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Given the current paucity of effective treatments in many neurological disorders, delineat-
ing pathophysiological mechanisms among the major psychiatric and neurodegenerative
diseases may fuel the development of novel, potent treatments that target shared path-
ways. Recent evidence suggests that various pathological processes, including bioener-
getic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-
positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation,
the generation of neuronal network oscillations and complex brain functioning. Here, we
survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative dis-
eases and review associated cellular and molecular pathophysiological alterations pur-
ported to underlie disease aetiology.

Introduction
Despite the majority of neurons consisting of excitatory glutamatergic cells, inhibitory neurons, which
represent ∼20% of all cortical neurons, are indispensable for neuronal network regulation [1]. Discrete
neuronal subpopulations that express the calcium-binding protein parvalbumin (PV) represent most
of the gamma-aminobutyric acid (GABA) inhibitory neurons in the human and rodent brain [2,3].
PV+ expressing neurons possess unique biophysical properties including a fast-spiking firing rate with
little accommodation or adaptation during depolarisation, which makes them crucial for inhibitory
neuronal network regulation [4]. In the cerebral cortex, PV+ neurons are comprised of multiple types,
the major ones constituting large basket cells and chandelier cells. These cells modulate the output of
pyramidal neurons, by preferentially innervating their somata, or the axon initial segment (AIS),
respectively, exerting powerful inhibition and controlling network synchrony [5,6].
Due to their fast-spiking properties, cortical PV+ neurons are critical for the generation of rhythmic

fluctuation in the γ-band (∼30–100 Hz) frequencies [7], which in turn are crucial for sensory infor-
mation processing and attention regulation [8–10].
Impairments in PV+ neuron function and excitatory/inhibitory (E/I) imbalance have been docu-

mented in a wide range of psychiatric and neurological disorders, including Alzheimer’s disease (AD)
[11], dementia with Lewy bodies (DLBs) [12], anxiety [13], schizophrenia [14], bipolar disorder [15],
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epilepsy [16], and more recently, primary mitochondrial disease (PMD) [17–19]. Whether the loss or dysfunc-
tion of PV+ neurons is contributing to the primary pathophysiological mechanisms, or rather is a consequence
of these neurodegenerative disorders, remains to be fully elucidated.
This review aims to summarise current evidence from both human studies, and rodent in vitro and in vivo

disease models, highlighting the role of PV+ neuronal dysfunction and associated pathophysiological mechan-
isms, including mitochondrial dysfunction, in several major neuropsychiatric and neurodegenerative diseases.

Contribution of parvalbumin neuron dysfunction in epilepsy
Epilepsy is one of the most common neurological disorders worldwide and affects approximately 1 in 103
people in the U.K. (Epilepsy Research U.K.). It is characterised by recurrent, unprovoked seizure(s), caused by
synchronous population discharges of excitatory neurons [20,21]. An imbalance of excitatory and inhibitory
neuronal activity (E/I imbalance) is the fundamental mechanism underpinning neuronal hyperexcitability
leading to seizures, highlighting the crucial role of the inhibitory neuronal population in regulating normal
neuronal network activity to prevent seizures [22,23].
Despite a multitude of available anti-seizure medication (ASM), a third of patients’ seizures are not

adequately controlled with treatment and these patients are at considerable risk of intractable epilepsy [24],
defined as drug-resistant epilepsy (DRE). The majority of conventional ASMs mainly exert their mechanism of
action by reducing neuronal firing, and not targeting the underlying cause of the epilepsy, which may explain
the existence of a high rate of DRE. Therefore, delineating the pathological mechanisms implicated in epilepto-
genesis is crucial to inform future therapeutic strategies [25].
The most common form of adult focal epilepsy is temporal lobe epilepsy (TLE) which often involves the

hippocampus and other limbic system structures [26]. TLE is typically associated with hippocampal sclerosis,
which varies in severity and is characterised by specific patterns of neuronal loss, granular cell dispersion,
gliosis, reorganisation of the neuronal architecture and alterations to interneurons [27]. In human post-mortem
brain tissues obtained from patients with TLE and patients with cortical malformations that cause epilepsy,
such as focal cortical dysplasia (FCD), the density of PV+ neurons is reported to be severely depleted [28,29].
Moreover, a selective loss of PV+ neurons in the subiculum [30] of patients with hippocampal sclerosis has
been observed, despite an increase in the overall neuronal density in this brain region [28]. These studies
suggest that the selective loss of PV+ neurons may be implicated in the pathogenesis of epilepsy by impairing
inhibitory neurotransmission and promoting neuronal hyperexcitability. However, populations of other inter-
neuron subtypes expressing calbindin (CB+), calretinin (CR+) and somatostatin (SST+) have also been reported
to have an altered density and/or organisation in medial TLE [31–34], thus suggesting an involvement of mul-
tiple interneuron subtypes in the pathogenesis of epilepsy.
Within the experimental in vivo rodent models of epilepsy, a similar phenomenon of interneuron dysfunc-

tion has been described. A rat pilocarpine model of TLE exhibited a significant loss of PV+ neurons of more
than 50% and a non-significant loss of SST+ neurons in the piriform cortex at 7 days, and 2 months post-status
epilepticus [35]. Additionally, the same model demonstrated a rapid loss of PV+ neurons, which occurred
during the acute and latent stages of epileptogenesis, before the initial spontaneous seizure onset, particularly
in the dentate gyrus of the hippocampal formation [36]. This rapid PV+ cell loss was in contrast with the neu-
rodegeneration of SST+ neurons, which occurred in the dentate gyrus later during the chronic stage of the epi-
lepsy. These data suggest an early, preferential vulnerability of PV+ neurons to degeneration [36]. These
findings were further corroborated by another study using the kainate-induced TLE mouse model, whereby PV+
neurons showed greater susceptibility to neurodegeneration in comparison to CR+ inhibitory neurons [37].
Interestingly, it was recently established that there is an interplay between the mammalian target of rapamy-

cin (mTOR) pathway, which is involved in regulating metabolism, autophagy, mitochondrial structure and
function, and PV+ neurons. A conditional knockout of the downstream repressor of the mTOR pathway specif-
ically within PV+ neurons in mice resulted in an increased sensitivity to kainate- and pentylenetetrazole
(PTZ)-induced epilepsy in vivo [38]. However, conditional knockout in excitatory neurons or GABAergic SST+
or vasoactive intestinal peptide-expressing (VIP+) interneurons did not lower the PTZ-induced seizure thresh-
old [38], further supporting the roles of mTOR signalling in epilepsy and highlighting the individual cell type
vulnerability of PV+ neurons.
Additional evidence implicating PV+ neurons in epilepsy stems from genetic disorders including Dravet syn-

drome, which is a rare genetic treatment-resistant epileptic encephalopathy, which begins in infancy or early
childhood, frequently caused by the loss-of-function mutations in SCN1A [39]. This gene encodes the
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α-subunit of the voltage-gated sodium channel Nav1.1 which is predominantly expressed by PV+ neurons on
their somata and axons [40,41]. Deletion of the Scn1a gene specifically from PV+ neurons in vivo results in
spontaneous recurrent seizures in mice, which are not detected in transgenic mice with a Scn1a conditional
knockout restricted to excitatory neurons [41]. It is proposed that the dysfunction of PV+ neurons due to
Nav1.1 defects severely impairs inhibitory neurotransmission leading to neuronal hyperexcitability and seizures
in Dravet syndrome [42].
The recent progress in the field of chemogenetic and optogenetic targeted activation or inhibition of certain

neuronal subclasses has paved the way for greater understanding of epileptogenic mechanisms identified in
living animals [43,44]. For instance, chemogenetic activation of PV+ neurons in vivo resulted in the attenuation
of kainate-induced seizures by prolonging the latency to seizure onset and reducing the duration of the first
generalised seizure, thereby decreasing the mortality rate of mice subjected to the intrahippocampal kainate
administration [45]. Furthermore, in vivo optogenetic activation of hippocampal PV+ neurons, or PV+
Purkinje cells and molecular cell layer interneurons of the cerebellum, diminished seizure duration in mice
[46,47]. Moreover, stimulation of PV+ neurons in the midline of the cerebellum additionally reduced the fre-
quency of seizures which was not seen with optogenetic activation of PV+ neurons in the hippocampal forma-
tion [47]. Collectively, these studies highlight PV+ neurons as a promising therapeutic target in epilepsy.

Inhibitory parvalbumin neuron involvement in primary
mitochondrial disease
PMDs comprise the most common group of inherited metabolic disorders, characterised by extreme genotypic
and phenotypic heterogeneity. PMDs can affect people at any age and can be caused by pathogenic variants in
either nuclear DNA or mitochondrial DNA (mtDNA) [48]. There are genetic peculiarities of mtDNA variants,
including multiple copies of mtDNA per nucleated cell, heteroplasmy (i.e. mixed mutated and wild-type
mtDNAs in the tissues), threshold effect and genetic bottleneck [49]. Neurological manifestations are prevalent
in PMDs, and may include cerebellar ataxia [50], extra-pyramidal movement disorders, progressive cognitive
impairment [51], stroke-like episodes [52] and epileptic seizures [53], which are reported to affect up to 60% of
paediatric and ∼23% of adult patients [54,55]. Status epilepticus in PMDs is often refractory or super-refractory
to ASMs, including general anaesthetic agents, and intriguingly often demonstrate an occipital lobe predilection
[52,56–58]. Stroke-like episodes in PMDs are subacute-onset evolving encephalopathic episodes associated with
neurological and/or psychiatric symptoms, which are hypothesised to be driven by focal seizure activity
[52,59,60]. Although the mechanisms underpinning epilepsy in PMDs have not been fully elucidated, there is
mounting evidence demonstrating dysfunction of inhibitory interneurons and glial cells is implicated in neur-
onal hyperexcitability and seizure generation [17,18,61,62].
Previous neuropathological studies assessing post-mortem brain tissues from patients with PMD have

demonstrated a severe loss of cortical GABAergic inhibitory interneurons, accompanied by extensive deficien-
cies in oxidative phosphorylation (OXPHOS) proteins in those remaining neurons [17]. Interestingly, compari-
son of the levels of OXPHOS protein deficiencies between neuronal subtypes revealed a more pronounced
deficiency in inhibitory neurons compared with glutamatergic excitatory neurons in Alpers’ syndrome, a rare
paediatric mitochondrial disease [63], thus suggesting a specific vulnerability of inhibitory neurons to metabolic
impairment in PMD. Furthermore, a more recent study delineating the vulnerabilities of specific inhibitory
neuron subtypes in Alpers’ syndrome revealed a preponderance of PV+ cortical neurons to degeneration [18].
Extensive OXPHOS protein deficiencies, indicative of mitochondrial dysfunction, were observed within remain-
ing PV+ neurons and were more severe in comparison to CR+ neurons [18]. These findings suggest not only
the preferential susceptibility of inhibitory neurons to dysfunction and degeneration in PMD, but also support
the idea that PV+ neurons are particularly vulnerable to metabolic impairment, and thus likely have an import-
ant role in mitochondrial epilepsy.
Further evidence provided from acute hippocampal slices derived from rodents demonstrated that the appli-

cation of OXPHOS complex I and complex IV inhibitors in vitro resulted in a marked reduction in PV+
fast-spiking neuronal firing and collapse of γ (30–80 Hz) frequency oscillations [64]. Since PV+ activity under-
pins γ frequency rhythms [65], this study provides further evidence of PV+ neuron vulnerability to mitochon-
drial dysfunction. However, mitochondrial impairment within astrocytes, induced through the application of
an aconitase inhibitor, in combination with complex I and complex IV inhibition, has been shown to be
required to induce interictal and ictal activities in vitro in rodent and human acute hippocampal slices, eliciting
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severe astrogliosis and loss of PV+ neurons as a result [61]. Thus, these studies suggest that PV+ neuron dys-
function, in conjunction with astrocytic impairments, drives mitochondrial seizure-like activity, at least in this
model system.
Multiple published in vivo models also provide further evidence implicating a vulnerability of PV+ neurons

to mitochondrial dysfunction (Figure 1). An in vivo mouse model harbouring a mitochondrial complex IV
subunit knockout specifically within PV+ neurons demonstrated altered electrophysiological properties of PV+
firing [66]. PV+ neurons harbouring mitochondrial impairment showed an increased adaptation (defined as
progressive slowing of action potential discharge frequency in response to sustained excitation), and in vivo
electrophysiological recordings demonstrated an increased power of γ frequency oscillations [66]. These mice
also presented with a schizophrenia-like phenotype including impaired sociability and sensory information
gating, although the authors did not report seizures in the transgenic animals [66]. Psychiatric comorbidities
are prevalent in epilepsy [67], or vice versa, patients with schizophrenia are at a 4- to 5-fold higher risk of
developing epilepsy than the general population [68]. PV+ neurons may be central to epilepsy and psychiatric
comorbidities [69].
PV+ neuronal impairments may also underlie the pathogenesis of cerebellar ataxia in patients with PMDs.

Purkinje neurons which, although GABAergic, are the sole output cells of the cerebellum, also express PV.
Multiple post-mortem neuropathological studies have reported a severe depletion of Purkinje cells in the cere-
bellum from patients harbouring pathogenic variants in mtDNA and the nuclear DNA-encoded gene POLG
[63,70,71]. Variable levels of mitochondrial OXPHOS protein deficiencies have also been reported in the
remaining patient Purkinje cells [63,71]. The severe degeneration and dysfunction of Purkinje cells are
hypothesised to alter the cerebellar circuitry, leading to neuronal hyperexcitability which may contribute to
ataxic symptoms in patients with mitochondrial disease.

Figure 1. Dysfunction of PV+ neurons in neurological disorders.

Schematic representation of the role of PV+ neurons and congruent pathophysiological mechanisms contributing to

neurodegeneration and gliosis in the major psychiatric and neurodegenerative diseases, under review (created with biorender.com).
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Combined, these studies support the notion that inhibitory cells are particularly vulnerable to mitochondrial
dysfunction and together, may play an important role in the pathogenesis of debilitating neurological impair-
ments observed in PMDs.

Role of parvalbumin neurons in neuropsychiatric disorders
Schizophrenia is a neuropsychiatric disorder affecting around 24 million people worldwide (World Health
Organisation, 2022). As a complex disorder, the cause of schizophrenia is a combination of genetic and envir-
onmental factors [72]. Clinically, schizophrenia presents with a range of symptoms, classified as either positive
(delusions, hallucinations), negative (emotional and social dysfunction), or cognitive (impaired working
memory and executive function) [73]. The positive symptoms of schizophrenia can be managed by anti-
psychotic medication, however, currently, there is no specific or targeted treatment for the negative and cogni-
tive symptoms [74]. The mechanisms underlying these symptoms are still unclear and contribute significantly
to the long-term burden of the disorder [75]. Cognitive symptoms develop during early adolescence and pro-
gress in severity into adulthood [76–78]. The glutamate hypothesis of schizophrenia suggests that cognitive
impairment may be due to N-methyl-D-aspartate (NMDA) receptor (NMDA-R) hypofunction leading to dis-
turbances in glutamate-mediated neurotransmission, especially in the prefrontal cortex (PFC) and hippocampus
[79]. A key biomarker of these cognitive changes is high-frequency β (∼20–30 Hz) and γ (30–80 Hz) oscilla-
tions, rhythms which are generated by inhibitory, fast-spiking PV+ interneurons [80–82]. A favoured hypoth-
esis suggests that loss of PV+, or reduced PV+ neuron function, causes disinhibition in excitatory–inhibitory
neuronal circuits, leading to an E/I imbalance that may underlie the cognitive deficits of schizophrenia [83].
There is no single genetic cause for schizophrenia, but instead likely arises from polygenic mechanisms inter-

acting with a variety of non-genetic factors [84]. Interestingly, two susceptible genes linked to schizophrenia
include NRG1, the gene encoding neuregulin-1 (NRG1) [85], and ERBB4, which encodes receptor tyrosine
kinase ERB-B4 [86–88]. ERB-B4 is a post-synaptic target of NRG1, primarily expressed in PV+ interneurons.
Both NRG1 and ERB-B4 signalling are reportedly increased in the brains of schizophrenia patients [89].
Changes in ERB-B4, therefore, may underlie the pathological changes seen in GABAergic transmission and
NMDA-R signalling seen in schizophrenia. A mutant mouse model, where ErbB4 was specifically knocked out
in PV+ interneurons (PV-Cre;ErbB4−/−), demonstrated a schizophrenia-like phenotype [90]. This included
impairment in pre-pulse inhibition and working memory, as well as hyperactivity, highlighting the critical role
of NRG1 in normal brain function [90]. Although PV+ neurons are the most widely studied neuronal subpo-
pulation in schizophrenia, it is still not fully understood how PV+ cells are altered in the disorder.
In human post-mortem studies, differences in PV+ expression levels in neurons have been reported in mul-

tiple brain regions of schizophrenia patients. Although results vary, most studies suggest that patients with
schizophrenia present with lower PV+ protein expression and PVALB mRNA in comparison with controls, in
brain regions including the PFC [91–94], hippocampus [95] and entorhinal cortex [96]. Conversely, some
studies found no significant change in PV+ expression [97–99], whilst PV+ expression was found to be elevated
in the anterior cingulate cortex (ACC) of patients with schizophrenia [100]. Despite these variable findings, a
recent transcriptomics study found down-regulation of genes involved in the OXPHOS system in PV+ neurons,
suggestive of mitochondrial impairment in post-mortem ACC tissues of patients with schizophrenia [101]. This
provides further links between PV+ impairment, mitochondrial dysfunction and schizophrenia.
In addition to changes in PV+ expression, aberrant β/γ frequency oscillations have also been demonstrated

in patients with schizophrenia (Figure 1). During working-memory processing tasks, patients with schizophre-
nia showed reduced β/γ frequency activity during the memory retrieval phase of tasks [102] in comparison to
healthy controls. Furthermore, where healthy controls demonstrated an increase in γ activity in response
to tasks that required increased executive control and working memory load, patients with schizophrenia failed
to demonstrate a similar increase [103,104].
In rodent models of schizophrenia, a loss of PV expression or PV+ cell dysfunction is also reported in both

developmental and pharmacological models. Using the methylazoxymethanol acetate (MAM) neurodevelop-
mental model, PV+ density was reduced in the rat dentate gyrus [105], medial prefrontal cortex (mPFC), ACC
and ventral subiculum [106]. Pharmacological treatment of rodents with NMDA-R antagonists, to mimic
NMDA-R hypofunction, is another common experimental model. In healthy human subjects, NMDA-R
antagonists, such as phencyclidine (PCP) and ketamine, were found to induce a full range of schizophrenia
symptoms [107,108], and exacerbate cardinal symptoms in patients with schizophrenia, such as psychosis, hal-
lucinations and cognitive impairment [109,110]. Furthermore, PCP treatment reduced PV+ expression in the
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prelimbic cortex when administered sub-chronically [111], as well as the cingulate cortex and hippocampus,
when administered acutely [112]. Treatment of rodents with PCP also altered animal behaviour, inducing a
schizophrenia-like phenotype including cognitive deficits such as in working memory [112], recapitulating cog-
nitive symptoms in schizophrenia [113]. Knockdown of PV in rats produced negative schizophrenia symptoms
such as social withdrawal and cognitive flexibility deficits [114], suggesting that PV itself plays a role in main-
taining neuronal network homeostasis [115,116].
Recently, it has been proposed that redox dysregulation, NMDA-R hypofunction, neuroinflammation and

mitochondrial bioenergetics deficits may result in vicious cycle of oxidative stress during brain development
and have been implicated in the pathophysiology of schizophrenia [117]. Evidence for redox dysregulation is
derived from transgenic animal models such as glutamate cysteine ligase modulatory subunit (Gclm) knockout.
This model displayed evidence of glutathione deficit and exhibited striking oxidative stress, as exemplified by
oxidative stress marker 8-oxo-20-deoxyguanosine accumulation [118]. The oxidative stress resulted in a decrease
in complex IV subunit COX6A2 expression in surviving PV+ neurons, suggesting diminished complex IV func-
tion and PV+ loss in the ACC [118]. These changes were accompanied by a reduction in mitophagy markers
and an increase in miR-137, a noncoding microRNA which negatively regulates mitophagy [118]. Authors were
able to reverse translate their findings to stratify patients with early psychosis by measuring blood exosome
levels of miR-137 and COX6A2 as a proxy marker for PV+ integrity and mitochondrial function [118].
Patients with high levels of miR-137 and COX6A2 had worse cognitive task performance and reduced 40 Hz
evoked power in response to auditory stimulus [118].
Overall data in both human studies and rodent models of schizophrenia demonstrate a link between PV+

cell dysfunction, mitochondrial impairment, the reduced generation of normal fast network oscillations and
decreased cognitive function.

Parvalbumin neuron deficits in Alzheimer’s disease and
dementia with Lewy bodies
AD is the most common form of dementia affecting ∼5% of the European population with prevalence increas-
ing with age [119]. The main pathological features of AD are extracellular amyloid plaques and intracellular
neurofibrillary tau tangles [11]. Lewy body dementia, which includes DLB and Parkinson’s disease dementia, is
caused by the abnormal aggregation of the synaptic protein α-synuclein and is the second most common form
of dementia [120]. Both AD and DLB are progressive degenerative brain diseases which lead to synaptic dys-
function, network oscillation abnormalities and ultimately neuronal death [121–123].
The role of PV+ neurons in AD and DLB is important to understand because E/I imbalances occur leading to

an increased risk of epilepsy in patients with AD [124]. Although most patients with sporadic AD do not present
with overt clinical seizures, other indicators of abnormal network hyperexcitability, such as interictal discharges
occur [125]. Moreover, seizures can be nocturnal or non-convulsive [126] and thus may be under-recognised and
therefore under-reported. Sleep disturbances and epilepsy are known to be interlinked in AD and may exacerbate
one another, having implications for memory deficits [127]. Cortical hyperexcitability is evident in patients with
DLB who also have an increased risk of seizures or myoclonus [124], and often seizures may be subclinical [128].
In addition, patients with DLB frequently exhibit visual hallucinations and cognitive fluctuations [120], symptoms
that may reflect changes in cortical network excitability [129]. Critically, AD patients with a history of hyperexcit-
ability, clinically progress more rapidly [130,131], and patients with epilepsy are more likely to develop AD, sug-
gesting a close association between abnormal excitation and dementia pathology.
Data from human post-mortem studies on the expression of PV+ cells in AD is, however, contradictory with

reductions in PV reported [132], while others found no changes [133]. One study reported an association
between the loss of PV+ neurons in the entorhinal cortex with neuropathological amyloid-β and tau burden
[134]. Loss of PV expression has been reported in DLB post-mortem hippocampal tissue [12], and in primary
visual cortical areas [135], which is similar to our observations in PMDs [18,19], while others found no
changes [136]. However, many factors including the brain region studied, sex and disease stage could all con-
tribute to the differences reported.
Evidence for changes in PV+ cells due to amyloid-β, tau or α-synuclein pathology is supported by studies

using transgenic mouse models of AD and DLB. Multiple different murine models of AD exhibit cortical
hyperexcitability in the form of seizures or interictal discharges, associated with impaired E/I balance
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[137,138]. Abnormal cortical excitability has also been reported in different transgenic mouse lines expressing
either mutant or wild-type human α-synuclein both in vivo [139,140] and in vitro [141].
As with the human studies, details of changes in PV expression are variable in the murine models of AD,

with some studies reporting reductions in PV immunoreactivity [142,143], while others found no change [144].
However, even within the same AD mouse model, regional differences in the impact of disease-related path-
ology on PV expression have been reported [142]. Data on PV expression in α-synuclein transgenic mice also
varies with regional reductions [145,146], and with no change reported in young animals [141], which may not
be surprising as at this age transgenic mice have not yet developed cognitive deficits.
In AD murine models PV+ neuronal activity has been reported as both increased [147] or decreased during

specific oscillatory states [144,148]. Verret et al. found no change in PV expression levels, but reduced expres-
sion of the sodium channel Nav1.1 on the PV+ cells, leading to a reduced PV+ neuron firing rate, impaired γ
oscillations, seizures and cognitive dysfunction. Using a different AD mouse model, Hijazi et al. [147] demon-
strated that changes in PV cell activity were more complex, revealing a biphasic profile with increased activity
at early disease stages, but reductions with more advanced disease. Further evidence to support the key role of
PV+ neurons comes from studies in which specific restoration or modulation of PV+ neuron function was
found to stabilise network excitation and restore oscillations and cognitive performance [149–151], although
one recent study has challenged the proposed mechanisms underlying this effect [152].
PV+ neuron excitability is also regulated by extracellular matrix structures called perineuronal nets (PNNs)

that surround the cell soma and proximal dendrites [153]. The PNN is one of the master regulators of E/I
balance [154], and reduced PNN expression has been observed in human AD brains and rodent models
[155,156], while astrocytes and resident macrophages of the brain called microglia also regulate PV+ cell excit-
ability (Figure 1) [157,158]. In addition, PV+ cell axons are highly myelinated [159] and one recent report
found evidence of demyelination of PV+ axons, but not excitatory neurons, at early disease stages in an AD
mouse model [160]. While the causes of PV cell vulnerability in diseases have often focused on their high
energy demands, as discussed in this review, changes in the PNN and/or myelination levels would also have
profound effects on PV+ neuron’s firing properties and function [161]. Moreover, demyelination, for instance
in multiple sclerosis, can also preferentially affect inhibitory synapses and neurons, with the selective vulnerabil-
ity of PV+ and SST+ cells [162].
As the deposition of amyloid-β and α-synuclein aggregation is activity-dependent, increased neuronal or

network excitability in the early stages of neurodegeneration will be an important driver of pathophysiology.
Consequently, there is considerable focus on the potential to target PV+ cells for interventions to modulate
excitability and slow, or even halt, disease progression.

Conclusion
Overall, these intermutually mechanistic insights provide a detailed account of the prevailing role (and vulner-
ability) of PV+ neurons, particularly highlighting mitochondrial impairment as an emerging pathophysiological
mechanism across these major psychiatric and neurodegenerative diseases. The reviewed literature evidence
suggests that PV+ neurons may represent an attractive target which could conceivably fuel the vital develop-
ment of novel, potent therapeutics, with far-reaching applicability.

Perspectives
• PV+ vulnerability and mitochondrial dysfunction is a shared mechanism across several major

psychiatric and neurodegenerative diseases.

• Identification of novel biomarkers specific to PV+ dysfunction and mitochondrial impairment,
e.g. miR137-COX6A2, may improve patient stratification in heterogenous diseases, such as in
neuropsychiatric disorders, in order to improve clinical trial stratification, monitor disease pro-
gression and improve treatment outcome [118].

• Therapeutics which can modify overlapping pathophysiological pathways would be beneficial.
PV+ neurons may represent an attractive treatment target with far-reaching applicability.
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