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Abstract: Whole blood models are rapid and versatile for determining immune responses to inflam-
matory and infectious stimuli, but they have not been used for bacterial discrimination. Staphylococcus
aureus, S. epidermidis and Escherichia coli are the most common causes of invasive disease, and rapid
testing strategies utilising host responses remain elusive. Currently, immune responses can only
discriminate between bacterial ‘domains’ (fungi, bacteria and viruses), and very few studies can
use immune responses to discriminate bacteria at the species and strain level. Here, whole blood
was used to investigate the relationship between host responses and bacterial strains. Results con-
firmed unique temporal profiles for the 10 parameters studied: IL-6, MIP-1α, MIP-3α, IL-10, resistin,
phagocytosis, S100A8, S100A8/A9, C5a and TF3. Pairwise analysis confirmed that IL-6, resistin,
phagocytosis, C5a and S100A8/A9 could be used in a discrimination scheme to identify to the strain
level. Linear discriminant analysis (LDA) confirmed that (i) IL-6, MIP-3α and TF3 could predict
genera with 95% accuracy; (ii) IL-6, phagocytosis, resistin and TF3 could predict species at 90%
accuracy and (iii) phagocytosis, S100A8 and IL-10 predicted strain at 40% accuracy. These data are
important because they confirm the proof of concept that host biomarker panels could be used to
identify bacterial pathogens.

Keywords: ex vivo whole blood models; host immune responses; bacterial discrimination; pair-wise
comparison; multivariate analysis; Staphylococcus epidermidis; Staphylococcus aureus; Escherichia coli

1. Introduction

Human ex vivo whole blood models have been used for several years to investigate
numerous biological, pathological and toxicological effects on immune cells in an environ-
ment that closely mimics the biological fluid present in vivo. The ability to measure soluble
mediators released from cells in addition to the cell surface or functional readouts of the
cells themselves confirms the utility of such models. Human blood has been used to deter-
mine inflammatory responses to pathogen-associated molecular patterns (PAMPs) [1–4] or
to whole bacteria [5]. It has been used to identify viral pathogens through the IFN-γ release
assay [6]. The sensitivity of human blood has found utility in assessing lipopolysaccharide
(LPS) and other pyrogens, contamination of pharmaceuticals or inorganic bioaerosols [7],
and is a practical surrogate for determining monocyte responses in situ [8–12]. We and oth-
ers have used human blood to model disease processes, to compare with patient serum [13]
and to uncover mechanisms of disease pathogenesis. Indeed, when combined with LPS or
dexamethasone, models of immunosuppression are possible [14,15].
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The three most important bacterial pathogens responsible for invasive diseases (e.g.,
bacteraemia and sepsis) are Escherichia coli, Staphylococcus epidermidis and S. aureus and
are responsible for >50% of infections [16,17]. Previous studies have confirmed the pat-
tern recognition receptors (PRRs) responsible for immune responses to these pathogens.
They show that (i) E. coli is dependent on toll-like receptor 4 (TLR-4) [18,19]; (ii) S. aureus
is dependent on TLR-2, NOD-like receptor (NLR) and C-type lectin receptor (CRP) sig-
nalling [20] and (iii) S. epidermidis induces pathways dependent [21] and independent on
TLR-2 signalling [22]. In severe infections with these organisms, the diversity in inflamma-
tory responses [23] can potentially inform on patient state and antimicrobial therapy and
has the potential to offer a diagnostic tool as to the microbial source of the infection.

Current identification of these pathogens relies on traditional microbiological tech-
niques, which take at least 24 h for identification and are vulnerable to contamination or
show reduced specificity and sensitivity [24–27]. Cellular host responses, including C-
reactive protein (CRP), procalcitonin (PCT), whole blood counts, erythrocyte sedimentation
rate (ESR) and acute phase cytokines (TNF, IL-8, IL-6, etc.), have all been inconsistent in
terms of their discriminatory power for identifying sepsis and cannot discriminate between
causative organisms [28–33]. Indeed host immune signatures have only recently managed
to discriminate organisms at the ‘domain’ level to separate bacterial, fungal and viral
responses [34]. New model systems and proof of concept studies are needed to challenge
lower order (genera, species and strain) discrimination of bacteria.

The versatility of ex vivo whole blood models suggested that they could be used
to investigate the diversity of bacteria responses and used for discrimination. While it
is clear that whole blood models have been applied to bacterial [35,36], fungal [37] and
viral organisms [38], there are far fewer studies focusing on the potential range of whole
blood responses to pathogenic stimuli in healthy donors [1]. To date, no studies have
focused on whether the physiological range of ex vivo whole blood responses could be
used for the discrimination of bacteria; specifically, whether whole blood responses might
aid in the discrimination of bacteria at genera, species and even at strain level. This
study uses an established ex vivo whole blood model [15] to generate bacterial-induced
cytokine profiles of mediators associated with inflammation (IL-6, MIP-1α, MIP-3α, resistin,
IL-10), coagulation (TF3), complement (C5a) and neutrophil function (S100A8, S100A8/A9
[calprotectin], phagocytosis) following stimulation with eight strains of bacteria (across
three species and two genera). Then, these data were used to investigate the level of
bacterial strain discrimination that could be achieved from the measured host responses.

2. Materials and Methods

All methods were carried out in accordance with relevant guidelines and regula-
tions. All reagents were purchased from Sigma-Aldrich (Gillingham, Dorset, UK) unless
stated otherwise.

2.1. Ethics

Whole blood from healthy volunteers was isolated using the vacuette blood collection
system (5–9 mL) on the day of the experiment in either Lithium Heparin (Becton Dickinson,
Wokingham, UK). Volunteers gave written informed consent. The project (Reference
13/WA/0190) was reviewed, and the procedures and protocols were approved by the local
research ethics committee, Wales REC 6 (e-mail: wales.rec6@nhs.uk).

2.2. Whole Blood Infection

Three bacterial species (E. coli, S. aureus and S. epidermidis) were selected for profiling
and were represented by 8 strains (Supplementary Table S1; [39–51]). One bacterial colony
(of each of the 8 strains) was inoculated into a sterile broth and incubated at 37 ◦C overnight.
The next day a standardised suspension of each bacterium was prepared in RPMI at an
optical density of 0.1 OD600 nm. Then, 100 µL of standardised suspension was added
to 1 mL of anticoagulated whole blood (n = 5) to a final Multiplicity of Infection of 0.2 as
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described previously [15,52]. The whole blood: bacteria interaction mix was incubated
for 2-6 h on a Stuart SB3 rotator at 37 ◦C before being centrifuged at 9000× g at room
temperature. The supernatant was removed and stored at −20 ◦C until ELISA analysis.

2.3. Membrane Cytokine Array

Cytokine screening after whole blood infection (with E. coli K12, S. epidermidis RP62A,
S. aureus SH1000 and untreated) for 6 h was measured using the Human XL Cytokine Array
kit (R&D Systems, Abingdon, UK; n = 1). The membranes were treated as per manufacturer
instructions and were imaged on the BioRad ChemiDoc XRS+. Images were processed
using ImageJ online software (version 1.50i; https//imagej.net/ij/index.html (accessed
between January 2019 and March 2020).

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

The production of the proteins IL-6, C5a, TF3, IL-10, S100A8 (calgranulin A), S100A8/A9
(calprotectin), resistin, MIP-1α and MIP-3α in whole blood following infection with 8 de-
fined strains was analysed using Duoset ELISA kits purchased from R&D Systems (Abing-
don, UK; n = 5). The ELISAs were performed as per the manufacturer’s instructions, and
optical densities (450 nm) were determined using a BMG Omega plate reader. Samples
were blank-corrected, and a 4-parameter fit was applied to generate a standard curve from
which sample concentrations were calculated (performed using BMG Mars data analysis
software v3 02R2).

2.5. Phagocytosis

One hundred microlitres of whole blood was removed at 2, 4 and 6 h post-infection
and mixed with 1.5 mL 1X FACS Lysing Solution (BD Biosciences, Wokingham, UK)
before incubating at room temperature for 20 min (n = 5). Tubes were centrifuged, the
supernatant discarded, and the pellet resuspended in 100 µL PBS (Thermo Fisher Scientific,
Loughborough, UK). Then, 80 µL of the suspension was placed into a cytospin funnel
cartridge attached to a microscope slide and centrifuged in a Cytospin 3 (ThermoShandon,
Thermo Fisher Scientific, Loughborough, UK) at 300 g for 3 min. Slides were stained with
Red & Purple Microscopy Hemacolor (Merck, London, UK) before being mounted with
coverslips. Slides were left to dry between each described step and were viewed using a
Nikon eclipse 50i microscope at x1000 magnification under oil immersion (x100 objective).
Neutrophils were identified, and the number of phagocytosed and non-phagocytosed
neutrophils was counted in random fields of view as previously described [52]. The
percentage of phagocytosis was recorded as the degree of phagocytosis.

2.6. Pairwise Discrimination of Bacteria

Pairwise analysis: The process of discrimination between strains consisted of two parts,
identifying the candidate discriminators and then constructing a flowchart. While most
cases contained readings from 3 time points, the readings always increased with time and so
only the final time point was used in each case. The most important biomarkers, and their
possible use, were identified through their statistical significance and a visual inspection of
the data. Once these had been chosen, a flowchart was constructed to perform a stepwise
classification process using this subset of biomarkers. At each stage of the process, a simple
threshold on one biomarker was used to determine which branch to follow (lower than
threshold ‘turn left’ and higher than threshold ‘turn right’), until a final classification was
reached.

2.7. Linear Discriminant Analysis of Bacteria

Individual chemokine and cytokine biomarkers were used as covariates in linear
discriminant analysis (LDA) with the replicate samples of cyto-/chemokine responses to
individual pathogens used as group descriptors [53]. LDA seeks to find the combination of
measured biomarkers to optimise the separation of groups in the cyto-chemokine space.

https//imagej.net/ij/index.html
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It is a stepwise procedure that first identifies the best discriminating variable separating
groups and then progressively adds other covariates, whilst accounting for the covariation
between them. Variables are only added as discriminators if they lead to a significant
discriminatory effect. We used the greedywilkes function in R to identify the smallest suite
of cyto-/chemokines that led to the maximum discrimination [54]. We used a three-tier
hierarchy of taxonomic grouping to define our initial groups. These were strain, species
and genus; the hypothesis was that we would expect the greatest discrimination using
the biomarkers, firstly for genus, then species and finally strain on the assumption that
the greatest differences in host responses would be greatest at the greatest taxonomical
differences in pathogens. In order to assess the utility of the biomarkers for discriminating
between members of each taxonomic grouping, we used the derived discriminant functions
to reclassify the original data used in the LDA and then used contingency tables to illustrate
the predictive accuracy of the best model for each group.

2.8. Data Presentation and Statistical Analysis

The data set consisted of a number of biomarker readings, with 10 different biomarkers,
8 bacterial strains, and 1 uninfected control. Preliminary analysis of the data leading to
the classification flowchart was performed using ANOVA, with post hoc testing, on ln-
transformed data. Logistic regression was then used to obtain the estimated thresholds
controlling the branching process. Formal comparisons of the numeric differences between
treatments were then performed using the (non-parametric) Kruskal–Wallis tests with
Dunn’s multiple comparison tests applied. A 5% level of significance was observed. All
plots display error bars denoting the standard error of the mean (SEM), and asterisks
indicate the level of significance; * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** p < 0.0001.
Data presentation and analysis were performed using GraphPad Prism version 7 and SPSS
version 28.

3. Results
3.1. Establishment of Mediator Profiles to Use in Modelling Datasets

Building on our previous results in whole blood using S. epidermidis 1457 [15], eight bac-
terial strains (Supplementary Table S1) were used to infect whole blood prior to the de-
termination of 10 host responses, including IL-6 (acute phase response), IL-10, MIP-1α
(CCL-3), MIP-3α (CCL-20), resistin, C5a (complement activation), tissue factor-3 (TF-3;
coagulation cascade), S100A8 (calgranulin A) and S100A8/A9 (calprotectin; neutrophil
activation) and phagocytosis (neutrophil function). IL-6, resistin, MIP-1α and MIP-3α were
identified during a cytokine microarray of whole blood factors induced by more than 3-fold
following E. coli K12, S. epidermidis 1457 or S. aureus SH1000 infection compared to control
(Supplementary Figure S1A,B). IL-8 and TNFα were also identified in this screen but were
increased in response to all bacteria, suggesting poor potential for discrimination and were
not studied further.

3.2. IL-6 and MIP Proteins Show Significant Early Induction in Escherichia Infection

IL-6 (Figure 1A–C), MIP-3α (Figure 2A–C) and MIP-1α (Figure 2D–F) levels were
shown to significantly increase over the course of the infection, but with unique in-
duction kinetics. These increases were significantly greater in the Escherichia genera
(Figures 1A and 2A,D, p < 0.00001) compared with both the untreated control and Staphylo-
coccus genera at all time points. This trend was consistent at the species level
(Figures 1B and 2B,E), where E. coli induced significantly more IL-6 and MIP-3α than
both S. aureus and S. epidermidis (p < 0.00001). MIP-1α was only significantly induced
in E. coli compared to the control at the species level (Figure 2E). At the strain level
(Figures 1C and 2C,F), all E. coli strains (with the exception of strain B at 2 h) induced signif-
icant levels of IL-6 over the course of the infection compared with the control (p < 0.00001;
Figure 1C). This trend was consistent for MIP-3α (Figure 2C) although the profile be-
tween strains differed (strains B and K12 did not induce significantly more IL-6 at 2 h and
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strain B did not at 4 h; Figure 1C). The profile of MIP-1α (Figure 2C–E) was considerably
flatter compared to IL-6 and MIP-3. E. coli strains ECOR26, GMB10 and B induced signif-
icantly more than the control at 2 h only (p = 0.0068; Figure 2F) and strain B at 6 h only
(p = 0.0312; Figure 2F). The anti-inflammatory cytokine IL-10 was not detected at 2 and 4 h
post-infection, and no differences were found at 6 h post-infection (p = 0.0823; Figure 1D).
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Figure 1. Changes in monocyte-associated cytokines IL-6 and IL-10 following ex vivo infection.
Cytokines associated with IL-6 and IL-10 were measured by ELISA after 2, 4 and 6 h post-infection
(n = 5 donors). Changes in IL-6 over time in response to (A) control, Staphylococcus and Escherichia
genera; (B) control, E. coli, S. aureus and S. epidermidis species and (C) to each bacterial strain. Changes
in IL-10 over time in response to (D) control, Staphylococcus and Escherichia genera. Error bars
represent the mean ± SEM. In (A), black asterisk represents significant differences between the
infected and control, and pink asterisk represents significant differences between Escherichia and
Staphylococcus. In (B), black asterisk represents significant differences between E. coli and S. epidermidis
and between E. coli and S. aureus. In (B), pink asterisk represents significant differences between
E. coli and S. aureus. In (C), significant differences are represented between two strains and/or control
by black lines and asterisks indicating the level of significance. Here, asterisks represent the following
significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.
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Figure 2. Changes in monocyte-associated chemokines, MIP-1α and MIP-3α following ex vivo in-
fection. MIP-3α and MIP-1α were measured by ELISA after 2, 4 and 6 h post-infection (n = 5 donors).
Changes in MIP-3α over time in response to (A) control, Staphylococcus and Escherichia genera; (B) to
control, E. coli, S. aureus and S. epidermidis species and (C) to each bacterial strain. Changes in
MIP-1α over time in response to (D) control, Staphylococcus and Escherichia genera; (E) to control,
E. coli, S. aureus and S. epidermidis species and (F) to each bacterial strain. Error bars represent the
mean ± SEM. In (A,D), black asterisk represents significant differences between the infected and
control, and pink asterisk represents significant differences between Escherichia and Staphylococcus.
In (B,E), * represents significant differences between E. coli and S. epidermidis and between E. coli
and S. aureus. In (C,F), significant differences are represented between two strains and/or control by
black lines and asterisks indicating the level of significance. Here, asterisks represent the following
significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

3.3. The Hormone Resistin Is Associated with All Infection and May Differentiate S. epidermidis
and S. aureus Bacteria

ELISA analysis of resistin was performed on samples obtained at 2, 4 and 6 h post-
infection (Figure 3A–C). At the genera level (Figure 3A), both Escherichia and Staphylococcus
induced significantly high levels of resistin at 2 and 6 h post-infection compared with
the control (p < 0.0001) but not significantly different from each other. At species level, it
was only at 6 h that both S. aureus and S. epidermidis induced significantly higher resistin
concentrations than both the control and E. coli (p = 0.0107; Figure 3B). Interactions at the
strain level confirmed that only E. coli GMB10 induced significantly higher levels of resistin
at 2 h post-infection (p = 0.0051; Figure 3C). At 4 and 6 h, S. aureus strain SH1000 and E. coli
ECOR26 and GMB induced significantly higher levels of resistin compared with the control
(p = 0.0012, p = 0.0005).
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Figure 3. Changes in neutrophil-associated parameter resistin and phagocytosis following ex vivo
infection. Resistin and phagocytosis were measured after 2, 4 and 6 h post-infection (n = 5 donors).
Plots are presented as changes in resistin over time in response to (A) control, Staphylococcus and
Escherichia genera; (B) to control, E. coli, S. aureus and S. epidermidis species and (C) to each bacterial
strain. Neutrophil phagocytosis was investigated using microscopy over 6 h in response to (D) control,
Staphylococcus and Escherichia genera; (E) to control, E. coli, S. aureus and S. epidermidis species and
(F) to each bacterial strain. Error bars represent the mean ± SEM. In (A,D), black asterisk represents
significant differences between the infected and control; and pink asterisk represents significant
differences between Escherichia and Staphylococcus. In (B,E), black asterisk represents significant
differences between E. coli and S. aureus, and pink asterisk represents significant differences between
E. coli and S. epidermis. Finally, in (C,F), significant differences are represented between two strains or
control by black lines, and asterisks indicate the level of significance. Here, asterisks represent the
following significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

3.4. Neutrophils Take up Significantly More Staphylococci Than Escherichia Bacteria

Phagocytosis (%) of S. epidermidis, S. aureus and E. coli strains over the first 6 h of
infection was used to assess the functional activity of neutrophils (Figure 3D–F). At the
genera level, significantly more Staphylococcus was taken up by neutrophils than Escherichia
(p < 0.0001; Figure 3D). No phagocytosis was detected in the uninfected controls. At the
species (Figure 3E) and strain (Figure 3F) level, S. epidermidis 1457, RP62A and S. aureus
SH1000 had significantly increased phagocytic responses compared to control (p < 0.0001;
Figure 3E,F).

The neutrophil activation markers S100A8 (inactive calprotectin, Figure 4A–C) and
S100A8/A9 (active calprotectin, Figure 4D–F) were found to be increased over the course of
the experiment, but at no timepoint, were any significant differences between the treatment
groups (p > 0.05). Complement (C5a) and coagulation (TF3) were also assessed over identi-
cal time courses but neither was shown to be different from the control (Supplementary
Figures S2A,B and S3A,B). C5a was undetectable after 6 h.
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Figure 4. Changes in neutrophil-associated parameters S100A8 and S100A8/A9 following ex vivo
infection. S100A8 and S100A8/A9 were measured after 2, 4 and 6 h post-infection (n = 5 donors).
Plots are presented as changes in S100A8 over time in response to (A) control, Staphylococcus and
Escherichia genera; (B) to control, E. coli, S. aureus and S. epidermidis species and (C) to each bacterial
strain. Changes in S100A8/A9 (calprotectin) over time in response to (D) control, Staphylococcus and
Escherichia genera; (E) to control, E. coli, S. aureus and S. epidermidis species and (F) to each bacterial
strain. Error bars represent the mean ± SEM. Here, asterisks represent the following significant
values: ** = p < 0.01.

3.5. Pairwise Modelling Allows Bacterial Discrimination down to Strain Level

Next, pairwise relationships (Figure 5A,B) between the inflammatory parameters were
investigated with the aim of developing a scheme to discriminate the bacterial strains
studied (Supplementary Table S1) based on host responses generated in the ex vivo model.
Reorganisation of pairwise comparisons (Figure 5A) allowed the development of a scheme
with discrimination at four levels: (1) infection, (2) genera, (3) species and (4) strain
(Figure 5A). When organised in this manner, increased IL-6 could discriminate between
infected and uninfected samples (p < 0.001). Furthermore, increased IL-6 could also discrim-
inate infection with Escherichia and Staphylococcus at the genera level (p < 0.001). Increased
resistin showed some discrimination between S. aureus and S. epidermidis at the species level
(p = 0.087). Similarly, increased phagocytosis could discriminate E. coli GMB and ECOR26
from E. coli strain B and K12 within a species (p < 0.001). In addition, increased C5a could
discriminate between E. coli strain B and K12 at the strain level (p = 0.007). Finally, within
the S. aureus species, increased S100A8/9 could discriminate SH1000 from VAP39 at the
strain level (p < 0.001). These results confirmed the proof of concept that measurement of
sufficient immune responses allows discrimination to bacterial strain level in ex vivo whole
blood models.
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Figure 5. Pairwise discrimination of bacterial immune responses. Data generated in the ex vivo
models were analysed, including the 10 inflammatory outputs over three timepoints, leading to a
branching classification process across genera, species and strain levels. The branching process is
illustrated in the upper panel (A), while the pairwise comparisons driving this process are listed
in the lower panel (B) with the discriminating biomarker, the threshold of the relevant biomarker
level and associated performance value are shown. Values lower than and higher than the threshold
should ‘turn left’ and ‘right’, respectively, in panel (A).

3.6. Linear Discriminant Analysis Provides Host Biomarker Panels for Bacterial Discrimination

The pairwise analysis confirmed the potential of host responses for discrimination of
bacteria but did not allow all inflammatory profiles to be analysed together to determine
inter-relationships. Linear discriminant analysis (LDA) was used to identify a panel of
inflammatory parameters that best discriminate bacteria at genera, species and strain levels
(Tables 1 and 2) and (Supplementary Tables S2–S4). In this analysis, we speculated on
what level immune responses generated by a given bacterial strain could predict responses
generated by strains from a given genera, species and strain. The analysis revealed that
correct prediction rates of 40, 90 and 95% could be achieved for strain, species and genera,
respectively, using different cyto-/chemokine biomarkers (Table 1). Furthermore, phago-
cytosis, S100A8 and IL-10 were the most significant discriminating immune parameters
to predict strain when combined ((a) in Table 2). IL-6, phagocytosis, resistin and TF were
the most significant discriminating parameters associated with species ((b) in Table 2), and
IL-6, TF3 and MIP3α were the most significant discriminating parameters associated with
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genera ((c) in Table 2). These results further support the proof of concept that immune
parameters could be used to predict the presence of individual bacteria.

Table 1. Linear discriminant analysis (LDA) of immune responses. Data generated in the ex vivo
models were analysed, including the 10 inflammatory outputs over three timepoints. The table shows
the recorded accuracy of immune responses to predict bacteria at the genera, species and strain levels.
The underlying analysis reported in this table is shown in Supplementary Tables S2–S4.

Level Correct Predictions (Observations) Correct Prediction (%)

Strain 16/40 40
Species 36/40 90
Genera 38/40 95

Table 2. Variables identified as important to bacterial discrimination. Data generated in the ex vivo
models were analysed, including the 10 inflammatory outputs over three timepoints. (a) confirms the
immune variables predicting strain (phagocytosis, S100A8, IL-10). (b) confirms the immune variables
predicting species (IL-6, phagocytosis, resistin and TF3). (c) confirms the immune variables predicting
genera (IL-6, TF3 and MIP-3α).

a: Variables Predicting Strain
Biomarker Wilks Lambda p Value Overall p Value Diff

Phagocytosis 0.564 0.0064 0.0064
S100A8 0.396 0.0050 0.1053

IL-10 0.259 0.0017 0.0546

b: Variables Predicting Species
Biomarker Wilks Lambda p Value Overall p Value Diff

IL-6 0.313 0.0000 0.0000
Phagocytosis 0.193 0.0000 0.0187

Resistin 0.133 0.0000 0.0888
TF3 0.095 0.0000 0.1527

c: Variables Predicting Genera
Biomarker Wilks Lambda p Value Overall p Value Diff

IL-6 0.391 0.0000 0.0000
TF3 0.336 0.0000 0.0179

MIP3 0.286 0.0000 0.0166

4. Discussion

This study focused on whether ex vivo whole blood responses could be used for
the discrimination of bacteria at genera, species and/or strain levels with a future goal
of applying this knowledge (e.g., to bacteraemia and sepsis diagnosis). Indeed, accurate
diagnosis of bacterial infections remains a significant challenge and is often hindered
by variations in the immune response between different individuals. The current study
used an ex vivo whole blood model to study immune responses to a core set of clinically
relevant species (S. aureus, S. epidermidis and E. coli) that are implicated in bacteraemia
and sepsis [16,34]. In addition, we sought to confirm the proof of concept of whether host
responses could predict bacterial pathogens and to what discriminatory level.

Previous reports suggest that bacteria reach concentrations ranging from 1 to
10,000 cfu/mL in clinical bacteraemia with average concentrations in the 100–1000 cfu/mL
range [16,55–59]. Considering that leukocyte concentrations are ~2 × 107 cfu/mL, relevant
MOIs for modelling should be in the 0.00000005–0.0005 range. However, there are a number
of considerations when using MOIs in practice. Firstly, during clinical infections, leukocyte
numbers and bacterial numbers change over the course of infection. Secondly, very low
MOIs such as this do not stimulate early cytokine responses ex vivo because they are often
rapidly cleared. Thirdly, there is now good evidence that PAMPs and DAMPs may not
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only be associated with live bacteria but also in soluble forms not associated with bacte-
ria [60,61]. Fourth, viable bacteria are counted in cfu/mL, but many studies also quantify
genome copies/mL using nucleic acid amplification techniques [62]. Finally, recent studies
suggest that microbial composition also has a role to play in outcome measurements in
experimental models of sepsis [63].

Studies to discriminate bacterial ‘Gram-status’ by their immune responses have a
long history. It is clear that most bacteria induce IL-1β, TNFα, IL-2, IL-18, IL-6, IL-8, IL-12,
IFN-γ and IL-10 [64–67] in blood monocytes or in whole blood models. These studies
tend to show that TNFα, IL-2, IL-12 and IFN-γ responses are stronger in Gram-positive
bacteria, whereas IL-6, IL-8, IL-10 and IL-18 responses tend to be stronger in Gram-negative
bacteria. This is consistent with IL-6 responses observed in this study and also in Gram-
negative versus Gram-positive bacteraemia [68–71]. Furthermore, others have suggested
that IL-6 and IL-10 may be useful in discriminating Gram-negative from Gram-positive
infections [72]. Tietze and coworkers suggest that Gram-negative species produce higher
rations of IL-8/TNFα than Gram-positive species [73]. Similar experiments performed
using whole animal infection in mice or fish models show strain dependence rather than
species and Gram dependence and confirm the need for further strain testing [74,75]. Our
results with IL-6 support clear discrimination for Gram-negative species and strains and
are consistent with these studies.

The mechanism underlying these cytokine differences is still unclear; however, the
different combinations of pathogen-associated molecular patterns (PAMPs) and the subse-
quent PRRs they activate, as well as their intracellular or extracellular localisation, could in
part explain these different patterns of expression. Previous work has identified that the
lipopolysaccharide (LPS) of Gram-negative E. coli activates TLR-4. In contrast, lipoteichoic
acid [76] and lipoproteins of peptidoglycan from Gram-positive S. aureus activate TLR-2
and NOD-like receptors [77]. Furthermore, polysaccharide intercellular adhesin, phenol
soluble modulins (PSMs) and muramylpeptides from Gram-positive S. epidermidis activate
combinations of TLR-1, TLR-2 and TLR-6 [78–80]. These interactions are especially crucial
when comparing the activation profile to different bacterial pathogens.

While previous studies have implicated numerous cytokines, this study identified four
useful markers as bacterial discriminators: IL-6, resistin, MIP-3α and neutrophil phagocy-
tosis. IL-6 and MIP-3α showed significant associations with Gram-negative Escherichia coli
infections in whole blood and were consistently elevated compared with those in Gram-
positive Staphylococcus infections. The relationship between IL-6 and MIP proteins seems
intrinsically linked; in vivo, MIP-1α (and beta) has been shown to correlate with levels of
IL-6 in sepsis [81]. IL-6 has already been demonstrated to be a strong predictor of severity
in sepsis and with Gram-negative bacterial sepsis [82]. The close mechanistic relationship
between IL-6 and MIP-3α may support the use of the latter as a diagnostic biomarker for
certain types of bacterial sepsis. In support of our findings, one other study has identified
increased MIP-3α in sepsis patients with diagnostic and prognostic values [83].

Resistin was identified as a potential biomarker to discriminate S. aureus and S. epider-
midis at the species level. Consistent with our results, resistin has been found in elevated
concentrations in the blood of patients and may be linked to an inflammatory cytokine
network in the acute phase of sepsis [84]. Further studies have linked resistin to the severity
of sepsis using clinical scoring outcomes [85,86]. There is less evidence for the use of resistin
as a bacterial discriminatory biomarker, but our data do warrant further investigation in
response to Gram-positive bacteria.

Neutrophil phagocytosis was positively associated with Gram-positive infections. This
association is significant as it could have potential value in the diagnosis of staphylococcal
infections. However, the disparity in the response, between Gram-positive and Gram-negative
infection, could also be explained by the virulence of the strains used in the study—the
S. aureus strains VAP39 and SH1000 and the S. epidermidis strains 1457 and RP62A are all
known for their highly virulent phenotypes, whereas Escherichia strains GMB10, K12, B and
ECOR26 are all regarded to be non-pathogenic strains (Supplementary Table S1). While
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neutrophil phagocytosis is implicated in sepsis, the exact role that bacterial ‘species’ desig-
nations play is unclear [87]. Despite this, E. coli strains consistently induced high levels of
cytokines in whole blood, indicating a general mechanism of cytokine production, which
may be responsible for decreased phagocytosis. We speculate that another reason for this
disparity in phagocytosis could be associated with differences in evasion mechanisms. E. coli
has inherent resistance for survival where iron is limited (such as in human blood and serum)
by producing siderophores and phagocytosis given its colonic acid coat [88]. In contrast, S.
aureus has less resistance to phagocytosis but tends to persist within professional phagocytes
through mechanisms of resistance to reactive oxygen species and intracellular killing [89].

The complement and coagulation molecules C5a and TF3 had very specific utility in
discriminating the bacteria studied. In our pairwise analysis, C5a had potential application
in differentiating E. coli strains, B and K12. We speculate this may be related to differing
types of LPS in those bacteria. In contrast, in our multivariate analysis TF3, when combined
with IL-6, phagocytosis and resistin or IL-6 and MIP-3α could discriminate bacterial species
and genera, respectively. This work may implicate monocyte-derived (in addition to
endothelial-derived) TF3 as important in bacterial responses [90]. However, the role of C5a
as a biomarker remains unclear considering the technical difficulties in their measurement
due to lack of stability, its interaction with anticoagulant systems and the incomplete
understanding of its receptor C5aR2 [91–93].

The application of pairwise and multivariate methods allowed us to confirm the proof
of concept that host response signatures can discriminate between bacteria. It was clear
that certain pair-wise comparisons had 100% predictive power (Figure 5B) but were limited
to very well-defined comparisons, such as uninfected vs. infection or Staphylococcus vs.
Escherichia. Clearly, these pairs would find utility as part of wider biomarker panels. In
contrast, multivariate analysis showed a predictive power decrease in the order genera
(95%) → species (90%) → strain (40%). The panels for genera (IL-6, TF3 and MIP-3α) and
species (IL-6, phagocytosis, resistin and TF3) are intriguing as they overlap consistently
with the pairwise analysis. It is clear that phagocytosis and resistin should be investi-
gated further to discriminate Escherichia/Staphylococcus genera and S. epidermidis/S. aureus
species, respectively.

It is vitally important that the LDA clearly identified ‘panels’ of host biomarkers as a
discriminatory approach to identify bacteria at ‘genera’, ‘species’ and even ‘strain’ levels. A
similar approach was used to discriminate S. aureus, E. coli, C. albicans and A. fumigatus and
highlighted the importance of IL-6 and associated signalling molecules SOCS3 and IRF [37].
To date, however, studies focus on the ‘domain’ level of microorganisms, confirming
host signatures for bacterial, fungal and viral responses [34]. Recently, an 8-gene panel
has been used to discriminate between extracellular, intracellular and viral infections
across diverse global populations [94]. Likewise, an 81-set gene signature was used to
discriminate bacterial and viral infection in immunocompromised hosts [95]. However,
it is clear that while domain-level discrimination using host signatures is demonstrated
widely, there is a need for significant standardisation and benchmarking at the species
level as cross-reactive unintended infections and aging processes can take over in the
analysis [96]. It is now becoming increasingly clear that host response signatures for blood-
based infection diagnostics [97–99] will complement similar approaches for direct detection
of pathogens [100]. The application of multi-panel host-specific biomarkers to discriminate
pathogens is paving the way for personalised medicine.

The use of whole blood from healthy donors allows for a comparative method of
determining host response signatures for infection diagnosis. While ex vivo whole blood
models have shown versatility for the study of monocyte activation [8–12], IFN-γ-release
assays [6], cell-specific immune triggers (e.g., PAMPs) [1–4] and even the effect of stor-
age and stability of cytokines [101,102], we believe the current application for bacterial
discrimination is novel. There are significant advantages and limitations to using this
model to assess healthy human responses to bacteria (Table 3). While LPS can be given
ex vivo and in vivo in humans, no pre-clinical in vivo human model exists for bacterial
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assessment. Knowledge of the diversity of healthy human responses is relatively sparse or
is only available through standardised PAMP screening [1]. Thus, expanding this model to
collections of characterised bacterial pathogens is a vital next step.

Table 3. Advantages and limitations of human ex vivo whole blood models. List of considerations
for implementation of whole blood models in bacterial discrimination and biomarker discovery.

Advantages Limitations

Simple and rapid to perform Lack of endothelial cells and other immune
mediator-producing cells

Can measure both soluble and cellular mediators
of inflammation

Presence of anticoagulants interfering with complement and
coagulation pathways

Versatile application to a variety of assays and disease situations Absence of liver and acute phase proteins
Only basic healthy volunteer ethics required Potential for donor variation

Experiments completed in one day Requires checks on plastic/vehicle activation
Use of a primary biological tissue/fluid/suspension Longer experiments (>8 h) not feasible

Complements the human endotoxemia model without
compromising patient safety

Impact of disease severity (sepsis vs. septic shock) not possible
to measure

We recognise that this study is not without its limitations: (i) the inclusion of eight
bacterial strains across three species. While this limits the scope of the current study, it
nevertheless provides sufficient data for proof of concept that bacterial genera, species
and strain discrimination using the host immune response is possible; (ii) the choice of
bacterial collection within a species could be better defined and include E. coli strains from
bacteraemia patients; (iii) the relatively small number of blood donors (n = 5) is sufficient
for proof of concept but does not describe the variation in host response in a healthy
population [1]. Finally, it is clear that more advanced multivariate analysis and modelling
approaches used to determine cytokine interdependencies and networks may also provide
a rational next step for biomarker discovery [103–106].

5. Conclusions

In summary, this paper provides proof of concept data that host biomarker panels
could be used to identify bacterial pathogens, at orders lower than ‘domain’ with increasing
accuracy, strain → species → genera. Using the whole blood model as a workhorse to
assay inflammatory responses but analysing them using LDA provides a simple strategy to
discriminate between bacteria and the host responses they generate.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biomedicines12040724/s1, Supplementary Table S1: Bacterial strains used
throughout this study, Supplementary Figure S1: Bacterial induced cytokine screen for biomarker
identification, Supplementary Figure S2: Changes in C5a following ex vivo infection, Supplementary
Figure S3: Changes in TF3 following ex vivo infection, Supplementary Table S2: Linear discriminant
analysis of predicted and observed variables (strain level), Supplementary Table S3: Linear discrimi-
nant analysis of predicted and observed variables (species level), Supplementary Table S4: Linear
discriminant analysis of predicted and observed variables (genera level).
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