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ABSTRACT

Motivation: The recognition of translation initiation sites and stop

codons is a fundamental part of any gene recognition program.

Currently, the most successful methods use powerful classifiers,

such as support vector machines with various string kernels. These

methods all use two classes, one of positive instances and another

one of negative instances that are constructed using sequences from

the whole genome. However, the features of the negative sequences

differ depending on the position of the negative samples in the gene.

There are differences depending on whether they are from exons,

introns, intergenic regions or any other functional part of the

genome. Thus, the positive class is fairly homogeneous, as all its se-

quences come from the same part of the gene, but the negative class

is composed of different instances. The classifier suffers from this

problem. In this article, we propose the training of different classifiers

with different negative, more homogeneous, classes and the combin-

ation of these classifiers for improved accuracy.

Results: The proposed method achieves better accuracy than the

best state-of-the-art method, both in terms of the geometric mean

of the specificity and sensitivity and the area under the receiver oper-

ating characteristic and precision recall curves. The method is tested

on the whole human genome. The results for recognizing both trans-

lation initiation sites and stop codons indicated improvements in the

rates of both false-negative results (FN) and false-positive results (FP).

On an average, for translation initiation site recognition, the false-

negative ratio was reduced by 30.2% and the FP ratio decreased by

10.9%. For stop codon prediction, FP were reduced by 41.4% and FN

by 31.7%.

Availability and implementation: The source code is licensed

under the General Public License and is thus freely available. The

datasets and source code can be obtained from http://cib.uco.es/

site-recognition.
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1 INTRODUCTION

The recognition of translation initiation sites (TISs) and stop

codons (Zien et al., 2000) is one of the most critical tasks for

gene structure prediction. Most successful current gene recog-

nizers first implement a step of site recognition (Gross et al.,

2007), which is followed by a process of combining the sites

into meaningful gene structures. This first step is of the utmost

importance because the program cannot find genes whose func-
tional sites are not identified. Furthermore, a large number of -

FP results might inundate the second step of the programs,
making it difficult to predict accurate gene structures.

The best current approaches use powerful classifiers, namely
support vector machines (SVMs), and moderately large

sequences around the functional site (Baten et al., 2006;
Degroeve et al., 2005; Sonnenburg et al., 2007, Zien et al.,

2000). In accordance with common practices in machine learn-
ing, these methods construct a positive instance set using se-

quences that contain true TISs or stop codons and a negative
instance set; in the negative instance set, the sequences centered

around an ATG triplet are not TISs, and the sequences centered
around TAG, TAA or TGA triplets are not stop codons. The

negative sequences are obtained from all the available informa-
tion or are randomly selected when sampling is used (Garc�ıa-

Pedrajas et al., 2012). Thus, negative sequences can be part of
intergenic regions, introns, exons, UTRs, etc.
However, the negative sequences from these different regions

have different features. Therefore, the negative class, which the
classifier must learn, is highly non-homogeneous. This inhomo-

geneity is an unnecessary difficulty that the learning algorithm
must face and that might damage its performance. In this article,

we show how the performance of the classifier can be actually
improved if the negative instances are divided into different

classes based on their position in the gene; subsequently, different
classifiers are learned for each pair of positive and negative

instance sets.
Some previous works have also considered the idea of differ-

entiating between functional sites before proceeding to their rec-
ognition. TriTISA (Hu et al., 2009) is a method for detecting

TISs in microbial genomes that classifies all candidate TISs
into three categories based on evolutionary properties, and char-

acterizes them in terms of Markov models. Also, other methods
(Burge and Karlin, 1997) have developed different models

depending on the structure and composition of the sequences
to recognize. However, these approaches are different from

ours, as these models are trained and used separately instead
of combined as in our proposal.

2 APPROACH

As explained in the previous section, our approach is based on
separating the negative sequences based on their position in

the gene. The same methodology was used for TIS and stop*To whom correspondence should be addressed.
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codon recognition. Thus, five different sets are created. First, we

create a set containing all sequences that contain positive in-

stances. Then, four additional sets are created containing nega-

tive sequences; these sets vary based on the position in the gene

of those negative sequences. One set was created for each of

the three following types of sequences: exons, introns and inter-

genic regions. A fourth set of negative sequences was created

using sequences from non-coding regions, that is, from introns

and intergenic regions together. As stated, the aim of this parti-

tioning of the negative set is to obtain more homogeneous nega-

tive sets.
In the second step, we must decide how to use these five sets of

instances. A straightforward approach would be to use any clas-

sifier that can handle more than two classes. However, as men-

tioned, SVMs are the best performing classifiers for both TIS

and stop codon prediction. Although multi-class methods have

been developed for SVMs (Hsu and Lin, 2002), two-class

approaches usually outperform those methods (Rifkin and

Klautau, 2004). Thus, we chose to train four different classifiers,

with each classifier trained to differentiate between the positive

class and one of the four different negative classes. This approach

has the additional advantage that overwhelming evidence in the

machine learning literature indicates that a combination of dif-

ferent learners frequently outperforms methods using only one

classifier (Rokach, 2009).
Additionally, we use another method in our approach. This

last method is the stop codon method. This method is chosen

because it only uses positive sequences; thus, it is not affected by

the problem of mixing in the different instances of the negative

classes. The stop codon method (Saeys et al., 2007) looks at

either the stop codon frequencies downstream of the TIS for

TIS recognition or the stop codon frequencies upstream of the

actual stop codon for stop codon recognition.
After these two steps, we have five trained classifiers that must

be combined to obtain a single value that tells us whether a

certain sequence is a true site. To classify a new sequence, we

obtain the output of each classifier and use those five outputs to

predict the class of the sequence. There are many ways of com-

bining the outputs of different classifiers (Kuncheva, 2002), some

with high complexity. However, in most cases, simple methods

are not beaten by the most complex ones, and these simple

methods are faster and less prone to over-fitting. The most

common of these simple methods include the sum of the outputs,

majority voting and the maximum output.

Given the outputs of the five classifiers, c1, . . . ,c5, and a thresh-

old for each one of these classifiers, t1, . . . ,t5, the final answer of

the classifier, CðxÞ, for a given sequence x, is defined as follows.

For the sum of outputs, the final answer is given by the following

equation:

CðxÞ=
X

i

ciðxÞ � ti: ð1Þ

The threshold term, ti, corrects for the different ranges of the

classifiers. The majority voting approach is given by the follow-

ing equation:

CðxÞ=arg max
y2f�1;+1g

X

y:ciðxÞ=y

1: ð2Þ

Finally, the maximum is given by the following equation:

CðxÞ=ciðxÞ : i=arg max
j
jcjðxÞ � tjj: ð3Þ

Once CðxÞ is obtained by any of these methods, a general

threshold T should be fixed to decide whether a certain sequence

is an actual site. One of the problems we have when choosing the

combination method is model selection, as we do not know a

priori whether any of the three methods would be consistently

better than the other two for all the chromosomes and all the

three evaluation measures we used as performance measures.

Thus, the best combination was chosen for each case using

cross-validation. This cross-validation method is explained in

the next section.
As a final remark, we should note that our approach is also

general enough to be used with any other classifier. Because this

approach is based on modifying the number of classifiers and the

training sets, it can be used with any other classification method.

Furthermore, this method can also be applied if a classifier uses

other types of data besides the raw sequence if the information

used by the classifier is extracted using the datasets described

above.

3 METHODS AND DATA

To evaluate our approach, we chose five different human chromosomes,

namely chromosomes 1, 3, 13, 19 and 21 for testing purposes, and

chromosome 16 for model selection. For each chromosome, we trained

the classifiers with all the remaining chromosomes except 16, then we

chose the best combination method using chromosome 16 and tested

the chosen model with all the true TIS or stop codons and the negative

samples of the given chromosome. That is, for chromosome 1, we trained

the models with chromosomes 2 to 22 and X and Y except 16. Then, we

chose the best combination method using chromosome 16 and tested this

model using chromosome 1. A summary of these datasets is shown in

Table 1. The chromosomes were selected with the aim of choosing

chromosomes of different lengths and codification density.

Chromosome 16 was chosen as validation set, as it is a chromosome of

average length and coding density. For SVMWD, as no model selection is

needed, chromosome 16 was added to the training set. We used all TISs

and stop codons of the Consensus CDS (CCDS) update released for

human of September 7, 2011. This update uses Human National

Center for Biotechnology Information (NCBI) build 37.3 and includes

26 473 CCDS IDs that correspond to 18471 GeneIDs.

One of the key aspects of the evaluation of any new proposal is the set

of previous methods used in the comparison. Many different methods

have been proposed for recognizing TISs and stop codons (Saeys et al.,

2007; Wang et al., 2003; Zeng et al., 2002, Zien et al., 2000). However,

these previous works and our own research (Garc�ıa-Pedrajas et al., 2012)

have shown that an SVM with a string kernel is the best state-of-the-art

method not only for TISs and stop codons but also for splice sites

(Sonnenburg et al., 2007). To assure the general advantage of SVMs

with string kernels, we performed a preliminary study of the different

available methods that included position weight matrices, decision

trees, k-nearest neighbors, stop codon method (Saeys et al., 2007),

Wang et al.’s method (Wang et al., 2003), Salzberg’s method (Salzberg,

1997) and SVMs with linear and Gaussian kernels and three different

string kernels: the locality improved kernel, the weighted degree kernel

(WD) and the weighted degree kernel with shifts (R€atsch et al., 2005)

(WDS). SVMs with WD kernel obtained consistently the best results

and thus was chosen as the method to be compared with our proposal.

WDS obtained marginally better results than WD but with a far higher
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computational complexity. We will refer throughout the article to the

SVM with WD kernels as SVMWD. The same WD kernel was used

for the classifiers in our proposal. However, we must bear in mind that

our method, as it works on the design of the datasets, can be used with

any other classification method.

Another key parameter of the learning process is the window around

the functional site that is used to train the classifiers. A further advantage

of our approach is that it allows the use of a suitable window for each

type of sequence. The value of the window for each classifier was ob-

tained by cross-validation. We, considering the site as offset 0, and did

not count the TIS or the stop codon, and we tested the performance of

the following windows: [–100, 0], [–75, 25], [–50, 0], [–50, 50], [–25, 0],

[–25, 25], [–25, 75], [–10, 15], [–10, 40], [–10, 90], [0, 25], [0, 50] and [0, 100].

For each trained classifier, the best window was chosen. Table 2 shows

the window obtained by cross-validation for all the classifiers. For the

stop codon method, we used the additional window values of [0, 200], [0,

300], [0, 400] and [0, 500] for TIS recognition and the window values of

[–200, 0], [–300, 0], [–400, 0] and [–500, 0] for stop codon recognition.

Table 2 shows interesting results. First, the window for TIS recognition

depended on the classifier and the chromosome. However, the window

for stop codon prediction was the same for all cases with only one ex-

ception. Second, this table also shows that the different classifiers used for

TIS recognition had different values; this finding supports our previous

claim that using different classifiers has the advantage of allowing better

fine-tuning of the learning parameters.

Furthermore, SVMs are sensitive to the learning parameters; thus, we

also performed a cross-validation to obtain their values. The WD kernel

has two parameters: the standard C parameter of any SVM and the

window width of the string kernel. We tested values of 1, 10, 100 and

1000 for C and 12 and 24 for the window width. All eight combinations

were evaluated using 10-fold cross-validation, and the best one was

chosen. Although it may be argued that this method might result in

suboptimal parameters, this method is a good compromise between the

performance of the SVM and the high computational cost of evaluating

each set of parameters. This same procedure was used for both SVMWD

and our approach.

For training the models, we used random undersampling (Hulse et al.,

2010) because previous studies have shown its usefulness for TIS recog-

nition (Garc�ıa-Pedrajas et al., 2012). For random undersampling, we used

a ratio of 1, which means that the majority class was randomly under-

sampled until both classes had the same number of instances.

To evaluate the obtained classifiers, we used the standard measures for

imbalanced data. Given the number of true-positive results (TP), false-

positive results (FP), true-negative results (TN) and false-negative results

(FN), we used the sensitivity, Sn= TP
TP+FN, and the specificity,

Sp= TN
TN+FP. The geometric mean of these two measures,

G�mean=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sp � Sn
p

, will be our first classification metric. As a second

measure, we used the area under the receiver operating characteristic

curve (auROC). However, auROC is independent of class ratios and it

can be less meaningful when we have unbalanced datasets (Sonnenburg

et al., 2007). In such cases, area under the precision recall curve (auPRC)

can be used. This measure is specially relevant if we are mainly interested

in the positive class. However, it can be sensible for subsampling. In our

results, we use all the positive and negative instances for each one of the

five chromosomes tested, so no subsampling is used. This also yields to

small auPRC values.

We use these three metrics because they provide two different views of

the performance of the classifiers. The auROC and auPRC values de-

scribe the general behavior of the classifier. However, when used in prac-

tice, we must establish a threshold for the classification of a query

pattern. G-mean provides the required snapshot of the performance of

the classifier when we set the needed threshold.

4 RESULTS AND DISCUSSION

The first step of our experiments was devoted to studying the

usefulness of the five different classifiers that we considered.

As stated, we have five classifiers that are trained with the

same positive class, and a negative class consisting on negative

instances from exons, introns, intergenic regions and non-coding

regions. We had a fifth classifier using only positive instances.

Thus, we tested the performance, as measured by the auROC, of

the combined approach with all five classifiers and then removed

one classifier at a time. A negative value means that the classifier

had a negative effect on the performance of the model and thus

should not be used.
The results showed that the worst performing classifier was the

one trained using negative instances extracted from exons. For

this classifier, the positive and negative instances were the most

similar; thus, the training algorithm had more difficulties in dif-

ferentiating between the positive and negative instances. In fact,

the overall effect of this classifier was harmful to the performance

of the method. Thus, this classifier was removed and was not

considered in the subsequent experiments.

Table 1. Summary of the training and testing sets

Dataset Training data Testing data

Positives/negatives Positives Negatives

Chr. 1 TIS 17638 2156 8 074590

STOP 17404 2154 23 573031

Chr. 3 TIS 18631 1163 7 291951

STOP 18444 1114 21 522500

Chr. 13 TIS 19454 340 3 664164

STOP 19225 333 10 878302

Chr. 19 TIS 18383 1411 1 698891

STOP 18136 1422 4 665804

Chr. 21 TIS 19561 233 1 303634

STOP 19558 237 3 726959

Random undersampling was used for training; thus, the number of negative in-

stances was equal to the number of positive instances.

Table 2. Summary of the window cross-validation

Data

(chr)

Positives versus negatives in

All Exons Introns Intergenic

regions

Non-coding

regions

Stop

codon

TIS

1 [–50,50] [–50, 50] [–50, 50] [–50, 50] [–50, 50] [0, 500]

3 [–25,75] [–50, 50] [–25, 75] [–25, 75] [–25, 75] [0, 500]

13 [–50,50] [–50, 50] [–10, 40] [–10, 40] [–10, 40] [0, 500]

19 [–25,75] [–50, 50] [–25, 75] [–25, 75] [–25, 75] [0, 500]

21 [–50,50] [–50, 50] [–25, 75] [–10, 40] [–25, 75] [0, 500]

STOP

All [–90,10] [–90, 10] [–90, 10] [–90, 10] [–90, 10] [–500, 0]

The window obtained around the functional site is shown for each classifier.
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The results also showed that the stop codon method classifier

had the most important contribution. This finding is interesting

because this classifier was the worst when considered alone. The

explanation for this difference may be found in the behavior of

the ensembles of classifiers. It is well known (Kuncheva and

Whitaker, 2003) that a diverse ensemble of classifiers improves

the performance of the set of classifiers. The stop codon method

differs from the other four classifiers, which are all based on

SVMs; thus, although its performance is worse than the perform-

ance of those four classifiers individually, the diversity it intro-

duces improves the performance of the set of classifiers.
The next step was the comparison of the performances of our

approach and SVMWD. A summary of the results for TIS rec-

ognition of the five studied chromosomes is shown in Table 3.

The first interesting result is that the proposed approach beat

SVMWD for all measures and all chromosomes with only one

exception. The improvements in specificity, sensitivity, geometric

mean, auROC and auPRC are shown in Figure 1.

The second remarkable result shown in Table 3 is the signifi-

cant reduction in the FN rate. The reduction in the number of

FN was 9.3% in the worst case and 44.5% in the best case. This

reduction means that 284 TISs that were inaccurately classified

as negatives by SVMWD were correctly identified by our

method. Most current gene recognizers rely heavily on the clas-

sification of TISs; therefore, it is likely that those genes would be

completely missed by any gene recognizer. Thus, our approach

has the potential to improve the accuracy of any annotation

system by 6.4%.
Furthermore, our method was also able to improve the true-

negative rate. In total, 145 780 FP from SVMWD were correctly

classified as negatives using our approach. Therefore, any anno-

tation system that uses our metric would have a significantly

reduced set of putative TISs and better expected performance.
The improvement for auROC and auPRC values are also

shown in Figure 1 (We always performed the testing of all the

methods with all the negative samples. That means that the ratio

minority/majority class is almost 1:11 000 for the worst case yield-

ing to low auPRC values. We must take into account that with

only a few thousand FP among several millions of TN we would

obtain a low precision value. The situation for stop codon recog-

nition is even worse as the number of TN is multiplied by three).

The actual ROC and PRC curves are shown in Figures 2–6.

These figures show that our approach improved the auROC

Table 3. Summary of the results for TIS recognition

Dataset SVMWD Proposed approach

Sp Sn TP FN TN FP auROC/PRC Sp Sn TP FN TN FP auROC/PRC

Chr. 1 .9155 .8326 1795 361 7392644 681946 .9481/.1001 .9209 .9003 1941 215 7435495 639095 .9693/.1351

Chr. 3 .9024 .8203 954 209 6580426 711525 .9357/.0891 .9066 .9003 1047 116 6611176 680775 .9628/.1229

Chr. 13 .9398 .8294 282 58 3443428 220736 .9522/.0818 .9457 .8824 300 40 3465327 198837 .9695/.1207

Chr. 19 .8961 .8703 1228 183 1522340 176551 .9522/.1358 .9077 .8824 1245 166 1542012 156879 .9551/.1321

Chr. 21 .8965 .8326 194 39 1168732 134902 .9387/.0689 .9200 .8755 204 29 1199340 104294 .9691/.1203

The table shows the specificity (Sp), sensitivity (Sn),TP, TN, FN, FP and area under the ROC and PRC curves (auROC/PRC) for both methods and the five studied

chromosomes.

Fig. 2. ROC/PRC curves for TIS prediction for chromosome 1

Fig. 3. ROC/PRC curves for TIS prediction for chromosome 3

Fig. 1. Absolute improvement for TIS recognition in specificity, sensitiv-

ity, G-mean, auROC and auPRC of our approach compared with

SVMWD
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and auPRC for all five studied chromosomes. These results dem-

onstrate that the overall performance of the proposed method

was better than the performance of SVMWD. The actual ROC

and PRC curves shown in Figures 2–6 show that the curves cor-

responding to our proposal are always above than the curves of

SVMWD. This result indicates the better performance for all the

possible thresholds of classification.
It is interesting to study how the proposed method achieved

its good performance. For both methods, Table 4 shows the

distribution of the FP according to the part of the gene to

which the TIS sequences belong. The behavior is clear.

Separating the negatives samples into four classes improves the

discrimination between positive instances and negative instances

from introns and intergenic regions. However, the number of FP

for instances from exons increases but to a lesser extent than the

decrease in the number of FP from introns and intergenic re-

gions. Furthermore, the FP from exons may be reduced using

other sources of information, such as content measures.

The second part of our experiments was devoted to stop codon

recognition. Stop codon recognition is a more difficult task because

the achieved accuracy is less than that for TIS recognition.One of the

major sources of this increased complexity is the number of negative

instances. There are three different stop codons rather than just one

as it is the case for TIS recognition; therefore, the number of negative

instances is three times the number of negative instances for TIS

prediction. For instance, using the same five chromosomes from

the previous experiments, the best current method found411.5 mil-

lion false-positive stop codons. This amount of incorrectly predicted

stop codons might be able to mar any annotation system, indicating

that there is ample room for improvement.

Our approach for stop codon prediction used the same classi-

fiers as for TIS recognition. Table 5 shows a summary of results

for stop codon recognition. The first remarkable result is the

large improvement in the number of both FN and FP. The

FN were reduced by 26.8% in the worst case and by 57.9% in

the best case. This result indicates that the number of total FN

was reduced from 823 with SVMWD to 443 with our method. As

for TIS recognition, an annotation program may not be able to

recognize a gene when the stop codon is missing. Furthermore,

this improvement was achieved along with a significant improve-

ment in the FP. The FP improvement was also large with a best

result of 46.9%. As a whole, 2.7 million FP from SVMWD were

accurately classified as negatives by our method. This quantity of

FP may overwhelm any annotation system; thus, the improve-

ment should have a significant impact on automatic annotation.
Figure 7 shows the absolute improvement of our method in the

specificity, sensitivity, G-mean, auROC and auPRC. The im-

provement for auROC is particularly relevant. The proposed ap-

proach improved the auROC by 3.7% in the worst case and 7.2%

in the best case. Figures 8–12 show the ROC/PRC curves for the

five chromosomes. As for TIS recognition, the ROC/PRC curves

of our approach not only achieved a better auROC and auPRC

but were also always above the curves of SVMWD.

Table 4. Distribution of FP for both methods

Dataset SVMWD Proposed approach

Exon Intron Intergenic

regions

Exon Intron Intergenic

regions

Chromosome 1 0.15% 1.39% 6.91% 0.21% 0.71% 3.72%

Chromosome 3 0.12% 1.58% 8.06% 0.13% 0.56% 4.24%

Chromosome 13 0.06% 0.79% 5.17% 0.07% 0.37% 2.79%

Chromosome 19 0.58% 1.55% 8.26% 0.71% 1.23% 6.54%

Chromosome 21 0.10% 1.30% 8.95% 0.13% 0.63% 4.05%

Average 0.20% 1.32% 7.47% 0.25% 0.70% 4.27%

The table shows the type of genome region for each of the FP

Fig. 6. ROC/PRC curves for TIS prediction for chromosome 21

Fig. 4. ROC/PRC curves for TIS prediction for chromosome 13

Fig. 5. ROC/PRC curves for TIS prediction for chromosome 19
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In Section 2, we stated that our approach could be applied to

any type of classifier. In the previous experiments, we used SVMs

because they achieved the best performance in the literature.

Now, we present the results of another experiment that was con-

ducted to demonstrate the applicability of our method to other

classifiers. We used a decision tree using the C4.5 learning algo-

rithm (Quinlan, 1996) instead of SVMs. We tested a decision tree

using the standard approach of only one training set and one

classifier and using our method with the four classifiers that were

used for SVMs. To avoid repeating all the experiments, we only

performed experiments for chromosome 13. The results for both

TIS and stop codon recognition are shown in Table 6. For TIS

Table 5. Summary of the results for STOP codon recognition

Dataset SVMWD Proposed approach

Sp Sn TP FN TN FP auROC/PRC Sp Sn TP FN TN FP auROC/PRC

Chr. 1 .8361 .8347 1798 356 19710568 3862463 .9182/.0127 .8393 .9304 2004 150 19784595 3788436 .9583/.0209

Chr. 3 .8109 .8402 936 178 17452195 4070305 .9115/.0049 .8630 .9174 1022 92 18573710 2948790 .9584/.0133

Chr. 13 .8183 .8318 277 56 8901404 1976898 .9073/.0067 .8900 .8769 292 41 9681647 1196655 .9494/.0081

Chr. 19 .8117 .8706 1238 184 3787466 878338 .9258/.0357 .9000 .9058 1288 134 4199221 466583 .9630/.0553

Chr. 21 .8089 .7932 188 49 3014762 712197 .8811/.0058 .8900 .8903 211 26 3316990 409969 .9533/.0132

The table shows the specificity (Sp), sensitivity (Sn), TP, TN, FN, FP and area under the ROC and PRC curves (auROC/PRC) for both methods and the five studied

chromosomes.

Fig. 8. ROC/PRC curves for stop codon prediction for chromosome 1

Fig. 9. ROC/PRC curves for stop codon prediction for chromosome 3

Fig. 10. ROC/PRC curves for stop codon prediction for chromosome 13

Fig. 11. ROC/PRC curves for stop codon prediction for chromosome 19

Fig. 7. Absolute improvement for stop codon recognition in the specifi-

city, sensitivity and G-mean of our approach compared with SVMWD
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recognition, the improvement was remarkable; the G-mean im-

proved by 8%, and the auROC increased from 0.8189 to 0.9372.
For stop codon classification, the improvement was even better.
The standard approach had an auROC of 0.6853, whereas our
approach achieved an auROC of 0.9260. As it was the case for

the previous experiments, auPRC was low for all experiments
because of the huge number of negative instances.

5 CONCLUSION

In this article, we presented a new approach for TIS and stop
codon recognition. This approach uses more than one classifier,
divides the negative class into four different groups and trains

one classifier for each type of negative class. This approach was
applied to the recognition of TIS and stop codons in five human
chromosomes. The approach was compared with the best current

method for TIS and stop codon prediction. The proposed ap-
proach also has the advantage of its simplicity, which makes
it easily applicable to any program for TIS or stop codon

recognition.
The reported results show that the proposed method shows

improved sensitivity, specificity, auROC and auPRC compared

with SVMWD. The results show a remarkable improvement in

the ratio of FN and FP achieved over those of SVMWD.

Because state-of-the-art annotation systems rely heavily on the

accurate prediction of the functional sites of the gene, the pro-

posed method is an effective way of improving current gene

recognizers.
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Fig. 12. ROC/PRC curves for stop codon prediction for chromosome 21

Table 6. Results for TIS and stop codon prediction for chromosome 13

using a decision tree as the classifier

Dataset Method auROC/auPRC Sp Sn G-mean

TIS C4.5 0.8183/0.0005 0.7756 0.7706 0.7731

Proposed 0.9372/0.0154 0.9053 0.8000 0.8510

Stop codon C4.5 0.6853/0.0001 0.6489 0.6426 0.6458

Proposed 0.9260/0.0097 0.8468 0.8709 0.8587

The table shows the values of the specificity (Sp), sensitivity (Sn), geometric mean of

the specificity and sensitivity and the area under the ROC/PRC curves (auROC/

auPRC).
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