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ABSTRACT
There has been a rapid evolution of tree-based ensemble algo-
rithms which have outperformed deep learning in several studies, 
thus emerging as a competitive solution for many applications. In 
this study, ten tree-based ensemble algorithms (random forest, 
bagging meta-estimator, adaptive boosting (AdaBoost), gradient 
boosting machine (GBM), extreme gradient boosting (XGBoost), 
light gradient boosting (LightGBM), histogram-based GBM, catego-
rical boosting (CatBoost), natural gradient boosting (NGBoost), and 
the regularised greedy forest (RGF)) were comparatively evaluated 
for the enhancement of Copernicus digital elevation model (DEM) 
in an agricultural landscape. The enhancement methodology com-
bines elevation and terrain parameters alignment, with feature- 
level fusion into a DEM enhancement workflow. The training data-
set is comprised of eight DEM-derived predictor variables, and the 
target variable (elevation error). In terms of root mean square error 
(RMSE) reduction, the best enhancements were achieved by GBM, 
random forest and the regularised greedy forest at the first, second 
and third implementation sites respectively. The computational 
time for training LightGBM was nearly five-hundred times faster 
than NGBoost, and the speed of LightGBM was closely matched by 
the histogram-based GBM. Our results provide a knowledge base 
for other researchers to focus their optimisation strategies on the 
most promising algorithms.
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1. Introduction

Several studies have been devoted to the enhancement of satellite-derived digital elevation 
models (DEMs). These wide-area DEMs cover entire states or continents and are usually 
supplied in the standard 2.5-dimension digital raster format (Schindler et al. 2011). They are 
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produced by a variety of methods (e.g. laser scanning, photogrammetric processing of aerial 
and satellite images, and synthetic aperture radar interferometry). DEMs have numerous 
applications in environmental modelling (Olusina and Okolie 2018), and their accuracies are 
influenced by several factors including the prevailing land cover and terrain irregularities, 
source data attributes, sensor distortions, and errors inherent in the DEM production 
methods (Okolie and Smit 2022). These errors compromise their quality and adequacy for 
hydrological and environmental applications (e.g. flood and watershed modelling) where 
precise and accurate terrain information is needed. Consequently, the development of 
methods for the enhancement of global DEMs has become an active area of research. By 
analysing the relationship between vertical accuracy and land cover or terrain parameters, 
the vertical error can be modelled and minimised. Consequently, several studies have 
emerged on DEM enhancement using a variety of methods (e.g. Pakoksung and Takagi  
2016, Bagheri et al. 2018, Olajubu et al. 2021, Preety et al. 2022). Generally, these enhance-
ments improve the DEMs through the reduction of the vertical bias or error.

Machine learning techniques are increasingly being applied for DEM enhancement. 
Table 1 presents an overview of previous studies that have applied machine learning for 
DEM enhancement. Wendi et al. (2016) used an artificial neural network (ANN) to enhance 
the accuracy of the 90 m Shuttle Radar Topography Mission (SRTM) DEM. The ANN 
exploited the interdependence between the DEM errors and satellite imagery spectral 
signatures for various land cover. When compared with a reference DEM, the enhance-
ment led to a root mean square error (RMSE) reduction of e68% (from 13.9 m to 4.4 m) 
and , 52% (from 14.2 m to 6.7 m) at two separate sites. In another study, Kulp and Strauss 
(2018) incorporated additional variables into an ANN such as slope, neighbourhood 
elevation values, vegetation cover indices, population density and local SRTM deviations. 
In their study, training, validation and testing data were built at sites with known actual 
SRTM error in coastal areas of the United States (US) and Australia. The performance 
assessment proceeded with US and Australia testing sets, as well as global ICESat 
measurements. The adjustment system reduced the mean vertical bias in the coastal US 
from 3.67 m to less than 0.01 m, and in Australia from 2.49 m to 0.11 m. RMSE was cut by 
roughly one-half at both locations, from 5.36 m to 2.39 m in the US, and from 4.15 m to 
2.46 m in Australia. With reference to Ice, Cloud, and land Elevation Satellite (ICESat) data, 

Table 1. Overview of previous machine learning methods used for DEM enhancement.
Reference Name of machine learning algorithm

Kasi et al. (2020) Genetic programming (GP), artificial neural network (ANN)
Chen et al. (2020) Generalised regression neural network (GRNN), random forest (RF), and back propagation 

neural network (BPNN)
Ma et al. (2020) BPNN
Salah (2021) ANN
Kim et al. (2019) ANN
Hu and Ji (2022) BPNN, RF, gradient tree lifting and ensemble learning
Wendi et al. (2016) Feed forward neural network (FNN)
Hawker et al. (2022) RF
Girohi and Bhardwaj 

(2022)
FNN

Kim et al. (2021) ANN
Kim et al. (2020) ANN
Liu et al. (2021) RF
Kulp and Strauss 

(2018)
ANN
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they estimated the global bias of SRTM to fall from 1.88 m to −0.29 m. Kulp and Strauss 
(2018) went on to posit that their method could be effectively applied to all land cover 
types, including dense urban development. In another study, Kim et al. (2020) attempted 
to cater for the peculiarities of urban areas in SRTM DEM improvement by incorporating 
building footprints along with multispectral imagery, SRTM DEM and a reference DEM into 
an ANN system. The performance of the DEM improvement scheme was tested over two 
dense urban cities in Nice (France) and Singapore. The improved SRTM DEM showed 
significantly better results than the original SRTM DEM, with about 38% RMSE reduction.

Tree-based ensemble learning algorithms have received significant attention as one of 
the most reliable and broadly applicable classes of machine learning approaches. These 
algorithms present several advantages such as interpretability, less data preparation, versa-
tility, and the ability to handle non-linear and complex relationships. Decision trees provide 
a straightforward interpretation and understanding of the relationships between objects at 
different levels of detail (Miao et al. 2012). Thus, it is easier to interpret the logical rules 
followed by a decision tree than for example, the numeric weights of the connections 
between the nodes in a neural network (Kotsiantis 2013). Decision trees have a high 
tolerance for multicollinearity (Climent et al. 2019, Han et al. 2019, Pham and Ho 2021). If 
there are highly correlated features or variables, decision trees are inherently able to choose 
only one of the features when deciding upon a split (Climent et al. 2019). Other advantages 
of decision trees include: (i) automatic consideration of potential interactive effects among 
predictors, automatic exclusion of irrelevant features, and intuitive guidance for application 
of the results in decision making (e.g. cut-off points and ranked priorities for predictor 
variables) (Han et al. 2019). There has been a rapid adoption of tree-based supervised 
machine learning algorithms for addressing challenges in the remote sensing and geospatial 
science community, e.g. landslide susceptibility mapping (Kavzoglu and Teke 2022), map-
ping of glacial lakes, geological mapping (Albert and Ammar 2021), mapping tree canopy 
cover and aboveground biomass (Karlson et al. 2015), geoscience data analysis and model-
ling (Talebi et al. 2022), and wetland classification. Furthermore, gradient-boosted decision 
trees (GBDTs) have emerged as a winning solution and have outperformed deep learning 
algorithms in some studies (e.g. Kadra et al. 2021, Borisov et al. 2022, Shwartz-Ziv and Armon  
2022). Dusseau et al. (2023) performed some initial testing of a GBDT (LightGBM) and found 
that it was superior to a neural network in reducing DEM vertical error.

A literature survey revealed a few studies using tree-based algorithms such as random 
forest for DEM enhancement, e.g. urban correction of MERIT DEM (Liu et al. 2021), vegeta-
tion correction of SRTM (Yanjun et al. 2015), enhancement of SRTM DEM for flood modelling 
(Meadows and Wilson 2021), and the production of a globally corrected version of 
Copernicus DEM, known as FABDEM (Hawker et al. 2022). Despite these modest achieve-
ments, the full potential of tree-based algorithms is yet to be fully tested or materialised in 
the field of remote sensing, specifically for DEM enhancement. Even the advanced gradient 
boosting algorithms such as XGBoost which outperformed deep learning in several chal-
lenges have not been fully exploited for this purpose. Moreover, the performance of 
algorithms for DEM enhancement in agricultural lands has not received extensive attention, 
since many of the previous studies were particularly focused on urban areas.

In this study, we compare the performance of ten tree-based ensemble machine 
learning algorithms (shown in Table 2) for the enhancement of Copernicus GLO-30 DEM 
in agricultural lands of Cape Town, South Africa. Most of the assessed algorithms are 
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either bagging or boosting ensembles. Bagging is “a method to train an ensemble where 
each constituent model trains on a random subset of training examples sampled with 
replacement (Google for Developers 2023). Essentially, multiple versions of a predictor are 
used for generating an aggregated predictor (Breiman 1996). This aggregation of multiple 
results into a single prediction can reduce the variance in the final results (Geurts et al.  
2006, Zhang et al. 2022). Bagging is a generic concept and can also be applied on other 
machine learning algorithms. On the other hand, Boosting uses a forward stagewise 
approach to transform weak learners into strong learners by increasing the weights of 
training samples in successive iterations (Zhang et al. 2022). The final output is derived by 
synergising the results from all the iterations using a weighted sum (Elith et al. 2008, 
Zhang et al. 2022). Bagging tries to solve the overfitting problem while Boosting tries to 
reduce bias. The tree-based ensemble algorithms are explained further in Section 2.4.

Several studies have shown that topography affects the spatial distribution of soil types, 
biomass, organic matter, and affects crop yields (Yang et al. 2014, Nie et al. 2019, Ma et al.  
2020). Thus, the improvement of DEM accuracy in agricultural lands is an important concern.

The unique strength of this study is that the comparison of these algorithms helps to 
simplify the challenge of model selection by other researchers faced with similar applica-
tions. Moreover, the study provides insights on the practical significance of the different 
algorithms based on their computational complexities. A comparative analysis of these 
tree-based algorithms is required to inform their knowledge-based application in remote 
sensing tasks and problems, especially DEM enhancement. The increasing availability and 
adoption of wide-area, multi-source and multi-sensor DEMs has provided tremendous 
opportunities for the application of machine learning in their enhancements.

To our knowledge, this is the first study to implement such a wide and comprehensive 
comparison of tree-based algorithms for DEM enhancement. The assessment is an 
impetus to stimulate further work aimed at achieving more significant accuracy improve-
ments for open-access global DEMs. This paper is divided into four sections. Section 1 
presents the introduction and aim of the study; section 2 discusses the materials and 
methods. The results are presented and analysed in section 3 while the discussion and 
conclusion follow in sections 4 and 5 respectively.

2. Materials and methods

The enhancement methodology combines elevation and terrain parameters alignment, 
with feature-level fusion (ensemble learning) into a DEM enhancement workflow. 

Table 2. Classification of the ten compared algorithms.
Bagging:
● Random Forest
● Bagging  

Meta-estimator

Boosting:
● Adaptive Boosting (AdaBoost)

Gradient boosting:
● Gradient Boosting Machine (GBM)
● Extreme Gradient Boosting Machine 

(XGBoost)
● Light Gradient Boosting Machine 

(LightGBM)
● Histogram-based Gradient Boosting
● Categorical Boosting (CatBoost)

Natural gradients:
● Natural Gradient Boosting (NGBoost)

Improvement to gradient boosting: 

● Regularised Greedy Forest
(RGF)
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Figure 1 shows the workflow diagram of the assessment methodology. The process starts 
with the selection of two open-access DEMs: Copernicus GLO-30 and the City of Cape 
Town (CCT) airborne Light Detection and Ranging (LiDAR)-derived DEMs. The DEMs are 
harmonised into the same coordinate system and a height error map is derived by 
calculating the differences between corresponding elevations in both DEMs. To charac-
terise the influence of the terrain on the elevation error, the following input variables are 
incorporated into the ensemble learning framework: elevation, slope, aspect, surface 
roughness, topographic position index (TPI), terrain ruggedness index (TRI), terrain sur-
face texture (TST), and vector ruggedness measure (VRM). The terrain parameters were 
generated within the QGIS 3.28.2 and SAGA GIS 7.8.2 software environments, while the 
tree-based algorithms were implemented in the Google Collaboratory (Colab) cloud 
computing environment. The workflow is explained in detail in the following sections.

2.1. Study area

Cape Town is the most south-western city in South Africa, with a land area of approximately 
400 km2 (Orimoloye et al. 2019). The city is situated in the Western Cape Province and has 
a high landscape-level diversity with rivers, coastal areas and wetlands (Goodness and 
Anderson 2013). The sites (shown in Figure 2) are selected from agricultural lands with few 
settlements located along the floodplain of River Diep. The Diep River is a sub-catchment 
within the Berg Catchment area and flows towards the Table Bay into the sea (Drakenstein 
River Environmental Management Plan 2008). The river catchment is low-lying, and sur-
rounded by industries and factories, informal settlements and farms (DWS 2020, Gqomfa 
et al. 2022). There are several topographic changes within the low-lying river catchment as 
highlighted in Figures 2 and 3, and this further justifies the need for better DEM accuracy 
especially for agricultural site assessment studies. Table 3 shows the distribution of sample 
points in the agricultural lands. After the training and testing phase, an independent 

Figure 1. Workflow diagram of the assessment methodology.
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evaluation was carried out at model implementation sites. All the selected sites (training/test 
and implementation) have similar elevation and terrain characteristics (see Figure 3).

2.2. Datasets and terrain parameters

2.2.1. Copernicus GLO-30 DEM
Copernicus DEM (released in 2020) is derived from the WorldDEM data. The 
WorldDEM data product is based on the radar satellite data which was acquired 
during the TanDEM-X Mission (ESA 2020b). The primary objective of the TanDEM-X 
mission was the generation of a global coverage DEM based on Interferometric 
Synthetic Aperture Radar (InSAR) in HRTI-3 standards. The duration of the TanDEM- 
X data acquisition was between December 2010 and January 2015. The Copernicus 
GLO-30 dataset has a grid spacing of one arc-second (30 m) and a standard extent of 

Figure 2. Map showing the selected sites in Cape Town, South Africa.
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1� x 1�. For this study, the floating point Defense Gridded Elevation Data (DGED) 
format of the DEM was adopted. The Copernicus DEM has been assessed with 
ICESat-2 measurements, which indicate absolute vertical uncertainties of ∼1–3 m 
(ESA 2020b). Some essential characteristics of the DEM are summarised in Table 4.

2.2.2. Cape Town LiDAR DEM
The City of Cape Town (CCT) airborne LiDAR-derived DEM was acquired from the 
Information and Knowledge Management Department of the City of Cape Town. The 2  
m DEM is generated from the LiDAR point cloud, at a maintenance cycle of 3 years. The 
point density is 2–3 points/m2, and the point cloud has a height accuracy of 0.15 m. The 
data acquisition was conducted from 2018–2021, and the DEM is spatially referenced to 
the Hartebeesthoek94 horizontal co-ordinate system, while the height reference is the 
South Africa Land Levelling Datum (SAGEOID2010).

Figure 3. View of agricultural lands selected for assessment – (a) training/test site (b) 1st model 
implementation site (c) 2nd model implementation site (d) 3rd model implementation site (aerial 
imagery, January 2023; source: city of Cape Town). Contour interval: 10 m.

Table 3. The distribution of sample points at the selected sites.
Site ID Number of points Area (km2)

Training/testing 46177 41.4
1st implementation site 21539 20.7
2nd implementation site 23109 20.7
3rd implementation site 22366 20.7
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2.2.3. Terrain parameters
The parameters include slope, aspect, surface roughness, topographic position index (TPI), 
terrain ruggedness index (TRI), terrain surface texture (TST), and vector ruggedness 
measure (VRM). The theoretical underpinnings of these parameters are available in the 
existing literature, therefore only a brief discussion is provided here. The slope function 
identifies the rate of maximum change in z-value from each cell of the DEM. Aspect 
identifies the downslope direction of the maximum rate of change in elevation value from 
each cell to its neighbours. Terrain roughness is the degree of variation of the z-axis across 
the terrain, in a defined area and at a defined scale (Department of Environment and 
Science, Queensland 2020). TPI compares the elevation of each cell in a DEM to the mean 
elevation of a specified neighbourhood around that cell (Vinod 2017). TRI deals with the 
degree of elevation difference between adjacent grid cells of a DEM (USNA 2022). The 
VRM measures terrain ruggedness as the variation in three-dimensional (3D) orientation 
of raster grid cells within a neighbourhood (Welty and Jeffries 2018). The elevation errors 
or differences (ΔH) between the Copernicus DEM and reference CCT LIDAR DEM was 
calculated as follows: 

where,
HCopernicus = individual elevations from Copernicus GLO-30 DEM.
HRefDEM = individual elevations from CCT LiDAR-derived DEM.

2.3. Data preparation

The horizontal spatial reference of the CCT LiDAR and Copernicus DEMs were harmonised 
into the Universal Transverse Mercator (UTM) projection in WGS84, and the LiDAR eleva-
tions were transformed from the South Africa Land Levelling datum (LLD) to EGM2008, in 
conformity with the vertical datum of Copernicus DEM. A grid of points was generated 
and elevation values from the LiDAR and Copernicus DEMs that coincided with the points 
were extracted and recorded in an attribute table. Thus, the elevation error (ΔH) was 
calculated by subtracting the LiDAR elevations from the Copernicus elevations. 
Subsequently, the elevation error values were converted to a raster format. The elevation 
values, along with the values of the elevation error, and terrain parameters were extracted 
from the rasters to csv files. This resulted in the final set of points used for model training 
and testing.

Table 4. Characteristics of Copernicus GLO-30 DEM.
Copernicus GLO-30 DEM characteristics
Tiling 1 deg x 1 deg
Projection Geographic Coordinates
Coordinate reference system WGS84-G1150 (Horizontal) 

EGM2008 (Vertical)
Absolute vertical accuracy <4m (90% linear error)
Relative vertical accuracy <2m (slope ≤20%) 

< 4m (slope > 20%) 
(90% linear point-to-point error within an area of 1° x 1°)

Absolute horizontal accuracy <6m (90% circular error)

Source: ESA (2020a).
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2.4. Tree-based ensemble algorithms

2.4.1. Bagging algorithms
Random forest (RF) was proposed by L. Breiman in 2001. It aggregates the predictions of 
several decision trees with randomly allocated features (Biau and Scornet 2016). The 
previous bagging tree method was upgraded to the random forest algorithm by 
Breiman (2001), thus injecting more randomness in growing base trees and improving 
its predictive power and capability (Miao et al. 2012). The following steps are used in the 
bagging regressor (bagging meta-estimator) algorithm: (i) the original dataset is 
broken down into random subsets (ii) a base estimator is specified by the user and fitted 
on the subsets, and (iii) the predictions are integrated to generate the final result (Singh  
2023). By default, the base estimator is a decision tree. Bagging methods are known to 
reduce overfitting, and are best applied to strong and complex models unlike boosting 
methods which work better with weak models (Scikit-Learn 2023).

2.4.2. Boosting algorithms
For a long time, AdaBoost (Adaptive boosting) was a well-known and widely applied 
boosting algorithm by practitioners and researchers (Schapire 2003, Barrow and Crone  
2016). The inspiration for AdaBoost was a technique that combines the outputs of several 
weak classifiers to produce a strong learner (Hastie et al. 2009, Miao et al. 2012). Unlike 
bagging, AdaBoost grows an ensemble of trees through successive reweighting of train-
ing samples. It is resistant to overfitting but does not handle noise well (Bauer and Kohavi  
1999, Miao et al. 2012).

For many years, gradient boosting has been the primary approach for learning pro-
blems with heterogeneous features, complex dependencies and noisy data (Roe et al.  
2005, Caruana and Niculescu-Mizil 2006, Zhang and Haghani 2015, Prokhorenkova et al.  
2018). Essentially, it involves the application of gradient descent in a functional space to 
construct an ensemble predictor (Prokhorenkova et al. 2018). It is backed by strong 
theoretical underpinnings that show how strong predictors can be constructed through 
the combination of base predictors (weaker models) in a greedy manner (Kearns and 
Valiant 1994, Prokhorenkova et al. 2018). GBDTs have excelled in a myriad of applications 
with state-of-the-art results (Chen and Guestrin 2016).

The gradient boosting machine (GBM) regressor adopts an additive model built in 
a forward stage-wise fashion; and enables the optimisation of differentiable loss functions 
(Scikit-Learn 2023). Extreme Gradient Boosting (XGBoost) is an end-to-end gradient 
booster that consecutively builds decision trees as each tree tries to improve the perfor-
mance of the previous tree (Chen and Guestrin 2016, Safaei et al. 2022). It parallelises the 
training process of each tree and speeds up the training (Safaei et al. 2022). Light 
Gradient Boosting Machine (LightGBM) is an improved GBDT framework that was 
introduced by Microsoft (Ke et al. 2017) to overcome the scalability and efficiency limita-
tions of previous GBDTs. LightGBM has less memory occupation and a faster training 
speed (Wang and Wang 2020, Microsoft Corporation 2022). The main features of 
LightGBM include the gradient-based one-side sampling (GOSS), exclusive feature bund-
ling (EFB), and a histogram and leaf-wise growth strategy. The histogram-based gradient 
boosting regression tree (histogram-based GBM) is reputedly faster than the gradient 
boosting regressor for large datasets, and also supports missing values (Scikit-Learn 2023). 
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It can reduce the training time without losing accuracy (Padhi et al. 2021). Categorical 
Boosting (CatBoost) which debuted in 2018 is well-suited for problems involving hetero-
geneous and categorical data (Hancock and Khoshgoftaar 2020). It incorporates two 
important advances: ordered boosting (a permutation-driven substitute to the traditional 
gradient boosting), and a novel algorithm for the processing of categorical features 
(Prokhorenkova et al. 2018). Natural Gradient Boosting (NGBoost) was developed for 
generic probabilistic prediction. Instead of returning a point estimate, conditional on 
covariates, it returns a full probability distribution over the outcome space, conditional on 
the covariates (Duan et al. 2020). NGBoost has applications in regression, classification and 
survival prediction (Kavzoglu and Teke 2022).

2.4.3. Regularised greedy forest
The Regularized Greedy Forest (RGF) was proposed by Johnson and Zhang (2014). RGF 
learns a non-linear function through the adoption of an additive model over non-linear 
decision rules. It incorporates tree-structured regularisation into the learning and uses 
a fully corrective regularised greedy algorithm (Johnson and Zhang 2014). In several 
machine learning challenges, RGF has outperformed GBDTs (Joseph 2020).

2.5. Model implementation and DEM correction

The tree-based ensembles were implemented with their default hyperparameters. 
A hyperparameter is ‘a parameter whose value is given by the user and used to control the 
learning process’ (Mariani and Sipper 2022). Their values ‘control the learning process and 
determine the values of model parameters that a learning algorithm ends up learning’ 
(Nyuytiymbiy 2020). Default hyperparameters are adopted for a baseline performance com-
parison of the ten algorithms. This approach is foundational for future optimisation efforts. 
The training data includes the following input variables: elevation, slope, aspect, surface 
roughness, TPI, TRI, TST, and VRM; and the target variable, elevation error (ΔH). 
Incorporating this comprehensive set of input variables enables a more robust DEM enhance-
ment framework. All the variables were converted from raster to csv format and split into 80% 
(training) and 20% (testing). The implementation was done within the Google Collaboratory 
(Colab) cloud computing environment using Python scripting, the scikit-learn machine learn-
ing library and other open-source libraries/packages. Google Colab enables the writing and 
execution of Python code through web browsers, and is well suited for machine learning 
(Google 2023). The default CPU for the Colab processing environment has the following 
specifications – Intel Xeon CPU @ 2.20 GHz, 13 GB RAM, Tesla K80 accelerator, and 12 GB 
GDDR5 VRAM (Das 2022). Utilising the Google Collaboratory cloud computing environment 
for implementation highlights a practical and accessible approach for computational tasks in 
remote sensing. A list of Python packages used, and their descriptions are presented in 
Table 5. Summarily, the data was passed into the model regressors for training and subse-
quently, the trained algorithms were evaluated at three implementation sites with very similar 
characteristics (shown in Figure 3). To derive the corrected elevations at the implementation 
sites, the predicted elevation errors were subtracted from the original elevations 
(i.e. DEMCorrected ¼ DEMOriginal � ΔHPredicted).
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2.6. Model performance indicators

For a comprehensive evaluation of model accuracy and reliability, the following regres-
sion error metrics were adopted: root mean squared error (RMSE), mean absolute error 
(MAE), and median absolute error (MedAE). The RMSE is an excellent general-purpose 
error metric for assessing numerical predictions (Christie and Neill 2022). These error 
measurement metrics define the prediction accuracy and allow for the monitoring of 
outliers in predictions. However, depending on the type and volume of the data, as well as 
the nature of the predictions, different error metrics can be used to interpret the model 
results. The MAE is the average of the difference between the original values and the 
predicted values. It gives the measure of how far the predictions were from the actual 
output. It is quite robust to outliers, hence very useful where some of the variables are 
prone to outliers and biases. In terms of interpretability, it is the easiest to explain. 
However, it does not show the direction of the error i.e. under-prediction or over- 
prediction.

The RMSE is a standard regression measure that usually punishes larger errors more 
than smaller ones. The score ranges from 0 in a perfect match, to arbitrarily large values as 
the predictions become worse. The main difference is that the RMSE penalises more 
strongly the large errors. It is the square root of mean squared error (MSE) which is 
calculated as the average of the squared forecast error values. Squaring the forecast 
error values forces them to be positive hence putting more weight on large errors. In 
effect, the score gives worse performance to those algorithms that make large wrong 
forecasts. The MedAE sometimes can be used interchangeably with the MAE because the 
MedAE is also robust to outliers and suitable for use cases where some of the variables are 
prone to outliers and biases. The error is calculated by taking the median of all absolute 
differences between the original values and the predicted values. If ŷi is the predicted 
elevation error of the i-th sample and yi is the corresponding true value of the elevation 
error for a total of n samples, the estimated metrics are defined as (Chai and Draxler 2014, 
Scikit-Learn 2023): 

Table 5. List of python packages/libraries used.
Package/library Function

Scikit-learn Supervised and unsupervised learning, model fitting, model selection and model evaluation.
Matplotlib Interactive visualisations.
Pandas Data analysis and manipulation.
Numpy Provides support for large, multi-dimensional arrays and matrices, and high-level mathematical 

functions.
Joblib Provides tools for lightweight pipelining.
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The RMSE was further derived from the MSE function.

2.7. Evaluation of model computation time

Computational complexity is an important criterion in the analysis of machine learning 
algorithms. It is ‘a computer science concept that focuses on the amount of computing 
resources needed for particular kinds of tasks’ (Rouse 2019). Analysing the time complexity of 
machine learning algorithms could facilitate the selection and deployment of the most 
efficient (and appropriate) model for a particular dataset (Singh 2023). According to Pushp 
(2023), ‘time complexity measures the time taken for the algorithm to execute.’ An algorithm 
with faster training time is more efficient (Pushp, 2023). For insights on the time complexity of 
the algorithms, the computation time of the tree-based algorithms was compared.

2.8. Model explainability

Explainability of machine learning algorithms has been a source of concern in the Artificial 
Intelligence (AI) community and is becoming a major requirement for their deployment. 
Explainability enables the identification of cause-and-effect relationships within the 
inputs and outputs of the system (Linardatos et al. 2021). In this study, feature importance 
and partial dependence plots (PDPs) are adopted to address the explainability of the tree- 
based algorithms. Feature importance plots are notably the most popular explainability 
technique (Saarela and Jauhiainen 2021). PDPs are model-agnostic plots for describing 
a predictor’s contribution to the fitted model. To generate the feature importance plots, 
the attribute, ‘feature_importances_’ was fitted to the model regressors. The sklearn 
inspection module of Scikit-learn was used for creating one-way PDPs to show the 
interactions between the target responses and the input variables (e.g. elevation, slope, 
aspect, TPI, TRI etc.).

3. Results and analysis

3.1. Terrain characteristics

Figures 4 and 5 show maps of the terrain parameters. The streams flowing through the 
agricultural lands in the Diep River catchment exhibit a dendritic drainage pattern. Along 
the south-east, the slope ranges from gentle to moderately steep, and steep (Figure 4a). 
River Mosselbank drains into the Diep River which continues in a downward flow towards 
the south-west. The steeper slopes tend to exhibit higher TPI than their average surround-
ings, and vice versa. Table 6 shows descriptive statistics of the predictor variables used for 
training/testing. The similar terrain conditions at the training/test and implementation 
sites are evident in Figure 6. Most of the elevation errors at the selected sites are in the 
range of −5 to +5 m.
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3.2. Analysis of test error and model computation time

Table 7 presents the MAE, MedAE and RMSE comparisons of the model test errors. 
CatBoost attained the lowest test MAE (0.310 m) and RMSE (0.704 m). The low test 
MedAE of several algorithms, e.g. CatBoost (0.153 m), random forest (0.151 m), 
LightGBM (0.155 m) and XGBoost (0.154 m) suggests their robustness for modelling non- 
normally distributed data points. The absolute prediction errors are compared in Figure 7.

Figure 4. Maps of the terrain parameters, (a) slope (b) aspect (c) surface roughness, and (d) 
topographic position index.
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Figure 5. Maps of the terrain parameters – (a) terrain ruggedness index (b) terrain surface texture (c) 
vector ruggedness measure; and (d) height error map.

Table 6. Descriptive statistics of the input variables - training/test dataset.

Min
25th 

percentile
50th 

percentile
75th 

percentile Max Mean St Dev

Elevation (m) 16.52 49.68 62.37 76.35 154.31 64.63 21.66
Slope (°) 0.01 1.91 2.88 4.25 20.56 3.30 2.02
Aspect (°) 0.00 82.48 219.36 286.34 359.99 192.71 110.43
Surface Roughness 0.06 2.69 4.01 5.89 26.06 4.62 2.76
Topographic Position Index −4.94 −0.16 0.04 0.21 8.26 0.00 0.61
Terrain Ruggedness Index 0.06 2.72 3.99 5.85 28.38 4.62 2.80
Terrain Surface Texture 0.00 0.67 2.07 5.45 24.94 3.92 4.62
Vector Ruggedness 

Measure
0.00 0.00 0.00 0.0002 0.0314 0.0003 0.0009
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Possible reasons for the higher prediction error of AdaBoost (shown in Figure 7) are as 
follows: (i) Sequential learning process: AdaBoost builds an ensemble by adding models 
sequentially. Each new model focuses on the instances that were misclassified by the previous 
models. If there are instances that are particularly hard to classify correctly, the algorithm will 
increasingly focus on these, potentially leading to a biased model that does not perform well 
on the overall data; (ii) AdaBoost is particularly sensitive to noisy data and outliers. Since its 
focus is on correcting misclassified points by increasing their weights, it may place too much 
emphasis on outliers, resulting in poor model performance; (iii) The success of AdaBoost 

Figure 6. Histograms showing the elevation error (ΔH) distribution calculated from the full datasets, at 
the selected sites.

Table 7. Comparison of model test error.
Tree-based algorithm MAE (m) RMSE (m) MedAE (m)

Random Forest 0.312 0.731 0.151
Bagging Meta-estimator 0.327 0.757 0.160
AdaBoost 0.526 1.042 0.278
GBM 0.329 0.749 0.161
XGBoost 0.319 0.735 0.154
LightGBM 0.314 0.715 0.155
Histogram-based GBM 0.317 0.724 0.157
CatBoost 0.310 0.704 0.153
NGBoost 0.332 0.754 0.162
Regularised Greedy Forest 0.338 0.776 0.162
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largely depends on the choice of weak learners. If this choice is inappropriate for the specific 
data at hand, the model’s performance may suffer in a sequential learning manner.

In most cases, the prediction errors from the ten algorithms have a similar distribution, 
with a high or very high positive correlation (Figure 8). Computational efficiency is also an 
important criterion for evaluating the performance of algorithms. The training time of 
LightGBM (0.318 s) was the fastest among the evaluated algorithms. Previous studies and 
experiments have corroborated the fast speed and high accuracy of LightGBM (Ke et al.  
2017). Following LightGBM, the histogram-based GBM had the second fastest training 
time. Inspired by LightGBM, the histogram-based GBM is reported to give high training 
speed when applied to large datasets, and it can reduce the training time without losing 
accuracy (Padhi et al. 2021). Although the accuracies of random forest and RGF were 
comparable with the other GBDTs, their training times were longer. NGBoost had the 
longest training time of 156.492 s. Notwithstanding, the developers of NGBoost assert 
that it requires far less expertise to implement (Duan et al. 2020). The training speed of the 
recent GBDTs (e.g. XGBoost, LightGBM and CatBoost) outperformed the GBM regressor 

Figure 7. Comparison of model prediction error.

Table 8. Ranking of the tree-based algorithms based on computational time for the 
training and test set.

Tree-based algorithm

Training Testing

Time (s) Rank Time (s) Rank

Random Forest 49.697 9th 0.504 9th
Bagging Meta-estimator 4.850 5th 0.049 5th
AdaBoost 1.814 3rd 0.026 2nd
GBM 13.777 8th 0.021 1st
XGBoost 2.937 4th 0.031 3rd
LightGBM 0.318 1st 0.050 6th
Histogram-based GBM 0.671 2nd 0.074 7th
CatBoost 7.028 6th 0.035 4th
NGBoost 156.492 10th 0.636 10th
Regularised Greedy Forest 12.869 7th 0.179 8th
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and random forest. Thus, these recent GBDT implementations could provide highly 
efficient training speeds, especially for larger datasets.

3.3. Accuracy analysis at implementation sites

The implementation sites are small-scale trial sites where the trained algorithms 
were implemented to assess their feasibility, efficiency, and potential impact. 
Tables 9 and 10 show the accuracy comparisons of the original and corrected 
DEMs at the 1st, 2nd and 3rd implementation sites. At the 1st implementation 
site, there was generally a 6 - 12% reduction in the MAE of the original DEM, and 
a 15 - 28% reduction in the RMSE of the original DEM after correction. The most 
significant corrections were achieved by the GBM regressor (RMSE: 0.509 m) followed 
by XGBoost and NGBoost (RMSE: 0.511 m). With an RMSE of 0.517 m, RGF outper-
formed some of the popular GBDTs such as LightGBM and CatBoost. AdaBoost was 
the least accurate (RMSE: 0.596 m), and it caused the MAE of the original DEM to 
increase by 28% from 0.292 m to 0.372 m.

At the 2nd implementation site, there was a general improvement in DEM accuracy 
across all the algorithms evident in a 10 - 13% reduction in the MAE of the original DEM, and 
a 24–29% reduction in the RMSE of the original DEM after correction. However, AdaBoost 
was the only exception as it increased the MAE by 6% from 0.429 m to 0.454 m. The two 
bagging algorithms yielded the lowest RMSEs, i.e. random forest (RMSE: 0.735 m) and the 
Bagging Meta-estimator (RMSE: 0.744 m). While AdaBoost was the least performing algo-
rithm (RMSE: 0.768 m), RGF and XGBoost had similar performance (RMSE: 0.758 m).

At the 3rd implementation site, there were little or no improvements in accuracy. While 
the MAEs of the original DEM reduced in several instances, the RMSEs unexpectedly 

Figure 8. The absolute prediction error represented by histograms (diagonal panel), comparative 
scatter plots (lower panel) and correlations (upper panel).
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escalated. Notwithstanding, all the sites were chosen based on their similar terrain 
characteristics. RGF delivered the lowest RMSE of 0.609 m followed by NGBoost (0.612  
m), LightGBM (0.613 m) and XGBoost (0.614 m). Summarily, the achieved accuracies from 
the models (with the exception of AdaBoost and the Bagging Meta-estimator) are 
comparable to each other. Nonetheless, the novel tree-structured regularisation, and 
fully corrective regularised greedy algorithm of RGF (Johnson and Zhang 2014), might 
have given it the upper hand in this scenario.

Figures 9 and 10 present visualisations of the enhanced DEMs and height error maps 
respectively, with visible improvements such as the smoothing of rough edges, better 
stream channel conditioning and refinement of grainy pixels. The elevation error range 
was also reduced in the enhanced DEMs.

3.4. Model explainability

The general notion is that machine learning algorithms are a ‘black box’, in other words, 
their internal working mechanisms and how they generate the predictions are most often 
not comprehensible. This is not absolutely true, especially for the tree-based algorithms. 
In this study, we have used the feature importance plots and the partial dependence plots 

Table 9. Accuracy measures of the corrected DEMs at the 1st and 2nd implementation sites. The best 
performing algorithms are highlighted.

Tree-based algorithm

1st implementation site 2nd implementation site

Original DEM Corrected DEM Original DEM Corrected DEM

MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m)

Random Forest 0.292 0.703 0.260 0.517 0.429 1.024 0.374 0.735
Bagging Meta-estimator 0.274 0.534 0.385 0.744
AdaBoost 0.372 0.596 0.454 0.768
GBM 0.261 0.509 0.376 0.757
XGBoost 0.261 0.511 0.377 0.758
LightGBM 0.258 0.519 0.372 0.746
Histogram-based GBM 0.258 0.519 0.373 0.752
CatBoost 0.258 0.522 0.374 0.756
NGBoost 0.262 0.511 0.377 0.757
Regularised Greedy Forest 0.263 0.517 0.377 0.758

Table 10. Accuracy measures of the corrected DEMs at 3rd implementation site. The best 
performing algorithms are highlighted.

Tree-based algorithm

3rd implementation site

Original DEM Corrected DEM

MAE (m) RMSE (m) MAE (m) RMSE (m)

Random Forest 0.294 0.567 0.296 0.636
Bagging Meta-estimator 0.305 0.657
AdaBoost 0.388 0.680
GBM 0.290 0.617
XGBoost 0.289 0.614
LightGBM 0.290 0.613
Histogram-based GBM 0.291 0.618
CatBoost 0.294 0.627
NGBoost 0.289 0.612
Regularised Greedy Forest 0.290 0.609
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(PDP) to explain how the algorithms arrive at certain results. This in turn, makes it easier 
for non-technical audiences to understand why the algorithms generate certain results 
and the deriving factors. The feature importance plots for selected tree-based algorithms 
are presented in Figure 11.

Generally, slope and aspect had moderate or minimal influence in the elevation error 
prediction by random forest, GBM, XGBoost and RGF. The most influential predictor 
variables are TPI, TST and VRM especially by random forest, XGBoost CatBoost and RGF. 
The TPI and VRM have higher sensitivity for landform differentiation. For example, VRM 
incorporates 3D dispersion of vectors. There was very low importance allocated to 
elevation, slope, aspect, surface roughness and TRI in the predictions by RGF. The 
influences of TPI, VRM and TST are well exploited in GBM, whereas other features such 
as slope, surface roughness and TRI have reduced influence. The NGBoost-derived loca-
tion and scale parameters are shown in Figure 12. For normally distributed data, the 

Figure 9. Visual comparison of the original and corrected DEMs at the three implementation sites. 
Areas for comparison are highlighted with the black circles.
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Figure 10. Visual comparison of the height error maps, calculated from the original and corrected 
DEMs at the three implementation sites. Areas for comparison are highlighted with the black arrows 
and circles.
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location and scale parameters correspond to the mean and standard deviation, 
respectively.

The NGBoost algorithm was designed to extend the gradient boosting hypothesis 
to probabilistic regression problems. It does this by handling the parameters of the 
distribution (Gaussian distribution) as targets for a multiparameter boosting 

Figure 11. Feature importance plots shown for some algorithms – (a) random forest (b) GBM (c) 
XGBoost (d) LightGBM (e) CatBoost (f) RGF.

Figure 12. Ngboost feature importance plots for distribution parameters – (a) location parameter (b) 
scale parameter.
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algorithm. As shown in Figure 12, the NGBoost model estimates both the location 
(mean) and scale (standard deviation) parameters of the Gaussian distribution instead 
of estimating only the conditional mean of the distribution. This approach according 
to the authors, significantly improved the performance of the model, the flexibility 
and scalability when compared to other probabilistic predictive algorithms. However, 
the process of estimating both the location and scale parameters of the Gaussian 
distribution affects the model’s execution time. Table 8 shows that NGBoost took 
much longer than the other algorithms both in training and inferencing time.

The partial dependence plot (PDP) depicts the functional relationship between 
a small number of input variables and predictions. It can show how the predictions 
partially depend on values of the input variables of interest. The PDPs in 
Figures 13–15 show the interdependence between the input variables (elevation, 
slope, aspect, surface roughness, TPI, TRI, TST and VRM) and the elevation errors. 
The trend line shows the changes in elevation errors in response to increasing 
feature values. In consonance with the feature importance plots, TPI, VRM and TST 
are found to influence the elevation error very significantly (e.g., in the case of 
GBM), whereas in random forest and GBM, the elevation errors are less influenced 
by variations in slope, surface roughness and TRI.

4. Discussion

The reduction in DEM error (both MAE and RMSE) at the implementation sites indicates 
the effectiveness of tree-based algorithms for correcting elevation data. We quantified the 

Figure 13. Partial dependence plot of the best-performing model (lowest RMSE) at site 1 – GBM. The 
y-axis shows the partial dependence while the x-axis shows the feature class values.
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improvements in DEM accuracy after model application. For example, at the 1st imple-
mentation site, there was a 6–12% reduction in the MAE of the original DEM, and a 
15–28% reduction in the RMSE of the original DEM. The analysis in sections 3.2 and 3.3 
improves the understanding that the prediction accuracies of different tree-based 

Figure 14. Partial dependence plot of the best-performing model (lowest RMSE) at site 2 – random 
forest. The y-axis shows the partial dependence while the x-axis shows the feature class values.

Figure 15. Partial dependence plot of the best-performing model (lowest RMSE) at site 3 – regularised 
greedy forest. The y-axis shows the partial dependence while the x-axis shows the feature class values.
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algorithms especially on natural landscapes vary with location and topography. It is not 
correct to generalise that a given tree-based machine learning method does better than 
the others in DEM enhancement without taking into consideration, the locational char-
acteristics of the site in question. For example, even though CatBoost had the lowest test 
error, LightGBM emerged with the best performance when applied for DEM error predic-
tion and correction across the whole landscape. Moreover, LightGBM and several of the 
evaluated algorithms (e.g. Histogram-based GBM, XGBoost and CatBoost) have faster 
computation times and do not require extensive high-performance computing platforms 
to be used effectively at scale. This becomes very beneficial to the users who would like to 
select the most efficient tree-based algorithms for DEM enhancement irrespective of site 
and location.

Scientists, researchers and industry practitioners are usually interested in the computa-
tional efficiency of machine learning algorithms before deploying them on large scale. 
Table 11 compares the accuracy measures of the corrected DEMs in the whole area. It is 
shown that LightGBM delivered the best correction when the accuracy measures were 
averaged for the whole area (MAE: 0.308 m; RMSE: 0.635 m). LightGBM had the fastest 
training time, followed by the Histogram-based GBM, and AdaBoost. Despite the relatively 
fast training time of AdaBoost, its poor performance in accuracy is a serious concern that 
could limit its adoption by users. In terms of the MAE, LightGBM, Histogram-based GBM, 
and CatBoost emerged as the top three algorithms with the best accuracies in the DEM 
correction. However, in terms of the RMSE, LightGBM, NGBoost, and Random Forest 
emerged on top. Overall, LightGBM outperformed all the other algorithms, emerging 
with the shortest training time (fastest training speed) and it delivered the best accuracies 
in DEM correction at the implementation sites. The appeal of LightGBM is shown in its 
very recent adoption by counterpart research groups for DEM correction. For example, 
Ouyang et al. (2023) integrated LightGBM as one of the base models in an ensemble DEM 
correction framework which they referred to as the ‘Stacking Fusion Correction Model.’ 
More recently, Dusseau et al. (2023) adopted LightGBM in the development of 
DiluviumDEM, a new global coastal DEM derived from Copernicus DEM. The developers 
of DiluviumDEM (i.e. Dusseau et al. 2023) highlighted the advantage of LightGBM for 
global DEM correction involving large datasets. This assertion is corroborated by the 
performance of LightGBM in the present study where it achieved the fastest training 

Table 11. Ranking of the tree-based algorithms based on the achieved accuracies for the DEM 
correction in the whole area. The best performing algorithms are highlighted.

Tree-based algorithm

Whole area (1st site + 2nd site + 3rd site)

Original DEM Corrected DEM

MAE (m) RMSE (m) MAE (m) Rank RMSE (m) Rank

Random Forest 0.340 0.792 0.311 7th 0.638 3rd
Bagging Meta-estimator 0.322 9th 0.653 9th
AdaBoost 0.405 10th 0.687 10th
GBM 0.311 4th 0.639 5th
XGBoost 0.311 6th 0.638 4th
LightGBM 0.308 1st 0.635 1st
Histogram-based GBM 0.309 2nd 0.640 7th
CatBoost 0.310 3rd 0.645 8th
NGBoost 0.311 5th 0.637 2nd
Regularised Greedy Forest 0.312 8th 0.639 6th
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speed in the whole area of study, thus proving its potential for application to global 
remote sensing datasets and big geospatial data. Notwithstanding, it is important to note 
that performance assessments of machine learning algorithms in remote sensing use 
cases are site-specific and cannot be generalised for other landscapes. For example, 
XGBoost and CatBoost have surpassed LightGBM in some other assessments. Moreover, 
the algorithm configurations and terrain dynamics are different in separate assessments.

In section 3.4, we used the model feature importance plots and the feature partial 
dependence plots to show how each predictor interacts with the algorithms to produce 
regression values. It is noteworthy that TPI, TST, VRM, and elevation are generally the most 
influential in the predictability power of all the algorithms tested in this experiment. This 
becomes a very important and useful analysis for the readers and subsequently users of 
these algorithms for DEM enhancement because it suggests they could get almost similar 
results using only TPI, TST, VRM, and elevation in situations where there is less capacity to 
include all the features used in this experiment. Also, for the purposes of speed and scale, 
other researchers can reduce the number of predictors to the top 4 or 5 based on this 
explainability analysis.

5. Conclusion

Machine learning has presented an effective method to model complex terrain para-
meters. Tree-based ensembles are very powerful for reducing the uncertainty in digital 
elevation datasets and enhancing DEM quality. This low-cost approach can be adopted by 
national mapping organisations with budgetary constraints to enhance wide-area DEMs 
for producing more accurate topographic maps and cartographic products. Topographic 
position index, terrain surface texture and vector ruggedness measure were revealed as 
very influential terrain parameters for the elevation error prediction in the studied 
agricultural landscapes, whereas slope, aspect, surface roughness, and TRI had less 
influence on the predictions. This specific finding is a valuable contribution to under-
standing the interdependencies and influence of terrain parameters in modelling the 
topography of landscapes. By addressing the explainability of the compared machine 
learning algorithms, this study demystifies the complexities behind the effective deploy-
ment and analysis of terrain features for prediction and modelling of DEM error. 
Understanding the impact of these variables can help practitioners focus on the most 
relevant data, improve data collection practices, and refine model inputs for better 
accuracy. This knowledge is also important for tailoring models to specific applications 
where certain types of prediction sensitivity are required.

We have also tested the probabilistic regression algorithm NGBoost for predicting 
point estimates of the elevation error. Thus, it has been showcased that natural gradients 
are effective for use in DEM enhancement and remote sensing tasks. However, the 
learning task parameters of NGBoost have not been fully developed to the level of 
more advanced GBDTs such as XGBoost, LightGBM, and CatBoost. Summarily, all the 
tested algorithms (except for AdaBoost) provide satisfactory results in terms of the 
achievable accuracy. This comparative analysis serves as an invaluable source of knowl-
edge on the performances of tree-based ensembles for handling remote sensing tasks. 
Overall, this research presents a comprehensive approach to enhancing DEM accuracy 
using machine learning. More importantly, we have advanced the understanding of 
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model explainability in the context of terrain analysis and remote sensing. This challenges 
the common perception of machine learning algorithms as incomprehensible ‘black 
boxes’. By using tools like feature importance and PDPs, the study demonstrates that it 
is possible to gain insights into how certain machine learning models, especially tree- 
based models, make their predictions.

Tree-based ensembles are advantageous in terms of time complexity, and this is 
a significant advantage when deploying models on a wider scale. The computational 
burden of many deep learning implementations is a confounding factor and a serious 
limitation for researchers and industry practitioners, especially when computational 
resources are limited or sparse. The choice of algorithm depends on available computing 
resources and user requirements. Both Bagging and Boosting ensembles provide compe-
titive accuracy and finally, according to the No-Free-Lunch (NFL) theorem, there is no 
universal algorithm that can solve all types of problems.
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