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Residential solar photovoltaic (PV) system installations are expected to continue increasing due to their growing
cost competitiveness and supportive government policies. However, excessive installations of unknown behind-
the-meter solar panels present a challenge for accurate load prediction and reliable operations of power
networks. To address such growing concerns of distribution network operators (DNOs), this research proposes
a novel model for distributed PV system capacity estimations. Innovative extracted features from 24-hour
substation net load curves were fed into a deep neural network to estimate the PV capacity linked to the
substation feeder. A comprehensive study into the sensitivity of the model’s accuracy to specific temporal scales
of data collection, number of households served by a substation, and proportion of PV-equipped properties was
conducted. This study revealed that a model developed to be used exclusively in summer achieved a 18.1%
decrease in estimation root mean squared error (RMSE) compared to an all-year model, whilst using only a
third of the training data amount. Similarly, compared to an all-year model, RMSE decreased by 26.9% when
only data from Mondays to Thursdays were used to train and test the model. Also, for the all-year model, the
most accurate estimations occur when 20% to 80% of households have PV systems installed and estimation
percentage error tend to remain constant at around 10% when more than 20% of households have PV systems
installed. A machine learning-ready dataset of substations with known PV capacity and experiment results are
both useful to inform DNOs on the potential of the proposed method in reducing grid operation costs.

1. Introduction To avoid costs of manually checking and monitoring for DPVS
installations, developing automatic approaches for the distributed PV
system capacity estimation (DPVSCE) has been the focus of recent
research practices. DPVSCE approaches can be categorised as either
based on satellite imagery data or electricity load data [10]. Three
recent major studies have looked into using satellite images to ex-
tract the available amount of rooftop spaces, which was used to infer
potential PV installations. Zhong et al. [11] and Krapf et al. [12]
both extracted rooftop area from satellite aerial images, using image
semantic segmentation, to determine potential solar power generated

Regulatory supports and major cost reductions have encouraged
the growth of distributed photovoltaic systems (DPVS) globally. Global
PV capacity has increased rapidly in recent years, with solar energy
capacity more than double from 493 GW in 2018 to over 1060 GW
in 2022 [1]. Furthermore, global installed PV capacity is expected
to grow at an increasing rate, with annual additions of 400 GW in
2024, up to over 500 GW in 2028 [2]. In the UK, total small-scale
DPVS! deployment has grown from about 1.4 GW to 3.5 GW over the
last decade and accounts for 23.1% of all solar PV installations as of

January 2024 [3]. A resulting issue is a large number of DPVSs being
unknown or incorrectly registered with distribution network operators
(DNOs) [4,5], which leads to a variety of techno-economic issues.
For example, high penetrations of unknown DPVS would result in a
multitude of technical issues, e.g., over-voltage [6], and reverse power
flow [7], to potentially threaten the reliability and security of supply of
power networks [8]. Also, these unknown DPVS reduce the accuracy of
load forecasting and estimation for demand reduction potentials [5,9].

* Corresponding author.

and profits respectively. Ren et al. [13] combined rooftop area obtained
from satellite imagery, with solar irradiance profile obtained from 3D
Geographic Information System, to calculate solar energy potential on
individual buildings.

Although research have demonstrated the feasibility of using satel-
lite imagery to determine solar power potential, satellite imaged-based
DPVSCE present four primary challenges from the perspective of DNOs:
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(1) The focus of identifying potential PV installations, which does not
reveal immediate implications of installed unknown DPVS; (2) DNOs
are unable to directly access the satellite imagery data without a third
party, which incurs huge data purchasing costs and administrative
delays; (3) Using satellite imagery data assume a constant relationship
between the physical size of solar panels and their electricity generation
capacities. However, the capacity per unit area of a solar panel can vary
greatly among different arrays due to differences in the efficiency; (4)
Satellite imagery data has limited information on the substation feeder
to which a solar panel connects.

With feeder-level data being more accessible for DNOs [4], research
based on utilising electricity load data has risen in popularity and was
featured in multiple recent studies to perform net load PV disaggre-
gation. Pan et al. [14] compiled a list of recent PV disaggregation
studies in their paper and subsequently proposed a 3-stage framework
to obtain PV generation data from net load data. They used machine
learning (ML) to develop models which approximate PV generation
based on irradiation, temperature and net load consumption data.
Wang et al. [15] proposed a two-stage approach for the PV detection
and estimation, in which the first stage used support vector classifi-
cation to detect the presence of the DPVS from a household net-load
curve, and the second stage utilised long short term memory [16] with
specific extracted features to obtain the amount of generated PV power.
Liu et al. [17] proposed a self-supervised learning method where a
separate set of PV generation measurements were used to generate
pseudo labels for unlabelled net load data, before using the newly
labelled data to train a estimation model. Zhang et al. [18] proposed
a probabilistic model based on the multi-quantile recurrent neural
networks to disaggregate PV generation and separate demand into sub-
components. These works demonstrate the utility of using electricity
consumption data in separating electricity generation and consumption
within net-load curves.

Two major gaps remain in existing research: (1) They focus solely
on PV generation estimation, which does not provide information
on PV capacity estimation or the maximum potential PV generation;
(2) Existing research requires multiple types of input data, e.g. solar
irradiance, load profile of individual households without PV or with
known PV capacity, and feeder net-load data, which are not always
obtainable in practical applications.

This paper fills the gap of existing research by offering the following
contributions:

+ An automatic DPVSCE model is proposed through developing a
novel data-driven approach of feature extraction and ML. The
proposed DPVSCE model only requires the feeder-level net-load
data, which is cost-effective and scalable for various distribution
networks, and focuses on forecasting installed PV capacity. An
in-depth analysis of the model’s accuracy in response to chang-
ing variables is also conducted, identifying key factors affecting
estimation accuracy.

» A new set of demand behaviour groupings within a week is

introduced and analysis revealed clear distinctions in electricity

consumption behaviour between 3 time groups within a week.

A dataset containing a total of 25,748 samples of input features

extracted from 24-hour net load time-series data and their corre-

sponding output label of installed PV capacity is made available
and can be accessed via the GitHub repository relevant to this
paper.? This dataset is ready for ML training.

The rest of this paper is organised as follows: Section 2 explains
the proposed DPVSCE model, substantiated by electricity behaviour
analysis based on a new set of intra-week groupings. The simulation
methods used for hyper-parameter optimisation, data preparation and

2 https://github.com/LingxiTang/ML-DPVSCE-Paper
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Fig. 1. Overall framework of the proposed DPVSCE model. This framework consists
of three major steps: (1) averaging intra-week net-load curves, (2) feature extraction,
and (3) ML-based capacity estimation.

sensitivity analysis are discussed in Section 3. Section 4 presents and
discusses the results obtained from the simulations conducted. Section 5
concludes this paper, by highlighting key findings and recommenda-
tions for DNOs, and listing areas for further research. For convenience,
Table 1 represents the nomenclature of this paper.

2. Model design

This section introduces the proposed DPVSCE model, by first pre-
senting the model’s overall framework before explaining the feature
extraction and ML techniques featured in the model.

2.1. Overall framework

The rationale behind the proposed model is that the installed DPVS
capacity directly determines PV generation output, and subsequently
affects the net-load. This relationship is illustrated by the following two
equations:

=cn, (€]
et =pf -], 2
where pfw is the total PV output of all solar panels connected to a

substation at the time step ¢, ¢ is the installed capacity of all solar panels
connected to a substation, #, is the generation efficiency of solar panels
connected to a substation at the time step 1, p™** is the net power load
of a substation at the time step ¢, and p{ is the power consumption
of a substation at the time step . Positive values of p' indicate
power consumption, whereas negative values of p™' indicate power
generation. Therefore, the installed DPVS capacity ¢ can theoretically
be inferred from the feeder-level net-load pfet, forming the basis of
DPVSCE based on net-load data.

Fig. 1 presents the overall framework of the proposed DPVSCE
model which takes a 24-hour feeder-level net-load curve as the input,
extracts the relevant features, and outputs the estimated installed DPVS
capacity associated with the substation feeder. This framework consists
of three major steps: (1) averaging intra-week net-load curves, (2)
feature extraction, and (3) ML-based capacity estimation.


https://github.com/LingxiTang/ML-DPVSCE-Paper
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Table 1
This table represents the nomenclature of this paper.
Nomenclature
PV Photovoltaic AE Absolute Error
DPVS Distributed photovoltaic system MAE Mean Absolute Error
DPVSCE Distributed photovoltaic system capacity estimation MAPE Mean Absolute Percentage Error
DNO Distribution network operator RMSE Root Mean Squared Error
PVGIS Photovoltaic Geographical Information System ML Machine learning
IFEEL Interpretable Feature Extraction of Electricity Loads ANN Artificial neural network
EV Electric Vehicles SAX Symbolic aggregate approximation

From Egs. (1)-(2), the following equation is obtained:
C net
=BTl 3)
My
hence, the installed DPVS capacity ¢ is obtainable from the net-load
data pP* if the power consumption p{ and generation efficiency 7, is
known.

Step 1 extracts known characteristics of p{ and #,,by sorting input
net-load curves into distinct intra-week groups with similar consump-
tion patterns and then averaging data within each group. A common
grouping found in relevant literature would be weekdays and week-
ends [19,20]. In other cases, Saturdays, Sundays and Mondays have
been separated as distinct groups [21,22]. In this paper, a unique
grouping will be tested: (a) Monday to Thursday, (b) Friday to Sat-
urday, and (c) Sunday. The reason for grouping Monday to Thursday
together is that they are typical working days which have similar
load patterns. Friday and Saturday are grouped together due to these
days being ‘out nights’, characterised by the general behaviours of
consumers returning home late on these days, reducing/delaying the
evening peak in electricity consumption. Sunday is subsequently clas-
sified into a distinct group, separate from the first two groups. The
identified intra-week groups act as features which provide profile clas-
sifications for household power consumption p;. For the generation
efficiency 7,, the main source of variation is the amount of solar
irradiation, which is largely dependent on the season, i.e. summer,
winter or transitional.® Thus, the “Season” feature (see Fig. 1) provides
information on #,.

Step 2 extracts key features from the input averaged net-load curve.
A total of 16 features were utilised as inputs for our proposed model.
Out of these input features, 14 were based on the Interpretable Feature
Extraction of Electricity Loads (IFEEL) package, a tool designed to
extract interpretable features from daily electricity load curves and
had been proven effective at detecting PV installations from intra-
day load curves [24]. Two other input features were created based
on the timestamp of the input 24-hour net-load curve, i.e., intra-week
group and season. The season feature serves to distinguish between
season-specific household load consumption behaviours. For instance,
electricity demand, in the UK, is generally higher in winter than in
summer due to residential heating requirements versus a lack of cool-
ing demand, and a steeper evening surge is usually presented during
winter, as compared to summer [25].

Step 3 maps the extracted features to the estimated DPVS capacity
through an artificial neural network (ANN), which will be presented in
Section 2.3.

2.2. Feature extraction

The feature extraction process in the model has three objectives:
(1) dimensionality reduction, i.e., removing the dimension of time, by
converting the time-series load curve into interpretable feature values,

3 The timeframes for each season are based on the Met Office’s definitions of
meteorological months [23] summer are June-August, winter are December—
February and transitional seasons of spring and autumn are Mar-May and
Sep—Nov respectively.

Table 2
Explanation of input features from IFEEL.

No. Input feature No. Input feature

1 Mean of 24-hour load curve 8 Sum of net-loads during non
kw) -business hours (kW)

2 Standard deviation of 24-hour 9 Skewness of 24-hour load curve
load curve (kW)

3 Maximum power of 24-hour 10 Kurtosis of 24-hour load curve
load curve (kW)

4 Minimum power of 24-hour 11 Mode of the five-bin histogram
load curve (kW) for a 24-hour load curve (kW)

5 Range of power, i.e., maximum 12 Longest period of successive
— minimum (kW) increase (h)

6 Percentage fraction of values 13 Longest period of successive
above mean increase above mean value (h)

7 Sum of net-loads during business 14 Number of peaks

hours, i.e., 09:00-17:00 (kW)

(2) creating typical features of consumption patterns to be learnt by the
ANN, and (3) allowing the proposed model to be applicable to input
data of any time resolution due to the removal of the time dimension.
The IFEEL package [24] extracts 14 out of 16 input features for the
proposed DPVSCE model, which are listed in Table 2. Fig. 2 shows how
the input features describe curve characteristics.

These features serve to represent principal characteristics of an
electricity load curve into distinct feature values. The details of these
features are explained below and justified in [24]:

No. 1 — 5: The first five features are basic numerical measures
commonly used in quantitative data analysis [26].

No. 6: The fraction of values above mean refers to the percentage
of values in the load curve which is larger than the average value.
This percentage is input in fractional form and thus, has a range
of 0 to 1.

No. 7 — 8: The sum of net-loads during business hours (feature
No. 7) and non-business hours (feature No. 8) are total sums of
all data points within the specified time periods, and represent
the amount of feeder-level power consumption/generation within
and outside the period from 09:00 to 17:00, respectively.

No. 9 — 10: Skewness and kurtosis measure the shape of the data
point distribution, in comparison to a normal distribution curve.
The kth standardised moment denotes the ratio of kth moment
about the mean to the kth power of the standard deviation.
Skewness and kurtosis will have k = 3 and k = 4 respectively.
Skewness measures the asymmetry of the distribution about its
mean value, for which a positive skewness value in a 24-hour
load curve means that the data is right-tailed, and the mean
value is larger than the median value, and vice versa. Kurtosis
measures the sharpness of the peak of data distribution so as
to indicate the prevalence of extreme values. A positive kurtosis
value, i.e., heavy-tailed distribution, represents a sharper peak
and fewer extreme data points, while a negative kurtosis value
represents a more rounded peak and the presence of extreme data
points. Both of these measures represent additional information
about the shape of the input load profile.

No. 11: The mode of five-bin histogram for a 24-hour load curve
is obtained by firstly dividing the range of data point values
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longest period of
successive increase (12)

>

08 range
(3)

Net load (kW)

04 \’J mean (1)
min, (4)
o2 T T Z T £z T
00 06 12 18 2
Time

longest subsequence

sum of load during
above mean (13)

business hours (7)

into five bins of the equal size, and then counting the number
of data points in each bin. The average value of the bin with
the most data points is defined as the mode which will be taken
as the input feature. For a 24-hour load curve, it is likely that
every data value is unique, and thus, also the mode value. By
counting the frequency of value ranges, rather than individual
values, feature no. 11 is more useful than the conventional mode
metric in determining the location of load curve’s mode.
* No. 12-13: The longest period of successive increase and longest
period of successive increase above mean value are self-explanatory,
in which the latter requires all data point values in the sequence
to be above the mean value. These features describe the temporal
lengths of load dips and peaks. A large value of feature no. 12
could be represent either a dip or a peak occurring over a longer
duration, while a large value of feature no. 13 would represent a
peak occurring over a longer duration.
No. 14: The number of peaks is annotated by the symbolic ag-
gregate approximation (SAX) representation technique [27]. The
SAX converts a time-series dataset into a string of letters and each
letter represents the distance of a data point from the mean. For
the detailed procedures of using the SAX representation technique
to represent the number of peaks, refer to Appendix and [24,27].

As mentioned in Section 2.1, two additional features were input
into the DPVSCE model: the intra-week group and the season (sum-
mer, winter or transition seasons) of data collection. To visualise the
consumption patterns these features represent, 24-hour net-load curves
averaged from 81 households with various PV penetration rates are pre-
sented in Fig. 3. Details of the dataset used are explained in Section 3.3
below. From Fig. 3a, the typical household electricity consumption
pattern can be observed: a dip after midnight, followed by peaks in
the morning and evening. With increasing PV penetration rates, it
can be seen from Fig. 3 that midday PV generation increases, causing
larger dips during daylight hours. Fig. 3 also presents distinct house-
hold load consumption patterns for each season and intra-week group.
Specifically, the following four common observations can be seen.

(1) With no DPVS installed, the electricity demand generally in-
creased from summer to winter through the ‘transitional’ season, due
to the increased usage of heating appliances. (2) For the intra-week
groups, a common pattern emerged during the working hours from
09:00 to 17:00 when electricity consumption decreased in the order
of Sundays, Friday-Saturdays and Monday-Thursdays. This is likely
due to residents leaving their homes for work during weekdays and
staying at home during weekends. Note that the data provided were
pre-COVID, and thus did not reflect rising levels of remote working.
(3) The sharpest gradients during the morning and evening peaks were
observed in winter, followed by the transitional seasons and summer.
The morning and evening peaks arose when residents wake up and
return home respectively. Such peaks were especially pronounced in
colder and darker seasons due to increased usage of appliances, such

.
(b) Peak-period feature extraction using SAX words

. 2. Figures depicting how specific IFEEL input features (numbered based on
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Symbolic representation using SAX (SAX word length = 24; alphabet size = 7 )
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Table 2) describe characteristics of an example net load curve [24].

Summer Mon-Thurs —— Winter Mon-Thurs —— Transition Mon-Thurs
Summer Fri-Sat Winter Fri-Sat Transition Fri-Sat
Summer Sun Winter Sun Transition Sun

35 /\\\ 30
i 20

i‘.m..//'\\
10 ———— 3
X

Time of the day

Fig. 3. 24-hour net-load curves averaged from 81 household consumption data with
PV penetration rates at (a) 0%, (b) 33%, (c) 67% and (d) 100%. The yellow, blue,
and green lines indicate the summer, winter, and transitional seasons, respectively.
The solid, dashed, and dotted lines indicate Monday-Thursday, Friday-Saturday, and
Sunday, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

as kettles and lighting. (4) the difference in evening peaks between
intra-week groups in each season was caused by the reduced evening
peaks of ‘out nights’, leading to less sharp evening peaks on Fridays
and Saturdays. Besides, evening peaks appeared later in the group of
Monday-Thursday as evening household electricity consumption only
began when residents return home from work.

Therefore, given the input features of the season and intra-week
groups, the ANN will ‘learn’ the shape of typical household load con-
sumption of the specific season and intra-week group, in addition to
their IFEEL features. For instance, the range of power load (IFEEL
feature No. 5) would be lower for Friday and Saturday, compared to
other intra-week groups within the same season due to the smaller
evening peak.

2.3. Artificial neural networks

For the proposed method, an ANN was used to map the 16 extracted
features to the estimated DPVS capacity. An ANN is an ML algorithm
which aims to learn a non-linear function from a set of input values to
output values as

O X" >Y,Vme M, 4

where f (-) is the non-linear function parameterised by the ANN, X" is
the set of input samples of the feature m € M, M is the feature set, and
Y is the set of output values, i.e., training labels. Each set of the input
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feature m contains I samples and each sample is denoted as X;". These
samples make up the training dataset, which can be described as

D:{X"Y}Viel,meM, (5)

where D is the training dataset. With known training labels, the ANN
serves as a supervised learning algorithm to predict the training labels.

The basic structure of an ANN consists of three main components:
the input layer, hidden layer(s), and output layer. The input layer
contains a set of neurons, each representing an input feature value.
Each hidden layer contains a set of neurons which converts the values
in the previous layer by the following function

N
=0 w, - f+b,) (6)
n=1

where [ and f,iln are the output and input of the neuron » in each
hidden layer respectively, ¢ is the non-linear activation function, w, is
the weight of the neuron » in each hidden layer and b, is the bias term.
The output layer has a single neuron which also performs the operation
shown in Eq. (6), without the activation function. In an ANN, the flow
of information from the input layer to the output layer is defined as
forward propagation. The weight values of an ANN are determined by
backpropagation [28], through which a loss function, which measures
the error between the predicted value and the training label, is min-
imised by propagating backwards to update weight parameters over
defined iterations.

The advantages of using an ANN in the proposed research can
be summarised as (1) ANNs have the ability to learn complex non-
linear models and represent functions with any form of shape [29];
(2) ANNs are able to learn in real-time with updated data; (3) ANNs
are less susceptible to the issue of local minimums compared to other
ML algorithms, due to the low probability of having all input features
being at their optimal values at a single point in the cost function
space [30]. On the contrary, the disadvantages of ANNs are that (1)
the randomness of weight initialisation would lead to inconsistent
prediction performances; (2) ANNs are sensitive to the scaling of input
feature values; (3) ANNs require manual tuning of hyper-parameters.
These disadvantages will be addressed in the simulation methods, as
explained in the following section.

3. Simulation methods

This section explains the methods, dataset and evaluation met-
rics used for ANN hyper-parameter optimisation and model sensitivity
analysis.

3.1. Hyper-parameter optimisation

The hyper-parameter optimisation process aims to tune the ANN
towards the best prediction performance. The activation function, num-
ber of hidden layers, and the optimiser* were selected based on quali-
tative reasoning, while the number of hidden neurons, initial learning
rate,® L2 regularisation value,® and maximum iterations were tuned by
quantitative analysis.

The ReLU function was selected as the activation function due to its
preservation of linear properties which generalise well and simplifies
gradient-based optimisation [31]. Next, the number of hidden layers
was fixed at two, since two hidden layers allows the model to represent
a function of any shape, and there is no theoretical reason to use any

4 This hyper-parameter determines how weight parameters are updated at
each iteration.

5 This hyper-parameter determines how weight parameters are updated at
each iteration.

6 This hyper-parameter prevents model overfitting by suppressing the size
of weight parameters.
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more hidden layers [29]. In fact, increasing the number of hidden layers
increases the risk of undesirable over-fitting [31].

The Adam solver [32] was used to optimise the weights of the
ANN as it has little memory requirement for first-order gradients and is
compatible with non-stationary and sparse gradients. The key feature
of the Adam solver is that it uses the exponential moving average of
the gradient and the squared gradient, instead of the gradient itself, to
update the weight parameters. This quickens convergence and smooths
the gradient descent process [32]. In addition, at each iteration, the
Adam solver calculates the gradient-related values using random sub-
samples of the provided dataset, instead of the entire dataset, thus
further speeding up the computation process.

For quantitatively optimised hyper-parameters, the number of neu-
rons in each hidden layer was optimised by finding a trade-off between
the computational time and prediction accuracy. Increasing the number
of hidden neurons enables a higher representational capacity of the
ANN, potentially improving prediction accuracy, but also increases
the computational time exponentially. Initial learning rate and L2
regularisation value were optimised using the exhaustive grid search
technique [33], until the same set of values appeared twice in a
row. The number of maximum iterations was optimised by observing
root mean squared error (RMSE) values from both training and val-
idation sets, and a divergence of the two values would indicate the
model overfitting to the training set [34], and thus poor generalisation
performance.

3.2. Sensitivity analysis

This subsection explains the methods used to analyse the proposed
DPVSCE model’s sensitivity to three variables: (1) the temporal char-
acteristic of data collection, (2) the number of households served by
a substation, and (3) the proportion of PV-equipped properties. The
sensitivity to these variables was also examined under various PV
penetration rates. Analysis of the first variable aimed to decipher the
effects of using data from specific seasons or intra-week groups, and
it was also crucial to understand how the model’s performance would
change with respect to the other two variables, since they are common
differences between different substation feeders.

3.2.1. Temporal characteristic of data collection

To test the model’s sensitivity to the temporal characteristic of data
collection, the estimation accuracy was compared between only using
data samples of each season or each intra-week group.

For the season-based analysis, the base dataset was filtered based on
their season. For example, for summer, only the data samples from sum-
mer (i.e., season input feature value = 1) were used. After obtaining the
filtered data samples, the filtered training dataset was standardised and
the scaling (mean and standard deviation of each feature) was applied
to the testing dataset. This was to ensure that there was no information
leak from the testing dataset to the training dataset, which might have
resulted in the ANN being biased towards the testing dataset, and thus
produce unrepresentative results. Using these standardised datasets, the
ANN, with the optimal hyper-parameters obtained earlier, was trained
and tested for its prediction performance.

Similarly, for intra-week groups, the process was analogous to the
season-based analysis above, except instead of filtering the base dataset
based on seasons, samples from specific intra-week groups were used.
This intra-week group analysis served to test the effectiveness of the
proposed intra-week groups in extracting knowledge on household load
consumption behaviours.

3.2.2. PV penetration rate

The average and standard deviation of prediction RMSE at each
true DPVSC value were recorded and plotted for each season and intra-
week group. This created a residual plot which depicts the variation
of prediction performance in response to varying PV penetration rates.
This tested the model’s prediction performance for substation feed-
ers which serve residential neighbourhoods with different amounts of
DPVS installed.
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3.2.3. Number of households

The present research also assessed the model’s effectiveness for
substation feeders which serve a different number of households. The
pseudocode for the sensitivity analysis to the number of households
is shown in Algorithm 1. In this research, the number of household
properties tested was from 20 to 80, in multiples of 10, and the tested
number of DPVS installed was from zero to the total number of house-
hold properties. This process was also repeated using only data samples
of specific seasons and of specific intra-week groups respectively. Ul-
timately, this provided a comprehensive overview of the proposed
algorithm’s performance in terms of four variables: PV penetration rate,
number of household properties, the use of only season-specific data
samples, and the use of only intra-week group-specific data samples.

Algorithm 1 Sensitivity analysis to the number of household properties

input: 81 individual household load consumption datasets (annual),
PV generation dataset (annual)
for no. of household properties (20 to 80, in multiples of 10) do
for no. of DPVS installed (0 to no. of household properties): do
Randomly select the specified number of individual household
load consumption datasets
Add PV generation of a specific number of installed DPVS to
load consumption
Obtain annual feeder-level net-load dataset
Extract averaged 24-hour net-load datasets
Extract IFEEL input features
end for
From for loop above, obtain a base dataset of samples
Split dataset into training and testing datasets
Select data samples based on season or intra-week group (if
necessary)
Standardise training and testing datasets
Train ANN using training dataset
Test ANN using testing dataset and record RMSE of estimations
end for
output: mxn array of RMSE, where m is the number of households and
n is PV penetration rate

3.3. Simulation setup

The proposed simulation required a dataset which was derived
from two components, i.e., household load consumption data and PV
generation data. The hourly household load consumption data were
collected from 162 individual households based in central London,
for the entire year of 2013. The PV generation data were obtained
from the Photovoltaic Geographical Information System (PVGIS) [35]
with manually-defined parameters shown in Table 3. The SARAH solar
radiation database was used to generate the PV generation data as it
was the only database on PVGIS which covered the UK. The azimuth
angles chosen reflect south-facing PV panels, since these produce higher
PV output in the Northern Hemisphere. Since a single substation feeder
typically serves a maximum of 75 households [36], the maximum
number of households per feeder was set as 81, so that the 162-
household load data could be used to represent two separate sets of
the substation feeder load. With the average residential PV capacity
at 4.2 kWp [37], the total capacity of 81 residential PV systems
would be 340.2 kWp, which was set as the peak capacity for the PV
generation dataset. The published ML-ready dataset, as mentioned in
Section 1, thus contains samples representing 81-household substations
with varying PV penetration rate.

The proposed model was written largely using the scikit-learn ML
package [38]. The data were split as 70% for the training set, 20% for
the validation set, and 10% for the testing set.
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Table 3
Manually defined parameters for producing PV generation dataset.

Location Year Azimuth Peak Power
City of Westminster 2013 45°/0°/-45° 340.2 kWp
PV Technology Mounting Roof Slope Database
Crystalline Silicon Fixed 30° PVGIS-SARAH

The RMSE was used as the metric of the learning loss as

)

Considering possible inconsistencies and randomness, the simula-
tion was repeated five times and the average performance was mea-
sured using the three metrics. In addition to the RMSE, two other
performance metrics were used: mean absolute error (MAE), which is
represented by Eq. (8), and standard deviation of absolute error (AE).

N
1 .
N’;|yi_yi|‘ ®

The MAE served as an additional performance metric, where high
error values are not penalised as much as with the RMSE. The standard
deviation of AE measures the spread of the predictions’ absolute error.
Both metrics reflect the preciseness of predictions: a large difference
between MAE and RMSE indicates the presence of substantial error
values, while a high standard deviation of AE indicates a large range of
absolute error values. Note that an inaccurate (high MAE) but precise
(low standard deviation of AE) algorithm would still be useful for
DPVSCE as the true PV capacity value can be reliably inferred from
the estimated value via the known consistent error value.

4. Simulation results

In this section, the results of performed simulations are presented.
The results of the hyper-parameter optimisation process are first pre-
sented to explain the rationale behind each optimal hyper-parameter
value. Then, the results of sensitivity analysis are presented and their
implications for real-world application of the proposed DPVSCE method
are discussed.

4.1. Evaluation of hyper-parameters

The evaluation result for the number of neurons in each hidden
layer is presented in Fig. 4 which illustrates the average training time
and RMSE against the number of neurons in each hidden layer. The
standard deviation of training time and RMSE are also plotted as a
range around the average values. It can be seen that the standard
deviation of both training time and RMSE are within a small range
for each number of hidden neurons. The learning accuracy increases
with the cost of increased training time as the number of hidden
neurons increases. In particular, when the number of hidden neurons
exceeded 300 per hidden layer, the training time increased drastically
with minimal improvement in prediction accuracy. Hence, the number
of hidden neurons is selected at a point where training time remained
at 150 s before rising sharply and the RMSE value began to flatten at
26 kW, i.e., 3000 neurons per hidden layer.

The evaluation results for optimising the initial learning rate and
L2 regularisation value are presented in Table 4, where the tested
hyper-parameter values are listed and the best performing values are
highlighted in the bold font. Note that the initial learning rate has al-
ready been optimised by the second iteration since the best-performing
value had remained constant for two iterations. Despite this, a third
iteration was performed as the L2 regularisation value was still being
optimised. This additional iteration further corroborated the optimum
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Fig. 4. Average training time and RMSE against the number of hidden neurons. The
blue line is the average RMSE and the red line is the training time. The standard
deviation is depicted as a range around the average values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 4
Evaluation of the initial learning rate and L2 regularisation value with the progression
of iterative optimisation, with the best performing value in bold.

Iteration Initial learning rate L2 regularisation (in 107°)
1 0.01, 0.001, 0.0001 100, 10, 1
2 0.1, 0.01, 0.005 51,01
3 0.05, 0.01, 0.075 7.5, 5, 2.5
a5
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Fig. 5. Training and validation RMSE against maximum training iterations. The blue
line is the validation RMSE and the red line is the training RMSE. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

of 0.01 for the initial learning rate and thus, was selected with 5 x 10>
as the optimal L2 regularisation value.

The final hyper-parameter to be optimised was the maximum num-
ber of iterations during the ANN training process. Fig. 5 shows the
average training and validation RMSE against the maximum number
of iterations. As expected, the ANN model performed better on the
training samples than the validation samples, given that it was trained
using the latter, thus, it has learned the relationship between the input
features and the output variable. Prediction accuracy was also observed
to decrease in a logarithmic fashion as maximum iterations increased,
although it stagnated at an RMSE value of roughly 15 kW at more than
210 max. iterations. This result makes any more iterations unnecessary.

To make a more informed decision on the maximum number of
iterations, the training duration was taken into consideration. For the
assessment of training duration, the mean and standard deviation of the
training time was plotted against the maximum number of iterations
in Fig. 6. The aim was to minimise both RMSE and training time, with
priority placed on minimising the former. It can be observed from Fig. 6
that the training time stayed within the range of 75 to 100 s when the
maximum number of iterations was between 110 and 400. Thus, based
on the minimum validation RMSE value, the maximum iterations was
retained at 210.
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Fig. 6. Average training time against maximum training iterations. The blue line is
the average training time, with the standard deviation plotted as a range around the
average values. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 5
Finalised hyper-parameter used on artificial neural networks for the
sensitivity analysis.

Hyper-parameter Value
Activation Function ReLU
Back-propagation Method Adam Solver
Number of Hidden Layers 2

Number of Hidden Neurons (in Each Layer) 300

Initial Learning Rate 0.01

L2 Regularisation Parameter (Alpha) 5x 107°
Maximum Iterations 210

Table 6
Estimation performances by prediction models using only data samples from specific
seasons.

RMSE (kW) MAE (kW) Std. of AE (kW)
Summer 9.83 7.43 6.42
Winter 18.40 13.70 12.30
Transitional 13.10 8.33 10.10
All Seasons 12.00 7.87 9.08

Therefore, the optimal ANN hyper-parameters are summarised in
Table 5. These custom hyper-parameter values were used for the subse-
quent experiments, with all other unmentioned hyper-parameters fixed
at the default values provided by the scikit-learn package [32].

4.2. Results of sensitivity analysis

4.2.1. Sensitivity to seasons

For the sensitivity analysis to seasons, only data samples from
specific seasons (i.e., summer, winter and the transitional seasons) were
used in training each prediction model. The average RMSE, MAE, and
standard deviation of AE for each circumstance are shown in Table 6.

Two key observations can be made from Table 6: (1) Using only
data samples based in the winter months produced the worst results
across all three metrics, while the other three seasonal groups’ perfor-
mances were relatively close to one another. (2) Comparing between
summer, transitional seasons, and all seasons, the RMSE and standard
deviation of AE increased, while the MAE decreased in the order of the
transitional seasons, all seasons, and summer. Using only data samples
from summer produced the most accurate predictions, with a cost of
reduced preciseness and vice versa for the transitional seasons whereas
using data samples across all four seasons achieved a balance between
the two.

The first observation can be explained by the low amounts of PV
generation during winter, resulting in less obvious distinctions between
the net-load curves of different installed PV capacities. This is reflected
in Fig. 3, where the net-load behaviours based in winter changed
the least with increasing PV penetration rate. These characteristics



L. Tang et al. Sustainable Energy, Grids and Networks 39 (2024) 101396
Summer Winter Transition

50
40
30

g 10 W

< Monday - Thursday  Friday - Saturday Sunday All

g 50

= 40

L 30
. WW Jk/\N‘MAWww/
10 \/wmww

0 20 40 60 80 100 O 20 40 60 80

100 0 20 40 60 80

100 0 20 40 60 80 100

Percentage of properties with installed PV (%)

Fig. 7. Average RMSE of estimations against PV penetration rate using all data samples and data samples from specific seasons and intra-week groups, with standard deviation

depicted as a range around the average values.

Table 7
Estimation performances based on different metrics using only data samples from
specific intra-week groups.

Intra-week group RMSE (kW) MAE (kW) Std. of AE (kW)
Mon-Thurs (A) 9.50 7.23 6.16

Fri-Sat (B) 13.80 9.67 9.79

Sun (C) 15.20 9.51 11.90

All groups 13.00 8.90 9.51

imply a poorer prediction performance during winter. Thus, DNOs are
strongly encouraged to have a robust winter data repository to ensure
an accurate and precise ANN for winter predictions.

It is important to note that there were roughly twice as many data
samples from transitional seasons (6 months of data) as that from either
summer or winter (3 months of data) individually. This difference in
the amount of training data could have allowed the ANN to better
predict the relationship between the input and output variables. To
test this hypothesis, the experiment process was repeated using a
half of the training and validation data samples (selected randomly)
from transitional seasons and the performance results were 17.50 kW,
10.80 kW, and 11.90 kW for RMSE, MAE, and standard deviation of AE
respectively, thus confirming the aforementioned hypothesis.

With equal number of training and testing samples, the predic-
tion performance of a transitional-season model is now closer to that
of a winter model, supporting the theory that the difference in PV
generation between seasons causes the difference in the estimation
performance. This also suggests that increasing the number of data sam-
ples used for training can greatly improve the prediction performance,
which will be especially useful for predictions in winter. As such, DNOs
may wish to expand the storage and maintenance capabilities of a large
training data repository or collaborate with each other to share relevant
feeder level net-load data. As mentioned earlier, more focus can be
placed on winter data storage as winter-based prediction performance
lag behind summer. In fact, the results showed that using only summer-
based data produces comparable performances to using the data from
all seasons, despite requiring only a third of data quantity.

4.2.2. Sensitivity to intra-week groups

Further analysis only used data samples from specific intra-week
groups. The average RMSE, MAE, and standard deviation of AE of each
circumstance are shown in Table 7.

For simplicity, the intra-week groups will be referred to by the
bracketed letters shown in Table 7 (“A” — “C”). Two key observations
can be made from the results: (1) Group A produced the best results
across all 3 metrics, compared to using all samples, as presented in both

Tables 6 and 7, (2) Comparing between the three intra-week groups,
performance metric values generally increased, reflecting a reduction
in both accuracy and precision, in the order of Groups A, B and C.
The first observation leads to the straightforward implication that the
priority should be placed on utilising feeder-level net-load data from
Monday to Thursday for model tuning and predictions. Also, to further
improve prediction performance on other intra-week groups, storage
and maintenance of a larger data repository for Groups B and C may
be required for model training.

There are two hypotheses which could explain the second ob-
servation. The most straightforward explanation would be that the
household consumption behaviour was the most consistent during the
days of Group A, followed by Groups B and C, which allowed the
differences in net-load curve to be solely based on differences in DPVSC
and PV generation. The second hypothesis is that the amount of data
which constitutes each data sample affects prediction performance.
Specifically, IFEEL features obtained from the Group A net-load curve
were the average of four days’ worth of data, while the Group B net-
load curve was the average of only two days’ worth of data and just one
day for the Group C. Considering this factor, the results could reflect the
effectiveness of averaging 24-hour net-load curves to reduce the daily
variability of weather conditions.

To further test this hypothesis, more in-depth research could be
conducted by maintaining the intra-week group variable constant and
comparing prediction performance when averaged net-load curves are
obtained from different quantities of data. For example, three IFEEL
datasets could be created using IFEEL features extracted from the Group
A averaged net-load curves of four, eight, and 12 days respectively.
Prediction performance would then be assessed for these three circum-
stances. This analysis should provide more conclusive results on the
effectiveness of removing noise in the data by taking the average of
more 24-hour net-load datasets.

4.2.3. Sensitivity to PV penetration rate

The relationship between PV penetration rate and prediction error,
when using only data samples of specific seasonal or intra-week groups,
is shown in Fig. 7. Three key observations can be obtained: (1) RMSE
values for all plots tend to be higher and more inconsistent at PV pen-
etration rates below 50%, compared to above 50%. (2) Large increases
in RMSE values tend to appear at 100% PV penetration rates and (3)
the results presented in Tables 6 and 7 are consistent with this plot,
where a lower curve on the y-axis implies more accurate predictions
and the presence of sharp spikes and dips implies imprecise predictions.
For example, comparing between summer and the transitional seasons
plots in Fig. 7, the RMSE values for summer were generally lower
than that for transitional seasons, but contained more extreme values,
representing its higher accuracy but lower precision.
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indicating the season or intra-week group of the data samples used.

The first observation could be explained with the low PV generation
at low PV penetration rates. With lower PV generation, it was easier
for inconsistent weather patterns or load consumption behaviours to
be mistaken by the algorithm as changes in installed DPVS capacity.
For example, the holiday season could lead to a significant spike in
household load consumption which appears similar to a reduction in
DPVSC at low PV capacities, leading the algorithm to underestimate
the PV capacity. At high PV capacities, however, such a consumption
spike might be minimal compared to the amount of PV generated, and
thus would not be detected by the DPVSCE algorithm.

With this result, DNOs may wish to prioritise employing the pro-
posed DPVSCE method on newer estates with higher PV penetration
rates for more accurate predictions, given that only 4.1% of UK house-
holds having installed solar panels in 2023 [39]. Otherwise, obtaining
an initial estimate of the PV penetration rate may be useful in deter-
mining the expected error range to decide if the proposed method’s
estimation can be utilised. This initial estimate could be performed
either using satellite imagery or in-person surveying, though the latter
will be significantly more resource-intensive.

From the second observation, the next step is to understand if
the highly erroneous predictions are specific to a true PV capacity of
340.2 kW (see Section 3.3) or if they are specific to the condition of a
100% PV penetration rate. This is explored in the next section where
the prediction performance of a varying number of households was

measured. The number of households results in different PV capacities
at the 100% PV penetration rate.

4.2.4. Sensitivity to the number of households

The effects of number of households and PV penetration rate on
prediction error are presented in Fig. 8, with each heatmap representing
only data samples from specific seasons or intra-week groups. Note that
the colour scale of each heatmap is constant, with black corresponding
to a value of 25 kW, warmer colours being more than 25 kW and cooler
colours being less than 25 kW. Each heatmap also has a colour scale
which indicates the range of values present in the heatmap. Three key
features can be observed from Fig. 8, which are common patterns for
all sub-figures: (1) The phenomenon of highly erroneous predictions
at near 100% PV penetration is observed across different numbers of
households. Combined with high RMSE values generally seen at near
0% PV penetration, this can be visualised as a quadratic curve when
plotting RMSE against PV penetration rate (see Fig. 7); (2) There is a
general trend of increasing RMSE values as the number of households
increases; (3) Despite the trend mentioned previously, the RMSE drops
sharply between 70 and 80 households served by the substation feeder.

The first observation can be interpreted as a non-linear residual plot,
meaning that the relationship between predicted installed PV capacity
and PV penetration rate has not been properly detected by the model.
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The solution usually entails either transforming an existing input fea-
ture or adding a “missing” feature [40]. A possible input feature would
be the number of households or the theoretical maximum DPVSC based
on the number of households. Regardless, a high PV penetration rate
at more than 80% is unrealistic as the costs of integrating that much
DPVS into the grid are predicted to suppress the PV penetration to
roughly 60% [41]. Thus, this observed limitation of the proposed model
will unlikely become a concern in real-life applications. The second
observation could be explained by a possible cause-effect relationship
between the true PV capacity and margin of error, where an increase in
the former leads to an increase in the latter. To test this hypothesis, the
mean absolute percentage error (MAPE) [42] is plotted as a heatmap in
Fig. 9. The colour scale is constant where black represents the value of
1.0, with warmer colours representing values more than 1.0 and cooler
colours representing values less than 1.0.

It can be seen that the error-to-true value ratio stayed relatively
constant for all numbers of households at the PV penetration rate of
40% and above, while at below 40% PV penetration, MAPE tends to
increase with a decreasing number of households and decreasing PV
penetration rate. With homogeneous MAPE values at about 0.1 when
using data from specific seasons or intra-week groups (see Fig. 9) at
higher PV penetration rates, this provides a useful guide for expected
error margins in predictions. Based on this guide and acceptable error
margins, DNOs can then decide on the suitable substations to use
this method on, depending on the substations’ estimated number of
households and PV penetration rates. However, high MAPE values
at lower PV penetration rates mean DNOs cannot solely rely on the
proposed method for DPVSCE. Instead, the proposed method can serve
as an additional estimation to other DPVSCE methods, such as satellite
imagery-based methods or manual checking of installed solar panels.

Finally, the third observation is likely to be the result of overfitting
the hyper-parameters to the specific circumstance of 80 households,
causing the algorithm to perform poorly when the number of house-
holds is different. To tackle this, DNOs can employ the proposed
method by either training separate predictors for feeders serving a vary-
ing number of households, or including data samples corresponding
to various numbers of households in the training process, to create a
predictor which is able to generalise well.

5. Discussion

In this paper, extensive analysis was conducted to assess the pro-
posed method’s sensitivity to changing circumstances, this section sum-
marises the few key takeaways to note.

Firstly, the amount of data will be crucial to improving prediction
performance, with more training data samples leading to more accurate
and precise estimations. In this case, doubling the number of training
data samples (averaged intra-week net-load curve) from about 6396 to
12,792 saw a reduction in average RMSE by 25.1% from 17.5 kW to
13.1 kW for the model trained using only transitional season data. To
put this into perspective, this error reduction is larger than the average
residential PV system capacity of 4.2 kWp [37]. DNOs can use this
insight to perform relevant cost benefit analysis to determine if the
error reduction justifies the costs of storing additional data.

Secondly, this paper has shown that there is merit in developing sep-
arate prediction models for specific time periods. For example, despite
only using about 6396 training samples for the summer-based model,
compared to 25,584 samples for the model trained with all data, the
former performed comparably well with the latter, with RMSE values
of 9.83 kW and 12.0 kW respectively, and MAE values of 7.43 kW and
7.87 kW respectively. Such a model would have the dual advantage of
being accurate and requiring little data. Similarly, in terms of models
trained and tested exclusively using specific intra-week groups, using
data from Mondays to Thursdays performed the best with an average
RMSE of 9.50 kW, followed by Fridays to Saturdays with 13.8 kW
and Sundays with 15.2 kW. These results could be caused by either
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consumers exhibiting the most predictable consumption patterns from
Mondays to Thursdays, the effectiveness of taking the average daily net-
load curve of a longer time-series, or both. The exact contributing factor
could be determined through further research.

Finally, further efforts in performance improvements should fo-
cus on making estimations for substations serving fewer households,
where higher percentage errors were observed. Using the summer-
based model as an example, MAPE values only stabilised at roughly
0.1 at 60% PV penetration for 20 households, while the MAPE value
for 70 households dropped much more rapidly as PV penetration rate
increased. Thus, DNOs should factor the number of households into
account when performing ML-based DPVSCE, noting higher error mar-
gins at fewer number of households. Regardless, this result serves as an
useful error margin guide for DNOs to make more informed decisions
on the utility of the proposed DPVSCE method based on the estimated
number of households and PV penetration rate served by the substation
feeder.

5.1. Limitations

In conjunction with the experiment results, it is crucial for stake-
holders to be aware of the limitations of this paper’s methodology.

Firstly, in the proposed method, each data sample only contains data
from within one week, future research can be conducted to assess the
effectiveness of removing net-load curve noise by taking the average
of data across multiple weeks. If using more data to obtain averaged
net-load curves is indeed more effective, note that this will incur the
cost of reduced training samples, given that there is a constant amount
of time-series data available. This cost might, in turn, lead to worsened
prediction performance. Thus, this leads to a second potential research
area of exploring the trade-off between the number of training samples
and the amount of data used per sample.

Next, the rising popularity of residential energy storage systems [43]
will lead to significant changes in net-load curve behaviour due to the
load shifting effects of the battery charging during peak PV production
and battery discharging during peak electricity consumption [44].
Conversely, with huge growth in the electric vehicle (EV) market [45],
this will further increase evening peak load when residents return home
to charge their EVs [46]. Thus, there will be a need for further research
in updating the proposed DPVSCE method to incorporate the effects
of behind-the-meter energy storage and EV charging when analysing
feeder net-load curves.

Also, the data used in this research was from before the COVID-19
pandemic, and the lockdown and subsequent transition to remote work-
ing have changed residential electricity consumption patterns, most
notably a decrease in overall demand and a reduction in morning and
evening peaks [47-49]. Tuning the model to changes particular during
the COVID-19 pandemic will be a crucial area for future explorations.

Finally, the sensitive nature of load consumption data meant that
commercial-related limitations had rendered it difficult to source for
ground truth data which, in this case, is real substation load data with
known amount of installed DPVS capacity. As such, this paper does not
contain assessment of the proposed method based solely on real life
data. DNOs will need to assess the trained model with their own ground
truth data.

6. Conclusion

With behind-the-meter DPVS in the UK having more than dou-
bled over the last decade, this calls for an increasing need for up-
dated information on installed DPVS capacity to ensure the continued
smooth operations of the power networks. However, currently re-
searched DPVSCE methods face a major limitation of having extensive
data requirements, whether they are satellite images, household-level
net-load datasets, or weather data. The proposed method developed
in this paper overcomes this limitation by utilising a newly proposed
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intra-week demand grouping and employing the data pre-processing
technique of extracting time-invariant IFEEL [24] features from av-
eraged 24-hour net-load curves. This model is highly accessible for
DNOs or other relevant stakeholders since it only requires feeder net-
load consumption data (with no specific time resolution requirement)
as input to perform DPVSCE. The proposed model also allows DNOs
to be self-sufficient in terms of the required data to perform DPVSCE,
by negating the need for third-party data such as satellite imagery or
weather data.

In addition to making available an ML-ready dataset representing
substations with varying PV penetration rate, this paper also con-
tributes by conducting a holistic assessment of the deep neural network
as a tool for estimating installed DPVS capacity linked to a substation.
This assessment involves testing model estimation accuracy and pre-
cision, based on 3 different metrics: root mean squared error, mean
absolute error and mean absolute percentage error, in response to
varying data collection time periods, number of households linked
to a substation and percentage of households with installed PV (PV
penetration rate). The sensitivity analysis revealed that operating the
model exclusively in summer can produce more accurate estimations
with less training data, providing an 18.1% improvement in accuracy
while using only a-third of the data volume compared to an all-year
model. Similarly, exclusive model operation from Mondays to Thurs-
days reduced estimation error by 26.9%. Ultimately, improved DPVSCE
capabilities will enable cost savings related to data acquisition and
storage, whilst providing crucial insights for DNOs to maintain safe and
efficient operations of electricity distribution systems in the midst of a
changing electricity generation landscape.
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Appendix. Symbolic aggregate approximation

The SAX consists of three procedures: (1) Z-score normalisation, (2)
piecewise aggregate approximation, and (3) discrete representation,
which is explained as follows.

First, the time-series dataset is standardised using Z-score normali-
sation as

(A1)

where z, is the normalised data point at the time step ¢, x, is the original
data point at the time step ¢, x is the mean of the dataset, and o is the
standard deviation of all data points.

Second, the normalised time-series dataset, denoted as Z, will be
shortened into a time-series of N values, denoted as Zy,,,,. This is done
by dividing Z into N sub-sequences of equal lengths and extracting the
mean value of each-subsequence.

Third, Z,,,,, is converted into a string of N letters, with each letter
representing a range with equal probability in the normal distribution.

In the context of this research, N is set as 7, i.e., the letters from ‘a’
to ‘g’, and the letter ‘g’ represents the peaks.
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