
Emulation of Dynamic Process-Based Agroecosystem

Models Using Long Short-Term Memory Networks

Viivi Aakula

Master’s thesis
April 2024

Supervisors:
Julius Vira, Ph.D.
Prof. Ion Petre

DEPARTMENT OF MATHEMATICS AND STATISTICS

The originality of this thesis has been checked in accordance with the University of
Turku quality assurance system using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Mathematics and Statistics

Viivi Aakula: Emulation of Dynamic Process-Based Agroecosystem Models Using
Long Short-Term Memory Networks
Master’s thesis, 56 pages
Mathematics
April 2024

Modeling carbon balance in agroecosystems help monitoring changes in carbon emis-
sions and influence in ecosystem functioning and productivity. Process-based models
are widely used in modeling diverse agroecosystems, and also enable quantification
of carbon balance in agroecosystems. However, process-based models tend to be very
computationally demanding, due to their complex computations based on hypotheses
and assumption of the dynamics of the system. The computational demands com-
plicate performing large scale simulations, needed when simulating several different
parameter scenarios, such as model calibration and sensitivity analysis.

In order to mitigate the computational burden of large scale simulations, a
surrogate model utilizing neural networks is developed to emulate the behavior
of a process-based land model BASGRA N, obtaining a fast execution time. The
emulator recognizes sequentially dependent data by networks specifically designed
for sequential learning. Additionally, it is applicable to other similar agroecosystem
models. The model is evaluated by 5-fold cross validation, achieving RMSEs of
0.0290 (g C m−2h−1) and 0.322 (m2m−2) for weekly mean values of hourly NPP and
LAI, respectively. Each of the 5 folds give R2 of > 0.91 for NPP and > 0.93 for LAI.

The thesis begins with basic concepts on neural networks, concerning to regression
tasks, covering a fundamental neural network model, its architecture, features, and
general training methods. Subsequently, the study continues to sequential modeling
and introduces neural networks designed for processing sequentially structured data.
Subsequently, an overall review on existing research on machine learning applications,
especially in emulation of process-based models, is provided. Lastly a novel emulator
model applying neural networks is introduced for emulation of an agroecosystem
model.

This project was done in collaboration with Carbon Cycle group of Finnish
Meteorological Institute, for their requirement for an emulator for a process-based
agroecosystem model BASGRA N [27] to enable large scale simulations for simulator
calibration purposes.

Keywords: Carbon balance, Grassland, Agroecosystem, Machine learning, Emulation,
Deep learning, LSTM

Contents

1 Introduction 1

2 Artificial neural networks 4
2.1 Definition and structure of feed-forward neural networks 4
2.2 Activation functions . 6
2.3 Loss functions . 7
2.4 Backpropagation . 7
2.5 Optimization algorithms . 8
2.6 Overfitting and regularization techniques 11
2.7 K-fold cross-validation . 12

3 Recurrent neural networks 14
3.1 Recurrent units . 14
3.2 Backpropagation through time and the vanishing gradient problem . 15

3.2.1 Constant Error Carousel (CEC) 17
3.3 Long Short-Term Memory network 18

3.3.1 LSTM cell . 18
3.3.2 BPTT in LSTM . 19

4 Emulator for a process-based agroecosystem model 22
4.1 Related work . 23
4.2 The simulator model . 29
4.3 Simulator data generation . 29
4.4 Emulator data generation and pre-processing 32
4.5 Model description . 32
4.6 Training and validation . 34
4.7 Model performance . 36

5 Discussion 45

6 Conclusions 48

1 Introduction

Quantifying the carbon exchange between land and atmosphere in arable lands
enables predicting the influence of vegetation dynamics on climate change and its
effects on crop productivity [39]. Carbon exchange in agroecosystems is influenced
by various factors such as genetics of the crop, environment and land management
[13], which makes its quantification challenging. Carbon cycle is often assessed by
process-based models. Process-based models, here often referred as simulators, are
computational representations simulating the interactions in a system, which can
be of various domains, from ecological to financial systems. Often all the relevant
fluxes and state variables of the system cannot be monitored with the required level
of detail. By process-based models it is possible to simulate the dynamic processes
in a system and extrapolate available data. Developing an accurate process-based
model requires a deep overall understanding of the system and its factors.

However, accurate process-based models can be computationally heavy, especially
when modeling complex systems. Despite the wide spread access to large scale
computing infrastructure, brute-force methods still encounter limits when running
complex ecological models over large areas and/or long periods [51]. Additionally,
uncertainties may occur in process-based models if the underlying mechanisms are
oversimplified or the calibration of the many free parameters is not done properly.

Numerous studies have tried to encounter this problem with diverse modeling
approaches. One approach is leaving the parametrization entirely to a data-driven
machine learning model. However, machine learning methods are often seen as ”black
box”-methods and not derived from physical principles, leading to unreliability. Even
though, interpretation techniques of machine learning algorithms is an emerging area
of research [74, 47]. An alternative approach is creating a surrogate model learning
the behavior of the process-based model. Emulation, of the full model or a part of it,
aims to reduce the computational cost and complexity of a model by mimicking the
behavior of the process-based models with lower computational requirements and
faster execution time [55].

The objective of this study is to develop a surrogate model to emulate dynamic
agroecosystem models, and to apply it to emulate a grassland model BASGRA N.
Particularly the goal is to emulate the carbon exchange features of the grassland
model, including leaf area index (LAI) and carbon net primary production (NPP),
which are influenced by many factors including meteorological, vegetation and soil
properties. The grassland model predicts the daily values of LAI and NPP, with
inputs being daily meteorological values and values on vegetation, soil properties and
harvest. Thus, the emulator should be designed for sequential predictions, though for
weekly periods instead of daily, since daily values would expand the size of the input
sequence significantly. This sequential prediction enables studying the temporal
dynamics of meteorological events and their impact on the ecosystem. To achieve
this objective, it is necessary to find and apply a suitable machine learning algorithm
to effectively learn the dynamical behavior of the model with time dependent input
and output values. The training requires sufficient data, which represents the model
accurately. The training data is obtained from the simulator runs, consisting of
input-output pairs. Subsequently it is crucial to find a method for accurate model

1

validation. The emulator’s purpose is to be a faster version of the process-based
model without sacrificing too much accuracy. This enables the emulator to serve as
a secondary model for large scale simulations.

Machine learning (ML) methods are in increasing use in emulation of complex
simulators to overcome their computational limitations. A machine learning emulator
replicates the behavior of the simulator by using a ML algorithm to learn the
relationships between the simulator input-output pairs. Many diverse ML algorithms
have been used for emulation tasks and they all have their strengths and weaknesses
thus choosing a suitable ML approach is fundamental. Multiple approaches are
represented in Section 4.1.

A deep learning approach is chosen, since there is a need for a ML algorithm
able to learn to emulate a complex simulator and to process the sequential values
with temporal dependencies. Deep learning is a machine learning approach based on
artificial neural networks, here referred only as neural networks (NN). Deep learning
is a type of representation learning, meaning that it can learn patterns from raw
data [37], while many other machine learning methods require some kind of feature
extraction of data [60]. NN emulators are widely used for emulation tasks, as they
learn complex patterns effectively [60], though to perform well they require large
data sets for learning [37]. Generally, the training time of a NN can be long, as there
are easily many parameters to learn in the network [60]. However, they can achieve
simulations of orders of magnitudes faster than the process-based simulator, while
maintaining a high level of accuracy [55]. Furthermore, deep learning encompasses
methods specifically for learning sequential dependencies.

Emulation with machine learning methods is an evolving area of research. Many
heavy computational models have been emulated with different ML approaches.
However in agroecosystem research, especially in simulating carbon dynamics, em-
ulator models are still in their early stage. Previous research has mainly focused
on emulation of static simulations [72, 49, 12, 45], referring to simulations where
parameters remain constant over time, thus dynamic changes are not considered.
Some studies have included climatic impact by taking the average or sum of climatic
values over the whole simulation time period or taking some extreme climatic values
as inputs, like maximum air temperature over the simulation period. Agroecosystems
are heavily affected by dynamical changes, such as weather, hence, they are often
modeled by dynamical process-based models. Dynamical emulation has not gained
so much attention in agroecosystem carbon cycle research, though some efforts have
been done [1, 42]. However, using Long Short-Term Memory networks, a type of deep
learning to comprehend temporal dependencies, is not greatly explored in simulation
based agroecosystem carbon dynamic emulation, even though it has shown great ca-
pabilities in empirical predictive modeling in the field [44]. Though a study based on
a similar method to LSTM [42] introduces hybrid-model combining machine learning
with a process-based model. The developed emulator is a relatively straightforward
and practical approach, enabling possible applicability to other agroecosystem models,
with consideration of temporal dependencies.

The emulator facilitates large scale simulations of carbon exchange in grasslands,
which is beneficial for tasks investigating the relationships within the simulator,
including calibration and sensitivity analysis. The emulator can be applied to other

2

computational agroecosystem simulators with dynamical and static inputs. Obviously
diverse agroecosystem models have their differences, thus some modification should
be made.

The following two sections go through the required theory for the emulator,
starting from introducing artificial neural networks, their features and general training
methods, and consequently presenting neural network methods for sequential learning.
Lastly the process of developing an emulator is described starting on related work on
possible approaches, continuing to description of the simulator, then data generation,
network training and lastly to the performance of the emulator.

3

2 Artificial neural networks

The goal of a regression task is to model the continuous relationship between input
variables and corresponding continuous target values [23]. An example of a regression
task [28] is forecasting the CO2 emissions in a global level, given input parameters
such as the gross domestic product, urban population ratio, and trade openness.

Regression is a supervised learning technique, in other words it learns with labeled
data. During the training process, training data is used with examples of input-target
pairs, which all include an input vector x and a target vector t with continuous
target variables [23]. The goal is to predict the target value t for a new input value x.
The challenge is not just to learn to understand the relationship between the inputs
and target values of the training data but to also perform well with new input data.
Thus, the performance of the model on new data has to be measured. For this the
training data is split to a training set and a separate validation set. This way the
network can be trained with a separate set and to test its generalization capability
with the separate validation set. To reach a small generalization error the model
needs to be able to generalize the learned patterns beyond the training set. There
are several methods for reducing this error introduced later in Section 2.6.

There are many possible approaches for a regression task. One of which is using
neural networks, which stand out with their capability of learning complex patterns
within high dimensional data [60]. Neural network tools are effective in problems
where prediction without interpretation is the goal [23] and are capable of processing
large amounts of data for building an effective data-driven model [60]. The main
idea of neural networks is to take linear combinations of the input vector and then
to model the target as a nonlinear function of these combinations [23].

Returning to the previous example of a regression task [28], an approach utilizing
neural networks is taken, more precisely a feed-forward neural network which is
introduced in this chapter. This chapter introduces the basic concepts of deep neural
networks with the help of the simplest members of the deep neural networks family.
Feed-forward neural networks (FNNs) are the fundamental deep learning models.
The objective of a FNN is to approximate some function g. In a regression task the
network is given an input x and the goal is to find a mapping y = f(x; θ) and learn
the model parameters θ that result in the best possible function approximation [22].
Finding the best approximation is about finding the minimum approximation error,
which is the closest function to the desired function g.

Many traditional deep learning model (e.g. FNNs) are not designed for capturing
dependencies in time sequences, because they do only take the current input of the
model into account [22]. FNNs do not have feedback connections which send the
outputs of the model back to itself. Using Recurrent Neural Networks (RNNs) is a
better choice for capturing time dependencies. RNNs are presented in Section 3.

2.1 Definition and structure of feed-forward neural networks

An FNN constructs of layers which are functions connected in a chain f(x) =
fL(· · · (f 2(f 1(x)))) : Rn0 → RnL , L being the number of layers, n0 the dimension of
the input and nL the dimension of the output. During the training, the function

4

Hidden layer 1 Output layerHidden layer 2Input layer

Figure 1: A Feed-forward neural network with two hidden layers. The four grey
circles on the left denote the input layer, which consists of the input vector. Each
circle, called a unit, corresponds to a value of the vector. Similarly the purple circles
denote the units of a hidden layer and the yellow circles denote the units of the
output layer. The lines between units are called connections and each of them has a
corresponding weight deciding on how much information to pass to the next unit.
The connections between two layers can be seen as a function from the previously
presented chain of functions.

f(x) is trained to match g(x) as well as possible. The output layer fL’s job is to
give values as close to the value y ≈ g(x) as possible. All the other layers are called
hidden layers, as their job is defined with the learnable parameters.

Figure 1 has an example of a three layer (L = 3) feed-forward neural network
f(x) = f 3(f 2(f 1(x))) : R4 → R2, where f 1 maps the input layer of size 4 to the first
hidden layer of size 6, f 1(x) = (h1

1, ..., h
6
1) = h1, f

2 maps the first hidden layer to the
second hidden layer of size 8, where f 2(h1) = (h1

2, ..., h
8
2) = h2, and lastly f 3 maps

the second hidden layer to the output layer of size 2, where f 3(h2) = (y1, y2) = y.
The feed-forward network consists of an input layer, an output layer and any

number of hidden layers in between. The layers are interconnected with weights,
but information flows only forward. FNNs are acyclic, so there are no backward
connections in the network.

First the input vector is given to the network by setting the states of the input
units. Then the network transforms the states in order, each layer at a time until

5

the states of the units of the output layer are defined. At each layer of the network
the states of the layer’s units are determined by applying Equations 1 and 2 to the
connections from preceding layers [58].

Activation functions applied to the output introduce non-linearity to the output
of the unit. Section 2.2 provides commonly used activation functions.

Let a be the activation function, W ∈ Rnl×nl−1 the weight matrix, and b ∈ Rnl

the bias vector, where nl−1, nl are the sizes of the previous and current hidden layer.
Now the hidden state or output hl of a fully connected hidden layer l is calculated
by the following equations

zl = Wlhl−1 + bl, (1)

hl = a(zl). (2)

Adding the bias vector is optional. Also any input-output function with a bounded
derivative can be used instead of 1 and 2, but using a linear function for combining
the inputs to a unit before adding non linearity simplifies the learning process [58].
In this work, the previously defined fully connected layer is referred as the dense
layer.

Consider the example of Figure 1 and let the Equations 1 and 2 be used in the
computations of the hidden layer and the output layer. Now the output would be
y = a(W2(a(W1x+ b1) + b2), where W1 ∈ R6×4, b1 ∈ R6, W2 ∈ R2×6 and b2 ∈ R2.

2.2 Activation functions

Activation functions are applied to the output of a node to add non-linearity to a
neural network [22].

The activation function for the output layer is chosen by the characteristics of the
data and the expected distribution of target variables [3]. For standard regression
problems the usual output layers activation function used is the identity and the
sigmoid activation function is a common one in classification problems [3]. There
are various types of activation functions from which three are introduced.

Definition 1. Sigmoid Activation Function σ is defined by the equation:

σ(x) =
1

1 + e−x
.

The sigmoid function compresses the given value to range of [0, 1]. With very
large or small values the output tends to be either extremely close to 0 or 1, which
raises difficulties in gradient-based training, know as the vanishing gradient problem
[14], which is covered in Section 3.2.

The tanh activation function is similar to the sigmoid function. This function
compresses the given value to range of [−1, 1].

Definition 2. Tanh Activation Function tanh is defined by the function:

tanh(x) =
ex − e−x

ex + e−x
.

6

The tanh function also suffers from the vanishing gradient problem [14].
Lastly the ReLU activation function is introduced.

Definition 3. ReLU (rectifier linear unit) function R is defined by the equation:

R(x) = max(0, x).

The ReLU activation function is a commonly used activation function due to its
simplicity and it does not suffer from the vanishing gradient problem [14].

2.3 Loss functions

Loss functions, also referred as error functions, denoted by E, are functions for
measuring the performance of the model. The error occurring during training the
model with a training set is called train error and the error of the model performance
with a test set is called test error or generalization error [23]. One common loss
functions for regression tasks is the mean squared error.

Definition 4 ([22]). Mean squared error (MSE) is a loss function calculated by

MSE(y, ỹ) = 1/n
n∑︂

i=1

(y − ỹ)2i ,

where y is a vector of the models predictions for some data set and ỹ is the target
vector.

Denote train MSE by MSEtrain and test MSE by MSEtest. The MSE function
is a convex function with respect to its inputs, as it is quadratic. Thus, minimizing
MSE on its inputs is a convex optimization problem, which can be solved with
numerical algorithms. However, regarding to neural networks, the MSE function is
not convex, when given the non-linearities of the activation functions. Root mean
squared error (RMSE) is also a commonly used measure for the model performance,
which is obtained by the square root of MSE.

2.4 Backpropagation

The goal of training a NN model, is to improve the weights of the model in a way that
reduces the loss function on the test set. One way of doing this is to minimize the
loss function for the train set, which can be done by minimizing the error gradients
with respect to the weights of the network. The gradients are calculated by moving
backwards through the network, starting from the last layer and moving towards the
first layer. This procedure for calculating the error gradients, also referred to as error
signals, is called backpropagation. It is a part of the learning algorithm where the
weights of the connections are repeatedly adjusted with the purpose of minimizing
the loss function. Thus, the goal of the learning procedure is to find a set of weights
that ensure each input vector having an output vector close to the desired output.

To minimize the loss function, denoted by E, by methods covered in the following
section, it is first necessary to calculate the partial derivative of E with respect to

7

each of the weights of the network. Let wjk be a single weight from unit k to unit j.
The gradient for the single weight wjk is calculated as follows [58]. By applying the
chain rule

∂E

∂wjk
=

∂E

∂zj
· ∂zj

∂wjk
.

By the definition of zj

∂E

∂wjk
=

∂E

∂zj
· ∂

∂wjk
(

n∑︂
k=1

wjkhk + bj).

By differentiation
∂zj

∂wjk
= hk.

Thus, the partial derivative of E with respect to the weight wjk is

∂E

∂wjk
=

∂E

∂zj
· hk.

The partial ∂E
∂zj

is the error signal denoted by ϑj . Now ∂E
∂zj

can be computed as follows

ϑj =
∂E

∂zj
=

∂E

∂hk

∂hk

∂zj
=

∂E

∂hk
a′(zj).

And lastly the partial ∂E
∂hk can be computed as follows:

∂E

∂hk
=

∑︂
j

∂E

∂zj
∂zj

∂hk
=

∑︂
j

∂E

∂zj
wjk.

Now the backpropagation formula is

ϑk = a′(zk)
∑︂
j

wjkϑj, (3)

which shows that the error signal of a particular hidden unit can be obtained by
propagating the error signals backwards from subsequent units [2].

This procedure can be repeated successively through all the layers from last to
first. A similar calculation can be applied for finding the gradient of a single bias
weight bj.

2.5 Optimization algorithms

The next problem is to find the parameters minimizing the error function. The pre-
viously calculated gradients of the error function with respect to network parameters
play a central role in optimization of the parameters of the model.

One of the simplest and most popular optimization algorithm is the gradient
descent, which iteratively minimizes the loss function. Gradient descent and its
variants are first-order optimization algorithms, leading to computationally efficient
optimization of the large numbers of parameters in the networks. Gradient descent

8

requires an initial guess for the weights, which is often chosen at random. Then the
weight vector is updated iteratively so that at each step the weights are adjusted by
taking a step α, called the learning rate, in the direction of the negative gradient as
follows [2]:

∆w = −α∂E
∂w

,

where the error is calculated for the whole training set. At each step, the gradient is
re-evaluated. One sweep through the entire data set is called a training epoch [23].
In the stochastic version of the gradient descent, an error is calculated for one data
point at a time and the weights are updated according to the single error function
gradient [2]. This version allows the network to handle large data sets and to update
the weights as new data points come in.

The regular vanishing gradient method is more expensive computationally, as it
evaluates the error function for the whole data set. The stochastic version, on the
other hand, can help in escaping from a local minima, since a stationary point for
the error function of the whole set is not necessarily a stationary point for the error
function of a single data point [3]. But obviously single data points introduce more
variance in the weights. A variation of these two algorithms processes subsets of
data points, called batches, and updates the weights according to them [3].

The challenge in gradient descent is that it requires a fixed learning rate for
all parameters, which can significantly affect the model performance. Usually the
learning rate is chosen to be a constant and it can be challenging to learn an optimal
value for it. If the value is chosen to be too large, the error may increase and the
algorithm may not be able to converge. In the other hand if the learning rate is chosen
to be too small, the search may proceed very slowly, leading to long computational
time [3].

Also often the error function is highly sensitive to some directions in the parameter
space and insensitive to others. Assuming that the directions of sensitivity align
somewhat along axes, then one solution is using separate learning rates for each
parameter and automatically adapting them throughout the learning process [22].

Adam [32] is an optimization algorithm using adaptive learning rates. It is a
stochastic gradient descent method that only requires first order gradients and has
little memory requirement. The name derives from “adaptive moment estimation”.
The method calculates individual adaptive learning rates for the loss functions
parameters from estimates of first and second moments of the gradients.

Definition 5 (The Adam algorithm [32]). Let f(θ) be a stochastic scalar function
that is differentiable w.r.t the parameters θ. By f1(θ), ..., fT (θ) denote the realisations
of f(θ) at consecutive time steps 1, ..., T . And by gt = ∇θft(θ) denote the gradient
vector consisting of the partial derivatives of ft w.r.t θ at time step t. Now for time

9

step t, the algorithm calculates the updated parameters θ as follows:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

m̂t = mt/(1− βt
1),

v̂t = vt/(1− βt
2),

θ = θt−1 − αm̂t/(
√︁
v̂t + ϵ),

where gt is the given gradient for time step t, mt denotes the biased first moment
vector, vt the biased second moment vector, mtˆ denotes the bias-corrected first moment
vector, vt̂ the bias-corrected second moment vector, θ denote the parameters and the
hyperparameter α denotes the learning rate and β1, β2 denote the exponential decay
rates for the moment estimates. The algorithm iteratively updates the parameters θ,
until the converge criterion is met.

The Adam algorithm (5) requires a step size α, exponential decay rates for the
moment estimates β1 and β2, an initial parameter vector θ0 and a noisy stochastic
objective function or loss function f(θ) that is differentiable with respect to its
parameters θ [32]. One step includes first updating the exponential moving averages
of the gradient mt and the squared gradient vt, which are estimates of the 1st moment
and the 2nd moment. The hyperparameters β1, β2 ∈ [0, 1) control the exponential
decay rates of the moving averages. The 1st moment captures the exponentially
decaying average gradient of past gradients and the algorithm moves in their direction.
The 2nd moment captures the variance of the gradients, which is used in adjusting the
weights per each parameter. These moving averages are initialized as zeros, which
leads to moment estimates biased towards zero. To prevent this, the bias-corrected
estimates m̂t, v̂t are presented.

All of the introduced algorithms, and many others, require initialization for the
weights of the network. The algorithms can be sensitive to the initial conditions,
thus choosing suitable initial weights is crucial. A common practice is to choose the
weights to have random values near zero [23]. Random values are used for avoiding
problems due to symmetries in the networks [2]. Symmetry here could be two units
with same activation functions connected to the same inputs. If these units have the
same initial parameters, then a deterministic algorithm applied to a deterministic
model and error function would update these units the same way. Usually the
random values are drawn from a uniform distribution or Gaussian distribution, which
have not shown great differences in model performance [22]. The scale of the initial
distribution has a large effect on the optimization process and generalization of the
model [22]. Large initial weights lead to a stronger effect on breaking the symmetry in
networks. Also they can help in preventing the vanishing gradient problems. However
when they are set to large values it may result in exploding gradient problem.

The optimal scale depends also on the activation function. Considering a FNN
with sigmoid activation function, the weights can not be too small or the activation
functions are roughly linear, which can lead in slow training. With large initial
weight values the sigmoidal functions are driven to the regions where σ′(z) is very
small, leading to small ∆E [2].

10

2.6 Overfitting and regularization techniques

As mentioned before, one of the goals of a machine learning model is to minimize
the train error. Another important goal is to minimize the gap between the train
error and the test error [22]. Underfitting is the term for the the machine learning
model’s inability to obtain a low train error. And overfitting is the term used when
the gap between train error and test error is too large. Overfitting is a common
problem in neural networks when they have too many weights to learn. There are
various techniques to control the complexity of a neural network in order to prevent
the model from overfitting.

Finding optimal hidden sizes and amount for layers have a big effect on the models
generalization performance [23]. The manual tuning of the parameters requires an
overall understanding of the relationship between the hyperparameters and a good
generalization performance of the model. Another hyperparameter tuning technique
is using optimization algorithms, which though are more computationally expensive
[22]. For cases with a small amount of hyperparameters, a commonly used algorithm
is the grid search. The algorithm requires a finite set of possible hyperparameter
values for each parameter. Then the algorithm trains the model for every combination
of the hyperparameter values in the Cartesian product of the set of values for each
hyperparameter. Finally the hyperparameter combination resulting in the best
performance is chosen as the model hyperparameters. Furthermore, in general the
selection of small batch size can lead to better regularization and often the best
choice for batch size is 1 [71]. The selection of the learning rate is also crucial and
affects the regularization performance. The choice of batch size and learning rate
can also be done by grid search in order to find the optimal values for the specific
task and learning algorithm.

Modifications of the model towards decreasing the generalization error without
decreasing the train error are called regularization techniques [22]. One technique
to avoid overfitting is the procedure of early stopping, where the model is trained
for only a while and stopped well before the global minimum [3]. A validation set is
used for determining when to stop, before the model overfits to the training data.
Another regularization technique is using the weight decay, where a regularization
term or a penalty [23] is added to the error function E(w) + λ

2
xTw, where λ ≥ 0 is a

hyperparameter [3]. When λ is chosen to be larger, the weights are forced to become
smaller. This leads to a trade off between fitting the training data and small weights.
Also many other regularization terms can be used [22].

Creating a network to map raw data directly to the desired output may not be
optimal in practice. Generally it is advantegous to apply pre-processing transforma-
tion to the raw input data [2]. Also post-processing for the outputs of the network is
often done to get the required output values. Pre-processing can have a significant
effect on the generalization performance of the network. Usual pre-processing form
is reduction of the dimensionality of the input, which can involve taking a subset of
the original data or forming combinations of the original variables. Less inputs lead
to less weights, thus the network is less likely to overfit to the training data [2]. Also
this can affect to faster convergence during training. Of course in some cases this
kind of reduction can result in loss of information.

Another pre-processing form consists of a linear rescaling of the inputs. Scaling

11

TRAINTEST

TRAINING
DATA

FOLD 1
PERFORMANCE

TEST

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

TEST

TEST

TEST

TRAIN

TRAIN

TRAIN

TRAIN

TRAIN TRAIN

TRAIN

TRAIN

TRAINTRAIN

TRAINTRAIN

TRAINTRAIN TRAIN

TRAIN

TRAINTRAINTRAIN

FOLD 2
PERFORMANCE

FOLD 3
PERFORMANCE

FOLD 4
PERFORMANCE

FOLD 5
PERFORMANCE

AVERAGE
PERFORMANCE

ACROSS
FOLDS

Figure 2: K-fold cross-validation with 5 folds.

of the inputs can have a large impact on the model performance as it also determines
the scaling of the weights of the input layer [23]. Rescaling can be useful in cases
including variables with significantly differing values, which may not reflect their
relative importance in producing the desired output values [2]. For example with
values given in different units the difference may be crucial. The rescaling is performed
by first calculating the mean xi and the standard deviation σ2

i of each variable with
respect to the training set. Then the rescaled variables are given by:

x∗
i =

xi − xi

σ2
i

.

This way the inputs are standardized to have mean of zero and standard deviation
of one. Now all inputs are treated equally in the network and the weight can be given
a random initialization without having to deal with some weights having remarkably
different values from others. Similar rescaling is usually done also to the target
values. In that case the prediction has to be post-processed by the inverse of the
target scaling in order to get the final prediction in the right scale.

2.7 K-fold cross-validation

Division of the data set to fixed training set and test set with a limited data can
be problematic. If the test set is too small, the test error may not give an accurate
measure of the performance of the model.

K-fold cross-validation is a data resampling method for estimating the error of
the model performance [23]. The data set is split to K separate and roughly same
sized subsets called folds. The model is trained K times, using one fold at a time
as the test sample and the rest of the folds as the training sample. So at the k’th
training iteration, the model is fitted to the other K − 1 subsets of the data. Each
of the K iterations give a test error, which can be averaged for estimating the model
performance.

12

In Figure 2 the training data is divided in to 5 folds, each fold performing once
as the test set and the other four times as a part of the train set. Finally the
performance is evaluated by taking the average performance across folds.

Stratified sampling is a common practice in cross-validation. In this method
the training data is split to folds of good representatives of the whole data set
[54]. In a classification task this means that the proportions of different classes in
the whole data set are maintained in the folds. In a regression task the sampling
can be done by defining classes based on the distribution of the continuous target
values. The stratified sampling in cross-validation is recommended by [33], which
compares several accuracy estimation approaches. They concluded that stratified
10-fold cross-validation tends to provide less biased estimation of the accuracy.

While cross-validation is a valuable technique for model estimating the model
performance, it is worth noting that with a high value of K, cross-validation can be
problematic in cases where the training itself is computationally expensive.

13

3 Recurrent neural networks

Feed forward neural networks assume independence among the data, in other words
after each data point processed by the network the state of the network is lost. This
procedure is not optimal in the case of data points with temporal dependencies
or sequential patterns. There are numerous tasks involving modeling sequential
data. Some tasks, such as image captioning [29], require sequential outputs. Other
tasks, such as grammatical classification of natural language sentences [34], require
sequential inputs and others, like translation of natural language [63], require both
sequential input and sequential output.

Recurrent neural networks (RNNs) [57] are models designed for processing sequen-
tial data. RNNs have the same central idea with the previously presented FNNs but
with the addition of feed-back connections. They process sequential data one element
at a time while selectively passing information across the time steps. RNNs are able
to handle interdependent sequential data as input and/or output. In this thesis the
consideration is on the development of models for tasks including sequential input
and sequential output. This chapter gives and overview on classical RNNs, goes
through their training challenges and finally presents a RNN model designed for
overcoming these challenges.

Recurrent neural networks consist of recurrent units which are dependent on
the previous elements in the sequence, unlike in traditional neural networks which
assume the outputs to be independent of each other [22]. Let x be an input sequence,
where x = x1, x2, ..., xT , where all xt ∈ Rd. Now if a traditional FNN model was in
training, it would be given the whole sequence at once. This approach would ignore
the possible temporal dependencies in the sequence x. RNNs take in consideration
the temporal dependencies of the data by going through the input sequence one step
at a time and by sharing the output of each time step to the next one. As in feed
forward neural networks, the weights of a recurrent neural network are trained with
backpropagation and optimization algorithms based on gradient descent.

3.1 Recurrent units

A standard recurrent unit can process the sequential data one time step at a time.
At time step t the unit reads the input xt and the previous hidden state ht−1. The
output is the new hidden state ht, which is then again given to the recurrent unit
with the next input vector.

At time step t, the hidden state ht is calculated by:

ht = f(ht−1, xt, θ),

where f represents the transformation of the recurrent unit [15].
A recurrent fully connected layer can be seen as its own network, each time step

having its own layer. This is visualized in Figure 3, where on the right the RNN
layer is unfolded and can be seen as a network with T layers.

Let a be the activation function, W ∈ Rn×n the recurrent weight matrix, U ∈
Rn×d, and b ∈ Rn the bias vector, where n denotes the hidden size and d the size of
the input vector. Now for time step t the weighted input zt and the hidden state ht

14

...

...

UNFOLD

Figure 3: A RNN unit loops through time steps by taking an input xt of some time
step t and outputting ht and a loop to give information to the next time step t+ 1.
On the right the loop is unfolded to visualize the flow of information through the
step-by-step computations.

tanh

Figure 4: RNN unit with tanh-activation.

of a standard recurrent hidden layer are calculated by the following equations [50]:

zt = Wht−1 + Uxt + b, (4)

ht = a(zt). (5)

Figure 4 visualizes a RNN unit with tanh-activation. The previous hidden state
is multiplied by the weight W and the current input by the weight U , then tanh-
activation is applied and the unit outputs the new hidden state and gives it to the
next unit of the following time step.

3.2 Backpropagation through time and the vanishing gradi-
ent problem

As in Section 2.4, a similar backpropagation procedure is done to RNN layers. The
gradients are calculated with backpropagation through time (BPTT) [70], where the
recurrent network is presented as a FNN, each time step having its own layer, and
backpropagation is applied to the unfolded network (example in Figure 3). The
difference here is that the network has an output for each time step, so the error

15

Figure 5: The backpropagation of a recurrent network with 4 time steps. The
sequential calculation is represented by the red arrows in the unfolded network. For
example, the second unit gets an error signal from its output and the following time
steps unit.

signal of each output has to be noted in the backpropagation calculations. This is
illustrated in Figure 5 with an example of a RNN with four time steps.

The training of a RNN model is problematic, because the backpropagated gra-
dients tend to either increase or decrease at each time step, which can result in
“explosion” or “vanishing” of the gradients [25].

The vanishing gradient problem is the scenario where the gradient of the objective
function with respect to a parameter becomes very close to zero, which leads to an
extremely small update to the parameters during the training of a network with
gradient descent [14]. The vanishing gradients lead to uncertainty about the optimal
direction for weight updates, which causes the network to be difficult and slow to
learn. Exploding gradients, on the other hand, lead to large weight updates which
causes unstable learning [22]. It can occur in networks with extremely many layers,
or recurrent layers. The backpropagation process may consist of multiplying the
same weight matrix over and over again which will eventually lead to vanishing
or explosion of the gradients [22] or this can be caused by an activation function
squashing the value to a small interval [14].

This section explains the BPTT for a RNN and how the vanishing gradient
problem occurs. The following backpropagation calculations and error flow analysis
are derived from the Article [26].

Assume a fully connected RNN with one recurrent layer with n units. Let aj
be the activation function for a non-input unit j and ztj =

∑︁
k w

jkhk
t−1 the weighted

input and hj
t = aj(z

j
t) the hidden state, where wjk is the single weight for a connection

from unit k to j. Now define the external error e and the error E for an output unit
i at current time t using MSE:

16

Ei
t = (hi

t − ỹit)
2, eit =

∂Ei
t

∂hi
t

= 2(hi
t − ỹit),

where hi
t denotes the value of the prediction given by the output unit i and ỹit denotes

the target value. The external error is the error signal of the output unit. Now the
backpropagated error signal of a non-input unit k at an arbitrary time τ ≤ t is the
sum of the external error and the backpropagated error signal from the following
time step τ + 1, given by the previously derived Equation 3:

ϑk
τ = a′k(z

k
τ)(e

k
t +

∑︂
j

wjkϑj
τ+1).

Now the weight update with gradient descent at time τ is

wjk = wjk + αϑj
τh

k
τ−1,

where α is the learning rate and k is an arbitrary unit connected to unit j. Now an
error occurring at an arbitrary unit u at time step t is backpropagated to a unit v
over q time steps. This scales the error by

∂ϑv
t−q

∂ϑu
t

=

{︄
a′v(z

v
t−1)w

uv, q = 1,

a′v(z
v
t−q)

∑︁n
l=1

∂ϑl
t−q+1

∂ϑu
t

wlv, q > 1.

Now denote the units from u to v by l0, ..., lq. The total error backflow is

∂ϑv
t−q

∂ϑu
t

=
n∑︂

l1=1

· · ·
n∑︂

lq−1=1

q∏︂
m=1

a′lm(z
lm
t−m)w

lmlm−1 .

Now if for all m:
|a′lm(z

lm
t−m)w

lmlm−1 | > 1, (6)

then the maximum product increases exponentially with q. In this situation the
error “explodes” and can cause instability during learning. And, if

|a′lm(z
lm
t−m)w

lmlm−1 | < 1, (7)

for all m, then the maximum product decreases exponentially with q. In this situation
the error vanishes, and nothing can be learned within a reasonable time.

3.2.1 Constant Error Carousel (CEC)

Assume a single unit k with a single connection to itself. According to previously
shown calculations, k’s local error backflow at time t is ϑk

t = a′k(z
k
τ)(E

k
t +

∑︁
j w

kkϑk
t+1).

Equations 6, 7 indicate that for ensuring constant error flow through k it is required
that

a′k(z
k
t)w

kk = 1.

By integration,

17

ak(z
k
t) =

zkt
wkk

,

for arbitrary zkt . Thus, ak has to be linear and the activation of k has to remain
constant:

hk
t+1 = ak(z

k
t+1) = ak(z

k
t) = hk

t .

This is ensured by using the identity function as the activation function ak and by
setting wkk = 1 [26]. This is called the constant error carousel (CEC) and is the
central feature of Long Short-Term Memory (LSTM) network introduced in the
following chapter. The CEC enforces a constant error flow within units, which allows
learning long term dependencies. Obviously k is not only connected to itself, but
has also connections to other units. Input and output weights are taken care of with
additional features in the LSTM network, introduced in the following chapter.

3.3 Long Short-Term Memory network

Long Short-Term Memory (LSTM) neural network is presented in [26] with the goal
of solving the vanishing gradients problem. The key idea consists of the Constant
Error Carousel (CEC) and the addition of nonlinear and data dependent gates to
the RNN unit [26].

3.3.1 LSTM cell

The LSTM unit, here referred to as the cell, has more internal structure than the
previously covered units. In addition to the recurrency of the network, the LSTM cell
has an internal recurrence, an internal loop. The i’th LSTM cell has two recurrent
features; the hidden state hi and the cell state ci. The hidden state works as the
short-term memory and the cell state works as the long-term memory of the cell.

Without new inputs to the cell, CEC’s error flow remains constant. For the
weighted inputs and outputs, [26] introduces gates to control the information flow
through the cells. The input gate controls the information from the network to
the cell state from irrelevant inputs and the output gate protects other units from
currently irrelevant information stored in the cell state. An additional forget gate
introduced by [21] learns to reset old, thus irrelevant, information from the cell state.

The cell, denoted as CLSTM is given three inputs: the hidden state ht−1 and cell
state ct−1 of the previous time step and the current input vector xt. And it produces
two outputs: the new hidden state ht and cell state ct [15]:

(ht, ct) = CLSTM(ht−1, ct−1, xt). (8)

18

Definition 6 ([22]). An LSTM cell CLSTM consists of the following components:

ft = σ(zft) = σ(Wfht−1 + Ufxt + bf), (9)

it = σ(zit) = σ(Wfht−1 + Uixt + bi), (10)

ot = σ(zot) = σ(Woht−1 + Uoxt + bo), (11)

gt = tanh(zgt) = tanh(Wght−1 + Ugxt + bg), (12)

ct = ftct−1 + itgt, (13)

ht = ot tanh(ct). (14)

Let n denote the hidden size and d the size of the input vector. Now ft ∈ (0, 1)n

denotes the activation vector of the forget gate, it ∈ (0, 1)n the activation vector of
the input gate, ot ∈ (0, 1)n the activation vector of the output gate and gt ∈ (−1, 1)n
the activation vector of the cell input. The notation xt ∈ Rd denotes the input vector,
ht ∈ (−1, 1)n the hidden state vector and ct ∈ Rn the cell state vector. W ∈ Rn×n,
U ∈ Rn×d and b ∈ Rn respectively denote input weights, recurrent weights and biases.

Figure 6 gives a visualization of the LSTM cell. At time step t the cell gets ht−1,
ct−1 and the current input vector xt as inputs. The forget gate ft takes the weighted
combination of the current input xt and the weighted hidden state ht−1 from the
previous time step and squashes the values between 0 and 1 to decide how much
to be forgotten of the last cell state ct−1. The input gate it works similarly to the
forget gate and decides on which values to update. gt is a vector of new candidate
values and is combined with it to create the new cell state ct. Finally the output
is filtered from the new cell state: the gate ot decides on how much information to
keep from ct and the cell state goes through tanh and is multiplied with the output
of the output gate to keep only the information decided to preserve.

3.3.2 BPTT in LSTM

The backpropagation for a LSTM network differs from the BPTT for RNNs, as the
LSTM has two memory units and three gates, each depending on the previous time
steps. The signals are calculated for each of the variables.

Assume a network with a standard input layer and one hidden layer consisting of
a LSTM cell, and the output of the network is given by the hidden states of each
iteration of the LSTM cell, thus y = (h1, ..., hT). Again define the external error elt
and the error El

t for an output unit l at current time t using MSE:

El
t = (hl

t − ỹlt)
2, elt =

∂El
t

∂hl
t

= 2(hl
t − ỹlt),

where ht
l represents the value of the prediction given by the output unit l and ỹlt

denotes the target value.
Now calculate, using chain rule, the signals to the gates and the cell input

ϑf
t =

∂Et

∂ft
=

∂Et

∂ct

∂ct
∂ft

= ϑc
tct−1,

ϑi
t =

∂Et

∂it
=

∂Et

∂ct

∂ct
∂it

= ϑc
tgt,

19

tanh

Pointwise operation

tanh

Neural Network layer

Copy

Concatenate

Figure 6: The LSTM cell at time step t is given the hidden state ht−1 and cell
state ct−2 of the previous time step and the current input vector xt. The forget
gate ft processes ht−1 and xt by taking their weighted sum and applying it through
the sigmoid activation function, as shown in Equation 9. The output of the forget
gate is then multiplied with the previous cell state. The input gate it has the same
functioning as the forget gate but with its own set of weights (Equation 10). And
the cell input activation vector gt also takes the weighted sum of ht−1 and xt and
applies it through the tanh activation function (Equation 12). Now the new cell
state ct is the sum of the product of it and gt and the product of previous cell state
ct−1 and the output of the forget gate ft (Equation 13). Similarly the output gate
ot applies the sigmoid activation to the weighted sum of ht−1 and xt (Equation 11).
Now the new hidden state ht is the product of the new cell state applied through a
tanh activation and the output of the output gate ot (Equation 14).

20

ϑo
t =

∂Et

∂ot
=

∂Et

∂ht

∂ht

∂ot
= ϑh

t tanh (ct),

ϑg
t =

∂Et

∂gt
=

∂Et

∂ct

∂ct
∂gt

= ϑc
tit.

The error for the cell state is propagated from the current error and the cell state
from the following time step. Thus, the signal to the cell state is

ϑc
t =

∂Et

∂ct
=

∂Et

∂ct
+

∂Et+1

∂ct
=

∂Et

∂ht

∂ht

∂ct
+

∂Et

∂ct+1

∂ct+1

∂ct
= ϑh

t ottanh
′(ct) + ϑc

t+1ft+1.

Finally the error for the hidden state is propagated from the gates and the cell
input:

ϑh
t = et +

∂Et+1

∂ft+1

∂ft+1

∂ht

+
∂Et+1

∂it+1

∂it+1

∂ht

+
∂Et+1

∂gt+1

∂gt+1

∂ht

+
∂Et+1

∂ot+1

∂ot+1

∂ht

= et + ϑf
t+1σ

′(zft)Wf + ϑi
t+1σ

′(zit)Wi + ϑg
t+1 tanh

′(zgt)Wg + ϑo
t+1σ

′(zot)Wo.

21

4 Emulator for a process-based agroecosystem

model

Quantifying the carbon balance of grasslands is important in monitoring changes in
carbon emissions and effects on the productivity of grasslands. Perennial grasslands
occupy from 20 to 40 % of Earths surface, depending on the used definition of a
grassland [56], constituting of diverse dynamical processes and carbon fluxes. Climate
change and rising CO2 concentration will affect the biomass productivity and stability
of grasslands [66]. Thus, it is important to study the grasslands responses to climate
change, how it will adapt to the changes and how diverse mitigation options could
help.

Process-based simulators offer a systematic approach for modeling these kind of
systems based on theoretical understanding of them. A process-based simulator is a
computational model representing a system based on assumptions and hypotheses of
the dynamics of the system. The system can often be very complex, and to develop
a model for it requires an overall understanding of the system and the computations
of the various processes in it.

This study focuses on a process-based grassland model BASGRA N, described in
Section 4.3, which simulates yield and biogeochemistry in grasslands, particularly
carbon fluxes in plants and soil. The simulator models important factors regarding
to carbon balance, two key ones being net primary production and leaf area index.
Net primary production describes the balance between the carbon gained from
photosynthesis and the carbon released by the plant respiration, and leaf area index
describes the green leaf area of a horizontal ground surface area which affects the
carbon uptake capability.

However, the model, as many other process-based ecosystem simulators, includes
computations of diverse relevant fluxes. Even though it is a relatively fast model
compared to many other computational models, yet the computations at a large scale
remains computationally demanding. Performing simulations with several different
parameter cases is often needed in cases like model calibration, which tries to find
the best inputs to match observed physical data, and sensitivity analysis, where the
effect of varying input parameters to output variables is studied. This is slow, as the
model can run only one parameter set at a time through the heavy computations
defining the simulator.

A surrogate model is constructed for addressing the computational burden of large
scale simulations of carbon exchange. This can be accomplished by approximating the
behavior of the simulator by a possibly simpler and computationally more efficient
emulator model. Emulators are often built by using machine learning methods
enabling faster simulations once trained. Net primary production and leaf area index
are chosen as the target of emulation, as they are key factors in carbon exchange.
For training a machine learning emulator, a suitable machine learning model and
comprehensive learning data of simulator inputs and outputs are required.

Carbon exchange in grasslands is affected by many factors such as weather condi-
tions, land management, soil and vegetation. Predicting sequential output values,
daily, weekly or monthly, enables understanding seasonal patterns and affects of
changing meteorological factors and management practices. Weekly averaged data

22

is chosen, in order to get seasonal patterns, but still with the input sequence being
of a reasonable size. Hence, the prediction requires input variables including soil
and vegetation properties, management and weekly meteorological data, chosen by
sensitivity analysis. Thus, the emulator should be able to process both sequential and
static inputs. The training data can be generated by sampling soil and vegetation
parameter values for diverse locations on a chosen geographical area. The meteoro-
logical data, on the other hand, can be attained from daily historical meteorological
data.

In summary, the goal is to develop an emulator for the simulator outputs con-
cerning carbon balance quantification, with the purpose of providing an alternative
model for cases requiring numerous simulations. The emulator is needed for use in
Finland, thus the training data should include simulations relevant for that regional
area and climate. The aim is to emulate key factors concerning carbon balance
including weekly carbon net primary production (NPP) and leaf are index (LAI)
based on time dependent and stationary inputs. This involves constructing a model
to predict sequential values with dynamical and stationary inputs. Thus, a model
combining capability in learning temporal dependencies and complex patterns is
needed. The following section explores several possible approaches for addressing
the challenges with process-based models.

4.1 Related work

Machine learning emulation is an evolving area of research, which has gained interest
in the recent years in addressing computational difficulties of large process-based
models. Emulators are surrogate models, mimicking the behaviour of the process-
based model, enabling computationally more efficient simulations. Machine learning
methods have shown great performance in predictive modeling in various domains.
Diverse techniques such as Gaussian process [64], random forest [65, 41], XGBoost
[41] and neural networks [59, 16, 40] have been used in carbon cycle modeling
in diverse ecosystems, using observed learning data. Similarly, machine learning
techniques can effectively learn the functioning of diverse simulators, given the
simulator’s input-output pairs as learning data to the emulator. This literature
review goes through various emulation approaches beginning with an overview of
machine learning emulator methods used in ecological research, then moving to
specific techniques more suitable for sequential tasks. And finally, a comparative
analysis is given, highlighting the most promising and suitable methodologies for the
task of this thesis.

Diverse machine learning emulators have already been widely used for different
purposes in ecological research. A study using multiple machine learning approaches
[72] tries addressing the challenges with the computational cost of the agricultural
production system simulator APSIM, which is applied to simulate soil organic carbon
and crop yield over the period 1980–2080 under various agricultural management
practices. The study focuses on emulating the overall change in soil organic carbon
and average yield over the simulation period. The study tries several machine learning
methods for the emulation; multivariate adaptive regression splines (MARS), random
forest (RF) and boosted regression trees, which all explained > 92% of the variance

23

of the simulation of soil organic carbon, wheat yield and maize yield. RF [4] is seen to
outperform the others in the emulation task with the most accurate performance. The
ML model inputs are initial soil organic carbon content, mean annual temperature
and precipitation (for future events predicted with global circulation models), and/or
variables indicating management practices. The predicted meteorological values are
seen as the least important factor in the simulated system, which the study states to
possibly mean that the future change of temperature and precipitation has limited
effect on the soil organic carbon. Also the study does not consider climate extremes
in the projection of future climate.

Also Gaussian processes have been a popular approach in diverse emulation tasks
[1, 11, 19, 20]. Gaussian process (GP) is a probabilistic model, capable of interpolating
observed model runs and provides a probabilistic prediction [11]. Studies [1] and [11]
have a Gaussian process approach for emulation of a land surface model and a climate
model, respectively. The study attempting to emulate a dynamical land surface
model [1] develops separate emulators for diverse plant functional types to emulate
GPP predictions on parameters including plant physiology, radiative properties,
seasonal responses, climatic values and other attributes. The temporal structure
of the internal state variables of the simulator is accounted for in the emulators by
using 8-day averages of the data. For controlling long-term dependencies a variable
that records the day of the year is added to the input. To reduce the dimensionality
of the output, it is broken down into a large set of one dimensional outputs. The
removal of the temporal structure is often a simplification of the model. As the study
[1] noted, Gaussian processes are not well suited for handling large data sets, as
they require the inversion of an n× n covariance matrix. However, the study uses a
method for mitigating the computational issues of GPs by training the emulator with
much smaller data set where the input points can be placed at key locations in the
input space. Gaussian process emulation has also been used in dynamical terrestrial
ecosystem model calibration, focusing on soil respiration and net ecosystem exchange
and latent heat flux [19]. GPs have also been used to emulate a land surface model
for sensitivity analysis of soil moisture to static uncertain parameters [20].

A study based on Gaussian processes [10] introduces different approaches for
emulation of dynamic models and multi-output with Bayesian emulation, which are
then applied for a global vegetation model. The model simulates carbon dynamics
of forests and other kinds of vegetation, producing time series of outputs. Three
GP-emulation approaches are compared; One GP method uses multi-output (MO)
emulator, another uses multiple single-output emulators (MS) and the third is based
on treating time as an auxiliary input (TI). The MS method, applied in this study,
fails to address correlations through time. Overall, compared to the TI approach,
the MO method is seen to give better predictive performance, produce narrower
prediction bounds and have a more reliable covariance estimation. However, the study
points up that neither of MO or TI are capable to decently capture the correlation
structure featured by the simulator through time. The study also emphasizes the
difficulty to identify a suitable GP emulator for dynamic simulator outputs.

Moreover, deep learning has shown great potential in ecosystem model emulation
[49, 12, 45]. Deep learning is a kind of representation learning, meaning it can be
fed with raw data and automatically learn the needed presentations [37], while many

24

other machine learning methods require some feature extraction from raw data, based
on domain knowledge [60]. With minimal assistance, deep learning can capture
complex patterns in data [37]. Feed-forward neural networks have been widely used
in cases with non-sequential inputs [49, 12]. Once trained, deep learning emulators
can achieve simulations orders of magnitudes faster than the process-based simulator,
while maintaining a high level of accuracy [55]. A study using deep learning methods
[49] emulates a simulator of biogeochemical flows of carbon, nitrogen and water in
diverse ecosystems. A FNN emulator is constructed for predicting 30-year average
values of corn grain, stover yields and the soil organic carbon at the end of the
simulation period (30 years). The primary inputs of the simulator include daily
maximum and minimum air temperature and precipitation, soil properties, land
use data and management practice. For the emulator the meteorological values are
aggregated into growing season values and averaged over the simulation period. Thus,
no dynamical values are given to the emulator. The one layer FNN performs well in
this task with 99% capture of the variations of the simulator. FNNs perform well
also in an emulation task for predicting annual mean spatial variability in carbon
and water fluxes, given biophysical parameters as inputs [12]. The study constructs a
two layer FNN for emulating gross primary production and latent heat flux outputs
of a simulator land model, giving a > 86% capture of the variations of the simulator.

A study combining different machine learning techniques [45] aims to emulate
carbon cycle processes in an Earth system model in order to perform large regional
ensembles. The study develops a surrogate model combining singular value de-
composition (SVD), Bayesian optimization, and a FNN to simulate carbon cycle
processes relevant for Earth system models. The model outputs include annual
GPPs for many different locations over 30 years. The study states that reducing
model output dimensions is crucial when working with a limited sample size. Also a
simpler network is faster to evaluate as the weight matrices are smaller. The Earth
system model output dimensions are reduced by SVD to improve the computational
efficiency of training and evaluating a FNN surrogate. The study states that neural
networks involve hyperparameters that largely affect the model performance, thus
they are optimized by the Bayesian algorithm. Also it mentions that NNs suffer from
high computational cost when including many quantities of interest. The emulator
inputs compose of static parameters describing plant growth and development. The
emulator performs well, capturing > 96% of the variations of the simulator.

Diverse emulation methods are explored by a comparative study [31] attempting
to emulate a crop model APSIM. The study focuses on FNN, RF and MARS and
compares their performances on simulating chickpea crop with static inputs including
climatic, soil, phenological and management data. The study shows the RF as the
most consistently accurate method compared to the other approaches, though with
computationally demanding requirements. The study indicates that RF tends to
take the longest to train, and MARS the fastest.

Another comparative study [68] shows a strong performance of RF compared
to many other methods, now in a different emulation task. The study tries several
emulation approaches for simulation of N2O fluxes and N leaching from corn crops
with static input related to N input, soil and climate. Diverse linear and non-linear
statistical methods are compared, including FNNs, RF, support vector machines

25

(SVM) [30] and splines and kriging. The study concludes that spline methods perform
best with very limited data and with larger data the RF and the SVM outperform
the others.

In addition to emulation, hybrid-models incorporating machine learning methods
into a process-based model, often called knowledge-guided machine learning (KGML)
models, are promising in addressing challenges occurring in complex process-based
models applied to large regions at high spatio-temporal resolution. A study based
on KGML [18] implements a process-based crop model (APSIM) and the random
forest algorithm for yield forecasting, using growth stage-specific information. The
process-based model is used for simulating the dynamical phenology and biomass
values, with input data including daily meteorological data, daily drought index,
soil hydraulic properties and wheat trial data. The predictions are then given to
the random forest model for the yield estimates. Also the performance of multiple
linear regression is tested in place of the RF, but the RF outperforms it. The
study highlights the effect of drought events throughout the growing season as they
are identified as the main factor causing yield losses. Another study using hybrid
methods [61] introduces a model for predicting the LAI and NEE of slash pine forests.
A feed forward neural network model generates estimates of LAI, giving RMSEs less
than 0.50 and R2 of 0.77, utilizing ground plot and satellite data. Following that,
the LAI predictions are used as inputs to a slash pine simulation model to make
NEE predictions.

FNNs process each input independently, thus they can’t capture temporal depen-
dencies in sequential data. Hence, FNNs would not be suitable for the task including
temporally dependent inputs and outputs. However, neural networks with a recurrent
design could possibly be suitable for that case. Dynamical emulation tasks involving
sequential, time dependent inputs and/or outputs have often been approached by
diverse recurrent neural networks, such as LSTM or its simplified variant GRU [8],
both designed for learning temporal dependencies. LSTM and GRU type recurrent
neural networks have been used in diverse emulators and hybrid-models, such as
hydrological models [46, 53], crop production models [69], and agroecosystem models
simulating greenhouse gas dynamics [42, 43].

Furthermore, more recent studies incorporate recurrent neural networks with
process-based models, to improve the performance of agroecosystem models [42,
73, 69]. A study based on KGML [42] develops a model KGML-ag-Carbon, which
combines a process-based agroecosystem model ecosys and a gated recurrent unit
GRU. The KGML model addresses key carbon budget factors including ecosystem
autotrophic respiration (Ra), ecosystem heterotrophic respiration (Rh) and net
ecosystem exchange (NEE) on a daily scale and yield on an annual scale. First,
synthetic data are generated for a crop field to train the GRU model. The inputs of
the simulator include soil information, planting and harvest dates, crop parameters,
crop rotation information and daily climate data. This data is then used to pretrain
the GRU model, after which the model is fine-tuned by using observed low-resolution
crop yield data and carbon fluxes from sparsely distributed eddy-covariance sites.
The GRU model employs five modules including four GRU layers and a FNN with
an attention mechanism, one GRU layer serving as the foundational layer, while each
of the remaining GRU layers contribute in predicting one of the daily outputs. The

26

annual yield prediction is produced by a FNN with an attention mechanism which
learns the importance of each time step by additional weights, enabling learning only
values which affect the yield. The system works hierarchically, where the outputs of
some modules become inputs for others. The study shows the model capturing 86 %
more spatial detail of soil organic carbon changed than conventional coarse-resolution
approaches. The study focuses on corn and soybean production in U.S. Midwest.
Another study based on a similar approach [73] of emulates the ecosys model with
GRU for KGML data assimilation in carbon budget quantification. Furthermore,
another similar approach [43] was used in estimation of nitrous oxide (N2O).

A comparative study [69] integrates data assimilation and machine learning
methods for regional daily summer maize LAI prediction. Several ML methods are
compared, including random forest, LSTM and support vector regression. The study
chooses the three methods for investigation because LSTM is known for handling
data with long-term dependencies, SVM demonstrates strong robustness in small
sample regression tasks and RF exhibits good resistance to noise and outliers in data.
The study shows best performance by LSTM with data from last 15 days to predict
the subsequent 15 days, while RF and SVM struggled in predicting time series of
LAI.

A case worth mentioning of a observed data-driven ML model is a study based
on LSTM [44], where the goal is to create a machine learning model for crop
prediction with dynamical meteorological and static inputs. The study compares
several methods; XGBoost, RF and three variations of LSTM, of which one of the
LSTM variations gives the best performance. The study uses a LSTM layer for
processing the sequential data and regular FNNs for the static inputs and then
the outputs are combined with an attention mechanism, which differentiates the
contribution of different periods to the yield. Lastly the combined output is given to
a FNN for creating the final prediction. The other LSTM variations use different
combination techniques for the static and dynamic data, by another concatenates
the processed outputs and other uses the FNN processed data as initial hidden state
for the LSTM layer. Nevertheless, the model predicts the yield for a whole year, thus
the model does not give sequential predictions, which is needed in the task of this
thesis. The LSTM model is shown to explain 73% of the spatio-temporal variance
of an observed maize yield, while a widely used regionally calibrated process-based
model explains only 16%.

There are a few possible methods for approaching the problem of this thesis.
Some key studies on process-based model emulation, requiring only static inputs, are
discussed above. SVM and especially RF appear to perform well for many tasks with
static inputs [68, 31, 18, 72], even better than FNNs. However, these approaches are
mostly applied to static emulation tasks, thus they may not be so relevant, as the
problem addressed in this thesis requires dynamic meteorological inputs. However,
the comparative study [69] studies RF and SVM performance in predicting LAI time
series, and shows the superior performance of LSTM, compared to performances
of RF and SVM. Some approaches used averages or sums of meteorological inputs
over long times instead of sequential meteorological data of shorter periods, leading
to overly simplified weather conditions, which complicate detecting some weather
events and their impact on the ecosystem.

27

Alternatively, as mentioned previously, Gaussian processes have successfully been
applied for both static and dynamic tasks. A comparative study [48] investigates
the GP and NN methods in computer emulation and calibration of physics based
simulator of domains like cosmology, nuclear theory, and materials science, concluding
that GP performs overall well. The study compares the performance of the emulator
methods for models of unrelated systems for this thesis, but the analysis can be
partly generalized as the focus is on emulating process-based simulation of systems,
including many computations. However, for each of the emulation tasks, the training
data includes of no more than 1000 simulations, which gives poor circumstances
for NN to learn effectively as they excel in learning behaviour in large data sets,
allowing them to capture a wide variety of potential behavior [48]. In addition, the
study does not compare the GP and recurrent networks for sequential prediction,
which would be beneficial for the problem of this thesis. Also the simulation outputs
change relatively smoothly as a function of the inputs, which is beneficial to GP as it
fits well for Gaussian process assumption. With more discontinuous output behavior,
GPs would likely struggle.

Furthermore, GPs have also been used in emulation tasks including sequential
data [19, 10]. An advantage of the GPs is that they provide uncertainties of their
predictions. Also GPs are capable to accurately fit complex data patterns, while
providing smooth predictions. Gaussian processes may perform better in some
regression tasks with limited data, but with larger data sets neural networks can
learn the complex patterns well. However, GPs presented difficulties in learning
temporal dependencies [10]. The problem addressed in this thesis likely requires
capabilities in processing large data sets, as the input parameters include sequential
meteorological parameters in addition to static ones.

Deep learning methods have shown great capabilities in learning complex patterns,
particularly in larger data sets. Generally LSTMs have proved to perform well in
many previously presented sequential tasks with temporal dependencies. The GRU
is also used by some studies, but comparative analyses with other methods have not
been presented. LSTM is more frequently used, as GRU is a relatively new method
which has been shown to have a comparable performance to LSTM [9]. Compared
to the problem addressed in this thesis, a few studies with similar tasks with both
dynamic and static inputs [42, 44] have taken an approach of recurrent networks.
Combining learning from static and dynamical data, through neural networks, can
be done by developing a network with both FNNs and LSTMs/GRUs [44].

As discussed before, emulators are only approximations of the process-based
simulator model, leading to a simplified model excluding some possibly important
details of the system behavior. The process-based model is based on the human
understanding of the dynamics of the system of interest. Thus, as a model of a
process-based model, the emulator is not a perfect representation of the real life
system. However, they can be very beneficial in cases where many simulations of
the computational model are needed, such as calibration [19] and sensitivity analysis
[20]. When emulating with deep learning methods it is difficult to understand how
the trained deep learning model is obtained, which is why a NN model is often called
a ”black box”. Although, the model is trained based on the process-based model’s
computations, which are based on theoretical understanding of the simulated system.

28

4.2 The simulator model

The simulator model, the target of emulation, is called the BASGRA N model
[27]. It is a process-based model for managed grasslands, designed to perform daily
simulations of the impact of N-supply on the plants and their environment, the fluxes
of greenhouse gases in plants and soil, and the harvest yield and the digestibility
of leaves and stems. The model includes variables for carbon in the above and
below-ground plant part, plant phenology and soil water and carbon and snow depth
[27].

The model simulates plant biomass on a daily time step with meteorological
variables, including radiation, temperature, precipitation, wind speed, humidity,
atmospheric CO2 concentration and management events [27].

4.3 Simulator data generation

Simulations of the BASGRA N model are used for training the emulator. In this
thesis the consideration is on emulating carbon net primary production (NPP) and
leaf area index (LAI) with time dependent and static inputs.

The choice of emulating LAI and NPP is due to their key role in agroecosystem
carbon dynamics. Net primary production is a key variable considering carbon
balance, describing the net amount of carbon gain over a time period, in other words
the balance between the carbon gained by photosynthesis and the carbon released by
the plant respiration [5]. The leaf area index is defined as one half the total green leaf
area per unit of horizontal ground surface area [17] and is one of the most important
variables observable through remote sensing, enabling validation at a broad scale.
The LAI has also been used in inversion modeling of NPP [52].

The simulator is given daily values of the dynamical inputs and the stationary
input values, listed in Table 1, and as outputs it provides daily values of NPP
(kg C m−2s−1) and LAI (m2m−2). The time dependent inputs include meteorological
values and the harvest carbon flux, giving the dates of harvest which is chosen to
be the same for each sample. The static inputs describe the vegetation and soil
properties.

The meteorological data is obtained from ERA5 [24] data, produced by the
European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 is a
reanalysis for global climate and weather from 1940 to present and it provides hourly
estimates for a large number of atmospheric, ocean-wave and land-surface quantities
[24].

As the model is meant for use in Finland, it requires training data representative
of the regional characteristics. Thus, the training set should include similar data
points characteristic of the region, but also incorporate some variance. The data
points are selected to be within Europe and filtered based on weather (air temperature
and total precipitation) conditions, to exclude the hot summer-climates like the
regions of hot-summer Mediterranean climates.

The data points are evenly spaced across the chosen geographical area. The
spacing for latitudes is 0.25◦ and the spacing for longitudes is 0.25◦ · 1/cos(ϕ), where
ϕ denotes latitude in radians. A scaling factor 1/cos(ϕ) [62] is introduced to ensure
that the data points are distributed evenly across the area by taking the curvature

29

Table 1: Model inputs: first six are the time dependent values and the rest are
stationary values.

Component Description Unit
air temperature Air temperature K
relative humidity Relative humidity %
surface downwelling -
shortwave flux in air

Flux of solar radiation
reaching the surface

W m−2

precipitation flux Precipitation flux kg m−2s−1

wind speed Wind speed ms−1

harvest carbon flux Carbon flux during
harvesting

kg C m−2s−1

K Light extinction
coefficient

m2m−2

LAICR LAI above which
shading induces leaf

senescence

m2m−2

LAITIL Maximum ratio of
tiller and leaf

apearance at low leaf
area index

ROOTDM Initial and maximum
value rooting depth

m

LAT Latitude ◦N
RDRTMIN Minimum relative

death rate of foliage
d−1

30

Figure 7: Selected data points across Europe.

of the earth into account. By the preceding filtering, 10085 data points are selected
for training the emulator. The selected data points are shown in Figure 7.

The simulator encompasses numerous parameters on vegetation and soil properties,
which are reduced to 6 most contributing parameters in NPP and LAI prediction.
The vegetation property parameters are selected through a variance based sensitivity
analysis, as described in [36]. Each data point gets randomly sampled parameter
values from specified distributions. A uniform distribution is used for most of the
parameters and for light extinction coefficient a beta distribution is used. The
distributions and shape parameters for each parameter are listed in Table 2.

Each data point corresponds to a specific year-long time period from May-to-
May. For example a data point d could correspond to the period from 1/5/2022 to

Table 2: Light extinction coefficient (K) values are sampled from beta-distribution
and the other parameters are sampled from uniform distribution. The parameters of
the distributions are denoted as a and b.

Component Distribution a b
K Beta distribution Beta(a, b) 7.000 3.000

LAICR Uniform distribution U(a, b) 2.000 7.000
LAITIL Uniform distribution U(a, b) 0.300 1.100

ROOTDM Uniform distribution U(a, b) 0.500 1.500
RDRTMIN Uniform distribution U(a, b) 0.008 0.012

31

30/4/2023. This way the period starts from the beginning of the growing season.
The data point d corresponds also to a location and parameter values: meteorological
values for each day of the time period and the sampled parameter values describing
the vegetation properties.

The data points are divided to five separate subsets with separate time periods
and locations for the purpose of performing cross-validation. Each subset includes
2017 locations and a set of time periods which is a randomly chosen one-fifth of the
year range 1940-2023. Each of the 2017 data points of a subset is given a random
time period from the corresponding set. A total of 10085 simulations are performed,
by using the preceding sampling.

4.4 Emulator data generation and pre-processing

The training data for the emulator is generated from the simulator’s daily input and
output values. For the usage of the emulator weekly, values are suitable, which allow
increased efficiency and enables better generalization performance of the model as
there are less inputs leading to less weights [2], as discussed in Section 2.6. The weekly
means of the hourly meteorological input values are calculated and used as inputs to
the emulator model. And the output values, or targets, for training the emulator are
derived from the weekly means of the simulation outputs. The vegetation property
parameters remain the same and the data, including the corresponding targets,
remains to be divided to the previously defined folds.

The input parameters and target values are standardized separately to have mean
of zero and standard deviation of one, for all the inputs initially to be treated equally
to prevent overfitting, which is described in Section 2.6.

4.5 Model description

A model consisting of regular feed-forward neural networks (FNN) and long-short
term memory (LSTM) network is constructed. The characteristics of the stationary
parameters are learned by a FNN and the sequential input is learned by an LSTM
network. The choice of neural networks is due their ability in capturing complex
patterns in data with limited assistance [37]. Especially incorporating LSTM networks
was chosen due to their ability to learn temporal dependencies.

Figure 8 demonstrates the emulator models architecture. The emulator consists
of one LSTM layer and multiple dense layers. The model takes the meteorological
variables and vegetation property parameters as inputs. The input describing
meteorological and management events consists of the weekly meteorological values
and the harvest dates. Thus the input consists of 52 vectors of size 6, notated by m
in Figure 8. The vegetation property input vector, noted by p in Figure 8, includes
the 6 corresponding parameters.

The vegetation property input vector is passed through two dense layers with
ReLU activation. The output is two dimensional and replicated by the number of
time steps along a new dimension in order to be able to concatenate it with the 3
dimensional LSTM output. The meteorological input vector is fed to the LSTM
layer, which loops through the cell for the 52 time steps, each time step getting the

32

...

...

...

CELL 1

CELL 2

CELL T

LSTM layer with
hidden size Input layers

...

Dense layer
+relu-activation

...

Dense layer
+relu-activation

Dense layer
+relu-activation

CONCATENATION

T COPIES

Dense layer
/output layer

+relu-activation

Figure 8: LSTM-FNN model architecture: the gray boxes present the inputs, blue
represent the dense layers, violet the LSTM layer and yellow the predictions or
output of the model. T denotes the number of time steps, h the hidden states, y the
output vector and m indicates the time dependent inputs and p the static inputs.

33

corresponding meteorological input vector and the hidden state and the cell state
from the previous time step as inputs. The hidden states of each loop are collected
as the output of the LSTM layer, thus the output has again 52 vectors of hidden
states.

Next, after the static inputs and dynamical inputs are processed separately, they
are concatenated along the last axis to combine the meteorological and vegetation
property information. This concatenated array is then passed through another dense
layer which produces the final predictions of LAI and NPP per each time step.

4.6 Training and validation

The model is trained by applying backpropagation as demonstrated in Section 2.4 for
the dense layers and in Section 3.3.2 for the LSTM layer. The weights are updated
by utilizing the Adam-optimization algorithm, introduced in Section 5, with addition
of weight decay in order to prevent overfitting, as discussed in Section 2.6. The
Algorithm 1 is used for the training of the model, looping through the training set for
a specified number of epochs and batches of a specified batch size. For each batch of
an epoch, the algorithm goes through the network and then performs backpropagation
and weight update. The forward pass of a batch through the network includes the
following steps, as described in the previous section.

The algorithm starts on initializing the hidden states of each of the layers and the
cell state of the LSTM layer. All the states are initialized to small random values in
order to prevent symmetries in the network, as discussed in Section 2.5. The LSTM
cell loops through the sequential input one time step at a time, each step updating
the cell state and the hidden state. The hidden states are captured at each time step
to produce the output of the LSTM layer. The parameter input goes through the
dense layers and ReLU activation functions, and is replicated by the number of time
steps, and finally is concatenated to the LSTM output.

After the batch has been processed, the output is compared to the target values,
by calculating the mean squared error of the output. The train error is fed to the
backpropagation algorithm, which sends the error signal through all the layers from
last to first as described in Sections 2.4 and 3.3.2. The error signal is then given to the
optimization algorithm Adam which then calculates the updated model parameters
consisting of weights and biases. Subsequently, the next batch is processed similarly
with the updated model.

Lastly the trained model’s performance on new data is measured. Thus, the
model makes predictions based on inputs provided by the test set. The predictions
are then again compared with the targets of the test set with mean squared error.
This procedure is done for each of the fold divisions and the generalization error is
then estimated as the mean of the test errors across folds.

34

Algorithm 1: Training algorithm for a LSTM-FNN model with BPTT and
Adam optimization.

input :Model with LSTM layer CLSTM , activation functions of the LSTM
cell (sigmoid and tanh), fully connected layers Dense6→n1 ,
Densen1→n2 , Densen2+n4→n3 , Densen3→2, ReLU activation
function, training data in batches of size b and number of epochs.

output :Model with trained weights.
for epoch in number of epochs do

for batch in number of batches do
initialize hidden states of all dense-layers:
hd,0 ← random ≈ 0 ∈ Rb×nd for all dense-layers d
initialize LSTM cell state and hidden state:
c0 ← random ≈ 0 ∈ Rb×n4

hc0 ← random ≈ 0 ∈ Rb×n4

for time step t in number of time steps T do
(hct, ct)← CLSTM(hc,t−1, ct−1,mt)
Hm ← Hm + hct

end
Hm ← ReLU(Hm)
h1 ← Dense6→n1(p)
h1 ← ReLU(h1)
h2 ← Densen1→n2(h1)
h2 ← ReLU(h2)
Hp ← h2 × T
H ← Hm +Hp

h3 ← Densen2+n4→n3(H)
h3 ← ReLU(h3)
h4 ← Densen3→2(h3)
y ← h4

MSEtrain(y, ỹ)
BPTT(MSEtrain)
Adam weight update

end

end
return trained model

The network and the training algorithm require several hyperparameters, including
hidden sizes, batch size and learning rate. Hyperparameter tuning is a crucial part
of the training process, which includes experimenting multiple variations of the
model. Several variations of the the depth of the network are explored with the
intention of developing a relatively simple model for computational efficiency and
good generalization performance.

The hyperparameters, in addition to the depth of the model, consist of learning
rate, batch size and the sizes of the hidden states of the layers. In Section 2.6 it was
stated that choice of small batch size is good in general, but it is beneficial to explore
it by grid search. The batch size also affects the memory, and especially GPUs offer
better runtime if power of 2 batch sizes are used [22]. This can be generalized also

35

Table 3: Hidden sizes for each layer: n1, n2, n3 denote the hidden sizes of the first
second and third dense layer, respectively, and n4 denotes the hidden size of the
LSTM cell, n5 denotes the hidden size of the last dense layer, the outputs layer which
is 2 as two values are predicted.

1. dense layer (n1) 256
2. dense layer (n2) 32
3. dense layer (n3) 256
LSTM layer (n4) 128
4. dense layer / output layer (n5) 2

to hidden sizes.
Grid search, covered in Section 2.6, is applied in order to find the optimal hidden

sizes for the layers. The chosen grid is [16, 32, 64, 128, 256], consisting of values of only
of powers of 2. The hidden sizes are chosen to be relatively small for faster execution
time and better regularization. The model is trained with each of the hidden size
combinations, and the model performances are compared with cross-validation.

Multiple values for batch size and learning rate are also tested: [1, 4, 8, 16, 32, 64]
for batch sizes and [0.1, 0.01, 0.001, 0.0001] for learning rate. Batch size of 1 sig-
nificantly increased execution time. The optimal values values for batch size and
learning rate for the Adam algorithm are 32 and 0.001, respectively. And the selected
hidden sizes are listed in the following table.

The number of epochs, defining the iteration times, is selected by finding the
minima of the models generalization error with respect to epochs. Figure 9 shows the
generalization error of each of the model per epoch. The training should be stopped
before the generalization error starts to increase, which is at 78 epochs.

Figure 10 shows the progress of train and test RMSEs throughout the training
process. At the beginning, with increased epochs, the train and test RMSEs decrease
significantly. At some point the test error converges to a stable point, and with more
training epochs the test error increases slowly. The train error keeps on decreasing.
The training should be stopped at the point where the test error is at minima,
otherwise the network overfits to the training data and can not generalize to other
samples.

4.7 Model performance

Now that the optimal hyperparameters have been found, the model is trained and
evaluated separately with data from each of the folds. The mean RMSEs across folds
are 0.322 (m2m−2) for LAI and 0.0290 (g C m−2h−1) for NPP.

Other way of predicting the model performance is the coefficient of determination
R2. It is defined as the quotient of the explained variation to the total variation [6]:

R2 = 1− SSE

SST
= 1−

∑︁n
i=1(yi − ŷi)

2∑︁n
i=1(yi − ȳ)2

,

where SSE is the sum of squared errors between the predictions ŷ and the targets y
and SST is the total sum of squares representing the sum of the squared differences

36

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

epoch

0.20

0.25

0.30

0.35

0.40

0.45
RM

SE

RMSE per epoch

Figure 9: The normalized validation RMSEs for 500 epochs representing the accuracy
of the models across both NPP and LAI values for each epoch. The minimum RMSE
is achieved after 78 epochs.

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

epoch

0.1

0.2

0.3

0.4

0.5

0.6

RM
SE

RMSE per epoch
Test
Train

Figure 10: Train vs. test RMSEs per epoch for one fold, presenting the normalized
RMSE across NPP and LAI predictions.

37

Table 4: R2 and RMSEs per each fold.

Fold NPP R2 NPP RMSE LAI R2 LAI RMSE
1 0.918 0.0303 0.937 0.331
2 0.918 0.0290 0.937 0.328
3 0.922 0.0287 0.938 0.327
4 0.927 0.0282 0.947 0.298
5 0.923 0.0288 0.939 0.328

Table 5: Annual performance for NPP per each fold.

Fold Annual NPP
RMSE

Annual NPP
R2

Mean Annual
NPP

prediction

Mean Annual
NPP target

1 76.5 0.979 -836.6 -854.9
2 79.5 0.976 -862.6 -839.4
3 74.2 0.978 -827.9 -821.3
4 71.9 0.981 -849.9 -869.2
5 85.9 0.974 -801.5 -849.0

between the targets and the mean of the targets ȳ. A R2 value of 0 indicates that
the regression model does not explain any of the variability of the target variable
and 1 indicates perfect explanation of it’s variability.

All folds give R2 of > 0.93 for LAI and for NPP > 0.91. The separate R2 and
RMSE values for each fold are listed in Table 4. Mean annual RMSEs for NPP have
values of less than 86. The RMSEs and R2s for each fold are listed in Table 5 with
the corresponding mean annual NPP predictions and targets.

Figure 11 combines six scatter plots, of NPP and LAI for first, second and third
4-week periods, starting from May. This 12 week period includes the beginning of
the growing season and one harvest and weeks of growth after it. The emulator
predictions are contrasted with the simulator predictions for these three periods.
The plots indicate a high level of accuracy of prediction for the given 12 week period,
as the values align closely to the x = y line.

Figure 12 combines two line plots of NPP and LAI of three random examples
from the validation set. The emulator predictions and simulator predictions are
compared over the course of the simulation period of one year from the beginning of
May to the end of April of the following year. The sudden decreases in the values,
or increases for NPP, result from the harvests. The predictions seem accurate in the
beginning of the simulation time period and after the growing season the predictions
get less precise when going towards the end of the simulation period. Obviously the
three examples can’t be generalized to the whole set of predictions and the predicted
features have much smaller values regarding to winter, thus they are not as relevant
as the values of the growing season.

A more comprehensive visualization of the evolution of RMSE through time across
each fold is shown in Figure 13. A similar performance can be seen throughout the
folds. Both NPP and LAI RMSEs increase at the start of the period, then suddenly

38

Figure 11: Scatter plots describing the relationship between targets (simulator
outputs) and emulator predictions for NPP (g C m−2h−1) and LAI (m2m−2) for first,
second and third 4-week periods, starting from May.

39

(a) NPP (g C m−2h−1) emulator predictions (solid line) vs. simulator predictions (dashed
line).

(b) LAI (m2m−2) emulator predictions (solid line) vs. simulator predictions (dashed line).

Figure 12: Three random examples of predictions and their corresponding targets
across the time steps.

40

the errors drop and this behavior repeats again. The sudden drops in RMSE are at
the harvest time, and the RMSEs increase again when the feature values increase
following from the regrowth of the grass. Estimation of smaller feature values gives
smaller errors. Again after the second harvest, a smaller increase in RMSE can be
observed for NPP and a more notable one for LAI. This is probably because of the
regrowth restarts but at a smaller extent.

The NPP RMSEs are very low in winter time as NPP outside growing season
decreases close to zero because of the reduced activity in photosynthesis, which can
also be seen in the examples of Figure 12. LAI, on the other hand, has a more notable
increase in RMSE after the last harvest but then it decreases for the winter months.
Going towards the end of the simulation periods, the RMSE grows significantly.
There are only two months for training the behavior on overwintering, which may not
be sufficient to capture the full range of conditions for it. In addition, in northern
latitudes these two months have still a very low activity in photosynthesis, due to
the effect of colder temperatures. This property could be improved by creating more
training data for that time period, either by changing to a bit longer simulation
period or just adding more data points in general. However, the predictions of the
emulator seem to have a high level of accuracy for the growing season, which is the
crucial period regarding to carbon balance dynamics.

The model performance on the geographical area is shown in Figure 14. A
consistent performance can be seen across the area, indicating that the model
maintains stable predictions across the region.

Finally, Figure 15 offers an overview of the model performance over epochs. The
mean RMSE across folds is given per each epoch with an error bar representing one
standard deviation of the mean RMSEs of the folds. The error bars provide a range
where the true error is expected to be. The sample size is relatively small, with only
5 folds. A more robust estimation could be obtained with more folds. However, the
error bars are mostly small, with occasional fluctuations, indicating model stability.
For the first epochs, there is more variance in model performances, but with more
epochs there can be seen a decrease in variance, with occasional increase in variance.
The final epoch and the ones close before it are again very small.

41

(a) NPP RMSEs (g C m−2h−1) across the time steps.

(b) LAI RMSEs (m2m−2) across the time steps.

Figure 13: Mean RMSEs of each fold with respect to the 53 weekly time steps
starting from the beginning of May to the end of April of the following year.

42

0.02

0.04

0.06

0.08

0.10

0.12

RM
SE

(a) NPP RMSEs (g C m−2h−1).

0.5

1.0

1.5

2.0

RM
SE

(b) LAI RMSEs (m2m−2).

Figure 14: Test RMSEs across folds for NPP and LAI on the geographical area.

43

0 10 20 30 40 50 60 70 80
epoch

0.25

0.30

0.35

0.40

0.45

m
ea

n
RM

SE

Mean RMSE across folds with error bars (±1 std)

Figure 15: Normalized mean RMSE for both NPP and LAI across the five folds over
the course of 78 epochs, with error bars representing one standard deviation (±1).

44

5 Discussion

Accurate process-based modeling can be computationally heavy when modeling com-
plex systems, which leads to slow execution time, sensitivity analysis and calibration.
This study introduces an approach using LSTM network model to emulate LAI and
NPP outputs of a process-based agroecosystem model. The approach of LSTM and
FNN is taken due to their abilities to learn complex patterns within data and the
LSTM’s capability to process time dependencies. The emulator demonstrates to
effectively emulate the behavior of the simulator, with a notably faster performance.

Even though the model is trained only for use in Finland, it is also applicable for
use in other areas inside the geographical area of the training data. A large area of
training data, compared to the area where the model is applied to, enables diverse
climatic cases, which could help in handling extreme weather situations better. The
model could possibly be applicable to same northern latitudes around the globe and
other regions with similar climate. By enlarging the training area, the emulator
could be more applicable for also other regions.

Other concern could be the applicability of the model for future cases, with
the increasing impact of climate change. This could be tested with meteorological
inputs generated by a climate model predicting for future values, as done in [72],
where global circulation models are used for prediction of future climate. Also, the
current emulator considers same harvest dates for all samples. Thus, for ensuring the
emulator to generalize to diverse harvest dates the harvest parameter should vary.

Even though the model achieves a relatively strong performance on test data,
there is still a notable gap between the train and test error seen in Figure 10, which
could possibly be improved by considering diverse possibilities of further refinement
of the model. Further improvement would include a larger training sample, as NNs
generally perform better with increasing amount of training data. Furthermore, the
effect of diverse training samples on model performance is an area worth studying
of. Different sampling methods could be used for the cross-validation folds. The
current model’s folds have each separate randomly chosen geographical points and
years, which may not be the optimal approach. Of course there are many diverse
sampling methods and it is challenging to find the optimal one. One alternative
approach could be dividing the data in uniform geographical areas and perhaps using
all years available. This way the model performance would be tested always with a
new geographical area separate from the other areas. As mentioned in the previous
chapter, the test error increases when moving towards the end of the simulation
period, which may be due to the challenges in modeling the overwintering. The
challenges could be improved with more training data to understand the effect of
winter conditions on the following months’ features. Also it could be worth trying
diverse input time step lengths in addition to the weekly values to find the optimal
length for best result, but still with a reasonable input length.

Selection of input parameters is challenging because the predicted LAI and NPP
are influenced by diverse factors. The selection has to include important factors for
both of them, by maybe excluding some possibly important ones for either of the
features. It is worth considering additional parameters, which possibly are important
for some of the output features and are excluded from the current version. This is

45

a possible direction for future exploration and refinement of the model. Also for
a wider picture of the carbon dynamics in the system, prediction of other features
regarding to carbon dynamics could be added.

As [45] noted, a reduced output dimension is helpful when working with limited
amount of training data. This work uses only about 8000 data points for training
per fold which is very few by today’s standards. The small output dimension and
the relative simplicity of the model is most possibly advantageous for the learning
with limited amount of data. However, repeating what is mentioned before, a larger
training data could arguably be beneficial. At least when more output parameters
are required, a larger training data should be used.

Although the emulator architecture was designed for BASGRA N, it could be
applied to other computational agroecosystem simulators with dynamic and static
inputs. The network is not limited for only grassland LAI and NPP prediction, but
it is rather designed for learning the relationships between sequential predictions and
sequential and static inputs. Thus, the emulator architecture could also be applied
to some other large computational models to mitigate the computational challenges
in large scale simulations. However modifications should be done depending on the
model in target of emulation.

In addition to the method used in this thesis, other alternative approaches such
as the Gaussian processes could also be effective for addressing the given task. As
seen in Section 4.1, Gaussian processes do not generally learn temporal dependencies
and can be computationally heavy with large data sets. However, a study emulating
a complex land surface model [1] gives a promising approach for preventing both
of these problems. For learning temporal dependencies, a superior performance
is observed in recurrent neural networks compared to GP. A study using a GRU
approach [42] develops a model with a hierarchical structure employing four GRU
layers and a FNN with an attention mechanism, where each of the temporal predicted
outputs are given by its own GRU layer. Also, the study does not process the static
soil property inputs by a separate network, but processes them through the GRU
layers, together with the daily inputs. Compared to the LSTM model of this work,
the multiple GRU layers may increase the computational demands of the model,
while the method of this thesis uses a single LSTM layer giving predictions for both
of the sequential outputs. Still, the hierarchical structure may be beneficial as it
incorporates the causal relations between the different variables and processes. If
applied to this work, both NPP and LAI would have their own LSTM layers, which
both could have initial hidden states given by a ”basis” LSTM layer and perhaps the
LAI predictions could work as an input for the LSTM layer predicting the NPP. The
application of a hierarchical structure is a potential area for future research. A study
based on LSTM networks [44] has a similar approach to this thesis for processing both
dynamic and static inputs, though for prediction of overall yield and not sequential
values. Similarly to the approach of this thesis, the study uses a LSTM layer for
processing sequential time dependent inputs and a FNN for processing the static
inputs. The study investigates different combination techniques for the static and
dynamic data, and ultimately uses an attention technique which learns weights for
the values of each time step. The comparison of methods is not directly applicable
for sequential prediction. This thesis combines the dynamic time dependent data and

46

the static data by concatenating the outputs of a LSTM layer and a FNN. Alternative
techniques in combining dynamic and static inputs in sequential prediction could be
explored further.

Also other more recent neural network approaches, such as transformers [67]
and temporal convolutional networks [35], are a promising area for further research.
Compared to LSTM, transformers process the entire data sequence, instead of one
at a time, and uses a self-attention mechanism to learn the temporal dependencies
in the data. Temporal convolutional networks, on the other hand, learn temporal
dependencies by stacking convolutional layers [38]. They both have shown promising
performance in other machine learning tasks with long sequential prediction [75], [7]
and could also be applied in emulation of dynamical process-based models.

47

6 Conclusions

This study develops a framework for emulating dynamic agroecosystem models using
recurrent neural networks. The emulator takes in to account the dynamical and
static features of the agroecosystem and produces sequential values. The surrogate
is specifically build for the grassland model BASGRA N, to emulate the weekly key
features regarding to carbon balance: net primary production and leaf area index.
Training data is generated from input-output pairs of simulations of the grassland
model. The model is evaluated for a geographical area in Europe with synthetically
sampled input parameters on vegetation and soil properties and meteorological inputs
from historical data. The emulator is trained to process one year worth of weekly
meteorological data and the property parameters to create weekly predictions of NPP
and LAI for the corresponding year. The model is evaluated by 5-fold cross-validation,
which gives mean RMSEs of 0.322 (m2m−2) for LAI and 0.0290 (g C m−2h−1) for
NPP across all folds, and all folds give R2 of > 0.93 for LAI and > 0.91 for NPP. The
results indicate that the proposed framework can accurately emulate the dynamic
variables of the agroecosystem model. The emulator has potential to work as a general
foundation for emulating agroecosystem models, mitigating large scale simulations,
thus enabling improvement of the simulator and advanced modeling.

48

References

[1] Evan Baker et al. “Emulation of high-resolution land surface models using
sparse Gaussian processes with application to JULES”. In: Geoscientific Model
Development 15.5 (2022), pp. 1913–1929. doi: 10.5194/gmd-15-1913-2022.
url: https://gmd.copernicus.org/articles/15/1913/2022/.

[2] Christopher Bishop. Neural Networks for Pattern Recognition. Advanced Texts
in Econometrics. Clarendon Press, 1995. isbn: 9780198538646. url: https:
//books.google.fi/books?id=T0S0BgAAQBAJ.

[3] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, Jan.
2006. url: https://www.microsoft.com/en-us/research/publication/
pattern-recognition-machine-learning/.

[4] Leo Breiman. “Random forests”. In: Machine Learning 45 (2001), pp. 5–32.
doi: 10.1023/A:1010933404324. url: https://doi.org/10.1023/A:
1010933404324.

[5] F. Stuart Chapin and Valerie T. Eviner. “8.06 - Biogeochemistry of Terrestrial
Net Primary Production”. In: Treatise on Geochemistry. Ed. by Heinrich
D. Holland and Karl K. Turekian. Oxford: Pergamon, 2007, pp. 1–35. isbn:
978-0-08-043751-4. doi: https://doi.org/10.1016/B0-08-043751-6/
08130-5. url: https://www.sciencedirect.com/science/article/pii/
B0080437516081305.

[6] Samprit Chatterjee and Ali S. Hadi. Regression Analysis by Example. Wiley
Series in Probability and Statistics. Wiley, 2006. isbn: 9780470055458. url:
https://books.google.fi/books?id=uiu5XsAA9kYC.

[7] Yitian Chen et al. “Probabilistic forecasting with temporal convolutional
neural network”. In: Neurocomputing 399 (2020), pp. 491–501. issn: 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2020.03.011. url: https:
//www.sciencedirect.com/science/article/pii/S0925231220303441.

[8] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].

[9] Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural Net-
works on Sequence Modeling. 2014. arXiv: 1412.3555 [cs.NE].

[10] Stefano Conti and Anthony O’Hagan. “Bayesian emulation of complex multi-
output and dynamic computer models”. In: Journal of Statistical Planning and
Inference 140.3 (2010), pp. 640–651. issn: 0378-3758. doi: https://doi.org/
10.1016/j.jspi.2009.08.006. url: https://www.sciencedirect.com/
science/article/pii/S0378375809002559.

[11] Fleur Couvreux et al. “Process-Based Climate Model Development Harnessing
Machine Learning: I. A Calibration Tool for Parameterization Improvement”.
In: Journal of Advances in Modeling Earth Systems 13 (Feb. 2021). doi:
10.1029/2020MS002217.

49

https://doi.org/10.5194/gmd-15-1913-2022
https://gmd.copernicus.org/articles/15/1913/2022/
https://books.google.fi/books?id=T0S0BgAAQBAJ
https://books.google.fi/books?id=T0S0BgAAQBAJ
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/https://doi.org/10.1016/B0-08-043751-6/08130-5
https://doi.org/https://doi.org/10.1016/B0-08-043751-6/08130-5
https://www.sciencedirect.com/science/article/pii/B0080437516081305
https://www.sciencedirect.com/science/article/pii/B0080437516081305
https://books.google.fi/books?id=uiu5XsAA9kYC
https://doi.org/https://doi.org/10.1016/j.neucom.2020.03.011
https://www.sciencedirect.com/science/article/pii/S0925231220303441
https://www.sciencedirect.com/science/article/pii/S0925231220303441
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://doi.org/https://doi.org/10.1016/j.jspi.2009.08.006
https://doi.org/https://doi.org/10.1016/j.jspi.2009.08.006
https://www.sciencedirect.com/science/article/pii/S0378375809002559
https://www.sciencedirect.com/science/article/pii/S0378375809002559
https://doi.org/10.1029/2020MS002217

[12] Katherine Dagon et al. “A machine learning approach to emulation and bio-
physical parameter estimation with the Community Land Model, version
5”. In: Advances in Statistical Climatology, Meteorology and Oceanography
6.2 (2020), pp. 223–244. doi: 10.5194/ascmo-6-223-2020. url: https:
//ascmo.copernicus.org/articles/6/223/2020/.

[13] Mathieu Delandmeter et al. “A comprehensive analysis of CO2 exchanges in
agro-ecosystems based on a generic soil-crop model-derived methodology”. In:
Agricultural and Forest Meteorology 340 (2023), p. 109621. issn: 0168-1923.
doi: https://doi.org/10.1016/j.agrformet.2023.109621. url: https:
//www.sciencedirect.com/science/article/pii/S016819232300312X.

[14] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. “A
Comprehensive Survey and Performance Analysis of Activation Functions in
Deep Learning”. In: CoRR abs/2109.14545 (2021). arXiv: 2109.14545. url:
https://arxiv.org/abs/2109.14545.

[15] Steven Elsworth and Stefan Güttel. Time Series Forecasting Using LSTM
Networks: A Symbolic Approach. 2020. doi: https://arxiv.org/abs/2003.
05672. arXiv: 2003.05672 [cs.LG].

[16] İlker Ercanlı, Alkan Günlü, and Muammer Şenyurt. et al. “Artificial neural
network models predicting the leaf area index: a case study in pure even-aged
Crimean pine forests from Turkey”. In: Forest Ecosystems 5 (2018), p. 29. doi:
10.1186/s40663-018-0149-8.

[17] Hongliang Fang and Shunlin Liang. “Leaf Area Index Models”. In: Encyclopedia
of Ecology. Ed. by Sven Erik Jørgensen and Brian D. Fath. Oxford: Academic
Press, 2008, pp. 2139–2148. isbn: 978-0-08-045405-4. doi: https://doi.org/
10.1016/B978-008045405-4.00190-7. url: https://www.sciencedirect.
com/science/article/pii/B9780080454054001907.

[18] Puyu Feng et al. “Dynamic wheat yield forecasts are improved by a hybrid
approach using a biophysical model and machine learning technique”. In:
Agricultural and Forest Meteorology 285-286 (2020), p. 107922. issn: 0168-1923.
doi: https://doi.org/10.1016/j.agrformet.2020.107922. url: https:
//www.sciencedirect.com/science/article/pii/S0168192320300241.

[19] Istem Fer et al. “Linking big models to big data: efficient ecosystem model
calibration through Bayesian model emulation”. In: Biogeosciences 15.19
(2018), pp. 5801–5830. doi: 10 . 5194 / bg - 15 - 5801 - 2018. url: https :

//bg.copernicus.org/articles/15/5801/2018/.

[20] Xiang Gao et al. “Emulation of Community Land Model Version 5 (CLM5) to
Quantify Sensitivity of Soil Moisture to Uncertain Parameters”. In: Journal of
Hydrometeorology 22.2 (2021), pp. 259–278. doi: 10.1175/JHM-D-20-0043.1.
url: https://journals.ametsoc.org/view/journals/hydr/22/2/jhm-d-
20-0043.1.xml.

[21] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget:
continual prediction with LSTM”. In: 1999 Ninth International Conference
on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470). Vol. 2. 1999,
850–855 vol.2. doi: 10.1049/cp:19991218.

50

https://doi.org/10.5194/ascmo-6-223-2020
https://ascmo.copernicus.org/articles/6/223/2020/
https://ascmo.copernicus.org/articles/6/223/2020/
https://doi.org/https://doi.org/10.1016/j.agrformet.2023.109621
https://www.sciencedirect.com/science/article/pii/S016819232300312X
https://www.sciencedirect.com/science/article/pii/S016819232300312X
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://doi.org/https://arxiv.org/abs/2003.05672
https://doi.org/https://arxiv.org/abs/2003.05672
https://arxiv.org/abs/2003.05672
https://doi.org/10.1186/s40663-018-0149-8
https://doi.org/https://doi.org/10.1016/B978-008045405-4.00190-7
https://doi.org/https://doi.org/10.1016/B978-008045405-4.00190-7
https://www.sciencedirect.com/science/article/pii/B9780080454054001907
https://www.sciencedirect.com/science/article/pii/B9780080454054001907
https://doi.org/https://doi.org/10.1016/j.agrformet.2020.107922
https://www.sciencedirect.com/science/article/pii/S0168192320300241
https://www.sciencedirect.com/science/article/pii/S0168192320300241
https://doi.org/10.5194/bg-15-5801-2018
https://bg.copernicus.org/articles/15/5801/2018/
https://bg.copernicus.org/articles/15/5801/2018/
https://doi.org/10.1175/JHM-D-20-0043.1
https://journals.ametsoc.org/view/journals/hydr/22/2/jhm-d-20-0043.1.xml
https://journals.ametsoc.org/view/journals/hydr/22/2/jhm-d-20-0043.1.xml
https://doi.org/10.1049/cp:19991218

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[23] Trevor Hastie et al. The elements of statistical learning: data mining, inference,
and prediction. Vol. 2. Springer, 2009.

[24] Hans Hersbach et al. ERA5 hourly data on single levels from 1940 to present.
Accessed on 1-12-2023. 2023. doi: 10.24381/cds.adbb2d47.

[25] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6 (Apr. 1998), pp. 107–116. doi:
10.1142/S0218488598000094.

[26] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.
8.1735.

[27] Mats Höglind et al. “BASGRA N: A model for grassland productivity, quality
and greenhouse gas balance”. In: Ecological Modelling 417 (2020), p. 108925.
issn: 0304-3800. doi: https://doi.org/10.1016/j.ecolmodel.2019.
108925. url: https://www.sciencedirect.com/science/article/pii/
S0304380019304338.

[28] Pradyot Ranjan Jena, Shunsuke Managi, and Babita Majhi. “Forecasting the
CO2 Emissions at the Global Level: A Multilayer Artificial Neural Network
Modelling”. In: Energies 14 (Oct. 2021), p. 6336. issn: 1996-1073. doi: 10.
3390/en14196336. url: https://www.mdpi.com/1996-1073/14/19/6336.

[29] Wenhao Jiang et al. Recurrent Fusion Network for Image Captioning. 2018.
doi: https://doi.org/10.48550/arXiv.1807.09986. arXiv: 1807.09986
[cs.CV].

[30] Thorsten Joachims. Making large-scale SVM learning practical. eng. Technical
Report 1998,28. Dortmund, 1998. url: http://hdl.handle.net/10419/
77178.

[31] David B. Johnston et al. “Comparison of machine learning methods emulating
process driven crop models”. In: Environmental Modelling and Software 162
(2023), p. 105634. issn: 1364-8152. doi: https://doi.org/10.1016/j.
envsoft.2023.105634. url: https://www.sciencedirect.com/science/
article/pii/S1364815223000208.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. Presented as a conference paper at the 3rd International Conference for
Learning Representations (ICLR), San Diego, 2015. 2014. arXiv: 1412.6980
[cs.LG].

[33] Ron Kohavi. “A study of cross-validation and bootstrap for accuracy estimation
and model selection”. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2. IJCAI’95. Montreal, Quebec, Canada:
Morgan Kaufmann Publishers Inc., 1995, pp. 1137–1143. isbn: 1558603638.

51

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.108925
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.108925
https://www.sciencedirect.com/science/article/pii/S0304380019304338
https://www.sciencedirect.com/science/article/pii/S0304380019304338
https://doi.org/10.3390/en14196336
https://doi.org/10.3390/en14196336
https://www.mdpi.com/1996-1073/14/19/6336
https://doi.org/https://doi.org/10.48550/arXiv.1807.09986
https://arxiv.org/abs/1807.09986
https://arxiv.org/abs/1807.09986
http://hdl.handle.net/10419/77178
http://hdl.handle.net/10419/77178
https://doi.org/https://doi.org/10.1016/j.envsoft.2023.105634
https://doi.org/https://doi.org/10.1016/j.envsoft.2023.105634
https://www.sciencedirect.com/science/article/pii/S1364815223000208
https://www.sciencedirect.com/science/article/pii/S1364815223000208
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

[34] Steve Lawrence, Clyde Lee Giles, and S. Fong. “Natural language grammatical
inference with recurrent neural networks”. In: IEEE Transactions on Knowledge
and Data Engineering 12.1 (2000), pp. 126–140. doi: 10.1109/69.842255.

[35] Colin Lea et al. Temporal Convolutional Networks for Action Segmentation
and Detection. 2016. arXiv: 1611.05267 [cs.CV].

[36] David Lebauer et al. “Facilitating feedbacks between field measurements and
ecosystem models”. In: Ecological Monographs 83 (May 2013), pp. 133–154.
doi: 10.1890/12-0137.1.

[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521 (2015). Received 25 February 2015, Accepted 01 May 2015, Published 27
May 2015, Issue Date 28 May 2015, pp. 436–444. doi: 10.1038/nature14539.

[38] Yann LeCun et al. “Object Recognition with Gradient-Based Learning”. In:
Shape, Contour and Grouping in Computer Vision. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 319–345. isbn: 978-3-540-46805-9. doi: 10.1007/3-
540-46805-6_19. url: https://doi.org/10.1007/3-540-46805-6_19.

[39] S. Lehuger et al. “Predicting the net carbon exchanges of crop rotations
in Europe with an agro-ecosystem model”. In: Agriculture, Ecosystems &
Environment 139.3 (2010). The carbon balance of European croplands, pp. 384–
395. issn: 0167-8809. doi: https://doi.org/10.1016/j.agee.2010.
06.011. url: https://www.sciencedirect.com/science/article/pii/
S0167880910001659.

[40] Peng Li et al. “Quantification of the response of global terrestrial net primary
production to multifactor global change”. In: Ecological Indicators 76 (2017),
pp. 245–255. issn: 1470-160X. doi: https://doi.org/10.1016/j.ecolind.
2017.01.021. url: https://www.sciencedirect.com/science/article/
pii/S1470160X17300274.

[41] Jianzhao Liu et al. “Comparative Analysis of Two Machine Learning Algorithms
in Predicting Site-Level Net Ecosystem Exchange in Major Biomes”. In: Remote
Sensing 13.12 (2021). issn: 2072-4292. doi: 10.3390/rs13122242. url: https:
//www.mdpi.com/2072-4292/13/12/2242.

[42] Licheng Liu, Wang Zhou, Kaiyu Guan, et al. “Knowledge-guided machine
learning can improve carbon cycle quantification in agroecosystems”. In: Nature
Communications 15 (2024), p. 357. doi: 10.1038/s41467-023-43860-5. url:
https://www.nature.com/articles/s41467-023-43860-5.

[43] Licheng Liu et al. “KGML-ag: a modeling framework of knowledge-guided
machine learning to simulate agroecosystems: a case study of estimating N2O
emission using data from mesocosm experiments”. In: Geoscientific Model
Development 15 (2022), pp. 2839–2858. doi: 10.5194/gmd-15-2839-2022.
url: https://doi.org/10.5194/gmd-15-2839-2022.

52

https://doi.org/10.1109/69.842255
https://arxiv.org/abs/1611.05267
https://doi.org/10.1890/12-0137.1
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/https://doi.org/10.1016/j.agee.2010.06.011
https://doi.org/https://doi.org/10.1016/j.agee.2010.06.011
https://www.sciencedirect.com/science/article/pii/S0167880910001659
https://www.sciencedirect.com/science/article/pii/S0167880910001659
https://doi.org/https://doi.org/10.1016/j.ecolind.2017.01.021
https://doi.org/https://doi.org/10.1016/j.ecolind.2017.01.021
https://www.sciencedirect.com/science/article/pii/S1470160X17300274
https://www.sciencedirect.com/science/article/pii/S1470160X17300274
https://doi.org/10.3390/rs13122242
https://www.mdpi.com/2072-4292/13/12/2242
https://www.mdpi.com/2072-4292/13/12/2242
https://doi.org/10.1038/s41467-023-43860-5
https://www.nature.com/articles/s41467-023-43860-5
https://doi.org/10.5194/gmd-15-2839-2022
https://doi.org/10.5194/gmd-15-2839-2022

[44] Qinqing Liu et al. “Machine Learning Crop Yield Models Based on Mete-
orological Features and Comparison with a Process-Based Model”. In: Ar-
tificial Intelligence for the Earth Systems 1.4 (2022), e220002. doi: https:
//doi.org/10.1175/AIES-D-22-0002.1. url: https://journals.ametsoc.
org/view/journals/aies/1/4/AIES-D-22-0002.1.xml.

[45] D. Lu and D. Ricciuto. “Efficient surrogate modeling methods for large-scale
Earth system models based on machine-learning techniques”. In: Geoscientific
Model Development 12.5 (2019), pp. 1791–1807. doi: 10.5194/gmd-12-1791-
2019. url: https://gmd.copernicus.org/articles/12/1791/2019/.

[46] Hadi Mohammed, Hoese Michel Tornyeviadzi, and Razak Seidu. “Emulating
process-based water quality modelling in water source reservoirs using machine
learning”. In: Journal of Hydrology 609 (2022), p. 127675. issn: 0022-1694.
doi: https://doi.org/10.1016/j.jhydrol.2022.127675. url: https:
//www.sciencedirect.com/science/article/pii/S0022169422002505.

[47] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods
for interpreting and understanding deep neural networks”. In: Digital Signal
Processing 73 (2018), pp. 1–15. issn: 1051-2004. doi: https://doi.org/
10.1016/j.dsp.2017.10.011. url: https://www.sciencedirect.com/
science/article/pii/S1051200417302385.

[48] Samuel Thomas Wilkins Myren and Earl Christopher Lawrence. “A comparison
of Gaussian processes and neural networks for computer model emulation and
calibration”. In: Statistical Analysis and Data Mining 14.6 (Mar. 2021). issn:
1932-1864. doi: 10.1002/sam.11507. url: https://www.osti.gov/biblio/
1825406.

[49] Trung H. Nguyen, Duy Nong, and Keith Paustian. “Surrogate-based multi-
objective optimization of management options for agricultural landscapes
using artificial neural networks”. In: Ecological Modelling 400 (2019), pp. 1–
13. issn: 0304-3800. doi: https://doi.org/10.1016/j.ecolmodel.2019.
02.018. url: https://www.sciencedirect.com/science/article/pii/
S0304380019300870.

[50] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty
of training recurrent neural networks”. In: Proceedings of the 30th Interna-
tional Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David
McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,
Georgia, USA: PMLR, June 2013, pp. 1310–1318. url: https://proceedings.
mlr.press/v28/pascanu13.html.

[51] George L. W. Perry, Rupert Seidl, Ana Maria Bellvé, et al. “An Outlook for
Deep Learning in Ecosystem Science”. In: Ecosystems 25 (2022), pp. 1700–
1718. doi: 10.1007/s10021-022-00789-y. url: https://doi.org/10.1007/
s10021-022-00789-y.

53

https://doi.org/https://doi.org/10.1175/AIES-D-22-0002.1
https://doi.org/https://doi.org/10.1175/AIES-D-22-0002.1
https://journals.ametsoc.org/view/journals/aies/1/4/AIES-D-22-0002.1.xml
https://journals.ametsoc.org/view/journals/aies/1/4/AIES-D-22-0002.1.xml
https://doi.org/10.5194/gmd-12-1791-2019
https://doi.org/10.5194/gmd-12-1791-2019
https://gmd.copernicus.org/articles/12/1791/2019/
https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127675
https://www.sciencedirect.com/science/article/pii/S0022169422002505
https://www.sciencedirect.com/science/article/pii/S0022169422002505
https://doi.org/https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/https://doi.org/10.1016/j.dsp.2017.10.011
https://www.sciencedirect.com/science/article/pii/S1051200417302385
https://www.sciencedirect.com/science/article/pii/S1051200417302385
https://doi.org/10.1002/sam.11507
https://www.osti.gov/biblio/1825406
https://www.osti.gov/biblio/1825406
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.02.018
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.02.018
https://www.sciencedirect.com/science/article/pii/S0304380019300870
https://www.sciencedirect.com/science/article/pii/S0304380019300870
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.1007/s10021-022-00789-y
https://doi.org/10.1007/s10021-022-00789-y
https://doi.org/10.1007/s10021-022-00789-y

[52] Ana Prieto-Blanco et al. “Satellite-driven modelling of Net Primary Productiv-
ity (NPP): Theoretical analysis”. In: Remote Sensing of Environment 113.1
(2009), pp. 137–147. issn: 0034-4257. doi: https://doi.org/10.1016/j.rse.
2008.09.002. url: https://www.sciencedirect.com/science/article/
pii/S0034425708002708.

[53] Siyu Qi et al. “Multi-Location Emulation of a Process-Based Salinity Model
Using Machine Learning”. In: Water 14.13 (2022). issn: 2073-4441. doi: 10.
3390/w14132030. url: https://www.mdpi.com/2073-4441/14/13/2030.

[54] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-Validation”. In: En-
cyclopedia of Database Systems. Ed. by LING LIU and M. TAMER ÖZSU.
Boston, MA: Springer US, 2009, pp. 532–538. isbn: 978-0-387-39940-9. doi:
10.1007/978-0-387-39940-9_565. url: https://doi.org/10.1007/978-
0-387-39940-9_565.

[55] Markus Reichstein et al. “Deep learning and process understanding for data-
driven Earth system science”. In: Nature 566.7743 (2019), pp. 195–204. doi:
10.1038/s41586-019-0912-1. url: https://doi.org/10.1038/s41586-
019-0912-1.

[56] Stephen Reynolds and John Frame. Grasslands: developments, opportunities,
perspectives. Science Publishers, 2005.

[57] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
internal representations by error propagation”. In: 1986. doi: 10.21236/
ada164453. url: https://api.semanticscholar.org/CorpusID:62245742.

[58] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: Nature 323 (1986), pp. 533–
536. doi: https://doi.org/10.1038/323533a0.

[59] Babak Safa et al. “Net Ecosystem Exchange (NEE) simulation in maize using
artificial neural networks”. In: IFAC Journal of Systems and Control 7 (2019),
p. 100036. issn: 2468-6018. doi: https://doi.org/10.1016/j.ifacsc.2019.
100036. url: https://www.sciencedirect.com/science/article/pii/
S2468601817302584.

[60] Iqbal Sarker. “Deep Learning: A Comprehensive Overview on Techniques,
Taxonomy, Applications and Research Directions”. In: SN Computer Science 2
(Aug. 2021). doi: 10.1007/s42979-021-00815-1.

[61] Douglas A. Shoemaker and Wendell P. Cropper. “Application of remote sensing,
an artificial neural network leaf area model, and a process-based simulation
model to estimate carbon storage in Florida slash pine plantations”. In: Journal
of Forestry Research 21 (2010), pp. 171–176. doi: 10.1007/s11676-010-0027-
x. url: https://doi.org/10.1007/s11676-010-0027-x.

[62] John P. Snyder. Map projections: A working manual. English. Tech. rep. Report.
Washington, D.C., 1987. doi: 10.3133/pp1395. url: https://doi.org/10.
3133/pp1395.

54

https://doi.org/https://doi.org/10.1016/j.rse.2008.09.002
https://doi.org/https://doi.org/10.1016/j.rse.2008.09.002
https://www.sciencedirect.com/science/article/pii/S0034425708002708
https://www.sciencedirect.com/science/article/pii/S0034425708002708
https://doi.org/10.3390/w14132030
https://doi.org/10.3390/w14132030
https://www.mdpi.com/2073-4441/14/13/2030
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.21236/ada164453
https://doi.org/10.21236/ada164453
https://api.semanticscholar.org/CorpusID:62245742
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1016/j.ifacsc.2019.100036
https://doi.org/https://doi.org/10.1016/j.ifacsc.2019.100036
https://www.sciencedirect.com/science/article/pii/S2468601817302584
https://www.sciencedirect.com/science/article/pii/S2468601817302584
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s11676-010-0027-x
https://doi.org/10.1007/s11676-010-0027-x
https://doi.org/10.1007/s11676-010-0027-x
https://doi.org/10.3133/pp1395
https://doi.org/10.3133/pp1395
https://doi.org/10.3133/pp1395

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning
with Neural Networks. 2014. doi: https://doi.org/10.48550/arXiv.1409.
3215. arXiv: 1409.3215 [cs.CL].

[64] G. Tramontana et al. “Predicting carbon dioxide and energy fluxes across
global FLUXNET sites with regression algorithms”. In: Biogeosciences 13.14
(2016), pp. 4291–4313. doi: 10.5194/bg-13-4291-2016. url: https://bg.
copernicus.org/articles/13/4291/2016/.

[65] Gianluca Tramontana et al. “Uncertainty analysis of gross primary production
upscaling using Random Forests, remote sensing and eddy covariance data”.
In: Remote Sensing of Environment 168 (2015), pp. 360–373. issn: 0034-
4257. doi: https://doi.org/10.1016/j.rse.2015.07.015. url: https:
//www.sciencedirect.com/science/article/pii/S0034425715300699.

[66] Marcel Van Oijen, Gianni Bellocchi, and Mats Höglind. “Effects of Climate
Change on Grassland Biodiversity and Productivity: The Need for a Diver-
sity of Models”. In: Agronomy 8.2 (2018). issn: 2073-4395. doi: 10.3390/
agronomy8020014. url: https://www.mdpi.com/2073-4395/8/2/14.

[67] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL].

[68] Nathalie Villa-Vialaneix et al. “A comparison of eight meta-modeling techniques
for the simulation of N2O fluxes and N leaching from corn crops”. In: Environ-
mental Modelling and Software 34 (2012), pp. 51–66. doi: 10.1016/j.envsoft.
2011.05.003. url: https://hal.archives-ouvertes.fr/hal-00654753.

[69] Yongqiang Wang et al. “Combining Data Assimilation with Machine Learning
to Predict the Regional Daily Leaf Area Index of Summer Maize (Zea mays L.)”
In: Agronomy 13.11 (2023). issn: 2073-4395. doi: 10.3390/agronomy13112688.
url: https://www.mdpi.com/2073-4395/13/11/2688.

[70] Ronald Williams and Jing Peng. “An Efficient Gradient-Based Algorithm for
On-Line Training of Recurrent Network Trajectories”. In: Neural Computation
2 (Sept. 1998). doi: 10.1162/neco.1990.2.4.490.

[71] D.Randall Wilson and Tony R. Martinez. “The general inefficiency of batch
training for gradient descent learning”. In: Neural Networks 16.10 (2003),
pp. 1429–1451. issn: 0893-6080. doi: https://doi.org/10.1016/S0893-
6080(03) 00138 - 2. url: https : / / www . sciencedirect . com / science /

article/pii/S0893608003001382.

[72] Liujun Xiao et al. “Coupling agricultural system models with machine learning
to facilitate regional predictions of management practices and crop production”.
In: Environmental Research Letters 17.11 (Nov. 2022), p. 114027. doi: 10.
1088/1748- 9326/ac9c71. url: https://dx.doi.org/10.1088/1748-
9326/ac9c71.

55

https://doi.org/https://doi.org/10.48550/arXiv.1409.3215
https://doi.org/https://doi.org/10.48550/arXiv.1409.3215
https://arxiv.org/abs/1409.3215
https://doi.org/10.5194/bg-13-4291-2016
https://bg.copernicus.org/articles/13/4291/2016/
https://bg.copernicus.org/articles/13/4291/2016/
https://doi.org/https://doi.org/10.1016/j.rse.2015.07.015
https://www.sciencedirect.com/science/article/pii/S0034425715300699
https://www.sciencedirect.com/science/article/pii/S0034425715300699
https://doi.org/10.3390/agronomy8020014
https://doi.org/10.3390/agronomy8020014
https://www.mdpi.com/2073-4395/8/2/14
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.envsoft.2011.05.003
https://doi.org/10.1016/j.envsoft.2011.05.003
https://hal.archives-ouvertes.fr/hal-00654753
https://doi.org/10.3390/agronomy13112688
https://www.mdpi.com/2073-4395/13/11/2688
https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://doi.org/10.1088/1748-9326/ac9c71
https://doi.org/10.1088/1748-9326/ac9c71
https://dx.doi.org/10.1088/1748-9326/ac9c71
https://dx.doi.org/10.1088/1748-9326/ac9c71

[73] Qi Yang et al. “A flexible and efficient knowledge-guided machine learning data
assimilation (KGML-DA) framework for agroecosystem prediction in the US
Midwest”. In: Remote Sensing of Environment 299 (2023), p. 113880. issn: 0034-
4257. doi: https://doi.org/10.1016/j.rse.2023.113880. url: https:
//www.sciencedirect.com/science/article/pii/S0034425723004315.

[74] Carlos Zednik. “Solving the Black Box Problem: A Normative Framework for
Explainable Artificial Intelligence”. In: Philosophy & Technology 34 (2021),
pp. 265–288. doi: 10.1007/s13347-019-00382-7. url: https://doi.org/
10.1007/s13347-019-00382-7.

[75] Haoyi Zhou et al. “Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 35.12 (May 2021), pp. 11106–11115. doi: 10.1609/aaai.v35i12.
17325. url: https://ojs.aaai.org/index.php/AAAI/article/view/
17325.

56

https://doi.org/https://doi.org/10.1016/j.rse.2023.113880
https://www.sciencedirect.com/science/article/pii/S0034425723004315
https://www.sciencedirect.com/science/article/pii/S0034425723004315
https://doi.org/10.1007/s13347-019-00382-7
https://doi.org/10.1007/s13347-019-00382-7
https://doi.org/10.1007/s13347-019-00382-7
https://doi.org/10.1609/aaai.v35i12.17325
https://doi.org/10.1609/aaai.v35i12.17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325

	Introduction
	Artificial neural networks
	Definition and structure of feed-forward neural networks
	Activation functions
	Loss functions
	Backpropagation
	Optimization algorithms
	Overfitting and regularization techniques
	K-fold cross-validation

	Recurrent neural networks
	Recurrent units
	Backpropagation through time and the vanishing gradient problem
	Constant Error Carousel (CEC)

	Long Short-Term Memory network
	LSTM cell
	BPTT in LSTM

	Emulator for a process-based agroecosystem model
	Related work
	The simulator model
	Simulator data generation
	Emulator data generation and pre-processing
	Model description
	Training and validation
	Model performance

	Discussion
	Conclusions

