank, that is in turn discharged while cooling down an ice-cream warehouse. A MPC-based
strategy is applied to manage the system, where the prediction model includes a steady-state refrigeration cycle submodel and
energy balances of the TES tank and the warehouse. The main objective is to ensure the product quality in long-term storage,
assessed by means of a given ice-cream crystal size, while minimizing energy consumption.
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The layout of the TES-backed-up refrigeration system considered in this work is represented in Figure 1. In this case, the TES
tank has been designed to be arranged in parallel with the evaporator of an existing refrigeration facility, whose original features
have been described in previous works25,26.
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FIGURE 1 Layout of the TES-backed-up refrigeration system considered in this work, where the TES tank is arranged in
parallel with the evaporator.

In the layout represented in Figure 1, it is observed how the refrigerated chamber consists of a tank filled with a certain fluid
(that will be called as secondary fluid from now on), that is cooled when circulating both through the evaporator and the TES
tank, discharging the latter. An electric resistance is used in the refrigerated chamber to simulate the cooling demand. Concerning
the refrigerant, it circulates through the canonical refrigeration cycle (compressor, condenser, expansion valve, and evaporator),
but it may also circulate through the TES tank while charging it. This fact implies that the cold HTF (refrigerant) differs from
the warm HTF (secondary fluid), unlike in the packed bed technology, where the same fluid is used as the cold HTF and the
warm HTF. The TES layout was presented in a previous work by the authors27 and it includes a number of PCM cylinders, two
bundles of tubes that correspond to the refrigerant and the secondary fluid, and the so-called intermediate fluid bathing all pipes
and PCM cylinders. This setup is in turn very similar to that presented in the work by Bejarano et al.28, being in this case the
PCM encapsulation in the form of cylinders, instead of the spheres proposed in the aforementioned work.

The addition of the TES tank to the canonical vapour-compression refrigeration cycle allows to decouple cooling demand and
production, that might result in reducing the daily operating cost, as long as the cooling production is scheduled according to
the energy market fluctuations. Furthermore, the combined refrigeration on the secondary fluid due to its circulation through the
evaporator and the TES tank allows to satisfy peak demand that the original refrigeration cycle could not by itself. Obviously,
the TES tank capacity must also be considered, in order to keep it in a latent state. Therefore, in order to satisfy a given demand
profile that might require to provide some cooling power to the secondary fluid, both at the evaporator and the TES tank, as well
as to reduce the overall operating cost, a challenging scheduling and control problem arises. The cascade strategy proposed in
the work by Bejarano et al.27, and shown in Figure 2, is also considered in this work.

In the strategy described in Figure 2, the scheduling stage is intended to compute the references on the main cooling powers
involved in the problem: the one provided to the secondary fluid at the evaporator �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐 , and the TES charging and discharging
powers �̇�𝑟𝑒𝑓

𝑇𝐸𝑆 and �̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐 , in such a way that the cooling demand �̇�𝑟𝑒𝑓

𝑠𝑒𝑐 is satisfied in real time and the operating cost is
minimized. Then, a low-level cooling power control is applied to get the hybrid system to actually provide the required cooling
powers, by driving the available control variables, namely the compressor speed 𝑁 , the expansion valve openings 𝐴𝑣 and
𝐴𝑣,𝑇𝐸𝑆 , and the TES pump through the virtual manipulated variable �̇�𝑇𝐸𝑆,𝑠𝑒𝑐 , that corresponds to the reference on the secondary
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FIGURE 2 Scheduling and control strategy for the TES-backed-up refrigeration system27.

mass flow circulating through the TES tank. Since the low-level cooling power control has been explained in detail in the
aforementioned work by Bejarano et al.27, this work is mostly focused on the scheduling stage, that is approached as a hybrid
optimal control problem.

A scheduling strategy based on non-linear model predictive (NMPC) techniques has been proposed in the same aforemen-
tioned work by Bejarano et al.27. In that strategy, the scheduling problem is posed as a non-linear optimization problem where
the decision variables turn out to be the references on the three cooling powers involved throughout a given horizon. However,
the operating mode scheduling is not included in the optimization problem, but it must be set off-line according to the predicted
demand profile and the constraints on the achievable cooling powers. Moreover, some weights in the objective function must be
manually tuned in such a way that, for instance, the TES tank is charged as much as necessary to satisfy a later peak demand.
That is the main shortcoming of the NMPC-based scheduler, that is overcome in the scheduling strategy proposed in this work
by including the operating mode scheduling within the optimization problem. Then, the decision set is not only comprised of the
references on the relevant cooling powers, but some binary variables are also included, defining whether it is more suitable for
the TES tank to be charged, discharged, or kept in a stand-by state all throughout the prediction horizon. This is the main con-
tribution of the strategy proposed here, with respect to the NMPC-based scheduler described in the previous work by Bejarano
et al.27.

Including discrete variables in the optimization problem, in addition to the continuous ones, introduces a new challenge from
the point of view of the mathematical problem formulation and a corresponding suitable solving procedure. Several optimization
algorithms have been proposed in the literature to control hybrid systems of variable configuration, where MPC turns out to be
the most used strategy29,30,31,32,33,34. MINLP solvers are frequently used to address this class of problems, that includes in this
case some constraints ensuring the satisfaction of the cooling demand in real time, as well as those related to the limits on the
achievable cooling powers. Furthermore, the TES charge ratio 𝛾𝑇𝐸𝑆 is preferred to remain within a given security range that
corresponds to the latent state. Therefore, a prediction model on how 𝛾𝑇𝐸𝑆 evolves when applying charging/discharging cooling
power is needed. In the work by Bejarano et al.27 a simplified model focused on the dominant dynamics related to heat transfer
within the TES tank was proposed, based on the highly time-efficient approach explained in a previous work by Bejarano et
al.35. That model was used within the optimization as the prediction model. Nevertheless, it turns out to be too complex to be
used within the proposed scheduler, since the MINLP solvers require simpler models to ensure reasonable solving time.

In this paper an even simpler prediction model is used within the optimization, obtained by linearising the aforementioned
simplified model. It is computed by using the main idea of a recent technique in predictive control, called Practical Non-linear
Model Predictive Control (PNMPC)36,37. This technique seeks a linear representation of the predicted output with regard to the
future control actions, but linearisation at a given equilibrium point is not considered. Instead, an approximation to the calculation
of the forced response using the gradients, and therefore a first-order linearisation based on the corresponding Jacobian matrix,
is recomputed at every sampling time.

State estimation is also addressed, given that the TES state vector is not fully measurable. In particular, the charge ratio 𝛾𝑇𝐸𝑆
must be estimated according to measurable variables such as the temperature of the intermediate fluid. Regarding the scheduling
solving algorithm, a branch-and-bound method is applied38,39,40.
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Some simulation results provided by the proposed scheduling strategy for a challenging cooling demand profile, that requires
the combined use of the evaporator and the TES tank to face the peak demand, are presented and discussed. Moreover, the main
advantages of the MINLP-based strategy over the aforementioned NMPC-based scheduler are remarked, concerning operating
cost, ease of tuning, and ability to adapt to cooling demand variations.

The brief is organised as follows. Section 2 provides some details about the TES tank and the operation of the hybrid system
in the most useful operating modes. The proposed scheduling strategy is developed in Section 3, where the model linearisation
based on the PNMPC ideas is detailed, as well as the constraints and the objective function imposed in the optimization. Section
4 is devoted to the TES state estimator, inspired in the time-efficient discrete model developed by Bejarano et al.35. Section
5 describes a case study for a challenging cooling demand profile, where some simulation results of the proposed strategy are
discussed and its advantages over the NMPC-based scheduler are remarked. Finally, the main conclusions to be drawn and some
future work are expressed in Section 6.

2 SYSTEM DESCRIPTION AND OPERATING MODES

2.1 Notation
The notation followed throughout the work is detailed in Table 1.

2.2 Hybrid system description
As detailed in some previous works by the authors27,28,35, an existing versatile two-compression-stage, two-load-demand exper-
imental refrigeration plant located at the Department of Systems Engineering and Automatic Control at the University of Seville
(Spain) is complemented by ad-hoc designed TES tanks based on PCM. Although the plant can be configured to work with
up to two compression stages and two evaporators, a reduced complexity configuration is first studied, including a canonical
refrigeration cycle with only one compressor and one evaporator, where the TES tank is set up in parallel with the evaporator,
as previously shown in Figure 1. Additional elements have been deployed, such as the TES expansion valve and the TES pump,
to drive the refrigerant and the secondary fluid, respectively, to the TES tank. Further information about the embedding of the
TES tank in the original experimental facility can be found in the aforementioned related literature.

Figure 3 shows the TES tank setup, where two bundles of pipes are deployed, corresponding to the warm HTF (secondary
fluid) and the cold HTF (refrigerant). All pipes are bathed in the so-called intermediate fluid, which presents high thermal
conductivity and low heat capacity, while a counter-current configuration of the refrigerant and secondary fluid pipes is chosen
to promote homogeneous heat transfer between the fluids running through the pipes and the intermediate fluid. Furthermore, the
PCM is confined in 𝑛𝑝𝑐𝑚 steel cylinders, also being dipped in the intermediate fluid. The latter is completely still inside the TES
tank, at constant atmospheric pressure, though closed. Its high thermal conductivity provides efficient heat transfer between the
refrigerant and the PCM cylinders, during the charging cycle, or between the PCM cylinders and the secondary fluid, during the
discharging cycle. Consequently, the intermediate fluid is assumed to have, at each instant, a homogeneous temperature in the
whole tank volume. Further information about the TES tank setup can be found in the related literature27,28,35.

The main input and output variables of the TES tank can also be noticed in Figure 3, defining the mass flow and thermodynamic
state description of the different inlet and outlet streams. In the case of the refrigerant, the {𝑃 – ℎ} pair completely describes
the thermodynamic state of both the inlet and outlet streams, whereas the temperature suffices in the case of the secondary fluid
inlet/outlet streams. The ambient temperature 𝑇𝑠𝑢𝑟𝑟 acts as a disturbance, while the temperature of the intermediate fluid 𝑇𝑇𝐸𝑆,𝑖𝑛𝑡
is one of the TES tank state variables included in the state vector x𝑇𝐸𝑆 ,

x𝑇𝐸𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ𝑝𝑐𝑚,1
ℎ𝑝𝑐𝑚,2
⋯

ℎ𝑝𝑐𝑚,𝑛𝑙𝑎𝑦
𝑇𝑇𝐸𝑆,𝑖𝑛𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ𝑛𝑙𝑎𝑦+1 . (1)

Moreover, as shown in (1), x𝑇𝐸𝑆 includes the thermodynamic state of the 𝑛𝑙𝑎𝑦 cylindrical layers into which every PCM
cylinder is conceptually divided, represented by their specific enthalpy ℎ𝑝𝑐𝑚,𝑘 ∀𝑘 ∈ [1, 𝑛𝑙𝑎𝑦], according to the discrete model
proposed in the previous modelling works by Bejarano et al.28,35.
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TABLE 1 Italic and greek symbols, as well as subscript/superscript notation

Italic symbols Subscripts

Symbol Description Units Symbol Description

𝐴 Opening % 𝑐𝑜𝑎𝑡 coating
𝑐 Specific heat capacity J kg-1 K-1 𝑒 evaporator
𝐷 Diameter m 𝑓𝑜𝑟𝑐𝑒𝑑 forced response
𝑒 Thickness m 𝑓𝑟𝑒𝑒 free response
G Dynamic matrix – 𝑖𝑛 inlet/input
ℎ Specific enthalpy J kg-1 𝑖𝑛𝑡 intermediate fluid
𝐽 Objective function e 𝑙𝑎𝑦 cylindrical layer
𝑘 Discrete step time – 𝑜𝑢𝑡 outlet/output
𝐿 Length m 𝑃𝑁𝑀𝑃𝐶 related to PNMPC
𝑚 Mass kg 𝑝 constant pressure
�̇� Mass flow rate g s-1 𝑝𝑎𝑠𝑡 past and current
𝑁 Compressor speed Hz 𝑝𝑐𝑚 Phase Change Material
NLF Generic non-linear function – 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 predicted
𝑛 Number of elements (e.g. PCM cylinders) – 𝑟𝑒𝑓𝑟 refrigerant
𝑃 Pressure Pa 𝑆𝐻 superheating
𝑃𝐻 Prediction horizon – 𝑠𝑒𝑐 secondary fluid
�̇� Cooling power W 𝑠𝑢𝑟𝑟 surroundings
𝑇 Temperature K 𝑡𝑎𝑛𝑘 tank
𝑡 Time h 𝑇𝐸𝑆 Thermal Energy Storage
𝑈 Internal energy J 𝑣 expansion valve
u Input vector –
𝑉 Volume m3

𝑤 Weight in the objective function e W-1 Superscripts

x State vector – Symbol Description

y Output vector – 𝑙𝑎𝑡 latent state
Greek symbols 𝑙𝑎𝑡+ Maximum enthalpy latency point

Symbol Description Units 𝑙𝑎𝑡− Minimum enthalpy latency point
𝛾 Charge ratio – 𝑚𝑎𝑥 maximum
𝛿 Binary variable – 𝑚𝑖𝑛 minimum
𝜅 Thermal conductivity W m-1 K-1 𝑟𝑒𝑓 reference
𝜌 Density kg m-3
ψ Partial decision set –
Ω Decision set –

The TES tank charge ratio 𝛾𝑇𝐸𝑆 can be computed from the PCM enthalpy distribution as indicated in (2), where it is assumed
that each of the 𝑛𝑝𝑐𝑚 PCM cylinders within the TES tank presents, at any time, the same thermodynamic behaviour. Then, 𝑈𝑚𝑎𝑥

𝑇𝐸𝑆(𝑈𝑚𝑖𝑛
𝑇𝐸𝑆) corresponds to the maximum (minimum) latent thermal energy that can be stored in the whole TES tank in (2), while

𝑈𝑚𝑎𝑥
𝑝𝑐𝑚 (𝑈𝑚𝑖𝑛

𝑝𝑐𝑚) corresponds to the maximum (minimum) latent energy that can be stored in a single PCM cylinder. All these terms
are constant, while 𝑈𝑇𝐸𝑆 = 𝑛𝑝𝑐𝑚 𝑈𝑝𝑐𝑚 refers to the variable latent energy stored in the whole TES tank. Then, 𝑈𝑝𝑐𝑚 can be
computed from the enthalpy distribution within the PCM cylinders, considering the mass of every cylindrical layer (𝑚𝑙𝑎𝑦 =

𝑚𝑝𝑐𝑚

𝑛𝑙𝑎𝑦
)

and its specific enthalpy ℎ𝑝𝑐𝑚,𝑘 ∀𝑘 ∈ [1, 𝑛𝑙𝑎𝑦]. Eventually, since it is interesting to measure the stored cold-thermal energy,
instead of the mere thermal energy, the TES tank charge ratio 𝛾𝑇𝐸𝑆 is defined as a normalised index between 0 and 1 in efficient
storing conditions, as indicated below:
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𝛾𝑇𝐸𝑆 =
𝑈𝑚𝑎𝑥

𝑇𝐸𝑆 − 𝑈𝑇𝐸𝑆

𝑈𝑚𝑎𝑥
𝑇𝐸𝑆 − 𝑈𝑚𝑖𝑛

𝑇𝐸𝑆
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𝑈𝑚𝑎𝑥
𝑇𝐸𝑆 = 𝑛𝑝𝑐𝑚 𝑈𝑚𝑎𝑥

𝑝𝑐𝑚 ,

𝑈𝑚𝑖𝑛
𝑇𝐸𝑆 = 𝑛𝑝𝑐𝑚 𝑈𝑚𝑖𝑛

𝑝𝑐𝑚 ,

𝑈𝑇𝐸𝑆 = 𝑛𝑝𝑐𝑚 𝑈𝑝𝑐𝑚 ,
𝑈𝑚𝑎𝑥

𝑝𝑐𝑚 = 𝑉 𝑙𝑎𝑡+
𝑝𝑐𝑚 𝜌𝑙𝑎𝑡+𝑝𝑐𝑚 ℎ𝑙𝑎𝑡+

𝑝𝑐𝑚 ,

𝑈𝑚𝑖𝑛
𝑝𝑐𝑚 = 𝑉 𝑙𝑎𝑡−

𝑝𝑐𝑚 𝜌𝑙𝑎𝑡−𝑝𝑐𝑚 ℎ𝑙𝑎𝑡−
𝑝𝑐𝑚 ,

𝑈𝑝𝑐𝑚 =
𝑚𝑝𝑐𝑚

𝑛𝑙𝑎𝑦

𝑛𝑙𝑎𝑦
∑

𝑘=1
ℎ𝑝𝑐𝑚,𝑘 ,

𝛾𝑇𝐸𝑆 =
𝑈𝑚𝑎𝑥

𝑝𝑐𝑚 − 𝑈𝑝𝑐𝑚

𝑈𝑚𝑎𝑥
𝑝𝑐𝑚 − 𝑈𝑚𝑖𝑛

𝑝𝑐𝑚
.

(2)

It is important to remark that 𝛾𝑇𝐸𝑆 is not a state variable, since a single value of 𝛾𝑇𝐸𝑆 can be obtained with different enthalpy
distributions within the PCM cylinders.

2.3 Operating modes
As stated in Section 1, there are three main cooling powers generated in the system:

• The cooling power transferred from the refrigerant to the secondary fluid at the evaporator, denoted as �̇�𝑒,𝑠𝑒𝑐 .
• The cooling power transferred from the intermediate fluid to the secondary fluid at the TES tank, denoted as �̇�𝑇𝐸𝑆,𝑠𝑒𝑐 .
• The cooling power transferred from the refrigerant to the intermediate fluid at the TES tank, denoted as �̇�𝑇𝐸𝑆 .

The sum of the first two items represents the total cooling power provided to the secondary fluid, that must match the cooling
demand at any time, corresponding the second one to the TES discharging power. The last one represents the TES charging
power. Up to eight operating modes can be defined according to all possible combinations of these three cooling powers; they all
have been described and discussed in a previous work by Bejarano et al.27. However, some combinations might be meaningless
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Mode 1

Refrig. 

cycle

TES 

Tank

Refrig. 

chamber

Mode 2

Refrig. 

cycle

TES 

Tank

Refrig. 

chamber

Mode 4

Refrig. 

cycle

Refrig. 

chamber

TES 

Tank

Mode 3

Refrig. 

cycle

Refrig. 

chamber

TES 

Tank
Q̇e,secQ̇e,secQ̇e,sec

Q̇TES

Q̇TES,sec Q̇TES,sec

FIGURE 4 Most suitable operating modes regarding the scheduling problem27.

or not very useful for the problem of satisfying a realistic cooling demand. The most suitable operating modes regarding the
scheduling problem are modes 1 to 4, graphically described in Figure 4.

Since it is assumed that a non-zero cooling demand must be satisfied all throughout the day, the refrigerated chamber must
take at least one cooling power contribution, either provided by the refrigeration cycle at the evaporator, or supplied by the TES
tank, or both. As long as the demand is attainable only by providing only cooling power at the evaporator, modes 1 and 2 can
be scheduled: the only difference between them lies in whether the TES tank is simultaneously being charged or not, which is
to be decided according to the charge ratio and the demand forecast. If the latter is high enough to require the double cooling
power contribution at the evaporator and at the TES tank, mode 3 must be scheduled. Eventually, mode 4 might be used when
the demand is satisfiable just by discharging the TES tank, and this operation is economically advantageous, provided that the
charge ratio is high enough to satisfy the demand during the proposed period.

3 SCHEDULING STRATEGY

3.1 Overview
As stated in Section 1, this work is focused on the scheduling stage of the cascade control strategy shown in Figure 2, that is
detailed in Figure 5. The scheduling problem is posed as a mixed integer non-linear optimization problem, where a receding
horizon strategy is applied. Therefore, given a certain prediction/control horizon, the objective of the scheduler is to compute
some feasible references for �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐 , �̇�𝑟𝑒𝑓
𝑇𝐸𝑆 , and �̇�𝑟𝑒𝑓

𝑇𝐸𝑆,𝑠𝑒𝑐 , in such a way that the cooling demand �̇�𝑟𝑒𝑓
𝑠𝑒𝑐 is satisfied at any time,

the charge ratio 𝛾𝑇𝐸𝑆 remains within a given range corresponding to the PCM latent zone, and the operating cost is minimized,
according to the variable energy price that corresponds to actual market fluctuations. The mixed features of the optimization
arise from the inclusion of binary variables that define the operating mode scheduling and are part of the decision variable set.

In the following subsections the decision variable set, the constraints, the prediction model, and the objective function
considered in the optimization problem are detailed.

3.2 Decision set
Firstly, the decision variable set is described. It comprises the references on two of the three relevant cooling powers throughout
the prediction/control horizon 𝑃𝐻 : {�̇�𝑟𝑒𝑓

𝑇𝐸𝑆(𝑡 − 1 + 𝑘), �̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘)} ∀𝑘 ∈ [1, 𝑃𝐻]. As shown later, the references

on the cooling power provided at the evaporator, �̇�𝑟𝑒𝑓
𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ∀𝑘 ∈ [1, 𝑃𝐻], are computed from the decision variables

by imposing the cooling demand satisfaction constraint. Moreover, two binary variables {𝛿𝑇𝐸𝑆(𝑡 − 1 + 𝑘), 𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘)}
∀𝑘 ∈ [1, 𝑃𝐻] are also included in the decision variable set, indicating whether the corresponding cooling powers are active or
not all throughout the prediction horizon. Then, the decision variable setΩ(𝑡) is the one described by:
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Cooling power and 
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FIGURE 5 Proposed scheduling strategy for the TES-backed-up refrigeration system.

ψ(𝑡 − 1 + 𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆(𝑡 − 1 + 𝑘)

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘)
𝛿𝑇𝐸𝑆(𝑡 − 1 + 𝑘)

𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

∀𝑘 ∈ [1, 𝑃𝐻] ,

Ω(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

ψ(𝑡)
ψ(𝑡 + 1)

⋯
ψ(𝑡 − 1 + 𝑃𝐻)

⎤

⎥

⎥

⎥

⎥

⎦

,

(3)

where the partial decision set ψ includes the decision variables corresponding to a given instant 𝑡 − 1 + 𝑘 ∀𝑘 ∈ [1, 𝑃𝐻]. As
shown in (3), the total number of decision variables in Ω(𝑡) is 4 ⋅ 𝑃𝐻 , among which half are continuous and half binary. It is
important to note that a single horizon 𝑃𝐻 is considered, in such a way that the control horizon matches the prediction one.

3.3 Constraints
As shown in Figure 5, the constraints imposed on the decision variables are related to several issues. First of all, the cooling
demand must be satisfied at any time throughout the horizon. It is achieved by computing the references on the cooling power
provided at the evaporator, �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ∀𝑘 ∈ [1, 𝑃𝐻], as indicated below:

�̇�𝑟𝑒𝑓
𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) = �̇�𝑟𝑒𝑓

𝑠𝑒𝑐 (𝑡 − 1 + 𝑘) − �̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ≥ 0 ∀𝑘 ∈ [1, 𝑃𝐻] . (4)

Moreover, an auxiliary binary variable is defined, 𝛿𝑒,𝑠𝑒𝑐(𝑡− 1+ 𝑘) ∀𝑘 ∈ [1, 𝑃𝐻], which indicates whether the corresponding
cooling power �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) is active or not. It is computed according to the value resulting from the application of (4)
all throughout the horizon 𝑃𝐻 . Therefore, this formulation of the cooling demand satisfaction constraint allows to reduce the
optimization problem size, given that the references on the cooling power provided at the evaporator and the corresponding
binary variables are no longer included in the decision setΩ.
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Secondly, the references on the cooling powers must be feasible and achievable by the TES-backed refrigeration systems
when operating in all modes. The cooling power feasibility is imposed through the constraints:

�̇�𝑟𝑒𝑓
𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ≥ 𝛿𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓 ,𝑚𝑖𝑛

𝑒,𝑠𝑒𝑐 (𝑡 − 1 + 𝑘)
�̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ≤ 𝛿𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓 ,𝑚𝑎𝑥
𝑒,𝑠𝑒𝑐 (𝑡 − 1 + 𝑘)

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆(𝑡 − 1 + 𝑘) ≥ 𝛿𝑇𝐸𝑆(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓 ,𝑚𝑖𝑛

𝑇𝐸𝑆 (𝑡 − 1 + 𝑘)
�̇�𝑟𝑒𝑓

𝑇𝐸𝑆(𝑡 − 1 + 𝑘) ≤ 𝛿𝑇𝐸𝑆(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓 ,𝑚𝑎𝑥
𝑇𝐸𝑆 (𝑡 − 1 + 𝑘)

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ≥ 𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓 ,𝑚𝑖𝑛

𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘)
�̇�𝑟𝑒𝑓

𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ≤ 𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓 ,𝑚𝑎𝑥
𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

∀𝑘 ∈ [1, 𝑃𝐻] . (5)

The power limit formulation shown in (5) allows to impose that a certain cooling power must be zero if the corresponding
binary variable has been set to zero/false. Furthermore, the maximum and minimum values of the feasible cooling powers at
every 𝑘 may depend not only on the operating mode defined by the binary variable set { 𝛿𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘), 𝛿𝑇𝐸𝑆(𝑡 − 1 + 𝑘),
𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) }, but also on the charge ratio 𝛾𝑇𝐸𝑆 and, what is more, on the specific enthalpy distribution inside the PCM
cylinders, given by the state vector x𝑇𝐸𝑆 shown in (1). This issue has been discussed in the work by Bejarano et al.27: the main
reason lies in the fact that, as the PCM cylinders are charged/discharged, the thermal resistance caused by the cylindrical shell in
the sensible zone becomes greater, modifying the minimum and maximum achievable cooling powers. Moreover, since a typical
TES tank operation is expected to schedule several partial charging/discharging processes, multiple moving freezing/melting
boundaries are very likely to be present at the same time inside the PCM cylinders28,35. Indeed, it is only the outermost cylindrical
shell in the sensible zone that defines the applicable thermal resistance, and therefore it depends on the PCM cylinder history,
and that is why an estimation of the enthalpy distribution inside the PCM cylinders is needed to impose the right limits on the
achievable cooling powers.

Thirdly, it is intended that the PCM remains in the latent zone throughout the complete horizon, namely 𝛾𝑇𝐸𝑆 must remain
within the range [0, 1]. However, security limits 𝛾𝑚𝑖𝑛𝑇𝐸𝑆 > 0 and 𝛾𝑚𝑎𝑥𝑇𝐸𝑆 < 1 are usually imposed as indicated below:

𝛾𝑇𝐸𝑆(𝑡 − 1 + 𝑘) ≥ 𝛾𝑚𝑖𝑛𝑇𝐸𝑆
𝛾𝑇𝐸𝑆(𝑡 − 1 + 𝑘) ≤ 𝛾𝑚𝑎𝑥𝑇𝐸𝑆

}

∀𝑘 ∈ [1, 𝑃𝐻] . (6)

Some constraints may also be additionally imposed on the binary variables, in order to ensure that the scheduled operating
modes correspond to those analysed in subsection 2.3. These constraints, expressed as logical conditions,

𝛿𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) || 𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) = true
𝛿𝑇𝐸𝑆(𝑡 − 1 + 𝑘) & 𝛿𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) = false

}

∀𝑘 ∈ [1, 𝑃𝐻] , (7)

imply that only operating modes 1 to 4 can be scheduled. Indeed, the first condition shown in (7) forces that there always exists
at least one contribution to the satisfaction of the cooling demand (at the evaporator and/or at the TES tank), while the second
condition ensures that no simultaneous TES charging and discharging is allowed.

3.4 Prediction model
The constraints imposed on 𝛾𝑇𝐸𝑆 involve considering a prediction model of the TES tank behaviour in the optimization problem.
Given that the simplified dynamic model proposed in the work by Bejarano et al.27 turns out to be too complex to be included
in the mixed-integer optimization, a first-order linearised model calculated at every sampling time without using the equilib-
rium point concept is used as the prediction model. This idea has been proposed within the predictive control technique called
PNMPC36,37 to obtain a linear representation of the predicted output with regard to the future control actions.

The simplified, non-linear model, focused on the dominant dynamics related to heat transfer within the TES tank, in state-space
form, is shown below:
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x𝑇𝐸𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ𝑝𝑐𝑚,1
ℎ𝑝𝑐𝑚,2
⋯

ℎ𝑝𝑐𝑚,𝑛𝑙𝑎𝑦
𝑇𝑇𝐸𝑆,𝑖𝑛𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ𝑛𝑙𝑎𝑦+1 ,

u𝑇𝐸𝑆 =

[

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐

]

∈ ℝ2 ,

y𝑇𝐸𝑆 =
[

𝛥𝛾𝑇𝐸𝑆
𝛥𝑇𝑇𝐸𝑆,𝑖𝑛𝑡

]

∈ ℝ2 ,

(8a)

x𝑇𝐸𝑆(𝑡 + 𝑘) = f (x𝑇𝐸𝑆(𝑡 − 1 + 𝑘),u𝑇𝐸𝑆(𝑡 + 𝑘 − 1))
y𝑇𝐸𝑆(𝑡 + 𝑘 − 1) = g(x𝑇𝐸𝑆(𝑡 − 1 + 𝑘))

}

∀𝑘 ∈ [1, 𝑃𝐻] , (8b)

where x𝑇𝐸𝑆 refers to the TES tank state vector, u𝑇𝐸𝑆 is the TES tank input vector, and y𝑇𝐸𝑆 corresponds to the output vector,
that may include the increments on the temperature of the intermediate fluid 𝛥𝑇𝑇𝐸𝑆,𝑖𝑛𝑡 and the charge ratio 𝛥𝛾𝑇𝐸𝑆 , defined as:

𝛥𝛾𝑇𝐸𝑆(𝑡 + 𝑘) = 𝛾𝑇𝐸𝑆(𝑡 + 𝑘) − 𝛾𝑇𝐸𝑆(𝑡 − 1 + 𝑘)
𝛥𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡 + 𝑘) = 𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡 + 𝑘) − 𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡 − 1 + 𝑘)

}

∀𝑘 ∈ [1, 𝑃𝐻] . (9)
The main idea behind the PNMPC formulation is to deal with non-linear systems using the MPC techniques developed for

linear systems36,37. In conventional linear MPC techniques, the vector of predicted outputs y𝑝𝑟𝑒𝑑𝑖𝑐𝑡 can be expressed as a linear
function of the vector of future control inputs u, where the free response y𝑓𝑟𝑒𝑒 and the forced response y𝑓𝑜𝑟𝑐𝑒𝑑 are explicitly
separated, beingG a constant matrix denominated dynamic matrix of the model, as shown below:

y𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = y𝑓𝑟𝑒𝑒 + y𝑓𝑜𝑟𝑐𝑒𝑑 = y𝑓𝑟𝑒𝑒 +Gu . (10)
The system shown in (8) can also be expressed as

y𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =NLF (y𝑝𝑎𝑠𝑡,u𝑝𝑎𝑠𝑡,u) , (11)
where the predicted output vector y𝑝𝑟𝑒𝑑𝑖𝑐𝑡 turns out to be a certain non-linear function of the current and past outputs y𝑝𝑎𝑠𝑡, the
past control inputs u𝑝𝑎𝑠𝑡, and the future control actions u, where NLF refers to the arbitrary non-linear function that defines
the system.

Following the structure of the linear MPC shown in (10), the predicted output vector y𝑝𝑟𝑒𝑑𝑖𝑐𝑡 can be divided in two parts: the
free response y𝑓𝑟𝑒𝑒 (only due to the current and past outputs y𝑝𝑎𝑠𝑡 and the past control inputs u𝑝𝑎𝑠𝑡), and the forced response
y𝑓𝑜𝑟𝑐𝑒𝑑 , affected byu. Regardingy𝑓𝑟𝑒𝑒, this variable is computed by applying zero future control actions to the original non-linear
model, as indicated below:

y𝑓𝑟𝑒𝑒 =NLF (y𝑝𝑎𝑠𝑡,u𝑝𝑎𝑠𝑡,u = 𝟎) ,
y𝑓𝑜𝑟𝑐𝑒𝑑 ≈ G𝑃𝑁𝑀𝑃𝐶 u ,

G𝑃𝑁𝑀𝑃𝐶 =
𝜕y𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝜕u
|

|

|

|u=𝟎
.

(12)

Concerning y𝑓𝑜𝑟𝑐𝑒𝑑 , an approximation consisting of a first-order linearisation of the MacLaurin series is proposed, since it is
computed around u = 𝟎, as described in (12).

The matrixG𝑃𝑁𝑀𝑃𝐶 represents the Jacobian matrix, namely the gradient of y𝑝𝑟𝑒𝑑𝑖𝑐𝑡 with respect to future control inputs. The
numerical algorithm presented in the related literature for multiple-input-multiple-output (MIMO) systems is used to compute
G𝑃𝑁𝑀𝑃𝐶

36,37,41. State feedback is used at every sampling time when applying the non-linear model shown in (8) and (11) to
avoid offset and close the loop.

Once the Jacobian matrixG𝑃𝑁𝑀𝑃𝐶 is calculated, together with the free response y𝑓𝑟𝑒𝑒, a linear prediction model is available.
This Jacobian matrix is used within the optimization procedure to obtain the predicted values of the output vector y𝑇𝐸𝑆 : the
predicted charge ratio �̂�𝑇𝐸𝑆 , whose predictions are mandatory to impose the constraints described in (6), and the predicted
temperature of the intermediate fluid �̂�𝑇𝐸𝑆,𝑖𝑛𝑡.

However, it has been stated in subsection 3.3 that, regarding the feasibility constraints shown in (5), the maximum and min-
imum values of the achievable cooling powers depend not only on the charge ratio 𝛾𝑇𝐸𝑆 , but also on the enthalpy distribution
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inside the PCM cylinder, described by the TES tank state vector x𝑇𝐸𝑆 . This fact implies that at least an estimate of where the
outermost cylindrical layer in latent zone is located is needed to determine the applicable limits on the cooling powers, accord-
ing to the operating mode defined by the binary decision variables. The PNMPC-based strategy used to obtain the prediction
model is not suitable, but the estimated �̂�𝑇𝐸𝑆 can be used to compute an estimation of the cold energy transferred by every PCM
cylinder during every sampling time within the prediction horizon 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) ∀𝑘 ∈ [1, 𝑃𝐻], as indicated below:

𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) = 𝛥𝛾𝑇𝐸𝑆(𝑡 + 𝑘) (𝑈𝑚𝑎𝑥
𝑝𝑐𝑚 − 𝑈𝑚𝑖𝑛

𝑝𝑐𝑚) =
[

�̂�𝑇𝐸𝑆(𝑡 + 𝑘) − �̂�𝑇𝐸𝑆(𝑡 − 1 + 𝑘)
]

(𝑈𝑚𝑎𝑥
𝑝𝑐𝑚 − 𝑈𝑚𝑖𝑛

𝑝𝑐𝑚) ∀𝑘 ∈ [1, 𝑃𝐻] . (13)
Once estimated the cold energy transferred during every sampling time 𝛥�̂�𝑝𝑐𝑚, and given the TES tank state at the initial

point of the prediction horizon x̂𝑇𝐸𝑆(𝑡) ≡ x𝑇𝐸𝑆(𝑡), a recursive algorithm is applied to compute an estimation on the enthalpy
distribution inside the PCM cylinder all throughout the prediction horizon. This algorithm is inspired in that proposed in the
modelling work by Bejarano et al.35 implementing the simplified dynamic model shown in (8). For every sampling time within
the prediction horizon, ∀𝑘 ∈ [1, 𝑃𝐻], the algorithm is expressed as a step-by-step sketch, as follows:

1. Starting from a given estimated state of the layered PCM cylinder and the intermediate fluid x̂𝑇𝐸𝑆(𝑡 − 1 + 𝑘), an inward
scanning sequence is performed, looking for the outermost layer 𝑗0 in latent zone:

𝑗0 = max
{

𝑗 ∈ {1,… 𝑛𝑙𝑎𝑦} ∣ ℎ𝑙𝑎𝑡−
𝑝𝑐𝑚 < ℎ̂𝑝𝑐𝑚,𝑗(𝑡 − 1 + 𝑘) < ℎ𝑙𝑎𝑡+

𝑝𝑐𝑚

}

. (14)
2. Given the cold energy transferred 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘), the specific enthalpy of layer 𝑗0 is updated accordingly:

ℎ̂𝑝𝑐𝑚,𝑗0(𝑡 + 𝑘) = ℎ̂𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘) +
𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘)

�̂�𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘)𝑉𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘)
, (15)

where �̂�𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘) and 𝑉𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘) refer to the density and volume of layer 𝑗0, computed from the estimated
enthalpy ℎ̂𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘).

3. At this point, two possibilities arise:
a) Layer 𝑗0 remains in the latent zone: ℎ𝑙𝑎𝑡−

𝑝𝑐𝑚 < ℎ̂𝑝𝑐𝑚,𝑗0(𝑡 + 𝑘) < ℎ𝑙𝑎𝑡+
𝑝𝑐𝑚 . That means that there is no change in the enthalpic

state of the layers interior to 𝑗0:

ℎ̂𝑝𝑐𝑚,𝑗(𝑡 + 𝑘) = ℎ𝑝𝑐𝑚,𝑗(𝑡 − 1 + 𝑘) ∀𝑗 < 𝑗0 . (16)
Furthermore, layers exterior to 𝑗0 are in the sensible zone. Depending on the sign of 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘), the estimation on
their enthalpy is saturated to ℎ𝑙𝑎𝑡−

𝑝𝑐𝑚 or ℎ𝑙𝑎𝑡+
𝑝𝑐𝑚 :

ℎ̂𝑝𝑐𝑚,𝑗(𝑡 + 𝑘) = ℎ𝑙𝑎𝑡−
𝑝𝑐𝑚 ∀ 𝑗 > 𝑗0 if 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) > 0 ,

ℎ̂𝑝𝑐𝑚,𝑗(𝑡 + 𝑘) = ℎ𝑙𝑎𝑡+
𝑝𝑐𝑚 ∀ 𝑗 > 𝑗0 if 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) < 0 .

(17)

Then, the estimated state vector x̂𝑇𝐸𝑆(𝑡 + 𝑘) is computed as shown below:

x̂𝑇𝐸𝑆(𝑡 + 𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ̂𝑝𝑐𝑚,1(𝑡 + 𝑘)
ℎ̂𝑝𝑐𝑚,2(𝑡 + 𝑘)

⋯
ℎ̂𝑝𝑐𝑚,𝑛𝑙𝑎𝑦(𝑡 + 𝑘)
�̂�𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡 + 𝑘)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (18)

where �̂�𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡 + 𝑘) is obtained from (9).
b) Layer 𝑗0 quits the latent zone. That means that the latent energy of layer 𝑗0 depleted some time before the sampling time

expired, 𝛥𝑡𝑗0 ≤ 𝛥𝑡, when the layer entered sensible zone. To continue with the algorithm, the cold energy transferred
𝛥�̂�𝑝𝑐𝑚(𝑡+𝑘) is updated as shown below, depending on the sign of 𝛥�̂�𝑝𝑐𝑚(𝑡+𝑘), given that a part of the original energy
𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) has been already transferred to layer 𝑗0:
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𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) = 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) −
[

ℎ̂𝑝𝑐𝑚,𝑗(𝑡 − 1 + 𝑘) − ℎ𝑙𝑎𝑡−
𝑝𝑐𝑚

]

�̂�𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘)𝑉𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘)

if 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) > 0 ,

𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) = 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) +
[

ℎ𝑙𝑎𝑡+
𝑝𝑐𝑚 − ℎ̂𝑝𝑐𝑚,𝑗(𝑡 − 1 + 𝑘)

]

�̂�𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘)𝑉𝑝𝑐𝑚,𝑗0(𝑡 − 1 + 𝑘)

if 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) < 0 .

(19)

Then, the next inner layer, 𝑗0−1, is established as the new outermost layer in latent zone, and the sequence restarts
from step 2, applying the updated value of 𝛥�̂�𝑝𝑐𝑚(𝑡 + 𝑘) computed in (19).

This algorithm allows to have a cold-energy-based estimation on where the outermost cylindrical layer in latent zone is located,
obtained from the information provided by the linearised prediction model. It is important to note that no hypothesis about heat
transfer between the PCM cylinder and the intermediate fluid is considered, in such a way that the estimator is only based on the
predicted charge ratio, as well as on some thermodynamic properties of the PCM and geometric features of the TES tank. The
proposed estimator is expected to be accurate enough, given that these properties and features are usually accurately known.
The location of the outermost cylindrical layer in latent zone allows to impose the right cooling power limits on the feasibility
constraints indicated in (5), taking into account the thermal resistance caused by the cylindrical shell in the sensible zone, both
during charging and discharging processes.

As the TES tank is charged/discharged, the cylindrical shell in the sensible zone grows and the minimum/maximum achievable
charging/discharging cooling power is reduced. In order to ensure that the limits imposed on the feasibility constraints shown
in (5) are actually achievable by the cycle during the complete optimization sampling time, the minimum value imposed is that
corresponding to the position of the outermost cylindrical layer in the latent state at instant 𝑡+𝑘−1 ∀𝑘 ∈ [1, 𝑃𝐻], whereas the
maximum value corresponds to the position of the outermost cylindrical layer in the latent state at instant 𝑡 + 𝑘 ∀𝑘 ∈ [1, 𝑃𝐻].
Nevertheless, when a transition between charging/discharging processes happens, the position of the outermost layer in the latent
state is reset to the PCM cylinder edge, ans thus the minimum value is that corresponding to this situation, while the maximum
value is computed according to the position of the outermost cylindrical layer in the latent state at instant 𝑡 + 𝑘 ∀𝑘 ∈ [1, 𝑃𝐻].
The transition between charging/discharging processes is detected by comparing the predicted value of the temperature of the
intermediate fluid �̂�𝑇𝐸𝑆,𝑖𝑛𝑡, given by the linearised prediction model, with the phase-change temperature 𝑇 𝑙𝑎𝑡

𝑝𝑐𝑚.

3.5 Objective function
The objective function 𝐽 , expressed as

𝐽 =
𝑃𝐻
∑

𝑘=1
𝑤𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) +

+ 𝑤𝑇𝐸𝑆(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓
𝑇𝐸𝑆(𝑡 − 1 + 𝑘) +

+ 𝑤𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) �̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1 + 𝑘) ,

(20)

includes only terms related to economic cost of cooling power generation all throughout the horizon 𝑃𝐻 . Note that in (20) the
weights in the objective function 𝐽 of the cooling powers �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐(𝑡−1+𝑘) and �̇�𝑟𝑒𝑓
𝑇𝐸𝑆(𝑡−1+𝑘) ∀𝑘 ∈ [1, 𝑃𝐻] correspond to the

economic cost of producing such powers by the enhanced refrigeration cycle. However, the weights 𝑤𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡−1+𝑘) are in this
case set to zero since the fact of discharging the cold energy previously stored in the TES tank does not involve instantaneous
cooling power production.

4 STATE ESTIMATION

It has been stated in Section 3 that the state estimation, �̂�𝑇𝐸𝑆 , is required, not only for feedback purposes, but also for enabling
the estimation algorithm on where the outermost cylindrical layer in the latent state is located, in order to impose the right
cooling power limits on the feasibility constraints described in (5). Actually, the state vector x𝑇𝐸𝑆 is not fully measurable, since
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it includes specific enthalpies of the different PCM cylinder layers, as shown in (8). Although the temperature of the intermediate
fluid 𝑇𝑇𝐸𝑆,𝑖𝑛𝑡 is measurable, it will be used as the system feedback to develop the state estimator described in this section.

As stated in the modelling work by Bejarano et al.28,35, the energy balance on the intermediate fluid is given by

𝑐𝑝,𝑇𝐸𝑆,𝑖𝑛𝑡 𝑚𝑇𝐸𝑆,𝑖𝑛𝑡 𝛥𝑇𝑇𝐸𝑆,𝑖𝑛𝑡 =

𝛥𝑡

∫
0

(

�̇�𝑇𝐸𝑆,𝑠𝑒𝑐 − �̇�𝑇𝐸𝑆 − �̇�𝑇𝐸𝑆,𝑖𝑛𝑡 + �̇�𝑠𝑢𝑟𝑟

)

𝑑𝑡 , (21)

where �̇�𝑇𝐸𝑆,𝑖𝑛𝑡 refers to the cooling power transferred from the PCM cylinders to the intermediate fluid (positive during
discharging processes, negative when charging), �̇�𝑠𝑢𝑟𝑟 corresponds to thermal losses, and 𝛥𝑡 represents the sampling time.

According to the work by Bejarano et al.27, the separation between the time scales of the scheduler and cooling power
controller allows to assume that the references on the charging and discharging cooling powers �̇�𝑇𝐸𝑆 and �̇�𝑇𝐸𝑆,𝑠𝑒𝑐 will be
quickly tracked, provided that the set points are achievable, which is ensured through the feasibility constraints given in (5).
Therefore, �̇�𝑇𝐸𝑆 and �̇�𝑇𝐸𝑆,𝑠𝑒𝑐 can be assumed to be constant during the whole sampling time 𝛥𝑡 and they match the reference
values �̇�𝑟𝑒𝑓

𝑇𝐸𝑆 and �̇�𝑟𝑒𝑓
𝑇𝐸𝑆,𝑠𝑒𝑐 already applied to the system in the previous sampling time.

The thermal losses are not constant during the whole sampling time 𝛥𝑡, but they can be estimated from the temperature of the
intermediate fluid, for instance using a Tustin approximation, giving rise to energy losses 𝛥𝑈𝑠𝑢𝑟𝑟. As a result, the energy balance
can be expressed as:

𝛥𝑈𝑇𝐸𝑆(𝑡) =

𝛥𝑡

∫
0

�̇�𝑇𝐸𝑆,𝑖𝑛𝑡 𝑑𝑡 ≈ 𝛥�̂�𝑇𝐸𝑆(𝑡) =

= 𝑐𝑝,𝑇𝐸𝑆,𝑖𝑛𝑡 𝑚𝑇𝐸𝑆,𝑖𝑛𝑡

[

𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡) − 𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡 − 1)
]

+
[

�̇�𝑟𝑒𝑓
𝑇𝐸𝑆(𝑡 − 1) − �̇�𝑟𝑒𝑓

𝑇𝐸𝑆,𝑠𝑒𝑐(𝑡 − 1)
]

𝛥𝑡 − 𝛥𝑈𝑠𝑢𝑟𝑟(𝑡) ,

(22)

where 𝛥�̂�𝑇𝐸𝑆 refers to the overall estimated energy transferred between the intermediate fluid and all PCM cylinders during the
complete sampling time 𝛥𝑡.

All the terms on the right-hand side of (22) are either known or can be computed when estimating the state vector x𝑇𝐸𝑆(𝑡).
Once the overall transferred energy, 𝛥�̂�𝑇𝐸𝑆(𝑡), has been estimated, it is trivial to obtain the cold-energy transferred by every
PCM cylinder 𝛥�̂�𝑝𝑐𝑚(𝑡), and an algorithm identical to that described in subsection 3.4 can be applied only for a sampling time
(𝑘 = 0), giving rise to the following estimation on the state vector,

x̂𝑇𝐸𝑆(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ̂𝑝𝑐𝑚,1(𝑡)
ℎ̂𝑝𝑐𝑚,2(𝑡)

⋯
ℎ̂𝑝𝑐𝑚,𝑛𝑙𝑎𝑦(𝑡)
𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

It is remarked that 𝑇𝑇𝐸𝑆,𝑖𝑛𝑡(𝑡) is not estimated but measured, and that is the key of the system feedback that allows to estimate
the complete state vector based only on the simple energy balance on the intermediate fluid shown in (21).

5 CASE STUDY

In this section a case study is analysed in simulation, where a cooling demand profile that requires the combined power contri-
bution of both the evaporator and the TES tank to face the peak demand is imposed. This case study turns out to be challenging,
since the TES charging and discharging periods must be carefully scheduled to ensure the peak demand satisfaction, considering
the plant power limits and the fact that the TES tank must remain within the latent zone. The actual energy costs throughout a
certain day are also considered in the economic objective function. Some simulation results are presented and discussed, while
the main advantages of the proposed scheduler with respect to the previous strategies are remarked.

The design parameters of the TES tank are detailed in Table 2, while the most relevant thermodynamic properties of the PCM
are specified in Table 3. The intermediate fluid is a 60% in volume ethylene glycol aqueous solution with very high thermal
conductivity, while the secondary fluid is a 60% in volume propylene glycol aqueous solution. Regarding the refrigeration
cycle, it works with R404a as refrigerant. The models of the components described in the work by Bejarano41 are applied,
whereas the steady-state parameters experimentally identified in the work by Bejarano et al.42 have been used. Specifically, the
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parameters related to the main compressor, the air condenser, the evaporator related to the refrigerated chamber at -20◦C, and
the corresponding expansion valve EEV2 are applied, while the TES expansion valve is assumed to be identical to EEV2. The
thermodynamic properties of all fluids are computed using the CoolProp tool43.

TABLE 2 Design parameters of the TES tank

Symbol Description Value Units

𝐿𝑡𝑎𝑛𝑘 Length of the TES tank 1.4 m
𝐷𝑡𝑎𝑛𝑘 Internal diameter of the TES tank 0.4 m
𝑒𝑡𝑎𝑛𝑘 Thickness of the TES tank wall 0.005 m
𝑛𝑝𝑐𝑚 Number of PCM cylinders 17 –
𝐷𝑝𝑐𝑚 External diameter of the PCM cylinders 0.0445 m
𝑒𝑝𝑐𝑚 Thickness of the PCM cylinder coating 0.001 m
𝜅𝑐𝑜𝑎𝑡,𝑝𝑐𝑚 Thermal conductivity of the PCM cylinder coating 16.3 W m-1 K-1

𝑛𝑟𝑒𝑓𝑟 Number of refrigerant pipes 36 –
𝐷𝑟𝑒𝑓𝑟 External diameter of the refrigerant pipes 0.020 m
𝑒𝑟𝑒𝑓𝑟 Thickness of the refrigerant pipe wall 0.001 m
𝜅𝑐𝑜𝑎𝑡,𝑟𝑒𝑓𝑟 Thermal conductivity of the refrigerant pipe wall 16.3 W m-1 K-1

𝑛𝑠𝑒𝑐 Number of secondary fluid pipes 32 –
𝐷𝑠𝑒𝑐 External diameter of the secondary fluid pipes 0.020 m
𝑒𝑠𝑒𝑐 Thickness of the secondary fluid pipe wall 0.001 m
𝜅𝑐𝑜𝑎𝑡,𝑠𝑒𝑐 Thermal conductivity of the secondary fluid pipe wall 16.3 W m-1 K-1

𝑉𝑇𝐸𝑆,𝑖𝑛𝑡 Volume of the intermediate fluid 0.109 m3

𝛼𝑠𝑢𝑟𝑟 Coefficient of thermal losses 0.1 W m-2 K-1

TABLE 3 Phase change material properties

Symbol Description Value Units

𝑐𝑝𝑝𝑐𝑚 Specific heat at constant pressure 3690 J kg-1 K-1

ℎ𝑙𝑎𝑡
𝑝𝑐𝑚 Specific enthalpy of fusion (latent phase) 222000 J kg-1

𝑇 𝑙𝑎𝑡
𝑝𝑐𝑚 Phase change temperature -29 ◦C

𝜅𝑝𝑐𝑚 Thermal conductivity 0.64 W m-1 K-1

𝜌𝑝𝑐𝑚 Density 1420 kg m-3
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5.1 Cooling demand profile
The realistic daily cooling demand profile represented in Figure 6 is analysed hereafter. Regarding the peak demand, it has been
tailored to the maximum combined cooling power achievable by the system, already considered in a previous work27. Moreover,
the time window has been reduced to 12 hours instead of a complete day, according to the maximum charging and discharging
periods considered in the design stage of the TES tank. The latter was described in detail in a previous work by Bejarano et
al.28, where the only difference was related to the PCM encapsulation. Since it is a research facility, 3-4 hour periods for full
charging/discharging were regarded in the design stage as most desirable. However, since only a time scaling has been applied,
the conclusions drawn are applicable to 24-hour operation, provided that the TES tank is designed accordingly.
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FIGURE 6 Cooling demand profile.

It is observed in Figure 6 that the cooling demand is not zero at any instant throughout the day, as in the case of industrial
refrigeration or supermarket operation. A minimum value is required even during the night hours, whereas the peak demand
happens one hour past noon (𝑡 = 7 h). This peak demand requires the combined contribution of the cooling power provided at
the evaporator and the TES tank discharge, and thus it is expected that the TES tank is charged during the night hours to store
enough cold energy to face the discharging process surely imposed during the daylight hours around noon. Anyway, as stated
in Sections 1 and 3, the operating mode scheduling is also included in the optimization and it will be optimally set to satisfy the
cooling demand while observing the imposed constraints and minimizing the operating cost.

5.2 Energy price
Actual energy prices are also considered in the objective function of the optimization problem, shown in (20). Figure 7 shows
the energy prices corresponding to a given day (November 5th, 2018) in the Spanish spot market, once again time-scaled into a
12-hour timeframe44.
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FIGURE 7 Energy price profile corresponding to November 5th, 2018 in the Spanish spot market44.
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These prices, suitably scaled, have been applied to the cooling power generation at the evaporator,𝑤𝑒,𝑠𝑒𝑐 , and to the TES charg-
ing cooling power, 𝑤𝑇𝐸𝑆 . However, the cost related to the TES discharging cooling power 𝑤𝑇𝐸𝑆,𝑠𝑒𝑐 has been set to zero, since
releasing the previously stored cold energy does not involve a direct economic cost, always without considering the electrical
power devoted to impulsing the secondary fluid.

5.3 Simulation results
Some simulation results of the proposed scheduling strategy are presented in this subsection. A sampling time of 1 h has been
selected, according to the cooling demand profile shown in Figure 6. Safety limits 𝛾𝑚𝑖𝑛𝑇𝐸𝑆 = 0.05 and 𝛾𝑚𝑎𝑥𝑇𝐸𝑆 = 0.95 have been
imposed, while a prediction horizon of 12 h has been considered in the MINLP-based scheduling strategy. This choice is moti-
vated by the fact that if the energy price and the cooling demand forecasts are given for a complete day, then the prediction
horizon should cover at least this period. In the (rare) case that those forecasts vary widely between two consecutive days, it
would be useful to consider a wider prediction/control horizon, but the computational load of the proposed strategy would be
compromised, since the number of decision variables is shown to be proportional to the prediction/control horizon. Regarding
the optimization tool, the OPTI Toolbox45 has been applied in the MATLAB® environment, while the BONMIN algorithm has
been used to solve the mixed integer non-linear program46. BONMIN uses the Interior Point OPTimizer (IPOPT) for solving
relaxed problems and Coin-OR Branch and Cut (CBC) as the mixed integer solver47,48.

The optimal operating mode scheduling given by the mixed-integer non-linear optimization is represented in Figure 8, com-
puted from the binary variable set {𝛿𝑒,𝑠𝑒𝑐 , 𝛿𝑇𝐸𝑆 , 𝛿𝑇𝐸𝑆,𝑠𝑒𝑐} defining whether the corresponding cooling power is active or not,
according to subsection 2.3.
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FIGURE 8 Optimal operating mode scheduling of the whole system given by the MINLP-based strategy.

It is confirmed in Figure 8 that the intuitive operating mode scheduling suggested in subsection 5.1 is actually set by the
MINLP-based strategy as the optimal one, given the actual energy price variations described in subsection 5.2. However, two
different periods where the cooling demand is satisfied only at the evaporator are also included, separating the TES tank charging
and discharging processes. The constraints regarding the operating mode limitation described in (7) are shown to be observed,
since only modes 1 to 3 have been scheduled.

The references on �̇�𝑒,𝑠𝑒𝑐 , �̇�𝑇𝐸𝑆 , and �̇�𝑇𝐸𝑆,𝑠𝑒𝑐 are represented in Figure 9, while the evolution of the TES tank charge ratio
throughout the day is shown in Figure 10. Eventually, the cooling demand satisfaction is shown in Figure 11 by representing
together both contributions to the cooling power provided to the secondary fluid: �̇�𝑒,𝑠𝑒𝑐 and �̇�𝑇𝐸𝑆,𝑠𝑒𝑐 .

The optimal references on the relevant cooling powers shown in Figure 9 allow to ensure the satisfaction of the cooling demand
profile represented in Figure 6 all throughout the day, as shown in Figure 11, as a result of the application of (4). Moreover, the
references �̇�𝑟𝑒𝑓

𝑒,𝑠𝑒𝑐 , �̇�𝑟𝑒𝑓
𝑇𝐸𝑆 , and �̇�𝑟𝑒𝑓

𝑇𝐸𝑆,𝑠𝑒𝑐 meet the power limits imposed through the constraints indicated in (5), and thus they are
achievable by the TES-backed-up refrigeration cycle. Eventually, the TES tank remains within the security range given by 𝛾𝑚𝑖𝑛𝑇𝐸𝑆and 𝛾𝑚𝑎𝑥𝑇𝐸𝑆 , as may be checked in Figure 10, thus complying with the security limits indicated in (6).

The main advantages of the proposed strategy with respect to the NMPC-based scheduling are related to three items:
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FIGURE 9 References on the relevant cooling powers given by the proposed MINLP-based scheduling strategy.
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(a) Operating cost: the daily operating cost is minimized, as shown in (20). Indeed, the operating mode scheduling given by
the MINLP-based strategy is intended to be optimal, and it might not be completely intuitive as previously discussed in the
view of the cooling demand profile shown in Figure 6. In the NMPC-based scheduling strategy, it is necessary to suggest a
certain operating mode scheduling a priori, given the cooling demand profile and energy prices. The suggested scheduling
might not be optimal, which surely involves a higher daily operating cost.

(b) Ease of tuning: it was stated in the work by Bejarano et al.27 that some weights in the objective function related to the
charge ratio must be tuned in order to promote the TES tank charging/discharging, according to the suggested operating
mode scheduling. These weights may be difficult to tune in some cases and it is easy to perceive that different tuning may
lead to problem infeasibility if the cooling profile is demanding enough and the TES tank is not properly charged/discharged
when the corresponding operating modes are scheduled, that would result in cooling demand non-satisfaction.
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(c) Adaptability to cooling demand variations: in the NMPC-based strategy, the operating mode scheduling must be proposed
in the light of the forecast on the cooling demand and energy prices. Therefore, if the predicted cooling demand changes, the
suggested operating mode scheduling is likely not to be optimal, at best, but at worst it may also lead to problem infeasibility,
that would also result in cooling demand non-satisfaction.

If the optimal operating mode scheduling represented in Figure 8 is imposed in the NMPC-based strategy, and the weights
in the objective function related to the charge ratio are carefully tuned, the optimal daily operating cost and the same cooling
power references as those shown in Figure 9 can be achieved, but the difficulty in getting this tuning is very high when compared
to the reduced set of tuning parameters of the MINLP-based strategy.

6 CONCLUSIONS AND FUTURE WORK

In this brief, the operation of a hybrid system consisting of a vapour-compression refrigeration cycle and a PCM-based TES unit
has been analysed. The work has been focused on the scheduling problem arising when a certain demand profile is imposed and
the references on the cooling powers involved (TES charging/discharging and power provided at the evaporator) are intended
to be optimally scheduled, according to energy price forecast, feasibility constraints, and limited storable cold energy. The
application of the different operating modes to this problem has been discussed, whereas a subset has been considered as most
likely to be scheduled.

The proposed scheduling strategy based on the predictive control paradigm has been described in detail. Concerning the pre-
diction model, a previously presented simplified model focused on the dominant dynamics related to heat transfer within the
TES tank has been used as a starting point, and a first-order linearisation based on the ideas of the PNMPC has been applied to
compute a even more simplified model, suitable to be used within the optimization algorithm. A hybrid decision set including
both binary and continuous variables is considered, whereas several constraints concerning cooling demand satisfaction, power
feasibility, operating mode limitation, and TES latency are applied. Since the decision set include binary and continuous vari-
ables, mixed-integer non-linear programming is needed to solve the optimization problem, where the economic operating cost
is minimized. State estimation has also been addressed, since the TES state vector is not fully measurable. An energy balance
on the TES intermediate fluid has been applied to estimate the energy transferred between the latter and the PCM, while a step-
by-step procedure has been proposed to estimate the complete TES state vector, including the enthalpy distribution within the
PCM cylinders.

Some simulation results have been presented for a challenging cooling demand profile that forces the optimizer to schedule
alternative TES charging and discharging processes to face the peak demand. The proposed strategy is shown to provide the
optimal operating mode scheduling as well as the references on the cooling powers involved, that meet the feasibility constraints
and satisfy the cooling demand. Moreover, the TES charge ratio is shown to remain within the latency limits imposed. The
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MINLP-based strategy is shown to be much easier to tune than the NMPC-based strategy. Furthermore, the first one is shown
to adapt to demand variations. Both advantages allow to ensure the cooling demand satisfaction and problem feasibility, while
the daily operating cost is ensured to be minimized.

As future work, the proposed scheduling and control strategy is planned to be applied to the experimental facility as soon as
it is fully operative. Furthermore, the variations of the system performance (e.g. COP) in the different operating modes should
be considered in the objective function.
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