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1. Introduction

The range of materials and hardware
architectures used in robotics has expanded
dramatically over the past decade—
extending from rigid plastics and metals
for hard-cased motors and electronics to
soft elastomers and fluids for bio-inspired
artificial muscle and soft-bodied robots.[1]

Much of this has been driven by inter-
disciplinary fields like bio-inspired engi-
neering,[2] soft robotics,[3,4] and wearable
computing[5] that seek to achieve robotic
functionalities with soft and deformable
materials that match the compliance and
elasticity of natural biological tissue.
Progress in “soft-matter engineering” with
elastomers, fluids, and other forms of
condensed soft matter[6] has led to recent
interest in creating more complex and
sophisticated soft robotic systems that are
fully untethered[7] and capable of matching
the mobility of natural biological organ-
isms.[8] Of particular interest has been
the ability to mimic invertebrate marine
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Despite tremendous progress in the development of untethered soft robots in
recent years, existing systems lack the mobility, model-based control, and motion
planning capabilities of their piecewise rigid counterparts. As in conventional
robotic systems, the development of versatile locomotion of soft robots is aided
by the integration of hardware design and control with modeling tools that
account for their unique mechanics and environmental interactions. Here, a
framework for physics-based modeling, motion planning, and control of a fully
untethered swimming soft robot is introduced. This framework enables offline
co-design in the simulation of robot parameters and gaits to produce effective
open-loop behaviors and enables closed-loop planning over motion primitives for
feedback control of a frog-inspired soft robot testbed. This pipeline uses a discrete
elastic rods (DERs) physics engine that discretizes the soft robot as many
stretchable and bendable rods. On hardware, an untethered aquatic soft robot
that performs frog-like rowing behaviors is engineered. Hardware validation
verifies that the simulation has sufficient accuracy to find the best candidates for
sets of parameters offline. The simulator is then used to generate a trajectory
library of the robot’s motion in simulation that is used in real-time closed-loop
path following experiments on hardware.
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organisms like the octopus,[9] jellyfish,[10] or sea stars[11] that have
little or no dependency on stiff or inextensible materials.
However, as engineers attempt to create bio-inspired soft robots
that can truly approach the robust mobility and versatility of nat-
ural organisms, they are impeded by key bottlenecks in hardware
design,[12] modeling,[13] and motion planning and control.[14]

Progress in creating untethered soft robots capable of con-
trolled motion along a prescribed path greatly benefits from a
framework that tightly integrates hardware design and mechan-
ics with motion planning and control. While early efforts in soft
robotics largely looked at tethered systems that required connec-
tions to a compressed air source for pneumatic actuation[15] or a
high voltage power supply for electrostatic actuation,[16,17] recent
efforts have increasingly shifted to fully untethered systems pow-
ered using miniaturized on-board electronics.[18–22] Shape mem-
ory alloys (SMA) like nickel–titanium have been especially
promising for creating untethered soft robots because of their
high work density and compatibility with miniature lithium poly-
mer (LiPo) batteries and microcontrollers. Such robots can be
engineered for locomotion speeds approaching 1 body length
per second (blps),[23] far exceeding that of untethered pneumatic
soft robots.[24] Moreover, SMA-powered robots have also been
shown to move and interact with their environment in ways that
can be accurately captured using soft robot physics engines based
on discrete differential geometry (DDG).[25] These DDG-based
simulation tools, which typically utilize the method of discrete
elastic rods (DER), fill a niche in the growing landscape of soft
robot simulation tools[13] as a middle ground between more
physically realistic but computationally intensive FEA-based
models[26–28] and simpler but less realistic traditional robotics
andmechanicsmodels.[29–31] They are capable of rapid, “faster than
realtime” modeling with a single-thread microprocessor in which
the computational runtime is faster than the wall-clock time of the
soft robot motion that is being simulated. However, despite such
functionality, studies applyingDER to soft robotics have yet to dem-
onstrate its usefulness for robot design or motion planning.[32]

Here, we address this shortcoming by introducing a frame-
work for design and closed-loop trajectory following a fully
untethered soft robot. This framework allows offline robot and
gait design with DER and online motion planning of an SMA-
based soft robot with large-scale data collected from simulation.

Others have created various solutions in model-based simulation
for design[30,33–39] and planning/control,[27,40–44] and here we
show that DER-based methods in this work are capable of achiev-
ing similar functionality. To highlight the ability to accurately
model not only the soft robot’s internal mechanics but also its
environmental interactions, we have focused on a swimming soft
robot that is governed through a combination of SMA-powered
limb motion and fluid–structure interaction. As shown in
Figure 1a, the robot is composed of four limbs and a central body
that contains the onboard batteries, microcontroller, and cir-
cuitry. The limbs are configured in front and rear pairs to allow
for fast forward locomotion (Figure 1b) or turning using a
frog-like swimming gait (Figure 1c). Limb motion is achieved
by supplying electrical current to an embedded nitinol wire that
undergoes a reversible shape memory transition that causes the
limb to rapidly kick out. To facilitate the shape memory response
of the nitinol, a liquid metal (LM) alloy is embedded in the sur-
rounding elastomer to improve the flow of heat from the nitinol
wire to the aquatic environment.

To demonstrate the framework, we simulate across a range of
parameters and gaits to select the right combination for the frog-
inspired soft robot, generate a motion library using the calibrated
simulation, and perform an online path following using a reced-
ing horizon planner. DER has previously been shown to simulate
soft robotic systems accurately, including for legged locomo-
tion[45] and drag-based rowing in the water.[32] Here, we build
on those foundations by showing that it can simulate accurately
across a range of parameters, including robot limb design (e.g.,
LM volume fraction) and gait (phase, frequency), and that it can
be used as a design tool to identify the best combination of those
parameters. Finally, we show that it can be used to quickly gen-
erate a large and accurate data library that can be used in online
motion planning.

2. Results

2.1. System Overview

Here, we present information about our experimental system
and simulation. At a high level, our experimental system consists

Figure 1. Design and geometry of the untethered frog-inspired soft robot. a) Components of robotic system. b) Square-shaped robot for examining
motion along a curvilinear path. c) Stream-lined robot for >1 blps swimming along a straight line. The square-shaped robot is used in the simulation
pipeline so that 2D simulations could be performed. The stream-lined robot is intended to show the potential performance of such swimming robots with
a design that minimizes drag.
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of an untethered robot that wirelessly communicates with the
central computer which handles vision, planning, and logging.
The simulation is a discretized dynamic model of the soft robot
incorporating internal elastic stretching and bending forces
along with externally applied fluid forces (e.g., drag).

2.1.1. Experimental Testbed

The untethered frog-inspired soft robot is composed of four
SMA-driven soft actuators, four LiPo batteries, and an onboard
PCB. (Figure 1a). The actuators are composed of stretched and
unstretched layers of thermally conductive silicone that are
bonded around an interface layer of LM-elastomer composite
containing an SMA wire loop. The LM-elastomer is composed
of microscale droplets of eutectic gallium–indium (EGaIn) LM
alloy that serve to enhance the thermal conductivity[46] of the
interface layer. The design is based on.[47] The amount of
EGaIn used in the interface layer decreases the cooling time,
increases actuator speed, and increases the mass.[48] The power
and control electronics are housed inside of the foam bodies and
sealed from water using silicone. Instructions are relayed to the
robot’s microcontroller via Bluetooth low energy (BLE) from a
remote computer and microcontroller. The body of the robot
has a hollow square shape, which is selected so that the body
of the robot can be taken as four elastic rods with high stiffness
connected together (Figure 1b). The robot limbs are attached to
the body with velcro, resulting in a modular robot design so that
each limb can be replaced within seconds. This enables the explo-
ration of limbs with various actuation bandwidths without chang-
ing the robot design.

To demonstrate the versatility of this design, we also imple-
ment a more streamlined version of the robot that is capable
of swimming at >1 blps speed (Figure 1c; Video S1,
Supporting Information). Narrowing the central body of the
untethered robot improves its hydrodynamics and allows for less
drag during forward swimming. Although this allows for faster
forward swimming, the narrow profile reduces the ability of the
robot to make in-place turns. This is due to the reduced moment
arm and in-plane torque that can be induced during differential

limb actuation. For this reason, the remainder of this study will
largely focus on the more maneuverable square-shaped robot.
Nonetheless, the streamlined robot is presented here to demon-
strate the potential capability for faster swimming speed that is
possible within this design framework.

2.1.2. DER Simulation Tool

To simulate this robot, we utilize the DER algorithm for model-
ing structures with slender elastic elements.[49] Starting from the
discrete representation of elastic energies, we formulate equa-
tions of motion at each node and solve in a backward Euler
approach to update the configuration of the robot (i.e., position
of the nodes) in time.

Similar to the DDG-based method presented in Refs. [25,32],
this numerical framework starts with a discrete representation of
the robot. The soft robot is treated as a collection of discrete
elastic rods,[49] shown schematically in Figure 2a. The rods
are comprised of N nodes, located at xi ¼ xi, yi½ �T (with
i ¼ 0, : : : ,N � 1), along the centerline. The limbs and the body
of the robot are represented by rods with different densities. In
the discrete setting in Figure 2a, the robot is represented by a
lumped mass at each node and associated elastic stretching
and bending energies—reminiscent of a mass-spring system.
Since the motion of the robot remains in 2d, we do not include
a twisting energy of the rod, although this can be readily inte-
grated into our framework.

The rod segment between two consecutive nodes is an edge
that can stretch as the robot deforms––analogous to a linear
spring. The turning angle ϕi (Figure 2a) at node xi between
two consecutive edges can change––similar to a torsional spring.
The elastic energy from the strains in the robot can be repre-
sented by the linear sum of two components: 1) stretching energy
of each edge Es

i and 2) bending energy Eb
i associated with varia-

tion in the turning angle ϕi at the nodes. The elastic stretching
and bending forces acting on a node xi can be obtained from the
negative gradient of the elastic energies. The external forces act-
ing on a node xi are f exti ¼ f di þ f ai , where f

d
i is the damping force

Figure 2. Robot simulation. a) Discretization of the robot with geometric properties and forces. Rc is the radius of curvature of the limb, ðxc, ycÞ is the
robot’s center of mass position, and f dj and f aj are the drag and virtual mass forces on the jth node respectively. In the inset are properties of the
discretized rod geometry, notably the turning angle, ϕ, and the rod length, Δl which is later used to calculate bending energy. xi�1, xi, and xiþ1 are
the labels of successive nodes. b) Rendering in simulation and geometry of the frog-inspired soft robot. Lo ¼ 90mm, Li ¼ 35mm, Hf ¼ 35mm,
Ha ¼ 24mm.
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from fluid experienced by the soft limbs and body and f ai is the
added-mass force from periodically accelerating the surrounding
fluid (Figure 2a). These forces are then used to formulate
equations of motion, which are implicitly solved for the next time
step. See Materials and Methods for an in-depth coverage of the
procedure.

In the following sections, we calibrate the parameters of the sim-
ulation and compare the performance of the simulation to experi-
ments on hardware. We then perform a design study in which we
vary the material properties and gait parameters of the robot in sim-
ulation to find fast and low cost of transport combinations. Finally,
we use data collected from the simulation to produce a closed loop
planner that enables the robot to follow curvilinear paths.

2.2. Soft Limb Actuators

We fabricated SMA actuators with 0–50% by volume of EGaIn
droplets within the interface layer that contains the embedded
nitinol wires. Referring to Figure 3a, the EGaIn droplets form
an LM-embedded elastomer (LMEE) composite that is sand-
wiched between outer layers of elastomer. The purpose of the
EGaIn droplets is to enhance the thermal conductivity of the
interface layer and facilitate the flow of heat away from the wire
as it cools at the end of each actuation cycle. To find the appro-
priate EGaIn volume fraction, we synthesized interface layers
with volumes in 10% increments and characterized the actuated
and unactuated curvature in water at various frequencies. We fol-
lowed a similar approach to what we previously presented in
Ref. [48]. The curvature of the actuator (κn) is determined by
assuming constant curvature and fitting the actuator shape to
a circular arc. Four samples at each EGaIn volume ratio are used
for characterization. The actuators are cyclically actuated until
steady state and mean curvature values are then estimated from
recorded video.

Figure 3b presents the change in curvature as a function of
activation frequency for various concentrations of EGaIn within

the interface layer. In general, we don’t see statistically significant
influence of EGaIn volume fraction on the curvature change.
However, we do see that actuators with greater amounts of
EGaIn can be activated at higher frequencies due to the improved
thermal conductivity and speed of nitinol cooling at the end of
each actuation cycle. Faster cooling means that the nitinol wire
can be electrically stimulated with higher frequency without deg-
radation of the temperature-controlled shape memory response.

Figure 3c,d compares the forward locomotion speed of robots
with 10 and 30 vol% EGaIn and operated with 0.5 phase offset at
0.4 and 1.3 Hz, respectively. As demonstrated, the higher con-
centration of EGaIn allows for higher frequency actuation and
significantly faster swimming. In particular, note the difference
in the time makers for the 10 and 30 vol% screenshots.
Moreover, we observe good qualitative agreement between the
experimental measurements and the computational predictions
obtained using DER. Detailed results for the quantitative com-
parison between the experiment and simulation are presented
in the following subsection.

2.3. Simulation Calibration and Validation

To calibrate the simulation, we test the robot between 0.4 and
1.1 Hz with limbs that are composed of 10 vol% EGaIn in the
interface layer and recorded the locomotion when it reaches a
steady speed. These results are used to calibrate the hydrody-
namic simulation parameters Cln, Cbn, Clt, Cbt, and Ca, repre-
senting the drag coefficients along the normal direction for
the limbs and body, the drag coefficients along the tangent direc-
tion for the limbs and body, and the added-mass coefficient,
respectively. Figure 4a presents the locomotion speed as a func-
tion of actuation frequencies for experiments and simulations.

To further compare the experiments and simulations and
investigate the influence of the timing of limbs on swimming
speed, we vary the phase offset between the actuation of front
limbs and rear limbs, which represent the ratio of the time

Figure 3. a) Schematic of soft robot limb and LM-embedded elastomer (LMEE) interface layer. b) Curvature change as a function of actuation frequency
for limbs fabricated with various liquid metal volume ratios. Changes smaller than 70 1/m are not included. c) Experimental and simulation results for a
robot with 10 vol% EGaIn limbs. d) Results for forward locomotion of robot with 30 vol% EGaIn.
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difference between the actuation start time of front and rear
limbs over total time in a cycle. As presented in Figure 4b,c,
the experiment and simulation results have a good agreement
on the speed at both 0.4 and 0.8 Hz for various phase offsets.
At low actuation frequency (e.g., 0.4 Hz), the influence of phase
offset on speed is trivial since there is little hydrodynamic inter-
action between the front and rear limbs during actuation
(Figure 4b). As actuation frequency increases, the trend of speed
as a function of phase offset becomes different between the
experiment and simulation. The locomotion speed in the experi-
ment is lower than that in simulation at phase offsets 0, 0.1, 0.2,
and 0.8. This could be attributed to the instability caused by
unmodeled hydrodynamic interactions leading to a sudden cen-
ter of mass shift that triggers movement in the pitch direction. In
the experiment, the speed is maximum at 0.5 phase offset as
actuation frequency increases. From our observations, these tri-
als had the least out-of-plane pitching. With the fitted hydrody-
namic parameters acquired from the robot with limbs composed
of 10% EGaIn, we test the robot with limbs composed of 40%
EGaIn at frequencies between 1.5 and 1.9Hz for validation. As
shown in Figure 4d, there is a good agreement between experi-
ments and simulations for both locomotion profile (Figure S1,
Supporting Information) and speed, demonstrating that the sim-
ulation can successfully extrapolate to untested designs.

2.4. Parameter Sweep

Following the experimental validation, we use the DER simula-
tion to find the design and control parameters that lead to the
fastest locomotion and the parameters that lead to the most

efficient locomotion (calculated by the cost of transport, or
COT). The simulation is run at all combinations of EGaIn ratio,
actuation frequencies, and phase offset. The top two candidates
given by the numerical framework for the fastest locomotion are
the robots built with limbs composed of 30% EGaIn and run at
1.3 Hz (4.7 cm s�1) and 1.4 Hz (4.8 cm s�1) with 0.5 phase offset.
The design and control parameters that lead to the most efficient
locomotion are the robot with limbs composed of 10% EGaIn
and runs at 0.4 Hz (COT¼ 158) and 0.5 Hz (COT¼ 165) with
0.5 phase offset.

With the guidelines on design and control parameters pro-
vided by the simulation, we run the experiments accordingly
and the results for the fastest and most efficient locomotion
are presented in Figure 4e,f respectively. There is reasonable
agreement between the experiment and simulation results for
both fast and efficient locomotion cases. The simulation over-
predicts the speed of the robot at low actuation frequency due
to the planar assumption in the simulation being violated by
out-of-plane pitching in practice. At high frequency, the simula-
tion underestimates the speed, possibly due to beneficial vortic-
ities ignored in the simplified hydrodynamic model used in the
numerical framework. The snapshots of the frog robot with
limbs composed of 10% and 30% EGaIn operated at 0.5 and
1.3 Hz, respectively, with 0.5 phase offset are shown in
Figure 3c,d.

2.5. Motion Planning Framework

After validating the simulation and selecting the robot design
and gait parameters, we develop a motion planning framework

Figure 4. a) Robot speed as a function of actuation frequencies for experiments (green star) and simulation (orange circle) with 10 vol% EGaIn actuators.
Comparison of experiment and simulation for a robot with 10 vol% EGaIn as a function of phase lag for b) 0.4 and c) 0.8 Hz actuation frequencies.
d) Comparison of experiment and simulation for forward locomotion speed of robot with 40 vol% EGaIn. e) Experiment vs. simulation for robot
optimized for the fastest speed. f ) Experiment vs simulation for robot optimized for most “efficient” locomotion.
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that enables a closed-loop path following along arbitrary shapes
in 2D space. While DER is capable of faster than real-time sim-
ulations,[25] the dynamics implementation is not fast enough to
run inside an online optimization loop. Instead, we leverage the
capability to run many DER simulations in a relatively short
period of time to collect a large set of data capturing the robot’s
dynamics resulting from a set of nine actions (or motion prim-
itives). This data library can then be used as the basis for a closed
loop motion planner––similar in form to explicit model predic-
tive control––to choose the best available action according to
some cost function associated with the projected future state.

2.5.1. Online Planner for Path Following

The first step in preparing our motion planning framework is
collecting our data library. The data library consists of a large
number of transition models that give the future state of the
robot for some initial state and some action. To produce such
a library in a way that allows fast operation at run-time, we reduce
the space of needed samples by constraining the number of
actions that the robot can perform and the number of initial
states of the simulations. We manually choose nine actions,
i.e., SMA actuation sequences, corresponding to behaviors like
“go forward,” “turn and go forward”, “turn in place,” and “no
action.” Next, we take advantage of the invariance of the robot’s
dynamics to its position and orientation and only sample over
distributions of initial linear and angular velocity states. The
resulting set of simulations consists of 8503 initial velocity states
(giving 76 527 total transitions). These simulations are per-
formed offline and the data is collected and processed into a large
matrix such that the transitions can be applied at run-time by
efficient indexing operations.

To use the data library in a path following feedback control
policy, we implemented a search-based planning algorithm over
a tree generated by branching over primitives, allowing the robot
to choose the best available action given its current state. The
implemented algorithm is a receding horizon planner using
the nearest neighbor in the data library to form predictions about
future states. Paths are specified by generating a series of way-
points from a parametric curve in world-space. To track the path,
the current state is first captured from a camera that tracks the
robot using an Apriltag.[50,51] Then, this state is transformed
from the world coordinate frame into the body frame to compare
it to the states in the data library. We find the closest state in the
library and apply the projected transitions for each of our nine
actions to the current state and transform back to world coordi-
nates to get our projected next state. We recursively repeat the
above until we reach the specified depth of our motion planning
tree. Finally, we compare the costs associated with our projected
state and choose the action leading to the lowest cost branch on
the tree.

The cost function used to evaluate the best action has three
components (as in[52])––distance from the nearest waypoint,
difference between the robot angle and the angle of the tangent
of the path at the nearest waypoint, and the progression along
the trajectory associated with the nearest waypoint:
cost ¼ wa � distþ wb � angþ wc � prog, where the w’s repre-
sent weights for each element of the cost. This cost function

induces the robot to stay near the path, maintain the correct head-
ing, and continue forward along the path. See Experimental
Section for in-depth coverage of the data collection procedure,
the receding horizon planning algorithm, and the cost function.

We tested the motion planning approach on several different
types of paths including a straight line, a sinusoidal curve, and an
ellipse. The convergence of the cost function for experiments
with each of these paths is shown in Figure S3, Supporting
Information. Figure 5a–c shows snapshots of the robots along
each trajectory and Figure 5d–f shows plots of the x–y position
of the robot compared to the waypoints of each of the paths.
Figure 5g shows the distance of the robot to the nearest point
on the discretized trajectory for each case. Videos of some
of the experiments are included in Video S2, Supporting
Information. From these results, we can see that the robot
can successfully follow paths of varying complexity at fairly high
speed (2.2–3.2 cm s�1). While tracking is not perfect due to the
high dimensional representation and low control bandwidth, the
robot recovers robustly from deviations and is able to maintain
the trajectory qualitatively towards the goal. In practice, we found
that a depth of one (i.e. only considering the next step) for the
motion planner resulted in the best performance.

3. Discussion

After demonstrating that DER could predict system dynamics
with reasonable accuracy across varying design and gait param-
eters, we performed a parameter sweep to identify the fastest and
most efficient sets of design parameters (EGaIn volume fraction)
and gait parameters (phase, frequency). We showed that there is
good agreement between the predicted speeds based on simula-
tion and the resulting robots’ speeds. Thus, DER is shown to be
an effective tool for soft robot design. While the parameter space
examined here is narrow, since the simulation is fast and easily
automated it would be easy to sweep across a larger parameter
space with more candidate robots and gaits.

We also demonstrate, for the first time, an online planning
framework leveraging DER. Our resulting implementation
compares favorably with recent simulation-driven soft robot tra-
jectory optimization and open-loop control schemes,[27] enabling
high-level tasks to be performed at relatively fast robot speeds
(3.2 cm s�1 vs 0.75 cm s�1) and control frequencies. Our plan-
ning approach, where we precompute a large library of trajecto-
ries based on motion primitives, is popular across many areas of
robotics[53] including flying robots,[54] grasping robots,[55] auton-
omous vehicles,[56] and other systems with real-time execution
requirements and constraints on run-time execution. At run
time, we can then plan ahead efficiently by finding the nearest
neighbor within our library to the current state and projecting
forward based on the pre-simulated transition model using a
receding horizon plan.[57] We experimented with interpolation
but the nearest neighbor proved more performant. This
library-based, tabular method has pros and cons versus solving
the full dynamics. By representing the dynamics as essentially a
large array of transitions, our function evaluations are far more
efficient than solving differential equations and we can plan
deeper trees. We could also straightforwardly implement the
planner on low-level hardware to enable cheap mobile autonomy
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and efficient collision avoidance.[58] In principle, as long as an
appropriate sensor is incorporated into the robot for gathering
position data, this approach to control can therefore run entirely
on low-level hardware. Unfortunately, however, if actuator deg-
radation significantly changes the performance of the hardware,
new simulations would have to be run on a computer to obtain a
new motion library.

One drawback of the approach is that we are constrained to a
predefined set of motion primitives and cannot optimize at run-
time over the full space of possible actuations. This produces tra-
jectories that are predictably sub-optimal. Also, although we
implement a receding horizon planner capable of fast perfor-
mance at large depth, in practice we find that the best perfor-
mance occurs for a tree depth of one. One likely explanation
is a distribution mismatch between the library and the states
produced by performing sequential action on the hardware.
This would mean that transition prediction error is propagated
at each level and degrades performance at larger search depth.
This problem could be remedied by sampling more of the state
space during library generation. To assess these issues, in future
work we will compare the performance across various sizes of the
data library and compare against a planner that queries the DER
simulation itself for transitions in the loop. Regardless, the effec-
tiveness of our approach on hardware demonstrates that DER
can be readily adapted into standard robot motion planning
frameworks.

Regarding the hardware itself, the robots introduced are quite
fast compared to existing untethered soft robots.[7] This is
enabled by the EGaIn-embedded design of the actuators that
allows them to achieve higher frequency performance than is
usually expected from SMA-based actuators. Unfortunately,
due to the nature of thermal actuation using resistive Joule heat-
ing, the inefficiency of SMA-based actuators (usually less than
1%) is much more difficult to overcome.[59] The result of this
is that the robots presented in this article are inefficient. The cost

of transport varies depending on the specific robot design, con-
figuration, and gait, but for the parameters discussed in this
paper, observed values range from about 1000–10 000. While this
is poor from an efficiency standpoint, the buoyancy force allows
some degree of mitigation since relatively large batteries can be
used as long as their mass is sufficiently balanced by buoyant
material. Thus, qualitatively, while performing the experiments
discussed in the article, we observed reasonable run-times, oper-
ating the robot continuously for about 20min to 2 h depending
on the gait chosen.

One shortcoming of the presented work is that the robots and
simulators are two-dimensional. Simulating 3D robots with DER
is currently possible (see e.g.,[60]), and thus the framework pre-
sented in this paper for design and control can be applied in prin-
ciple to three-dimensional swimming robots. The two primary
issues that may impede ready application are speed and accuracy.
Regarding speed, the move to 3D will incur a computational cost
due to the need to keep track of additional coordinates, but this
cost should not make the simulations impractical to perform and
Du et. al.[60] have shown that 3D DER simulations can be practi-
cal for robotics. Regarding accuracy, we cannot say without
validation that 3D simulations will have an adequate agreement
with reality, but previous work such as Ref.[61] gives confidence
that DER can effectively simulate 3D nonlinear fluid–structure
interactions.

It may even be the case that extending to three dimensions
would increase accuracy. It was observed, for example, in
Figure 4d, that the agreement between simulation and experi-
ment tends to deviate more for certain frequencies and phases
of the gait, which we suspect is due to nonplanar hydrodynamics,
which could be accounted for with a 3D model. Since this would
reduce the speed of the simulator, decisions about the fidelity of
the simulation could be made on a case-by-case basis depending
on the application and its needs for speed versus fidelity.
Additionally, as computing power increases and scientific

Figure 5. Stills of the robot at the beginning, middle, and end of: a a) straight line path, b) sinusoidal path, and c) ellipsoid path. 2D plots showing (x,y)
position of the robot and the desired path for two trials of each type of parametric path including: d) straight line, e) sinusoid, f ) ellipsoid. g) Distance
from the nearest point on the path for each trial color-coded to correspond with the plots in (d)–(f ). Therefore, Line 1 in g corresponds to the red lines in
d, Sin 1 refers to the green lines in e, and so on.
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progress is made in the realm of fluid dynamics, the incorpo-
ration of more complex fluid dynamics may become feasible
in the future.

While our approaches to design and control were effective for
the class of robots introduced, the effectiveness is uncertain for
more complex soft robots that interact frequently with the envi-
ronment.[9,62] While it has been previously shown that such
robots can operate with even simpler high-level planning over
a small set of motion primitives,[11] it would be useful to use
DER to compare performance across design parameters, to opti-
mize gaits offline, and to enable more complex sequences of
actions. Recent work shows that DER can accurately simulate
complex contact scenarios.[63] While the speeds achieved in that
work are impressive, future work is necessary to determine if
they are fast enough to be practical in our framework.

4. Conclusion

This work introduces a new class of frog-like soft robots that can
achieve fast locomotion speeds. We also showmultiple new func-
tionalities of the DER framework that make it an effective model-
ing tool for simulating and controlling robots with deformable
components. In utilizing DER, we first calibrate the simulation
and show that it provides realistic results across a range of
parameters, including robot design and gait. Then, we per-
formed a parameter sweep to find the fastest and most efficient
sets in the space. Next, we use the simulation to generate an
online planner that can be used for trajectory tracking with
one of our selected robot designs. Lastly, we implement this
motion planning scheme on an experimental testbed and
demonstrate the ability of a fully untethered, frog-like soft robot
to swim along various pre-defined paths within a water tank.

5. Experimental Section

Robot Electronics: The robot contains a Laird BL652 chip which is based
on the nRF52832 microcontroller. The Bluetooth-enabled chip communi-
cates via BLE with an offboard nRF52832 dev-kit. This offboard controller
relays instructions transmitted from a computer through a UART connec-
tion. The SMA wire actuators need high power pulses to actuate, and
therefore require the use of MOSFETs (AO3416, Alpha & Omega
Semiconductor Inc.). Finally, for power, the robot uses four 11.1 V,
300mAh, 45/75C drone batteries (BETAFPV) to ensure sufficient swim-
ming time (�257 cycles) for characterization. Each limb is powered by
an individual battery. The body of the robot has a hollow square shape
with dimensions as Lo ¼ 90mm, Li ¼ 35mm, Hf ¼ 35mm, Ha ¼
24mm (Figure 2b). A battery is placed on each edge individually to balance
the weight. Foam (Soma Foama 15, Smooth-On) is used to cancel the
weight of the batteries to ensure buoyancy of the robot and silicone
(Dragonskin 30, Smooth-On) is used to seal the electronics from water.

Energy, Forces, and Equations of Motion: For the following sections, we
denote vectors as lowercase bold and italicized letters (e.g., v) and matri-
ces as bold capital letters (e.g., M). The robot is discretized as a series of
elastic rods. The rods are represented by N nodes each with a position
xi ¼ x, y½ �, forming the state x ¼ x0, x1, : : : , xN�1½ �. Each node is associated
with a lumped mass and elastic energies. The rod segment between two
nodes is, therefore, a deformable edge. In all of our simulations, the length
of each segment is Δl � 4 mm resulting in Ntotal ¼ 128 nodes. The elastic
energies are as follows. The discrete stretching energy at the edge connect-
ing xi and xiþ1 is Esi ¼ EAε2Δl=2, where EA is the stretching stiffness and
ε ¼ kxiþ1 � xik=Δl� 1 is the axial stretch. The discrete bending energy is

Ebi ¼ EIðκi � κ0i Þ2Δl=2, where EI is the bending stiffness, κi ¼
2 tanðϕi=2Þ=Δl is the curvature, κ0i is the natural curvature (i.e., curvature
evaluated in undeformed configuration), and ϕi is the turning angle
between two consecutive edges. The total elastic energy of the robot
can be obtained simply by summing over all the edges, i.e.,
Es ¼Pi E

s
i , and, similarly, the total bending energy is Eb ¼Pi E

b
i . In both

experiments and simulations, the structure is nearly inextensible and the
prominent mode of deformation is bending. E0 ¼ 3.0MPa and Emax ¼
8.04MPa reported in[25] are used in the simulation. Note that each joint
node at the corners of the robot is connected to three different nodes and,
therefore, is associated with three turning angles and two discrete bending
energies.

To find the elastic stretching and bending forces acting on a node xi we
take the gradient of the energies, i.e., f si ¼ � ∂Es= ∂xi, ∂Es= ∂yi½ �T and
f bi ¼ � ∂Eb= ∂xi, ∂Eb= ∂yi

� �
T , respectively. So the internal force acting on

a node xi is f inti ¼ f si þ f bi . An implicit treatment of the elastic forces
requires the calculation of the 2N� 2N Hessian matrix of the elastic ener-
gies. Other than the joint nodes, a node xi is only coupled with the adjacent
nodes xi�1 and xiþ1 in the discrete energy formulation. This results in a
banded Hessian matrix with 6� 6 blocks of nonzero entries along the
diagonal. The only off-diagonal nonzero entries correspond to the four
joint nodes. A symbolic computing environment (Maple) to obtain the
expressions for the Hessian matrix and covert them into our Cþþ imple-
mentation is used. The sparse nature of the Hessian leads to an outstand-
ing computational efficiency. The external forces acting on a node xi are
f exti ¼ f di þ f ai , where f

d
i is the damping force from fluid experienced by the

soft limbs and body, and f ai is the added-mass force from periodically
accelerating the surrounding fluid. The drag force acting on a node xi
is given by

f di ¼ � 1
2
ρfCdDkvikviΔli (1)

where ρf is the density of the fluid medium, D is the diameter of the rod,
and vi is the relative velocity of the ith node to the fluid. Cd is the drag
coefficient matrix

Cd ¼ Ct 0
0 Cn

� �
(2)

where Ct and Cn represent the drag coefficient along normal and tangent
directions respectively. The added mass force is associated with the
volume of the surrounding fluid that moves with the robot and it is
represented as

f ai ¼ �Caρf π
D
2

� �
2
Δli

∂vi
∂t

(3)

where Ca is the added-mass coefficient and ρf is the density of the fluid.
Instead of taking the added mass force as an external force, we include it
into the mass matrix and form a revised mass matrix

Mi ¼ ðρr þ Caρf ÞViI (4)

where I is the identity matrix and Vi is the discretized volume at node i
calculated by averaging the volume of the segments of the actuator
represented by adjacent edges.

The equations of motion at the ith node are

ẍ i
ÿi

� �
¼

1
mi

0
0 1

mi

" #
ðf si þ f bi þ f di Þ (5)

where ð
:

Þ represents derivative with respect to time and mi is the revised
lumped mass at node i that incorporates the added-mass from the fluid.
We solve the 2N equation of motions and update the DOF vector x and its
velocity v ¼ x

:
from time step tk to tkþ1 ¼ tk þ h (h is the time step size)

based on the following force balance
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f ≡M
xðtkþ1Þ � xðtkÞ � hvðtkÞ

h2
� f s � f b � f d (6)

where M is the revised mass matrix, f s is the stretching force, f b is the
bending force, f d is the hydrodynamic damping force, and h is the time
step size. The Newton–Raphson method is used to solve this set of non-
linear equations of motion. At each time step tkþ1, we start a new solution
guess on the basis of the previous state, and optimize by gradient descent
until a desired tolerance is achieved

xnþ1ðtkþ1Þ ¼ xnðtkþ1Þ � Jn \ f n (7)

where J is the Jacobian matrix

J ≡
∂f
∂x

¼ 1
h2

Mþ ∂2E
∂x ∂x

� ∂f d
∂x

(8)

Actuator Characterization: Four samples of SMA actuators at each
volume ratio from 0% to 50% EGaIn in 10% increments are characterized
by measuring the actuated and unactuated curvature (κn) in water by fitting
a circular arc to a captured image of the actuator shape (as in Ref. [32]).
The experimental setup is as follows. Actuators are fixed horizontally at the
bottom of a tank filled with water and filmed by a GoPro 5 that is sub-
merged in water from the top. The temperature of the water is controlled
at 19 °C. The actuation time is ta ¼ 70ms for all actuators and the cooling
time varies depending on the actuation frequency. The actuation profiles in
a complete cycle are recorded after 100 actuation cycles are reached to
guarantee that the actuators reach a steady state. The mean curvature
value from four samples at each EGaIn volume ratio as a function of time
within a single cycle are fit into piece-wise functions that have the logistic
form of

κðtÞ ¼
C1a

ð1þe�C2a ðt�C3a ÞÞ þ C4a when t < t0
C1d

ð1þe�C2d ðt�C3d ÞÞ þ C4d when t > t0

(
(9)

where C1a � C4a and C1d � C4d represent the fitting parameters for the
actuation and deactuation profiles, respectively. The piece-wise functions
are used in the simulation to generate the actuation and deactuation of the
limbs. The actuation profiles and fit functions are plotted in Figure S4,
Supporting Information.

As the actuation frequencies increase, the curvature changes become
inconsistent among the four samples. We select the frequencies with error
bars that are smaller than 40 1m�1 as inputs into the numerical framework
for validation and optimization to ensure consistency between samples.

Hydrodynamic Characterization: Hydrodynamic parameters used in the
numerical framework are the drag coefficients along the normal and tan-
gent directions for the limbs (Cln, Clt) and body (Cbn, Cbt), and the added-
mass coefficient (Ca), respectively. Cln ¼ 1 and C lt ¼ 0.01 are used as the
drag coefficients for the limb[32] and Ca is simply set as its theoretical value

Ca ¼ 1.[64] Cbn ¼ 0.8 is solved by minimizing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf max

i¼f min
ðvsimi

� vexpi Þ2=nf
q

,

for Cbn ranging between 0.8 and 2.0,[65] where i, f min, f max, and nf repre-
sent the actuation frequency, minimum and maximum of the actuation
frequency, and number of different frequencies for limbs with a fixed liquid
metal volume ratio. vsim and vexp are the swimming speed of the robot in
the simulation and experiment respectively. Drag coefficients along the
tangent direction are set as 1=100 of the ones along the normal direction
for slender structures.[66] The robot with limbs consisting of 10% liquid
metal in volume is used for the hydrodynamic characterization. Ideally,
hydrodynamic parameters should be determined experimentally.

Data Collection Using the DER Simulation: The first step in preparing
our motion planning framework is collecting our data library. To simplify
our robot’s state space for planning, we use a rigid body approximation
of the DER rod (see Figure S2A, Supporting Information), taken as

the 6D vector qðtkÞ¼ xcðtkÞ, ycðtkÞ, θðtkÞ, x
:
cðtkÞ, y: cðtkÞ, θ

:

ðtkÞ
h i

T
. Here,

xcðtkÞ¼ xcðtkÞ, ycðtkÞ½ �T is the DER’s center of mass, weighted by the mass
mi at node i

xcðtkÞ ¼
1
MT

XN�1

i¼0

mixiðtkÞ, MT ¼
XN�1

i¼0

mi (10)

The center of mass velocity x
:
cðtkÞ is defined similarly.

However, since our rod is modeled as a system of particles, both a
sense of “average rotation” and “average angular velocity” requires more
thought. Here, we define an approximation using the nodal coordinates of
the DER in its unactuated reference pose, xREFi , and the rod translated back
to the origin as xOi ðtkÞ ¼ xiðtkÞ � xcðtkÞ. We then define

θðtkÞ ¼
1
N

XN�1

i¼0

cos�1 xOi ðtkÞ � xREFi

kxOi ðtkÞk2 jjxREFi jj2

� �
(11)

θ
:

ðtkÞ ¼
1
MT

XN�1

i¼0

mi
xOi ðtkÞ � x

:
iðtkÞ

kxOi ðtkÞk22
¼ 1

MT

XN�1

i¼0

det xOi ðtkÞ, x
:
iðtkÞ

� �
kxOi ðtkÞk22

(12)

The aforementioned approximations are motivated by definitions of
angular momentum. We note that there are more formal and theoretical
approaches to defining the average angular velocity of a system of par-
ticles; however, this article focuses on deploying our simulation for practi-
cal uses. Future work will examine different state defintions and their
impact on our planning procedure.

Ideally, our library would capture the robot’s performance in response
to any behavior from any initial conditions. However, to make the library
manageable computationally, the set of behaviors and the set of initial
conditions need to be reduced. For the set of behaviors, we choose nine
actions based on our qualitative observations during simulation validation.
While the effect of each on the robot’s state varies with initial conditions,
the actions generally correspond to behaviors like “go forward,” “turn and
go forward”, “turn in place,” and “no action” (Figure S2b, Supporting
Information, depicts approximately the qualitative behavior of the action
set). The actions are designed by simply specifying activation sequences of
the SMA actuators. The actuation model is covered in Experimental
Section. For each action, the front limbs, if any, are first actuated for a set acti-
vation time (70ms throughout this work) and then the rear limbs, if any, are
actuated for the same activation time. For a depiction of activation sequences
and an example of one of the actions, see Figure S2c, Supporting Information.

Our planner framework uses the simulation environment to map tran-
sitions between time points in terms of this rigid body state q. To obtain
these mappings, our simulations initialize the robot under different initial
conditions, then simulate each of the nine actions from that initial
condition. Since the effect of the action on the robot’s state is invariant
to the robot’s position or orientation in the world frame, we only
sample initial conditions in terms of velocities. Specifically, qð0Þ ¼
0, 0, 0, x

:
cð0Þ, y: cð0Þ, θ

:

ð0Þ
h i

, where velocities are sampled from uniform

distributions according to x
:
cð0Þ ∈ �3, 3½ �, y

:

cð0Þ ∈ 0, 4½ � cm s�1, and

θ
:

ð0Þ ∈ �30, 30½ �° s�1. We do not sample negative y-velocities since we
do not anticipate the robot swimming backward.

Initializing the DER rod requires mapping the “average” velocities back
to individual nodes. Nodal velocities are taken as the sum of
linear and angular contributions, x

:
ið0Þ ¼ x

:
cð0Þ þ x

: θ
i ð0Þ, where x

:
cð0Þ ¼

x
:
cð0Þ, y: cð0Þ�T½ . The contribution of angular velocity is calculated as

x
: θ
i ð0Þ ¼ θ

:

ð0Þ x⊥i ð0Þ ¼ θ
:

ð0Þ �yið0Þ xið0Þ½ �T. (13)

The total number of simulations performed is 76 527 (8503 per action).
From here, we can specify an arbitrary planner frequency for up to

five seconds and process the data from each simulation by taking the last
timestamp tf corresponding to the chosen frequency and packaging the
data from that timestamp in the following vector of action, initial state, and
final state

aj, 0, 0, 0, x
: ðt0Þ, y:ðt0Þ, θ

:

ðt0Þ, xðtf Þ, yðtf Þ, θðtf Þ, x: ðtf Þ, y:ðtf Þ,ω: ðtf Þ
h i

T
. At

run-time, we use this data to generate the transition model for each initial
condition
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qkðtf Þ ¼ Fðqkðt0Þ, ajÞ ¼ Δxk,Δyk,Δθk, x
:
k, y

:

k, θ
:

k

h i
T

(14)

where we overload notation by using k to now refer to the index of a
particular simulation rather than a discretized timestamp, Δxk ¼ xðtf Þ,
and x

:
k ¼ x

: ðt0Þ. These transitions representing the robot’s physics are
stored as a table that can be rapidly processed in a real-time algorithm.
Figure S2d, Supporting Information, shows a set of 1000 random
transitions from our library showing the initial position (always at the
origin) and the final position ðxtf , ytf Þ along with a rectangle oriented
according to θtf .

Control Algorithm and Software: The desired path waypoints are
determined by parametrizing 2D curves by a single parameter, s, which
we discretize as 100 evenly spaced points in 0, 1½ �. The straight line
path is

pline ¼ ls, 0½ �T (15)

where l is a constant that sets the path length. The sinusoidal path is

psin ¼ ls,
l
A
sinðf sÞ

� �
T

(16)

where f is the frequency and A is an arbitrary constant representing the
height of the sin curve relative to the length, l. The ellipse path is

pellipse ¼
l
2
ð1� cos 2π

s
sf

 !
,
l
2A

sin 2π
s
sf

 !" #
(17)

where A is again an arbitrary constant representing the ratio of height to
length of the ellipse and sf is the final value of the parameter s.

The algorithm for controlling the robot to follow a specified path is
shown in Algorithm 1:
Algorithm 1. Robot Planner

1: C⇐∞

2: i⇐1

3: Get state qðtÞ ¼ xðtÞ, yðtÞ, θðtÞ, x: ðtÞ, y:ðtÞ, θ
:

ðtÞ
h i

T
from camera.

4: Repeat

5: Transform from world to body coordinates by rotating x
: ðtÞ, y:ðtÞ½ �T by �θ using the

standard 2D rotation matrix.

6: For states in library fqkg, k ¼ 0, : : : ,K � 1 calculate distance dk and stack into
vector d:

dk ¼ k ðx: ðtÞ � x
:
kÞ=x: ðtÞ, ðy:ðtÞ � y

:

kÞ=y
:ðtÞ, ðθ

:

ðtÞ � θ
:

kÞ=θ
:

ðtÞ
h i

k2.

d ¼ d0, d1, : : : , dK�1½ �
7: kmin ¼ argminkd

8: for aj ∈ A (where aj is an action and A is the set of all actions) do

9: Obtain transition prediction of system state after primitive execution period T,
qðtþ TÞ ¼ qnext ¼ Fðqkmin

, ajÞ from Equation (17).

10: Rotate the transitions to the world frame by θ using the standard rotation matrix
RðθÞ and apply to the current state by applying Equation (18).

11: qðtþ TÞ⇐qðtÞ.
12: i ¼ iþ 1

13: end for

14: until i > H

15: Calculate cost function from Equation (19).

16: a� ¼ argminjC

17: Execute a�

When predicting the next state of the robot based on a given transition,
the following update is applied

xðtþ TÞ
yðtþ TÞ
� �

¼ xðtÞ
yðtÞ
� �

þ RðθðtÞÞ xnext
ynext

� �
θðtþ TÞ ¼ θðtÞ þ θnext
x
: ðtþ TÞ
y
: ðtþ TÞ
� �

¼ RðθðtÞÞ x
:
next

y
:

next

� �
θ
:

ðtþ TÞ ¼ θ
:

next

qðtþ TÞ¼ xðtþTÞ, yðtþTÞ, θðtþTÞ, x: ðtþTÞ, y: ðtþTÞ, θ
:

ðtþTÞ
h i

T

(18)

The cost function used to determine the best action is

C ¼ wa �minðkxcðtÞ � pðscÞkÞ þ wb �
xcðtÞ � pðscÞ
kxcðtÞjjpðscÞk

þ wc � ð1� scÞ
(19)

where sc ¼ argminsðkxcðtÞ � pðsÞkÞ.
The cost function is intended to incentivize proper positioning on the

path, proper angular heading and forward progression. The weights
used in the experiments presented are wa ¼ 500, wb ¼ 50, and
wc ¼ 300 for positioning, angular heading, and forward progression
components respectively.

Data from the path following experiments showing the cost function
and its components are shown in Figure S3, Supporting Information.

The control algorithm, AprilTag tracking, serial communications, and
logging are all implemented in Python, using the multiprocessing pack-
age to concurrently perform all necessary tasks and shared queues for
process communication and synchronization.

Code Availability

Code is available in the git repository https://github.com/
softmachineslab/frog.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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