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MAXIMAL FUNCTIONS, PRODUCT CONDITION AND ITS
ECCENTRICITY

MORTEN NIELSEN AND HRVOJE ŠIKIĆ∗

Abstract. We characterize Muckenhoupt Ap weights in the product case on
RN in terms of a graded family of Ap conditions defined by rectangles with
a lower bound on eccentricity. The connection to maximal functions and geo-
metric coverings is also studied.

1. Introduction

In this paper we deal with some of the problems that arise in extending basic
facts about the Hardy-Littlewood maximal function in one dimension to higher
dimensions. Recall, see C. Fefferman [2], that the typical multiplier operator
does not exhibit the same properties in both cases. For a detailed account of
various problems we refer to S.-Y. Chang and R. Fefferman [1].

We focus here on the base of sets used to define maximal functions. For
f ∈ L1

loc(R) one forms the means 1
|B|
∫

B | f | dx, using essentially one base B =

{B} of open sets, namely the open intervals containing the point of interest.
The fundamental result states that the corresponding maximal operator MB is
bounded on the Lp spaces, 1 < p < ∞, with weight w if and only if w satisfies
the Muckenhoupt Ap condition.

As is well known, when the dimension is greater than one, the base B that is
used to define both the maximal function and the corresponding Ap condition,
must be restricted to obtain boundedness of the corresponding maximal oper-
ator. In order to resolve this, B. Jawerth introduces a condition (C)p in [4] and
proves a theorem (Theorem 3.4 in [4]) that plays the main role in our paper as
well. Although the theorem is valid, there is a part of the proof that requires a
correction. One of the contributions of our paper is to revisit some of Jawerth’s
ideas and straighten and clarify some proofs in [4].

There is, however, another interesting point that influenced our research in
this matter. We recently observed (see our article [7]) that there is a connec-
tion between the Ap condition, which is a notion in harmonic analysis, and the
Schauder basis property, which comes from functional analysis. The study of
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wavelets, Gabor systems, and other reproducing function systems leads nat-
urally to the study of systems of translates, i.e., to shift invariant spaces. It
turns out that properly ordered systems of translates form a Schauder basis
if and only if an associated weight satisfies the Ap condition, see [7] for the
scalar valued case, [6] for matrix valued weights, and K. Moen [5] for other
recent developments. Let us observe that the appearance of the Ap condition
in the study of shift invariant spaces is not an isolated event, but rather a well
placed condition in the hierarchy of basis type conditions (see [3] for a recent
systematic presentation).

Let us point out that the study of the Ap condition for non-scalar valued
weights is well on its way (see A. Volberg [9] and references therein). However,
the issue that we would like to address here is of interest even in the case
of scalar valued weights. When one extends the base of open intervals to
the higher dimensional case, one faces numerous candidates for the choice of
base B. For example, one could take the family of all squares (or, eqivalently,
balls), or, as another example, the family of all rectangles. Recall that it is well
known that the classes just selected do not induce equivalent Ap conditions.
Furthermore, not only are the two choices above the most useful ones, but the
rectangle Ap condition, which is also referred to as the product Ap condition,
is also the proper one for the multivariate Schauder basis property (see [5, 6]
for precise statements).

We propose to fill the gap between the two families by producing a mono-
tone collection of bases that builds up to the full product condition. As pointed
out to us (in a private communication) by K. Moen, one can develop abstract
theorems solely based on the monotonicity property. We opt, however, for
a particular choice of the collection of bases, since such classes are of inde-
pendent interest and they also form the most natural choice to connect the
non-product with the product condition.

We introduce the notion of eccentricity in order to successfully create a nat-
ural grading of all rectangles. Then associated Muckenhoupt Ap classes for
each eccentricity are introduced. In general, a weight in the standard Mucken-
houpt class Ap will be contained in each of the eccentricity Ap classes, but the
corresponding Ap constants may not be uniformly bounded as the eccentricity
varies. As one would intuitively hope for, the weights for which the eccentric-
ity Ap constants are uniformly bounded are exactly the weights in the product
Ap class. The proof of this theorem turned out to be more demanding than one
may expect. In the following sections we present our results, while we leave
the proofs for the last section.

Acknowledgements. We would like to thank Professor Guido L. Weiss for
careful and detailed discussions about this article. We would also like to thank
Professors Kabe Moen and Edward N. Wilson for several remarks and valuable
suggestions to improve the presentation of this article.



MAXIMAL FUNCTIONS, PRODUCT CONDITION AND ITS ECCENTRICITY 3

2. Notation and Results

For fixed d1, . . . , dk ∈N, N := ∑j dj, we consider the product space

P := Rd1 ×Rd2 × · · · ×Rdk ≈ RN.

A rectangle in P is a product

R = B1 × B2 × · · · × Bk,

where Bj is an Euclidean ball in Rdj . We denote by R the family of all such
rectangles in P . The eccentricity of R := B1 × · · · × Bk ∈ R is defined to be

e(R) :=
mini |Bi|
maxj |Bj|

,

with |Bj| the Lebesgue measure of Bj in Rdj . For 0 < δ ≤ 1, we define the
restricted class

Rδ := {R ∈ R : e(R) ≥ δ}.
Notice that Rδ ⊆ Rη for 0 < η ≤ δ, and clearly,

R =
⋃

δ>0

Rδ.

For notational convenience, we denote R0 := R. For δ ∈ [0, 1], and f ∈
L1

loc(R
N), we define the maximal function

(2.1) Mδ f (x) := sup
R∈Rδ

1
|R|

∫

R
| f (y)| dy.

It is easy to verify that

M f (x) := M0 f (x) = sup
δ>0

Mδ f (x) = lim
δ→0+

Mδ f (x).

The Muckenhoupt class Ap(Rδ), 1 < p < ∞, is defined to be the family of
locally integrable weights w : RN → R+ satisfying [w]Ap(Rδ) < ∞, with

[w]Ap(Rδ) := sup
R∈Rδ

1
|R|

∫

R
w(x)dx ·

[
1
|R|

∫

R
w(x)−p′/pdx

]p/p′

,

where p′ is the dual exponent to p, i.e., 1/p + 1/p′ = 1. It is easy to check that
[w]Ap(Rδ) ≤ [w]Ap(Rη) whenever 0 ≤ η ≤ δ.

We notice that for a fixed N ≥ 3, there are several ways to decompose N
as a sum of integers; each choice gives rise to a unique class of rectangles.
The “finest” decomposition d1 = · · · = dN := 1 yields the largest class of
rectangles, which consequently produces the smallest Ap-class.

The Muckenhoupt Ap condition is closely related to geometric covering
properties. Following B. Jawerth [4], we introduce the covering property which
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plays the crucial role in the proof of our main theorem. Let w : RN → R+ be a
locally integrable weight. For a Borel set Ω ⊆ RN, we let w(Ω) :=

∫
Ω w(x)dx.

We say that w satisfies condition Sδ with constant c provided that for any
finite double sequence {Rk

j }(j,k)∈H ⊂ Rδ, H ⊂ Z×Z, there exists a double

sequence of pairwise disjoint sets {Ek
j }(j,k)∈H such that

Ek
j ⊆ Rk

j for (j, k) ∈ H(2.2)

∑
k∈Z

2kpw
( ⋃

j∈Z

Rk
j

)
≤ c ∑

k∈Z

2kpw
( ⋃

j∈Z

Ek
j

)
(2.3)

∥∥∥∥ ∑
j,k∈Z

2k(p−1)
w(Ek

j )

|Rk
j |

χRk
j

∥∥∥∥
Lp′ (w

−1/(p−1))

≤ c
(

∑
k∈Z

2kpw
( ⋃

j∈Z

Rk
j

))1/p′

.(2.4)

We wish to make the point that Jawerth’s first two conditions above are
actually always satisfied for a locally integrable weight. This is the content of
the following lemma. Hence, Jawerth’s condition (2.4) essentially defines the
class Sδ.

Lemma 2.1. Let 1 < p < ∞, and let w : RN → R+ be a locally integrable weight.
For any finite double sequence of measurable sets {Rk

j }(j,k)∈H there exists a double
sequence of pairwise disjoint sets {Ek

j }(j,k)∈H satisfying Ek
j ⊆ Rk

j for (j, k) ∈ H and

(2.5) ∑
k∈Z

2kpw
( ⋃

j∈Z

Rk
j

)
≤ 2 ∑

k∈Z

2kpw
( ⋃

j∈Z

Ek
j

)
.

Let us now state our main result.

Theorem 2.2. Let w : RN → R+ be a locally integrable weight. Then for 1 < p < ∞
the following conditions are equivalent.

i) w ∈ Ap(R)
ii) supδ>0[w]Ap(Rδ) < ∞

iii) w satisfies condition Sδ with constant independent of δ
iv) There exists a constant C := C(p, w) such that for any δ > 0,

‖Mδ f ‖Lp(w) ≤ C‖ f ‖Lp(w)

v) There exists a constant C := C(p, w) such that

‖M f ‖Lp(w) ≤ C‖ f ‖Lp(w)

We notice that any weight in the standard Ap class on RN, defined using
Euclidean balls in RN, is contained in each class Ap(Rδ), δ > 0. This follows
easily from the fact that any rectangle with eccentricity at most δ is contained
in an Euclidean ball of comparable measure. Theorem 2.2 thus shows that
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the weights in the full product class Ap(R) are exactly the weights from the
standard Ap-class on RN that are uniformly in Ap(Rδ) for 0 < δ ≤ 1.

In fact, the proof actually shows that for any locally integrable weight w :
RN → R+, the quantities

• [w]Ap(Rδ)

• The Sδ constant for w
• sup‖ f ‖Lp(w)≤1 ‖Mδ f ‖Lp(w),

are equivalent independent of δ. From this point of view, it is tempting to
introduce a “smoothness scale” on weights in Ap(RN) by classifying weight
functions by a growth condition such as [w]Ap(Rδ) = O(δ−s) as δ → 0+, for
s ≥ 0. On such a scale, s = 0 corresponds to the product class Ap(R). This
grading of weights could potentially give a better understanding of weights
that fail to be in the product class Ap(R). However, we leave this issue open
for further study.

3. Proofs

In this final section, we give the proofs of Lemma 2.1 and Theorem 2.2. We
prove Lemma 2.1 first.

Proof of Lemma 2.1. We construct the sets {Ek
j }(j,k)∈H inductively. Put N =

max{k : (j, k) ∈ H}, and let Ωk :=
⋃

j Rk
j . Using standard techniques, we

first pick pairwise disjoint measurable sets {EN
j }j such that EN

j ⊆ RN
j and

⋃
j EN

j = ΩN. Then we pick pairwise disjoint measurable sets {EN−1
j }j such

that EN−1
j ⊆ RN−1

j and
⋃

j EN−1
j = ΩN−1\ΩN. Let ` ≥ 2, and suppose

{EN−`+1
j }j has been properly defined. We then pick pairwise disjoint mea-

surable sets {EN−`
j }j such that EN−`

j ⊆ RN−`
j and

⋃
j EN−`

j = ΩN−`\B`, where

B` :=
⋃N

s=N−`+1 Ωs. We continue until the sets in {Rk
j }(j,k)∈H have been ex-

hausted.
For notational convenience put B0 := ∅, and notice that {(ΩN−`\B`)}`≥0

forms a pairwise disjoint partition of
⋃

j Ωj. We have, by the additivity of any
measure,

∑
k∈Z

2kpw
(
Ωk
)
=

∞

∑
`=0

∑
k∈Z

2kpw
(
(ΩN−`\B`) ∩Ωk

)

≤
∞

∑
`=0

∑
k≤N−`

2kpw
(
ΩN−`\B`

)



MAXIMAL FUNCTIONS, PRODUCT CONDITION AND ITS ECCENTRICITY 6

≤ 2p − 1
2p

∞

∑
`=0

2p(N−`)w
(⋃

j

EN−`
j

)

≤ 2
∞

∑
`=0

2p(N−`)w
(⋃

j

EN−`
j

)
,

where we also used the fact that ∑k≤M−1 2kp = 2Mp/(2p − 1). �
In order to prove Theorem 2.2, we shall focus on the equivalence between

(iii) and (iv). The remaining steps are standard (for some of the remaining
steps see also the results in K. Moen [5]). Let us point out that the equivalence
between i) and ii), as well as the equivalence between iv) and v), is valid for
any such nested collection of bases.

We mention that our proof follows Jawerth [4, Theorem 3.4], and one of our
contributions is to correct some issues in the proof of [4, Theorem 3.4] by using
the result from Lemma 2.1.

Proof of Theorem 2.2, iii)⇔ iv): Let {Rk
j }(j,k)∈H ⊂ Rδ be any finite collection.

Let {Ek
j }(j,k)∈H be the corresponding family of pairwise disjoint sets given by

Lemma 2.1. We define a linear operator by

L f (x) := ∑
j,k

χEk
j
(x)

1
|Rk

j |

∫

Rk
j

f (y) dy.

Clearly, |L f (x)| ≤ Mδ f (x) so L : Lp(w) → Lp(w) is bounded with at most the
same norm as Mδ. A straightforward calculation shows that the adjoint of L is
given by

L∗g(x) = ∑
j,k

χRk
j
(x)

1
|Rk

j |

∫

Ek
j

g(y) dy.

It follows that
‖L∗g‖Lp′ (w

−1/(p−1)) ≤ C‖g‖Lp′ (w
−1/(p−1)).

We put g = ∑j,k 2k(p−1)w(·)χEk
j
(·), and notice that

‖L∗g‖Lp′ (w
−1/(p−1)) =

∥∥∥∥ ∑
j,k∈Z

2k(p−1)
w(Ek

j )

|Rk
j |

χRk
j

∥∥∥∥
Lp′ (w

−1/(p−1))

,

while

‖g‖Lp′ (w
−1/(p−1)) =

(
∑

k∈Z

2kpw
( ⋃

j∈Z

Ek
j

))1/p′

≤
(

∑
k∈Z

2kpw
( ⋃

j∈Z

Rk
j

))1/p′

.

The above estimates show that condition (2.4) is satisfied.
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Conversely, for |k| ≤ S with S large we choose compact sets

Kk ⊆
{

x ∈ RN : 2k < Mδ f (x) ≤ 2k+1}.

For each k we choose a finite cover {Rk
j }j such that Kk ⊆

⋃
j Rk

j and

1
|Rk

j |

∫

Rk
j

| f (y)| dy ≥ 2k.

Now, we have
∫
⋃

k Kk

|Mδ f (x)|pw(x) dx ≤ 2 ∑
k

2kpw
(⋃

j

Rk
j

)

≤ 4 ∑
k

∑
j

2kpw
(
Ek

j
)

≤ 4 ∑
k

∑
j

2k(p−1)w
(
Ek

j
)( 1
|Rk

j |

∫

Rk
j

| f (y)| dy
)

= 4
∫

RN ∑
k

∑
j

2k(p−1)
w
(
Ek

j
)

|Rk
j |

χRk
j
(y)| f (y)| dy.

By Hölder’s inequality,
∫

RN ∑
k

∑
j

2k(p−1)
w
(
Ek

j
)

|Rk
j |

χRk
j
(y)| f (y)| dy

≤
∥∥∥∥ ∑

j,k∈Z

2k(p−1)
w(Ek

j )

|Rk
j |

χRk
j

∥∥∥∥
Lp′ (w

−1/(p−1))

· ‖ f ‖Lp(w)

≤ C
(

∑
k∈Z

2kpw
( ⋃

j∈Z

Rk
j

))1/p′

· ‖ f ‖Lp(w).

Hence, (
∑

k∈Z

2kpw
( ⋃

j∈Z

Rk
j

))1/p

≤ C‖ f ‖Lp(w),

so
( ∫

⋃
k Kk

|Mδ f (x)|pw(x) dx
)1/p

≤ 21/p
[

∑
k

2kpw
(⋃

j

Rk
j

)]1/p

≤ 21/pC‖ f ‖Lp(w).

By a limiting argument, it follows directly that

‖Mδ f ‖Lp(w) ≤ 21/pC‖ f ‖Lp(w).

�
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