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Abstract: Lead exposure is a significant health concern, ranking among the top 10 most harmful
substances for humans. There are no safe levels of lead exposure, and it affects multiple body systems,
especially the cardiovascular and neurological systems, leading to problems such as hypertension,
heart disease, cognitive deficits, and developmental delays, particularly in children. Gender differ-
ences are a crucial factor, with women’s reproductive systems being especially vulnerable, resulting
in fertility issues, pregnancy complications, miscarriages, and premature births. The globalization
of lead exposure presents new challenges in managing this issue. Therefore, understanding the
gender-specific implications is essential for developing effective treatments and public health strate-
gies to mitigate the impact of lead-related health problems. This study examined the effects of
intermittent and permanent lead exposure on both male and female animals, assessing behaviours
like anxiety, locomotor activity, and long-term memory, as well as molecular changes related to
astrogliosis. Additionally, physiological and autonomic evaluations were performed, focusing on
baro- and chemoreceptor reflexes. The study’s findings revealed that permanent lead exposure has
more severe health consequences, including hypertension, anxiety, and reactive astrogliosis, affecting
both genders. However, males exhibit greater cognitive, behavioural, and respiratory changes, while
females are more susceptible to chemoreflex hypersensitivity. In contrast, intermittent lead exposure
leads to hypertension and reactive astrogliosis in both genders. Still, females are more vulnerable
to cognitive impairment, increased respiratory frequency, and chemoreflex hypersensitivity, while
males show more reactive astrocytes in the hippocampus. Overall, this research emphasizes the
importance of not only investigating different types of lead exposure but also considering gender
differences in toxicity when addressing this public health concern.

Keywords: lead exposure; gender differences; hypertension; reactive astrogliosis

1. Introduction

Lead exposure is a significant and serious health problem, ranking in the top 10 pri-
mary toxicants that damage human health [1–3]. Unlike certain contaminants, there are
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no acceptable levels of lead exposure, making it critical to address this issue as soon as
possible [1,4,5]. Understanding the many origins and pathways of lead exposure is critical
for developing effective methods to minimise its negative consequences.

Lead exposure can occur via a variety of routes, the most common of which are envi-
ronmental and acute/occupational [1,4,5]. Environmental sources include commonplace
factors such as polluted water, lead-based paints, soil, and air pollution [6–9]. Acute or
occupational exposure, on the other hand, is more common in some industries where
employees are in direct contact with lead-based products [2,10–14].

Lead exposure has far-reaching health consequences, affecting multiple body sys-
tems due to its accumulation in the soft tissues [2,5–9,11,15–19], primarily influencing the
cardiovascular and neurological systems. Long-term lead exposure has been related to
cardiovascular issues such as hypertension and an increased risk of heart disease [20–24].
Furthermore, the neurological repercussions are especially troubling, since lead exposure
has been linked to cognitive deficits, developmental delays, and behavioural abnormalities,
particularly in children [25–32].

The biological differences between men and women can have a substantial impact
on the health effects of lead exposure [33–37]. Notably, the female reproductive system
is especially vulnerable to the negative effects of lead [38–43]. Elevated lead levels have
been linked to decreased fertility, an increased risk of pregnancy problems, and negative
birth outcomes such as miscarriages and premature births [1,4,5]. Furthermore, prenatal
lead exposure in children has been associated with developmental delays and cognitive
impairments [44–46]. Gender-specific patterns in neurotoxicity have been discovered, sug-
gesting unique cognitive effects following lead exposure. Females, particularly throughout
critical life periods such as menopause, may have more severe cognitive deficits than
males [33,43]. Furthermore, gender disparities in sensitivity to neurobehavioral effects have
been observed, with men being more susceptible to behavioural disruptions and women
being more susceptible to cognitive deficiencies [38–40,42].

The impact of oestrogen, a female hormone, appears to modify the impact of lead
exposure on multiple physiological systems. Oestrogen may amplify the harmful effects
of lead on the cardiovascular system, potentially increasing the risk of hypertension and
cardiovascular disease in women [35,36,38,42,43,47]. On the other hand, oestrogen’s neu-
roprotective characteristics may attenuate lead’s neurotoxic effects in specific brain areas,
thereby contributing to the findings [42].

Globalisation has created new issues in the management of lead exposure [21,48].
Importing items from nations with relaxed lead-content restrictions poses a substantial
danger. Toys, cosmetics, and consumer gadgets may contain greater quantities of lead,
causing risks, particularly to vulnerable groups such as children [8,49,50]. International
travel is also a possible cause of lead exposure. Tourists who visit areas with excessive
lead levels in the air or contaminated soil inadvertently expose themselves to health
concerns. Mobility programmes are also a source of new lead exposure profiles, namely
intermittent lead exposure. Furthermore, the transboundary spread of lead pollution
caused by globalisation influences places far from the initial sources of contamination.

Understanding the gender implications of lead poisoning is critical for developing
therapies and public health measures. Gender-specific vulnerability-based methods can
enhance health outcomes and reduce the burden of lead-related disorders.

2. Materials and Methods
2.1. Animal Model of Long-Term Lead Exposure

The lead exposure models were developed as described previously, considering in-
gestion to be the most common exposure route [51,52]. Seven-day-pregnant Wistar rats
(Charles River Laboratories, Chatillon-sur-Chalaronne, France) were separated into Pb-
treated and control groups. The tap drinking water in the Pb-treated group was replaced
with a 0.2% (p/v) lead (II) acetate solution (Acros Organics, Antwerp, Belgium) dissolved
in deionized water.
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The pups, after weaning at 21 days, were divided into 6 groups according to the type
of exposure and gender. The 0.2% lead acetate solution was given to the lead-exposed
groups: for female (IntPb F, n = 17) and male (IntPb M, n = 17) intermittent groups—lead
exposure until 12 weeks of age, no exposure (tap water) between 12 and 20 weeks, and
second exposure from 20 to 28 weeks of age, and for female (PerPb F, n = 17) and male
(PerPb M, n = 16) permanent groups—lead solution in the diet from foetal period until
28 weeks of age. Tap water was given to the age-matched female (Ctrl F, n = 16) and male
(Ctrl M, n = 19) control groups.

To offer a full functional and morphological evaluation at the endpoint of expo-
sure, all animals were exposed to the same experimental methodology. The experimental
methodology complied with European and national animal welfare regulations and was
authorised by the Academic Medical Centre of Lisbon (CAML), Portugal, with permission
number 411/16.

2.2. Behavioral Evaluation

Animals were subjected to a battery of standard behavioural tests two weeks before
functional evaluation (at 26 weeks of age) to assess (i) open-field test for locomotor and
exploratory behaviour [53], (ii) elevated plus maze for anxiety-like behaviour [54], and
(iii) novel object recognition test for evaluation of the episodic long-term memory [55].
During the experimental days, animals were brought into the behaviour testing room for
at least 1 h before the start of the testing session. All behavioural studies were carried out
between the hours of 8 a.m. and 6 p.m. in a quiet room with low illumination, and all
animals were subjected to a four-day handling period [56,57] for the researcher and testing
room habituation and to reduce biases.

All behaviour equipment was cleaned with 70% ethanol between animals. All tests
were recorded with a UV camera (Chacon, Wavre, Belgium), and the resulting videos were
analysed with ANY-maze software, V 7.2 (Stoelting Co., Wood Dale, IL, USA).

2.2.1. Elevated plus Maze Test

An elevated plus maze test (EPM) was performed for anxiety-like behaviour evalua-
tion [32,48,54,58]. The apparatus consists of a 50 cm raised maze with four arms (two open
arms (50 × 10 cm) perpendicular to two closed arms (50 × 10 × 30 cm height) that create
a plus shape). Each animal was placed in the centre of the labyrinth for 5 min to explore
freely, with no prior habituation to the maze, and the following ratio (time spent in open or
closed arms/total time) × 100 was used to calculate the percentage of time spent in open
and closed arms, respectively [32,48,58].

2.2.2. Open-Field Exploration Test

Exploration of a new environment and general locomotion are commonly evaluated
using the open-field test (OFT) taking advantage of the curious nature of the rodents [59].
The OFT apparatus is composed of a square black box (67 × 67 × 57 cm in height) that
has been “virtually” split into three concentric squares: (1) the periphery zone (near the
walls), (2) the intermediate zone, and (3) the centre. The animals were left in the centre of
the maze to explore freely for 5 min, which is generally enough time to assess the specified
parameters. We computed the total travelled distance and the average velocity of the
animals as main parameters of the test from the evaluation of the central point of the
animal [32,48,53,60,61].

2.2.3. Novel Object Recognition Test

A novel object recognition test (NOR) with a 24 h retention interval was used to
evaluate the episodic long-term memory using the same protocol as described previously
using the OFT arena [32,48,55,62]. Briefly, the objects used (clear and brown glass shapes)
were randomized and their position in relation to the other objects was changed to use each
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object as a source of familiarity or novelty as well as the position change within the maze
to exclude spatial biases of the animals.

The test consists of three stages: habituation, training, and testing. During habituation
(three days), animals were left to explore the apparatus freely for 15 min. On the fourth
day, they were exposed to two familiar (F) items, for 5 min. On the fifth day, the animals
were exposed to two objects for 5 min, one previously encountered object (F) and one novel
object (N) [55]. The testing day was recorded and analysed using ANY-maze® software,
V 7.2 employing 3-point analysis (head, torso, and tail of the animal), and only the data
from the head point analysis were relevant for object exploration. The amount of time
animals spent around each object during the testing stage was used to quantify exploratory
behaviour. The number of approaches that involved smelling, rearing towards, or touching
the item was tallied. Exploration did not include sitting rearward to the item or passing
in front of it without pointing their nose in the object’s direction [55]. The exploration
time was measured as follows: ET (%) = (time exploring the object/overall exploring time)
× 100.

The novelty index was then computed as follows:

(ET% Novel − ET% Familiar)/(ET% Novel + ET% Familiar) (1)

This index has a range of −1 to 1, with negative values representing the lack of
discrimination between the new and familiar items (i.e., spending more time exploring the
familiar object or equal time exploring both things) and positive values representing more
exploration of the novel object [32,48,63].

2.3. Metabolic Evaluation

For 24 h before the acute experiment at 28 weeks, rats were kept in metabolic cages to
assess their body weight, food and drink consumption, and urine and faeces production.

2.4. Functional Evaluation
2.4.1. Physiological and Autonomic Evaluation

After behavioural and metabolic evaluation, animals were anaesthetized with sodium
pentobarbital (60 mg/kg, IP). Anaesthesia levels were maintained using a 20% solution
(v/v) of the same anaesthetic after assessing the withdrawal response. A homoeothermic
blanket (Harvard Apparatus, Cambourne, UK) was used to keep the rectal temperature
stable. To measure tracheal pressure, the trachea was cannulated below the larynx and
the respiratory frequency (RF) was calculated from the measured pressure. The femoral
artery and vein were cannulated to monitor blood pressure (BP) and inject saline and drugs,
respectively. The electrocardiogram (ECG) was assessed using subcutaneous electrodes in
three limbs, and the heart rate was calculated using the ECG data (Neurology, Digitimer,
Welwyn Garden City, UK).

The right carotid artery was catheterized, and chemoreceptors were stimulated with
lobeline (0.2 mL, 25 g/mL, Sigma, St. Louis, MO, USA) [51]. A phenylephrine injection
(0.2 mL, 25 g/mL, Sigma, St. Louis, MO, USA) in the femoral vein was used to stimulate
the baroreflexes [32,48,51].

Blood lead levels (BLL) were determined from the venous blood using an atomic
absorption spectrophotometer (Shimadzu, Model no. AA 7000, Kyoto, Japan).

2.4.2. Data Acquisition and Analysis

Continuous recordings of blood pressure (BP), ECG, heart rate (HR), and respiratory
frequency (RF) were performed (PowerLab, ADInstruments, Colorado Springs, CO, USA).
These parameters were acquired, amplified, and filtered at 1 kHz (Neurology, Digitimer,
Welwyn Garden City, UK; PowerLab, ADInstruments, Colorado Springs, CO, USA). A
baseline recording of 10 min was taken for basal physiological assessment before baro and
chemoreceptor reflexes stimulation. Each stimulus was separated by at least 3 min.
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2.4.3. Baro- and Chemoreceptor Reflex Analysis

The autonomic analysis focused on assessing total autonomic tonus as well as baro-
and chemoreceptor responses. The baroreceptor reflex gain (BRG) was calculated after
phenylephrine provocation by measuring ∆HR/∆BP (bpm/mmHg).

The chemoreflex response was estimated using respiratory frequency (RF) mea-
sured from tracheal pressure before and after lobeline stimulation: ∆RF = RFstimulation
− RFbasal.

2.5. Immunohistochemistry (IHC)

At the end of the above-mentioned acute experiment, the animals were sacrificed with
an overdose of the same anaesthetic compound as during the surgery (sodium pentobarbital
20% (v/v) of the 60 mg/kg initial solution).

After sacrifice, animals underwent a transcardial perfusion with fresh PBS 1× solution
(TH Geyer, Höxter, Germany); the brain was removed and transferred into paraformalde-
hyde (PFA 4%, Carl Roth, Karlsruhe, Germany) solution for post-fixation for 72 h. The
brains were then immersed in increasing concentrations of sucrose (15% and 30%, Merck,
Germany in PBS 1× with sodium azide, Sigma-Aldrich, Schnelldorf, Germany) and kept at
4 ◦C for later analysis.

To evaluate the astrocytic changes, sagittal free-floating sections (30 µm) were cut
around the region of the hippocampus (Lateral 0.6–2.04) using a cryostat (Leica CM 3050S,
Wetzlar, Germany), and they were subsequently stained as reported previously [62,64]. Suc-
cinctly, free-floating sections were washed with TBS 1× (PanReac/AppliChem, Darmstadt,
Germany), permeabilized with 3% Triton × 100 solution for 15 min (Carl Roth, Karlsruhe,
Germany) and blocked with 5% Goat Serum (BioWest, Nuaillé, France) and 1% Bovine
serum (VWR, Radnor, PA, USA) for 1 h. The freely floating tissues were then incubated
with specific astrocytic primary antibody, glial fibrillary acidic protein–GFAP (chicken,
ab4674, abcam, 1:500) overnight at 4 ◦C. Sections were then washed with TBS 1× and
incubated with Alexa Flour 633 goat anti-chicken (A21103, Invitrogen, Carlsbad, CA, USA
1:1000) secondary antibody. Lastly, nuclei were counter-stained with DAPI (4′,6-diamidino-
2-phenylindole, 1:10,000, Carl Roth, Karlsruhe, Germany). Sections were mounted in
SuperFrost® Microscope Slides using Fluoromount-G mounting media (Invitrogen, Carls-
bad, CA, USA). Omission of the primary antibody resulted in no staining.

Z-stack images of the dentate gyrus region of the hippocampus were taken with
a confocal point-scanning microscope (Zeiss LSM 900 with Airyscan 2, Carl Zeiss AG,
Oberkochen, Germany) with a 20× objective (Objective Plan-Apochromat 20×/0.8) and
tile scan was performed to image the whole region of interest and 63× objective (Objective
Plan-Apochromat 63×/1.4 Oil DIC M27) for zoom in images of the cells for morphological
evaluation. Zen Microscopy Software (3.4 version, Carl Zeiss AG, Oberkochen, Germany)
was used for all the imaging experiments, and the final images were post-analysed and
quantified using Fiji open-source software, Java V 1.8.0_322 [65].

For the morphological evaluation of the cells, relevant scientific articles were used for
support [66–68]. For quantification of the percentage of GFAP-positive cells, the dentate
gyrus region of the 20× tile images were selected, and a 3D object counter plugin in
Fiji was used to first count the DAPI-stained nuclei and afterwards count the number of
GFAP-positive cells. The following equation was applied for calculating the percentage
of cells: (GFAP-positive cells/DAPI nuclei) × 100. Fluorescence intensity inside the cells
and their area were measured using measure analysis in Fiji for the 63× images with cells
individually selected for analysis.

2.6. Statistical Analysis

If not otherwise specified, the data were presented as mean ± SEM and represented
the average of mean values across all participants. The normality distribution of continuous
variables was assessed using the D’Agostino and Pearson normality test, and the homo-
geneity of variance was examined using Levene’s test. For data analysis among different
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groups, a one-way ANOVA was employed, followed by Tukey’s multiple comparisons test.
We evaluated the data of both intergroups for the permanent and intermittent groups com-
pared to controls and inter-gender groups, within each type of lead exposure comparing
the male and female groups.

Additionally, to compare the exploration time percentage between objects in the NOR
test for each group, a Student t-test for paired observations was used. The statistical analysis
was performed using GraphPad Prism 9 (GraphPad Software Inc., V 9, Boston, MA, USA).
Statistical significance was defined as p < 0.05.

3. Results
3.1. Male Lead Exposure Groups Have an Increase in Their Weight

Atomic absorption spectrophotometry was performed to estimate blood lead levels,
and we observed that, regardless of gender, the IntPb and PerPb groups showed a signifi-
cant increase in the levels of lead in the blood after the experimental protocol (Table 1).

Table 1. Gender-specific changes in blood lead levels and metabolic parameters. Values are the
mean ± SEM. The symbols denote statistically significant differences intergroup (Ctrl vs. IntPb vs.
PerPb—* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001); one-way ANOVA; Tuckey’s multiple
comparison test.

Blood Lead
Levels (µg/dL) Weight (g) Food Intake (g) Water Intake

(mL)
Produced
Faeces (g)

Produced
Urine (mL)

Ctrl F 0.425 ± 0.085 329 ± 8 24.9 ± 1.3 40.0 ± 2.4 28.30 ± 3.07 16.31 ± 1.77
IntPb F 17.85 ± 5.350 * 302 ± 6 23.6 ± 1.7 45.9 ± 6.1 21.00 ± 4.25 16.36 ± 2.23
PerPb F 26.43 ± 3.798 *** 324 ± 7 23.2 ± 1.9 37.3 ± 4.6 21.31 ± 3.62 16.00 ± 1.99
Ctrl M 0.48 ± 0.086 620 ± 15 36.3 ± 3.4 47.1 ± 2.6 29.14 ± 4.96 21.00 ± 2.38

IntPb M 18.77 ± 0.612 ** 501 ± 7 **** 31.5 ± 4.6 37.5 ± 5.2 24.33 ± 3.44 12.83 ± 0.58 **
PerPb M 21.77 ± 5.871 *** 555 ± 17 ** 29.7 ± 1.3 34.3 ± 3.6 21.43 ± 3.96 17.00 ± 1.43

As for the metabolic parameters evaluated using the metabolic cages for 24 h, we
observed that male animals, both IntPb and PerPb, showed a significant decrease in their
weight when compared to the controls, a change that was not observed in the female
animals in both groups. We also observed a significant decrease in urine production in the
male IntPb animals, compared to controls. No significant changes in the other parameters
(water and food intake and faeces production) were observed (Table 1).

3.2. Male Permanent Exposure Group Shows a Significant Decrease in the Travelled Distance

The open-field test was used to evaluate their locomotor skills and exploratory activ-
ities. We observed that the male PerPb group of animals showed a significant decrease
in their total travelled distance in the maze when compared to the male control group
and compared to the female PerPb group (Figure 1A: Ctrl M 1720 ± 202.9 vs. PerPb M
1071 ± 124.4, p < 0.05; PerPb F 1976 ± 270.2 vs. PerPb M, p < 0.05). No other significant
differences were observed for this parameter (Figure 1A: Ctrl F 2196 ± 166.7 vs. IntPb F
2130 ± 235.1 vs. PerPb F; Ctrl M vs. IntPb M 1188 ± 191.6 vs. PerPb M, p > 0.05).

Interestingly, even though the PerPb group showed a decrease in the total travelled
distance, no significant differences were observed in the average velocity between all
groups (Figure 1B: Ctrl F 9.5 ± 1.5 vs. IntPb F 10.1 ± 1.4 vs. PerPb F 9.1 ± 1.7 vs. Ctrl M
9.3 ± 1.9 vs. IntPb M 5.8 ± 1.2 vs. PerPb M 5.7 ± 1.2, p > 0.05).
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3.3. Permanent Lead Exposure, Independent of Gender Causes Anxiety-like Behavior

Anxiety-like behaviour was evaluated using an elevated plus maze test, and the
results are presented in Figure 2. We observed that the PerPb group, regardless of gender,
showed a significant decrease in their percentage of time in the open arms (Figure 2A: Ctrl
F 23.82 ± 4.83 vs. PerPb F 4.22 ± 1.02, p < 0.01; Ctrl M 17.61 ± 4.12 vs. PerPb 2.97 ± 1.48,
p < 0.05). Remarkably, the IntPb group did not show the same effect, exhibiting a slight,
not significant, decrease (Figure 2A: Ctrl F vs. IntPb 15.58 ± 3.83, p > 0.05; Ctrl M vs. IntPb
M 9.13 ± 2.28, p > 0.05). No significant differences were also observed within the groups
when genders were compared.
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Figure 2. Anxiety-like behaviour results assessed using elevated plus maze. (A) Percentage of time
in open arms. (B) Percentage of time in closed arms. Values are the mean ± SEM for nCtrl F = 10,
nIntPb F = 15, nPerPb F = 13, nCtrl M = 16, nIntPb M = 13, and nPerPb M = 12. The symbols denote statis-
tically significant differences intergroup (Ctrl vs. IntPb vs. PerPb—* p < 0.05; ** p < 0.01; one-way
ANOVA; Tuckey’s multiple comparison test.

As for the percentage of time spent in the closed arms, a similar change was observed
in the PerPb group, with an increase in this parameter, regardless of the gender (Figure 2B:
Ctrl F 53.28 ± 5.24 vs. PerPb F 81.41 ± 2.84, p < 0.01; Ctrl M 53.39 ± 5.26 vs. PerPb M
80.62 ± 4.11, p < 0.01). The IntPb group, as with open arms, showed a slight increase,
although it was not significant (Figure 2B: Ctrl F vs. IntPb F 61.85 ± 4.52, p > 0.05; Ctrl M
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vs. IntPb M 67.19 ± 5.77, p > 0.05). No other significant differences were observed between
genders inside the groups (Int and PerPb).

3.4. Female Intermittent Lead Exposure and Male Permanent Lead Exposure Groups Show a
Strong Decline in Episodic Long-Term Memory

Episodic long-term memory was assessed using a novel object recognition test with
a 24 h retention interval and the exploration time of the novel (N) and familiar (F). We
observed that the control groups, regardless of gender, recognize the novel object as novelty
by showing a significant increase in the percentage of exploration time of the novel object,
when compared to the familiar object (Figure 3A: Ctrl F (F) 42.28 ± 2.51 vs. Ctrl F (N)
57.72 ± 2.51, p < 0.01; Ctrl M (F) 39.23 ± 2.94 vs. Ctrl M (N) 60.77 ± 2.94, p < 0.01).
Interestingly, all the other groups, irrespective of the gender or type of lead exposure, did
not present a significant change in the exploration time percentage (Figure 3A: IntPb F
(F) 54.78 ± 4.12 vs. IntPb F (N) 45.22 ± 4.12; IntPb M (F) 45.32 ± 2.35 vs. IntPb M (N)
54.68 ± 2.35; PerPb F (F) 47.45 ± 2.07 vs. PerPb F (N) 52.55 ± 2.07; PerPb M (F) 53.58 ± 2.30
vs. PerPb M (N) 46.43 ± 2.30, p > 0.05).
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Figure 3. Episodic long-term memory assessed using novel object recognition test. (A) Exploration
time percentage of familiar (F) and novel (N) objects by each group. (B). Novel object recognition
index calculated through the equation presented in the methods section. Dotted line represents the
50% exploration time %. Values are the mean ± SEM for nCtrl F = 14, nIntPb F = 11, nPerPb F = 12,
nCtrl M = 17, nIntPb M = 15, and nPerPb M = 14. The symbols denote statistically significant differences:
(A) Between the exploration time of the novel (N) and familiar (F) objects (** p < 0.01). Paired Student’s
t-test. (B) Intergroup (Ctrl vs. IntPb vs. PerPb—** p < 0.01; *** p < 0.001) and inter-gender (IntPb F
vs. IntPb M/PerPb F vs. PerPb M—# p < 0.05; ## p < 0.01). One-way ANOVA. Tuckey’s multiple
comparison test.

Remarkably, even though we observed a similar pattern in the percentage of ex-
ploration time in the different lead-exposed groups, after calculating the novel object
recognition index, we observed not only different lead exposure profile effects, but also



Biomedicines 2024, 12, 711 9 of 18

gender effects within the groups. Namely, only the IntPb females and PerPb males showed
a significant decrease in the novel object recognition index, when compared to controls
(Figure 3B: Ctrl F 0.15 ± 0.05 vs. IntPb F −0.13 ± 0.08, p < 0.01; Ctrl M 0.24 ± 0.06 vs. PerPb
M −0.11 ± 0.04, p < 0.001), while the other two groups—IntPb M and PerPb F—showed a
slight, not significant, decrease in this parameter (Figure 3B: Ctrl F vs. PerPb F 0.08 ± 0.05;
Ctrl M vs. IntPb 0.09 ± 0.05, p > 0.05). Due to these variations, we observed a significant
difference between the genders of the two lead exposure groups (Figure 3B—IntPb F vs.
IntPb M, p < 0.05; PerPb F vs. PerPb M, p < 0.01).

3.5. Lead Exposure, Independent of Gender, Causes Astrocytic Activation with Stronger Effects in
the Male Groups

In order to evaluate the molecular changes underlying the behavioural changes that
were observed, we have evaluated the astrocytic cells. The qualitative morphological anal-
ysis showed that all groups, regardless of the type of lead exposure or gender, experience
a significant increase in the activation of the astrocytic cells. The representative images
show a higher density in the astrocytic cells, with hypertrophy of cellular processes and
GFAP upregulation, which qualitatively shows that the astrocytes are in the reactive state
(hallmark of pathology—Figure 4A).
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Figure 4. Astrocytic activation evaluated using astrocytic (GFAP) marker using immunohistochem-
istry. (A) Representative images of the GFAP-stained astrocytes. (B) Histogram of the percentage of
GFAP-positive cells’ quantification. (C). Histogram of GFAP fluorescence intensity quantification.
(D) Histogram of GFAP cell area quantification. Images were acquired on a confocal point scanning
microscope, (Zeiss LSM 900 with Airyscan 2), with a 20× objective for a whole dentate gyrus imaging
and 63× objective for zooming in on the astrocytic cells. The scale bar is 100 µm or 50 µm for stained
images. Values are the mean ± SEM for n = 2–4 for all groups. The symbols denote statistically
significant differences: intergroup (Ctrl vs. IntPb vs. PerPb—* p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001); one-way ANOVA; Tuckey’s multiple comparison test.
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As for the quantitative analysis, we observed that, regardless of the gender or type
of lead exposure, the percentage of astrocytic cells increased when compared to control
groups (Figure 4B: Ctrl F 11.33 ± 2.36 vs. IntPb F 40.17 ± 1.87, p < 0.001; Ctrl F vs. PerPb
F 35.75 ± 2.53, p < 0.01; Ctrl M 13.28 ± 3.11, p < 0.001; Ctrl M vs. PerPb M 45.12 ± 7.41,
p < 0.01). Remarkably, no changes within the groups regarding gender differences were
observed (p > 0.05). The quantification of the GFAP fluorescence intensity showed that only
the IntPb M group display a significant increase in the fluorescence intensity (Figure 4C:
Ctrl M 46.84 ± 8.90 vs. IntPb M 111.8 ± 14.05, p < 0.01). All the other groups showed no
significant changes (Figure 4C: Ctrl F 60.02 ± 4.23 vs. IntPb F 74.12 ± 2.49 vs. PerPb F
66.05 ± 12.32, p > 0.05; Ctrl M vs. PerPb M 58.14 ± 6.31, p > 0.06). No significant alterations
within the lead exposure groups were depicted.

Lastly, the GFAP cell area was evaluated. We observed that, no matter the type of
lead exposure or the gender, there is a significant increase in the area (Figure 4D: Ctrl F
406.7 ± 69.69 vs. IntPb F 968.7 ± 146.5, p < 0.05; Ctrl F vs. PerPb F 799.7 ± 48.96, p < 0.05;
Ctrl M 337.3 ± 32.34 vs. IntPb M 1648 ± 30.0, p < 0.0001; Ctrl M vs. PerPb M 799.0 ± 153.0,
p < 0.05).

3.6. Permanent Lead Exposure, Regardless of the Gender Shows a Stronger Effect on Blood Pressure
and Respiratory Frequency

Basal physiological data were evaluated during the acute experiment. We observed
that the permanent lead exposure group, regardless of the gender, caused a strong, sig-
nificant increase in the systolic (Figure 5A: Ctrl F 147.8 ± 5.8 vs. PerPb F 169.2 ± 4.6,
p < 0.01; Ctrl M 139.9 ± 12.4 vs. PerPb M 165.4 ± 7.2, p < 0.05) and diastolic (Figure 5A:
Ctrl F 102.4 ± 3.6 vs. PerPb F 134.9 ± 4.3, p < 0.0001; Ctrl M 106.8 ± 9.8 vs. PerPb M
144.9 ± 4.4, p < 0.001) blood pressure. Consequently, the mean blood pressure was also
significantly increased (Figure 5A: Ctrl F 122.4 ± 3.5 vs. PerPb F 150.9 ± 4.2, p < 0.0001; Ctrl
M 120.7 ± 10.7 vs. PerPb M 159.3 ± 4.2, p < 0.001). As for the intermittent lead exposure,
we observed that only diastolic blood pressure was increased significantly (Figure 5A: Ctrl
F vs. IntPb F 124.2 ± 5.2, p < 0.01; Ctrl M vs. IntPb M 127.2 ± 4.7, p < 0.05) and, thus, the
mean blood pressure was increased (Figure 5A: Ctrl F vs. IntPb F 140.0 ± 5.9, p < 0.05; Ctrl
M vs. IntPb M 143.1 ± 5.1, p < 0.05). No significant changes were observed in the systolic
blood pressure (Figure 5A: Ctrl F vs. IntPb F 158.9 ± 7.5, p > 0.05; Ctrl M vs. IntPb M
165.4 ± 7.2, p > 0.05).

We observed no significant changes in the heart rate, regardless of the lead exposure
or gender (Figure 5B: Ctrl F 391.9 ± 17.94 vs. IntPb F 384.5 ± 11.60 vs. PerPb F 406.5 ± 9.28,
p > 0.05; Ctrl M 409.4 ± 8.83 vs. IntPb M 403.9 ± 9.70 vs. PerPb M 397.1 ± 6.67, p > 0.05).

Regarding the respiratory frequency, the permanent lead exposure showed a signifi-
cant increase in both genders (Figure 5C: Ctrl F 54.7 ± 2.5 vs. PerPb F 68.1 ± 1.9, p < 0.0001;
Ctrl M 72.0 ± 4.1 vs. PerPb M 88.9 ± 5.1, p < 0.05). Only the female intermittent lead
exposure showed a significant increase (Figure 5C: Ctrl F vs. IntPb F 66.4 ± 4.0, p < 0.05). No
significant difference was observed in the male intermittent lead exposure (Figure 5C: Ctrl
M vs. IntPb M 69.1 ± 2.5, p > 0.05). Regarding gender differences, there was a significant
increase observed in the PerPb M groups compared to the PerPb M group (p < 0.001).
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Figure 5. Basal physiological data assessed during the acute surgery. (A) Systolic, diastolic, and 
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Figure 5. Basal physiological data assessed during the acute surgery. (A) Systolic, diastolic, and mean
blood pressure evaluated through femoral artery. (B) Heart rate calculated from the electrocardiogram.
(C) Respiratory frequency assessed from tracheal pressure. Values are the mean ± SEM for nCtrl F = 10,
nIntPb F = 16, nPerPb F = 15, nCtrl M = 9, nIntPb M = 15, and nPerPb M = 16. The symbols denote statistically
significant differences intergroup (Ctrl vs. IntPb vs. PerPb—* p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001) and inter-gender (IntPb F vs. IntPb M/PerPb F vs. PerPb M—### p < 0.001). One-way
ANOVA. Tuckey’s multiple comparison test.

3.7. Lead Exposure in Female Animals, Regardless of the Type, Increases the
Chemoreflex Sensitivity

The baroreceptor reflex was calculated from the variation in blood pressure and heart
rate. We observed no changes in the baroreflex gain, regardless of the lead exposure
protocol or gender (Figure 6A: Ctrl F 0.49 ± 0.09 vs. IntPb F 0.48 ± 0.03 vs. PerPb F
0.48 ± 0.06, p > 0.05; Ctrl M 0.58 ± 0.06 vs. IntPb M 0.43 ± 0.04 vs. PerPb M 0.51 ± 0.04,
p > 0.05).
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Figure 6. Lead effect on autonomic reflexes. (A) Baroreflex gain stimulated with phenylephrine
injection. (B) Chemoreflex sensitivity calculated from lobeline injection stimulation. Values are the
mean ± SEM for nCtrl F = 10, nIntPb F = 12, nPerPb F = 15, nCtrl M = 9, nIntPb M = 12 and nPerPb M = 16. The
symbols denote statistically significant differences intergroup (Ctrl vs. IntPb vs. PerPb—* p < 0.05).
One-way ANOVA. Tuckey’s multiple comparison test.

As for the chemoreflex sensitivity, we observed that both female lead exposure groups
showed a significant increase when compared to the female control group (Figure 6B:
Ctrl F 17.08 ± 2.28 vs. IntPb F 32.01 ± 5.08, p < 0.05; Ctrl F vs. PerPb F 26.56 ± 2.95,
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p < 0.05). No significant changes were observed within the male groups, even though a
slight increase was depicted (Figure 6B: Ctrl M 20.66 ± 4.04 vs. IntPb M 30.03 ± 4.13 vs.
PerPb M 27.06 ± 3.09, p > 0.05). No changes were observed between the genders, within
the lead exposure groups.

4. Discussion

In the present study, in general, we confirmed that permanent lead exposure, re-
gardless of the gender, causes stronger health effects in animals when compared to the
intermittent lead exposure, an effect that was already observed previously in other stud-
ies [32,48,62,69]. Likewise, regardless of the lead exposure, the blood lead levels are
significantly increased and to levels that are far from the safe lead levels [1,2,14]. Remark-
ably, nonetheless, both lead exposure profiles, regardless of gender, show not only an
increase in the percentage of astrocytes but also increase in the area of the cells which
shows an astrocytic activation in the brain, namely in the dentate gyrus of the hippocam-
pus [66,67,70]. Interestingly, intermittent lead exposure leads to stronger molecular effects,
as the GFAP-stained astrocytes showed a stronger increase in the fluorescence marker
which is associated with a stronger activation of these cells [67,68,70]. This effect was also
specific to male animals of the group which could be related to the gender differences in the
response to the toxicants and the development of astrocytes [39,71]. The more prominent
effect of intermittent lead exposure could be related to a more acute response to the second
lead exposure that happens in the adult stage of the animals, while in the permanent lead
exposure, the CNS is constantly affected by lead and some neuronal and glial modulations
have occurred through time [62].

Curiously, we observed that male animals, regardless of the type of exposure, present
stronger behavioural and metabolic effects when compared to female animals. Specifically,
male animals show significant weight loss with lead exposure (both intermittent and
permanent) even though the animals do not reduce their daily food consumption. Weight
loss has been already described as one of the effects of lead poisoning, especially in
children [8,11–14,72]. Weight loss could be a confounding factor for some of the behavioural
changes that we observed, namely the reduction in the total travelled distance in the open-
field test that evaluated the locomotor activity of the animals. However, as the weight
was not reduced from the normal values of adult rats, we can infer that the locomotor
activity was mostly affected by the exposure to lead [73–78]. Interestingly, intermittent male
animals also presented a reduction in urine production, without a decrease in water intake,
which could mean that these animals show some renal disfunction which is one of the
main health effects that has been described previously and could be one of the underlying
mechanisms of high blood pressure [15,16].

Hypertension was observed in all groups of animals, no matter which gender or type of
exposure, without heart rate increase. However, the PerPb groups showed a strong increase
in their systolic, diastolic, and consequently mean blood pressures, which is suggestive that
this exposure has a stronger effect on the cardiac output when compared to IntPb groups
that show an effect only in the diastolic blood pressure, which is more affected by the
peripheral vascular resistance. Hypertension has been extensively documented in the scien-
tific literature as one of the main health effects of lead exposure [23,24,79–81]. However, in
this study, compared to our previous results, we do not observe a concomitant baroreceptor
reflex impairment, regardless of the type of exposure or gender [21,32,48,62,82–84]. This
lack of effect strikes a great interest, as the baroreceptor reflex is one of the main mecha-
nisms regulating blood pressure, controlled by the higher autonomic brain regions, namely
PVN-NTS axis and has been greatly characterized as one of the main autonomic effects
in the presence of lead [81,85–89]. Remarkably, only female animals showed a chemore-
ceptor reflex sensitivity increase, independent of lead exposure which can be related to
the general alert-like reaction and could be causal of the hypertension observed in these
animals. Furthermore, this increase is also suggestive that it is of great significance to main-
taining oxygen homeostasis and is an important sympatoexcitatory protective mechanism
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as an internal defence mechanism in lead exposure. Thus, however, we do not observe
changes in the baroreceptor reflexes in the animals; the autonomic function is impaired
with a chemoreflex sensitivity increase, especially in the female animals. According to
the literature, there are significant gender differences in the autonomic function related to
the difference in the gonadal hormone presence in the central autonomic areas (oestrogen
increased in females and testosterone in males) [21,35,90–92].

Regarding the respiratory frequency, the permanent lead exposure showed a more
significant increase, and only intermittent female animals showed the same effect. Further-
more, this parameter was significantly increased in the male PerPb group when compared
to their female counterparts. It is very curious to see that the gender effect differs between
the different lead exposures. Thus, the separation of gender reveals that this has an overall
effect in the groups, reacting differently to the lead exposures, as when we compare the
groups without considering gender the effect is omitted [62]. Previous studies showed that
females are more resistant to toxicants; however, chronic exposure is usually described,
compared to new exposure of the intermittent nature [35,36].

Similarly, permanent lead exposure shows an anxiety-like behaviour, unrelated to
the gender as shown by the results in the elevated plus maze. The reduction in time
in the open arms of the maze and, consequently, the decrease in the time spent in the
closed arms are significant for this behaviour. This alteration can be concomitant with the
change in blood pressure, respiratory frequency, and chemoreflex hypersensitivity which
could affect the animal’s behaviour and their reactivity to new, unexplored environments.
This effect is well documented in the literature, not only in preclinical models but also
in human studies, especially in children in which lead has been correlated to attention-
deficit/hyperactivity disorder (ADHD) [25,26,29,31,62]. Cognitive impairment is another
effect that has been described, and this study is not an exception as all groups of lead
exposure show no recognition of the novel object in the novel object recognition test when
the percentage of the exploration time is calculated (similar time exploring the familiar and
the novel object or exploring the familiar object more than novel). Yet, when the novelty
recognition index is calculated, the results show a dissimilar pattern for different lead
exposures and genders. Solely, female IntPb and male PerPb groups show a strong NOR
index reduction (below 0), an effect that was omitted when all animals were in the same
group and compared between environmental lead exposure profiles. We can infer that
gender is of great importance to the cognitive impairment effect, especially the hormonal
differences (oestrogen levels in females and testosterone in males) that have been shown to
increase neurotoxicity once following an insult but are protective in the later stages [42].
Some other possible mechanisms underlying these great varieties in the gender effect in
cognition could also be the amount of microglia that males and females have a priory
(males have more microglia which could result in higher neurotoxicity); the mitochondria
from the female brain that have greater functional capacity, for example, for antioxidant and
respiratory function; the higher mitochondrial reactive oxygen species (ROS) production in
males, leading to higher susceptibility of males to neurotoxicity; epigenetics which affect the
sex-specific transcriptome; lower susceptibility of females to develop glutamate-induced
excitotoxicity; and other factors [34,37,42,47,93]. Interestingly, even though, according to
the literature, females seem to have stronger resistance to toxicants, in our study we observe
that intermittent exposure is more detrimental in females regarding cognitive performance
which could be related to the second exposure that activates the neuroinflammatory and
neuroprotection pathways, as well as the autonomic and physiological changes that were
stronger in females in this group [30,42,94].

Our study presents some important limitations that should be considered when fur-
ther studies are performed. Namely, we did not take into account the menstrual cycle of
the female animals, which is an important variable that could lead to some biases and more
variability in the results. We also see the importance of performing an evaluation of the
physiological parameters with telemetric sensors to have the parameters evaluated in a
conscious animal in natural conditions, opposite to the anaesthetized animals. Further-
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more, we advocate for additional studies to delve deeper into the molecular effects of lead
exposure. This entails examining not only astrocytic changes but also other markers such
as microglial alterations and reactive oxygen species (ROS) production. These assessments
should extend beyond the hippocampal region to encompass other relevant areas like
the paraventricular nucleus of the hypothalamus (PVN), nucleus tractus solitarius (NTS),
rostroventrolateral medulla (RVLN) for autonomic alterations, and the amygdala for inves-
tigating connections with anxiety-like behaviour. Moreover, studies in populations with
lead exposure, especially with the new, intermittent paradigm, can bring more information
regarding not only the direct effects of lead but also its cumulative effect with other factors
as well as its potential for being a risk factor for various diseases.

5. Conclusions

In general, we show that both types of exposure to lead and gender are relevant to the
detrimental health effects of lead toxicity. The permanent exposure shows that, regardless
of sex, this exposure has a stronger detrimental health effect when compared to the inter-
mittent lead exposure group and causes hypertension, anxiety, and reactive astrogliosis.
However, males are more susceptible to the cognitive, behavioural, and respiratory changes,
while females are more prone to chemoreflex hypersensitivity. Remarkably, intermittent
lead exposure causes hypertension (diastolic blood pressure is more affected) and reactive
astrogliosis, independent of gender. Conversely, female animals show higher vulnerability
to cognitive impairment, respiratory frequency increase, and chemoreflex hypersensitivity,
while males show more reactive astrocytes in the hippocampus.

Our results show the significance of not only studying the different types of lead
exposure and their effects on health but also considering the gender differences in toxicity.
By incorporating gender-specific considerations into toxicity assessments, healthcare pro-
fessionals can tailor interventions to address individual needs more effectively. Similarly,
policymakers can design targeted public health initiatives that account for the unique
vulnerabilities of both genders, thereby optimizing resource allocation and mitigating the
adverse impacts of lead exposure on public health.

Ultimately, a comprehensive understanding of gender differences in lead toxicity not
only enhances the precision of treatment approaches but also strengthens the foundation
for evidence-based policy interventions aimed at safeguarding the health and well-being of
populations at risk.
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