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Optimal Filter Designs for Separating and
Enhancing Periodic Signals

Mads Grasbgll Christensen™ and Andreas Jakobsson

Abstract— In this paper, we consider the problem of separating
and enhancing periodic signals from single-channel noisy mix-
tures. More specifically, the problem of designing filters for such
tasks is treated. We propose a number of novel filter designs
that 1) are specifically aimed at periodic signals, 2) are optimal
given the observed signal and thus signal-adaptive, 3) offer full
parametrizations of periodic signals, and 4) reduce to well-known
designs in special cases. The found filters can be used for a
multitude of applications including processing of speech and
audio signals. Some illustrative signal examples demonstrating
its superior properties as compared to other related filters are
given and the properties of the various designs are analyzed using
synthetic signals in Monte Carlo simulations.

I. INTRODUCTION

Many natural signals that are of interest to mankind are
periodic by nature or approximately so. In mathematics and
engineering sciences, such periodic signals are often described
by Fourier series, i.e., a sum of sinusoids, each described by
an amplitude and a phase, having frequencies that are integer
multiples of a fundamental frequency. In mathematical de-
scriptions of periodic functions, the period which is inversely
proportional to the fundamental frequency is assumed to be
known and the function is observed over a single period
over which the sinusoids form an orthogonal basis. When
periodic signals are observed over arbitrary intervals, generally
have unknown fundamental frequencies, and are corrupted by
some form of observation noise, the problem of parametrizing
the signals is a different and much more difficult one. The
problem of estimating the fundamental frequency from such
an observed signal is referred to as fundamental frequency
or pitch estimation. Additionally, some signals contain many
such periodic signals, in which case the problem is referred
to as multi-pitch estimation. Strictly speaking, the word pitch
originates in the perception of acoustical signals and is defined
as “that attribute of auditory sensation in terms of which
sounds may be ordered on a musical scale” [1], but since
this attribute in most cases is the same as the fundamental
frequency of a Fourier series, these terms are often used
synonymously. Some pathological examples do exist, however,
where it is not quite that simple. The pitch estimation problem
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has received much attention in the fields of speech and audio
processing, not just because it is an interesting and challenging
problem, but also because it is the key, or, perhaps more
correctly, a key to many fundamental problems such as sepa-
ration of periodic sources [2], enhancement, and compression
of periodic sources [3] as Fourier series constitute naturally
compact descriptions of such signals. A fundamental problem
in signal processing is the source separation problem, as many
other problems are trivially, or at least more easily, solved once
a complicated mixture has been broken into its basic parts (for
examples of this, see [4], [5]). We remark that for periodic
signals, this problem is different from that of blind source
separation, as assumptions have been made as to the nature
of the sources (for an overview of classical methods for blind
source separation, see, e.g., [6], [7]). For periodic signals, once
the fundamental frequencies of the periodic sources have been
found, it is comparably easy to estimate either the individual
periodic signals directly [8]-[11] or their remaining unknown
parameters, i.e., the amplitudes, using methods like those in
[12]. With amplitudes and the fundamental frequency found,
the signal parametrization is complete. Some representative
methodologies that have been employed in fundamental fre-
quency estimators are: linear prediction [13], correlation [14],
subspace methods [15]-[17], harmonic fitting [18], maximum
likelihood [19], [20], cepstral methods [21], Bayesian estima-
tion [22]-[24], and comb filtering [8], [25], [26]. Several of
these methodologies can be interpreted in several ways and one
should therefore not read too much into this rather arbitrary
grouping of methods. For an overview of pitch estimation
methods and their relation to source separation, we refer the
interested reader to [27]. It should also be noted that separation
based on parametric models of the sources is closely related to
source separation using sparse decompositions (for an example
of such an approach, see [28]).

The scope of this paper is filtering methods with applica-
tion to periodic signals in noise. We propose a number of
novel filter design methods, which are aimed specifically at
the processing of noisy observations of periodic signals or
from single-channel mixtures of periodic signals. These filter
design methods result in filters that are optimal given the
observed signal, i.e., they are signal-adaptive, and contain as
special cases several well-known designs. The proposed filter
designs are inspired by the principle used in the Amplitude
and Phase EStimation (APES) method [29], [30], a method
which is well-known to have several advantages over the
Capon-based estimators. The obtained filters can be used
for a number of tasks involving periodic signals, including
separation, enhancement, and parameter estimation. In other
words, the filtering approaches proposed herein provide full



parametrizations of periodic signals through the use of filters.
We will, however, focus on the application of such filters to
extraction, separation, and enhancement of periodic signals. A
desirable feature of the filters is that they do not require prior
knowledge of the noise or interfering source but are able to
automatically reject these.

The paper is organized as follows. In Section II, we intro-
duce the fundamentals and proceed to derive the initial design
methodology leading to single filter that is optimal given the
observed signal in Section III. We then derive an alternative
design using a filterbank in Section IV, after which, in Section
V, we first illustrate the properties of the proposed design and
compare the resulting filters to those obtained using previously
published methods. Moreover, we demonstrate its application
for the extraction of real quasi-periodic signals from mixtures
of interfering periodic signals and noise, i.e., for separation and
enhancement. Finally, we conclude on the work in Section VI.

II. FUNDAMENTALS

We define a model of a signal containing a single periodic
component, termed a source, consisting of a weighted sum
of complex sinusoids having frequencies that are integer
multiples of a fundamental frequency' wy, and additive noise.

Such a signal can, for n =0,..., N — 1, be written as
Ly
zr(n) = ar?*" + e (n) )
1=1
where ay; = Ak7lej¢’°~l is the complex amplitude of the Ith

harmonic of the source (indexed by k) and e (n) is the noise
which is assumed to be zero-mean and complex. The complex
amplitude is composed of a real, non-zero amplitude Ay ; > 0
and a phase ¢y, ; distributed uniformly on the interval {—m, 7].
The number of sinusoids, L;, is referred to as the order of
the model and is often considered known in the literature.
We note that this assumption is generally not consistent with
the behavior of speech and audio signals, where the number
of harmonics can be observed to vary over time. In most
recordings of music, the observed signal consists of many
periodic signals, in which case the signal model is

K K L ‘
x(n) = ar(n) =Y > api " te(n). ()
k=1 k=11=1

Note that all noise sources ej(n) are here modeled by a single
noise source e(n). We refer to signals of the form (2) as multi-
pitch signals and the model as the multi-pitch model. Even if
a recording is only of a single instrument, the signal may be
multi-pitch as only some instruments are monophonic. Even
in that case, room reverberation may cause the observed signal
to consist of several different tones at a particular time, i.e.,
the signal is effectively a multi-pitch signal.

The algorithms under consideration operate on vectors con-
sisting of M time-reversed samples of the observed signal,

'For many signals, the frequencies of the harmonics will not be exact
integer multiples of the fundamental. This can be handled in several ways
by modifying the signal model (see, e.g., [27] for more on this), but this is
beyond the scope of this paper and will not be discussed any further.

defined as x(n) = [ z(n) x(n —1) -+ z(n — M +1) |7,
where M < N and ()7 denotes the transpose, and similarly
for the sources xj(n) and the noise e(n). Defining the filter
output yi(n) as

M-1
ye(n) = Y hi(m)a(n —m), 3)

m=0
and introducing hy = [ hk(0) -+ he(M —1) 17, we can

express the output of the filter as yx(n) = hifx(n), with (-)&
being the Hermitian transpose operator. The expected output
power can thus be expressed as

E {|yx(n)]*} = E {hi/x(n)x" (n)hy } (4)
= hfRhy, (5)

where E{-} denotes the statistical expectation. The above
expression can be seen to involve the covariance matrix
defined as R = E {x(n)x(n)}. We will now analyze the
covariance matrix a bit more in detail.

The signal model in (2) can now be written using the above
definitions as

X e—jwkln 0
x(n) = Z Zy, . aj, +e(n)
k=1 0 e—jkak"
(6)
K
£ " Zyaj(n) + e(n) (7)
k=1

or, alternatively, as x(n) 2 Zle Zi(n)aj + e(n). Here,
Z), € CMxLr is a Vandermonde matrix, being constructed
from Lj; harmonically related complex sinusoidal vectors as
Zi = [ z(wg) -+ z(wily) ], with z(w) = [ 1 e79@ ...
e IwM=1) T and a; = [ ap. ag.r, " is a vector
containing the complex amplitudes. Introducing z, = e 7k,
the structure of the matrix Zj; can be seen to be

L
Zé Z]% .. Zk:k
Zy = : : - : - ®
Zlilwfl) Z£N171)2 ZI(CMA)L,C

From this, it can be observed that either the complex amplitude
vector or the Vandermonde matrix can be thought of as time-
varying quantities, i.e., aj(n) = D"aj and Zy(n) = Z;D"
with )

e Jwk In 0

D" = ) ©))

0 e—jkak-’n,

meaning that the time index n can be seen as either changing
the sinusoidal basis or, equivalently, the phases of the sinu-
soids. Depending on the context, one perspective may be more
appropriate or convenient than the other.

For statistically independent sources, the covariance matrix
of the observed signal can be written as R = Zle Ry =
Se E{xk(n)xf(n)}, ie., as a summation of the covari-
ance matrices of the individual sources. By inserting the



single-pitch signal model in this expression, we can express
the covariance matrix of the multi-pitch signal x(n) as

K
R = ZkE {aj(n)al (n)} Z{ + E{ex(n)ef (n)} (10)
k=1

K
=Y ZiPiZ{ + Q, (1)
k=1

where the matrix Py, is the covariance matrix of the ampli-
tudes, i.e., Py = E{aj(n)af (n)}. For statistically indepen-
dent and uniformly distributed stochastic phases (on the inter-
val (—m,7]), this matrix reduces to a diagonal matrix having
the power of the sinusoidal components on the diagonal, i.e.,
P, = diag ([ Ai@ . A%L ? We note, however, that one
can also arrive at the same result by considering the complex
amplitudes deterministic as in (6). Moreover, the matrix Q
is the covariance matrix of the combined noise source e(n),
ie, Q=E{e(n)e” (n)} = X1, Qx also referred to as the
noise covariance matrix.

In practice, the covariance matrix is unknown and is re-
placed by an estimate, namely the sample covariance matrix
defined as R = GZn 1 X(n)x(n) where G = N —
M +1 is the number of samples over which we average. For
the sample covariance matrix R to be invertible, we require
that M < % + 1 so that the averaging consists of at least M
rank 1 vectors (see, e.g., [31] for details). In the rest of the
paper, we will assume that M is chosen proportionally to N
such that when N grows, so does M. This is important for
the consistency of the methods under consideration.

III. OPTIMAL SINGLE FILTER DESIGNS
A. Basic Principle

We will now proceed with the first design. We seek to find
an optimal set of coefficients, {hy(m)}, such that the mean
square error (MSE) between the filter output, yi(n), and a
desired output, a signal model if you will, g (n), is minimized
in the following sense:

N-1

P=2 3 ) — e,

n=M-—1

12)

Since we are here concerned with periodic signals, this should
be reflected in the choice of the signal model gi(n). In fact,
this should be chosen as the sum of sinusoids having fre-
quencies that are integer multiples of a fundamental frequency
wy, weighted by their respective complex amplitudes ay, ;, i.e.,
Or(n) = SO0 age’xim This leaves us with the following
expression for the MSE:

2

N-1 Ly
P = E E hk - E ahle]wkln
n=M-—1 =1

(13)
In the following derivations, we assume the fundamental fre-
quency wq and the number of harmonics Ly, to be known (with
L, < M), although the so-obtained filters can later be used
for finding these quantities. Next, we proceed to find not only
the filter coefficients but also the complex amplitudes ay ;.

We now introduce a vector containing the complex sinusoids
at time n, i.e.,

Wk(n) = [ ejwkln ejkakn ]T. (14)
With this, we can express (12) as
| N-l
P= e Z hfx(n) — allwy(n)|?, (15)
n=M-1
which in turn can be expanded into
P =hl’Rh; — a’Ghy, — hGlay, + allWia,, (16)
where the new quantities are defined as
1 Nl
G, = el wi,(n)x (n) (17)
n=M-—1
and
1 Nl
=5 2 wmwi(n) (18)
n=M-1
B. Solution

Solving for the complex amplitudes in (16) yields the
following expression [31]

ay, ZngGkhk, (19)

which depends on the yet unknown filter hy. For Wy, to be
invertible, we require that G > Ly, but to ensure that also
the covariance matrix is invertible (as already noted), we will
further assume that G > M. By substituting the expression
above back into (16), we get

P =hf'Ryhy, — hf! GE W 'Ghy. (20)

By some simple manipulation, we see that this can be simpli-
fied somewhat as

P=nhl (ﬁk - wa,;lc;k) hy 2h7Q:h, (1)
where

Q. =Ry — GIW; Gy (22)

can be thought of as a modified covariance matrix estimate
that is formed by subtracting the contribution of the harmonics
from the covariance matrix given the fundamental frequency.
It must be stressed, though, that for multi-pitch signals, this
estimate will differ from Qj in the sense that Q; will then
aAlso contain the contribution of the other sources. Therefore,
Qg is only truly an estimate of Qj for single-pitch signals.
Note also that similar observations apply to the usual use of
APES [29], [30].

Solving for the unknown filter in (21) directly results in
a trivial and useless result, namely the zero vector. To fix
this, we will introduce some additional constraints. Not only
should the output of the filter be periodic, i.e., resemble a sum
of harmonically related sinusoids, the filter should also have
unit gain for all the harmonic frequencies of that particular
source, i.e., Z hk( Ye Jwrlm — 1 for | = 1,..., Ly,
or, equivalently, as hfz(w,l) = 1 . We can now state the



filter design problem as the following constrained optimization
problem:

r?linthQkhk st. hiz(wl) =1, (23)
k

for 1=1,..., L.

The constraints for the L; harmonics can also be expressed
as hf'Z; =1, where 1 =[1 --- 1]7. The problem in (23)
is a quadratic optimization problem with equality constraints
that can be solved using the Lagrange multiplier method.
Introducing the Lagrange multiplier vector

A= a7, (24)

the Lagrangian dual function of the problem stated above can

be expressed as
L(hg,A) = b Quhy, — (hfZ;, —17) A (25)

By taking the derivative with respect to the unknown filter
vector and the Lagrange multiplier vector, we get

Q. -Z h 0
F kH;}‘LL} (26)

h =
Equaling this to zero, i.e., VL(hg, A) = 0, we obtain

~ -1
A= (ZEQ,;lzk) 1 27)
and R
hy = Q. 'Zp A, (28)
which combine to yield the following optimal filters:
A ~ ~ -1
he = Q"2 (20Q1'Z0) 1. (29)

We will refer to this filter as SF-APES (single filter APES-like
design). This filter is optimal in the sense that it has unit gain
at the harmonic frequencies and an output that resembles a
sum of harmonically related sinusoids while everything else
is suppressed maximally. It can readily be used for determining
the amplitudes of those sinusoids by inserting (29) into (19),
which yields the following estimate:

—~ —~ —1
a = W 'GQ; 'z (20 '2) 1 (30)
. ~1
— WGy (RkaHW,;le) 7 31)
. ~1 -1
x (z,? (Rf GkHW;le> zk> 1. (32

The output power of the filter, when this is applied to the
original signal, can be expressed as ﬁkH Rhy,, which may be
used for determining the fundamental frequency by treating wy,
in Zy, G, Wy, as an unknown parameter and then pick as an
estimate the value for which the output power is maximized,
ie.,

& = argmax hi’Rhy. (33)

Wk

In practice, this is done in the following manner: For a segment
of data, the optimal filters are found for each candidate funda-
mental frequency. The filters are then applied to the signal
and the output power is measured. This shows how much
power is passed by the filters as a function of the fundamental

frequency, and the fundamental frequency estimate is then
picked as the fundamental frequency for which the most power
is passed. One can also obtain an estimate of the number of
harmonics L by estimating the noise variance by filtering out
the harmonics and applying one of the many statistical model
order estimation tools, like, e.g., the MAP-rule of [32], as
shown in [33]. From the optimal filter, it is thus possible to
obtain a full parametrization of periodic signals as was claimed
in the introduction.

The proposed filter design leads to filters that are generally
also much well-behaved for high SNRs, where Capon-like
filters are well-known to perform poorly and require that
diagonal loading or similar techniques be applied [31]. The
proposed filter also holds several advantages over traditional
methods, like the comb filtering approach or sinusoidal filters
(also known as FFT filters), namely that it is 1) optimal given
the observed signal, and 2) optimized for periodic filter output.
To quantify further what exactly is meant by the filter being
optimal, one has to take a look back at (12). The found filter is
optimal in the sense that it minimizes the difference in (12),
the exact time interval being determined by the summation
limits, under the constraint that it should pass the content at
specific frequencies undistorted and the output should to the
extent possible resemble a periodic signal.

We will now discuss some simplified designs that are all
special cases of the optimal single filter design.

1) Simplification No. 1: We remark that it can be shown
that Wy, is asymptotically identical to the identity matrix.
By replacing Wy by I in (21), one obtains the usual noise
covariance matrix estimate, used, for example, in [12]. As
before, the optimal filters are

hy, = Q;:lzk (ZkHQ;Zle)_l 1,

but the modified covariance matrix estimate is now determined
as

(34)

Q: =R -GG, (35)

which is computationally simpler as it does not require the
inversion of the matrix Wy, for each candidate frequency. We
refer to this design as SF-APES (appx). It must be stressed that
for finite IV, this is only an approximation that, nonetheless,
may still be useful for practical reasons as it is much simpler.
This approximation is actually equivalent to_estimating the
noise covariance matrix by subtracting from Ry an estimate
of the covariance matrix model (for a single source) in (11)
based on periodogram-like amplitude estimates.

2) Simplification No. 2: Interestingly, the Capon-like filters
of [19], [34] can be obtained as a special case of the solution
presented here by setting the modified covariance matrix equal
to the sAample covariance matrix of the observed signal, i.e.,
Qi = R. More specifically, the optimal filter is then

~ ~ -1
h, =R 'Z, (zkHR—lzk) 1, (36)
which is the design that we will refer to as Capon in the
experiments. The main difference between the design proposed
here and the Capon-like designs previously proposed is that
the modified covariance matrix Qy is used in (23) in place of



R, i.e., the difference is essentially in terms of the output of
the filter being periodic.

3) Simplification No. 3: A simpler set of filters yet are
obtained from (36) by assuming that the input signal is white,
i.e., R = oI These filters are then no longer signal adaptive,
but they also only have to be calculated once. The optimal
filters are then given by

by =2, (ZF2Z,) ' 1, (37)

which is thus fully specified by the pseudo-inverse of Zj.

4) Simplification No. 4: Curiously, the filters defined in (37)
can be further simplified as follows: complex sinusoids are
asymptotically orthogonal for any set of distinct frequencies,
which means that the pseudo-inverse of Zj; can be approxi-
mated as

-1

= Zg. (39)

This means that the filter becomes particularly simple. In fact,
it is just

~ 1
hk = Mzklv

i.e., the normalized sum over a set of filters defined by Fourier
vectors.

(40)

IV. OPTIMAL FILTERBANK DESIGNS
A. Basic Principle

We will now consider a different approach to designing
optimal filters for periodic signals. Suppose that we design
a filter not for the entire periodic signal, but one for each of
the harmonics of the signal. In that case, we seek to find a
set of filter coefficients that depend on the harmonic number
[, i.e., {hi,(m)}. The corresponding output of such a filter,
we denote yy, ;(n). The output of each filter should resemble
a signal model gy, ;(n) exhibiting certain characteristics. As
was the case with the single filter, we propose a cost function
defined as

, N
P = e n§_1 [y, (n) — Qk,l(n)|27 (41)

which measures the extent to which the filter output yy ;(n)
resembles 9 ;(n). Adding this cost up across all harmonics
of the kth source, we obtain an estimate of the discrepancy as

P=N"P=—
=1 G

For the single filter design, the output of each filter should
resemble a periodic function having possibly a number of
harmonics. In the present case, however, the output of the filter
should be just a single sinusoid, i.e., Jx;(n) = awej“’kl".
Defining

Ly N-1

> (yka(n) = gra(n)*.

l=1n=M-1

(42)

=

M
yr1(n) = Z hii(m)x(n —m) £ th’lx(n),
m=0

(43)

we can express (42) as

1 L, N-1 5
P=z > hix(n) = ag | (44)
=1 n=M-1

To form an estimate of the kth source from the output of the
filterbank, we simply sum over all the outputs of the individual
filters, as each output is an estimate of the [th harmonic, i.e.,

Ly M~—1 L
ye(n) = yka(n) =Y > hilx(n), 49
=1 m=0 [=1

which shows that the filters of the filterbank can be combined
to yield the single filter needed to extract the source. As
before, we proceed in our derivation of the optimal filters by
expanding this expression

Lk Lk
P=>"hi! Rhf, + "Jar,? (46)
=1 =1

Ly Le
- Z hig(wrl)ag, — Z a8 (wil)hyy,
=1 =1

(47)

where the R is defined as before and the only new quantity
is N1
Z x(n)e 7*".

n=M-—1

(48)

Ql-

glw) =

B. Solution

With all the basic definitions in place, we can now derive
the optimal filterbank. First, however, we must solve for the
amplitudes. Differentiating (47) by aj; and setting the result
equal to zero, we obtain

ary = hiig(wil) for 1=1,..., L. (49)

Inserting this back into (47), we are left with an expression
that depends only on the filters {hy, ;}:

Ly Ly
P=> h{Rhy; - Y h{ligwi)g” (wil)hi;  (50)
=1 =1

Ly
-3 b, (R - g(wkl)gH(wkl)) hy, (51)
=1
L
& i h?, Q. h (52)
CRAS T RES A
=1

where Qk,l is a modified covariance matrix estimate as before,
only it now depends on the individual harmonics. We can now
move on to the problem of solving for the filters. As before,
we must introduce some constraints to solve this problem.
It is natural to impose that each filter hy; should have unit
gains for the /th harmonic. However, one can take additional
knowledge into account in the design by also requiring that
the other harmonics are canceled by the filter. Mathematically,
we can state this as

hi!,Z;, = by, (53)



where
(54)

We can now state the design problem for the Ith filter of the
filterbank as

min hi | Qy by, st hflZy, =D, (55)
k,l
For this problem, the Lagrangian dual function is

L(hy, A) = b, Qb — (bF,Z b A (56)

By taking the derivative with respect to the unknown filter
vector and the Lagrange multiplier vector, we get

[ Qu -~ hy, 0
VL(hy i, A) —[ “zZi o N by |- (57)
By the usual method, we obtain
~ -1
A= (zkH Q,;}zk) by (58)
and R
iy = Q ZkA. (59)

This, finally, results in the following optimal filters for [ =
1,...,Lg

. ~ ~ 1
hy, = Q;;%Zk (Z;IfQ;,}Zk) b;.
We will refer to this design as FB-APES (filterbank APES-like
design). The individual filters can now be applied to obtain
amplitude estimates as

(60)

ar1 = hilg(wrl) (61)
~ -1 ~
=i (2{Q17x)  ZH Q).
Organizing all the filters for the kth source in a matrix, we
get

(62)

Hy=[hpy - hep, | (63)

The optimal filters in (60) can also be rewritten using the
matrix inversion lemma to obtain an expression that does not
require direct inversion of Qj; of each [:

N ~ -1
Qi) = (R- gl ()
= Rl'g(w)g! (wi)R
— R—l 4 g(OJk; )g A(wk ) , (65)
1 — g (wel )R g(wil)
which can then be inserted into (60). As with the single filter
approach, this design can also be used for estimating the
fundamental frequency by summing over the output powers
of all the filters, i.e.,

(64)

Ly,
L:Jk = argmax E ththk,l
Wi ’

(66)
=1
Lk - PN
=arg maXZTr {HkHRHk} . ©67)
Wik
=1

Note that the filters can also be applied in a different way, or,
rather, the output power can be measured differently. In (66),

the output power is determined as the sum of output power of
the individual filters. If, instead, the output power is measured
on the estimated source obtained as in (45), one obtains

L L
E {[ys(n)]?) = (Z ﬁfi’») R (Z h) B
=1 =1

However, assuming that the output of the individual filters is
uncorrelated, the two estimates will be identical (see [34] for
more details about this).

At this point some remarks are in order. For the Capon-
like filters of [19], [34], the single filter and the filterbank
approaches are closely related. This is, however, not the case
for the designs considered here in that they operate on different
covariance matrix estimates, Qj and Qy, ;, respectively. While
it is more complicated to compute the former than the latter,
the latter must be computed a number of times, once for each
harmonic /. This suggests that, in fact, the single filter should
be preferable from a complexity point of view if the number
of harmonics is high.

As with the single filter design, it is possible to obtain some
simplified versions of the optimal design. Next, we will look
more into some of these.

1) Simplification No. 1: By posing the optimization prob-
lem in (55) in a slightly different way, we obtain an important
special case. More specifically, by changing the constraints of
(55) such that each filter only has to have unit gain for the
corresponding harmonic, we obtain the following problem:

Illllin hﬁl@k,lhk,l S.t. th)lz(wkl) =1, (69)
k,l
where, as before, Qk’l = f{—g(wkl)g(wkl)H. The solution to
this problem is, in fact, the usual single sinusoid APES filter
[29], [30], which is
. Qflz(wkl)
k= k’lA_l . (70)
z (Wkl)Qkylz(wkl)
This design takes only the individual harmonics into account
in the design of the individual filters. Essentially, the filter that
is obtained from (55) takes the presence of all the harmonics
of the kth source into account, while the present one does not.
2) Simplification No. 2: Taking this one step further and
replacing Q; by R, one obtains the well-known single
sinusoid Capon filter [35]
A R z(wy!
by, = zd) (71)
zH (wp )R~ 1z(wyl)
As with the prior simplification, this design leaves it for the
algorithm to automatically cancel out the contribution of the
other harmonics. R R
3) Simplification No. 3: Similarly, replacing Qj; by R in
(60) results in the filters

~ ~ —~ —1
hy, =R™'Z, (zkHR—lzk) by, (72)

which are identical to the filters of the optimal Capon-like
filterbank of [19]. Interestingly, when summed, it result in the



optimal single Capon-like filter as

Ly
> hyy=hy.
=1

4) Simplification No. 4: The previous design can, of course,
be simplified further by assuming that the covariance matrix
is white, i.e., R = o1, which results in static filters that have
to be calculated only once. The filters are then given by

(73)

hy., = Zy, (Z;Ifzk)_l by, (74)

which when organized in a filterbank matrix can be written as

H, = 7, (Z'Z:) . (75)

Source estimates obtained using this filterbank, as described
in (45), will be exactly the same estimates as one would get
using (37)-this can easily be verified by inserting the right
hand side of (74) in (45). The resulting fundamental frequency
estimators are, however, generally different, but are equivalent
under certain conditions. In the experimental part of this paper,
we will refer to this method as the FB-WNC design (filterbank
white noise Capon-like design).

5) Simplification No. 5: Applying the asymptotic approx-
imation in (39) to the filters in (74), we obtain even simpler
filters. More specifically, (74) reduces to

- 1
hy; = Mzk-bz, (76)
and the filterbank matrix is then simply given by
~ 1
Hy, = 7. 77

When applied to the problem of fundamental frequency es-
timation, as in (66), this leads to the familiar approximate
non-linear least squares (NLS) method—it is nonlinear in the
fundamental frequency, hence the name; it is also sometimes
referred to as the harmonic summation method [27]. Note
that when source estimates are obtain using this filterbank as
described in (45), one will obtain exactly the same estimate as
with (40). We will refer to this method as FB-WNC (appx) in
the experiments, where it will serve as a method representative
of the usual way filters are designed. A large class of methods
exist for enhancement and separation of signals that operate
on the coefficients of the short-time Fourier Transform (STFT)
(see, e.g., [36], [37]). The individual bases of the STFT are
the same as the individual filters of the filterbank (76), in fact,
this will be the case for all methods that operate directly on
the coefficients of the STFT, including mask-based methods
like [38] and non-negative matrix factorization-based methods
like [39].

6) Simplification No. 6: We will close this_section by
introducing one final simplification. If in lieu of Qy; we use
Qk as obtained for the single filter approach in (22) in (60),
the optimal filters of the filterbank are then given by

N ~ ~ —1
hy, = Q' Zy (ZkHQEIZk) b;.

It can be seen that the only difference between the different
filters of the filterbank is then the vector b;, which serves to

(78)

extract the filter for the individual harmonics. The filterbank
matrix containing these filters can then be expressed as
~ ~ ~ -1
Hy = 0;'Z (201Q;'21) - (79)
It is then also easy to see that these filters are related to the
optimal single filter in (29) in a trivial way as

hy, = H,1. (80)

A similar relationship exists for the corresponding Capon-like
filters [34]. Curiously, one would also obtain these filters by
modifying (42) by moving the summation over the harmonics
inside the absolute value, which would also be consistent with
the formation of the source estimates according to (45).

V. RESULTS
A. Practical Considerations

Before moving on to the experimental parts of the present
paper, we will now go a bit more into details of how to apply
the proposed filters and what issues one has to consider in
doing so.

Given a segment of new data {x(n)}, the procedure is as
follows:

1) Estimate the fundamental frequencies {wy} of all
sources of interest for the data {x(n)}.

2) Determine or update recursively the sample covariance
matrix R.

3) Compute a noise covariance matrix estimate Qy, for each
source (or for its harmonics Qy ;) and the inverse.

4) Compute the optimal single filter hy or filterbank Hj
for each source of interest k£ using one of the proposed
designs.

5) Perform block filtering on the data {z(n)} to obtain
source estimates y(n) for each source of interest k
(using the observed signal from the previous segment
as filter states as appropriate).

In performing the above, there are a number of user parameters
that must be chosen. The following may serve as a basis
for choosing these. Generally speaking, the higher the filter
length M, the better the filter will be in attenuating noise
and canceling interference from other sources as the filter has
more degrees of freedom. This also means that the higher
the model order, the more interfering sources the filter can
deal with. However, there are several concerns that limit the
filter length. First of all, the validity of the signal model. If
the signal is not approximately stationary over the duration of
the segment, the filters cannot possibly capture the signal of
interest, neither can it deal with noise and other sources. On a
related issue, the filter length M must be chosen, as mentioned,
with M < N/2 + 1 to yield a well-conditioned problem.
This means that the signal should be stationary over N and
not just M. It should of course also be taken into account
that the higher the filter order, the more computationally
complex the design will also be. Regarding how often one
should compute the optimal filters, i.e., how high the update-
rate should be relative to M and N, it should be noted that
for the filter outputs to be well-behaved, the filters must not
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Fig. 1.

Frequency responses of the various filters for a set of harmonically related sinusoids in white Gaussian noise at an SNR of -20 dB (top panels) and

20 dB (bottom panels). The designs shown here are (a) SF-APES, (b) SF-Capon, (c) FB-APES, (d) FB-WNC.

change abruptly. Consequently, it is advantageous to update
the filters as often as possible by computing a new covariance
matrix and subsequently new filters at the cost of increased
computational complexity. In this process, one may also just
as well update the fundamental frequency. In fact, it may also
be advantageous to estimate a new fundamental frequency
frequently relative to M and N to track changes in the signal
of interest. This all suggests that it should be preferable in most
situations to update the fundamental frequency, the covariance
matrix and filters frequently.

Regarding numerical issues, as we have seen, the Capon-
design suffers from bad conditioning of the covariance matrix
for high SNRs, and it may thus be reasonable to use a regular-
ized estimate of the covariance matrix, like R = R+§1, where
0 is a small positive constant, before computing inverses. It
is also possible that the APES-like designs may benefit from
such modified estimates under extreme conditions.

B. Tested Designs

In the tests to follow, we will compare the proposed design
methods to a number of existing FIR design methods. More
specifically, we will compare the following:

o SF-APES which is the optimal single filter design given

by (29).

o SF-Capon, i.e., the single filter design proposed in [19],
[34], which is based on a generalization of the Capon
principle. The optimal filter is given by (36).

o SF-APES (appx) is an approximation of SF-APES based
on the simpler modified covariance matrix estimate in
(35). It is thus a computationally simpler approximation
to SF-APES.

o FB-APES is the optimal filterbank design given by (60).

o FB-WNC is a static single filter design based on Fourier
vectors. The filter is given by (74). It serves as reference
method as such filters are often used for processing of
periodic signals.

o FB-WNC (appx) is an approximation of the FB-WNC
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Fig. 2. Estimated computation times for the various filters designs (a) as a function of the number of observations N with M = N/4 and Lj, = 5, and (b)
as a function of the number of harmonics L with N = 100 and M = 25. For each data point, each filter was computed 1000 times and the average was

computed.

filters with the filters being defined in (76). It is based on
the asymptotic orthogonality of complex sinusoids. It is
perhaps the most commonly used filter design method
for processing periodic signals and is sometimes also
referred to as the frequency sampling design method or
the resulting filters as FFT filters.

Note that we do not include all the simplifications of Sections

IIT and IV as some of them are trivially related.

C. Frequency Response

We will start out the experimental part of this paper by
showing an example of the optimal filters obtained using some
of the proposed methods and their various simplifications and
the Capon-like filters of [19], [34]. More specifically, we will
show the frequency response of the filters obtained using some
of the various designs for a synthetic signal. In Figure 1, these
are shown for a synthetic signal having wy = 0.6283, L =
5, Rayleigh distributed amplitudes and uniformly distributed
phases with white Gaussian noise added at a -20 dB SNR
(top panels) and 20 dB (bottom panels). The filters all have
length 50 in these examples and were estimated from 200
samples. All the filters can be seen to exhibit the expected

response for -20 dB SNR following the harmonic structure of
the signal having 0 dB gain for the harmonic frequencies, and
several of them are also quite similar. For an SNR of 20 dB,
however, it can clearly be seen that the proposed filters still
exhibit the desired response emphasizing the harmonics of the
signal. The Capon-like design, SF-Capon, however, behaves
erratically for 20 dB SNR, and this is typical of the Capon-like
filters. Comparing the response of this method to the proposed
ones, namely SF-APES, and FB-APES, it can be seen that this
problem is overcome by the new design methodology. The
erratic behavior of the Capon-like filter can be understood by
noting that for high SNR, the Capon method will generally
suffer from poor conditioning of the sample covariance matrix
(as the eigenvalues only due to the noise tending toward zero),
explaining the low accuracy of the resulting filter, and as
the SNR increases, the filters obtained using the SF-Capon
design will get progressively worse. We also remark that for
the example considered here, SF-APES (appx) will be quite
similar to SF-APES and FB-WNC (appx) to FB-WNC, for
which reason these designs are not shown. This is because the
asymptotic approximations that these derivative methods are
based on are quite accurate in this case. This is also the likely
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explanation for the frequency responses of SF-APES and FB-
APES looking extremely similar for both SNRs. We remark
that while the adaptive designs will change with the observed
signal, FB-WNC and its simplification will remain the same.

D. Computational Complexity and Computation Times

In comparing the performance of the various methods, it is
of course also important to keep the computational complexity
of the various methods in mind. All the tested methods, except
the FB-WNC (appx) design, have cubic complexities involving
operations of complexity O(M?), O(L}), O(M?2Ly), and
O(ML3), as they involve matrix inversions and matrix-matrix
multiplications. Some of the designs avoid some matrix in-
versions, like the SF-APES (appx) design, but such details
cannot be differentiated with these asymptotic complexities.
We therefore have measured average computation times of
the various designs in MATLAB. More specifically, we have
computed the average computation times over 1000 trials as
a function of Ly and N as M is assumed to be chosen
proportionally to N. The measurements were obtained on
an Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz with 2GB of
RAM running MATLAB 7.6.0 (R2008a) and Linux 2.6.31-
17 (Ubuntu). Note that the current implementations do not
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Performance of the various filters in SDR (a) as a function of the SNR and (b) the SIR with an interfering source present (with noise added at a

take into account the structure of the various matrices like,
e.g., Toeplitz structure of the covariance matrix. The obtained
results are shown in Figure 2(a) as a function of N with
M = N/4 and L; = 5 and as a function of L; with
N = 100 and M = 25 in Figure 2(b) for typical ranges of
these quantities. From Figure 2(a) it can be observed that the
computational complexity of the the designs SF-APES, SF-
APES (appx), FB-APES, and SF-Capon indeed are cubic in
M (and thus N), the difference essentially being a scaling. It
can be observed that the FB-APES design is the most complex,
owing to the different noisy covariance matrix estimates that
must be determined for each harmonic. Note that for a very
low number of harmonics, this design is less complex than
SF-APES and SF-APES (appx). It can also be seen that, as
expected, the SF-Capon design is the least complex of the
adaptive designs, as it does not require the computation of a
noise covariance matrix estimate. The general picture is the
same in Figure 2(b), although it can be observed that the
difference in computation time between the FB-APES method
and the others appear to increase on the logarithmic scale
as the number of harmonics is increased, the reason again
being that the higher the number of harmonics, the more noise
covariance matrices (and their inverses) must be determined.
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E. Enhancement and Separation

Next, we will consider the application of the various filter
designs to extracting periodic signals from noisy mixtures con-
taining other periodic signals and noise or just noise. We will
test the performance under various conditions by generating
synthetic signals and then use the filters for extracting the
desired signal. More specifically, the signals are generated in
the following manner: A desired signal s;(n) that we seek to
extract from an observed signal x(n) is buried in a stochastic
signal, i.e., noise e(n); additionally, an interfering source
so(n) is also present, here in the form of a single sinusoid.
The observed signal is thus constructed as

x(n) = s1(n) + sa(n) + e(n). (81)

We will measure the extent to which the various filter designs
are able to extract sj(n) from x(n) using the signal-to-
distortion ratio (SDR) defined as:

Is1(n)[l2
(n) = y1(n)ll2
where y1(n) is the signal extracted by applying the obtained
filters to x(n). The ultimate goal is of course to reconstruct

SDR = 201log,, B [dB],  (82)
1

s1(n) as closely as possible and, therefore, to maximize the
SDR.

As a measure of the power of the interfering signal ss(n)
relative to the desired signal si(n), we use the following
measure:

[Is1(72)]l2
 s2(n)ll2

which we refer to as the signal-to-interference ratio (SIR)
(for a discussion of performance measures for assessment of
separation algorithms see, e.g., [38], [40]). It is expected that
the higher the SIR, the worse the SDR will be. Finally, we
measure how noisy the signal is using the signal-to-noise ratio
(SNR) defined as

SIR = 20log [dB], (83)

SNR = 20log, 12112

le(n)]l2
The reader should be aware that our definitions of SDR and
SIR are consistent with those of [40], but also that our defini-
tion of SNR differs but is consistent with its use in estimation
theory. In the experiments reported next, unless otherwise
stated, the conditions were as follows; the above quantities
were calculated by applying the found filters to the observed

[dB]. (84)



signal and the SDR was then measured. This was then repeated
100 times for each test condition, i.e., the quantities are
determined using Monte Carlo simulations. In doing this, the
zero-state responses of the filters were ignored. Segments of
length N = 200 were used with filter lengths of M = N/4
(for all designs) and an SNR of 20 dB was used. The desired
signal was generated with a fundamental frequency of 0.5498
and five harmonics. The real and imaginary values of the
complex amplitudes were generated as realizations of i.i.d.
Gaussian random variables, leading to Rayleigh distributed
amplitudes and uniformly distributed phases. The interfering
source was a periodic signal having a fundamental frequency
of 0.5890, five harmonics and with Rayleigh distributed am-
plitudes and uniformly distributed phases. Its amplitudes were
then scaled to match the desired SIR in each realization.
In these experiments, we will assume that the fundamental
frequency of the desired signal is known while the fundamental
frequency of the interference is unknown. As has already been
mentioned, it is possible to estimate the fundamental frequency
using the proposed filters, but this is beyond the scope of this
paper, and we will just assume that the fundamental frequency
has been estimated a priori using one of the methods of [27].

In the first experiment, only the desired signal and the noise
are present, i.e., no interfering source was added, and the
performance of the filters is observed as a function of the
SNR. The resulting measurements are plotted in Figure 3(a).
It can be seen that the Capon-like filter design, SF-Capon, that
was the starting point of this work, performs poorly in this
task. In fact, it is worse than the static designs FB-WNC and
FB-WNC (appx). It can also be observed that the APES-like
filters, SF-APES, SF-APES (appx) and FS-APES, all perform
well, achieving the highest SDR. In [19], it was shown that
the Capon-like filters perform well in terms of multi-pitch
estimation under adverse conditions compared to the alterna-
tives. This was especially true when multiple periodic sources
were present at the same time as the signal-adaptive optimal
designs were able to cancel out the interference without prior
knowledge of it. It appears that with this particular setup, there
is a 10 dB reduction in the noise regardless of the SNR for the
proposed filters, and, interestingly, all the filter designs seem
to tend perform similarly for low SNRs. This means that there
appears to be no reason to prefer one method over the others
for low SNRs, in which case the simplest design then should
be chosen.

The next experiment is, therefore, concerned with the per-
formance of the filters when interference is present. Here, the
noise level, i.e., the SNR, is kept constant at 20 dB while the
SIR is varied. The results are depicted in Figure 3(b). This
figure clearly shows the advantage that the adaptive designs,
SF-APES, SF-APES (appx), FB-APES, and SF-Capon, hold
over the static ones, FB-WNC and FB-WNC (appx) in that
the former perform well even when the interference is very
strong, while the latter does not. The advantages of the designs
proposed herein are also evident as the APES-like filters, SF-
APES, SF-APES (appx), and FS-APES, outperform all others
for the entire tested range of SIR values. We remark that in
several of these figures, it may be hard to distinguish the
performance of SF-APES, SF-APES (appx), and FB-APES as
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Fig. 5. Shown are: (a) the spectrogram of the original signal, (b) with noise

and interference added with SNR = 0 dB and STR = —10 dB (c) and the
signal extracted using the FS-APES design.

the curves are very close; indeed they appear to have similar
performance in terms of SDR.

As some of the simpler designs are based on sinusoids being
asymptotically orthogonal, namely SF-APES (appx) and FB-



WNC (appx), it is interesting to see how the various filters
perform when this is not the case. We do this by lowering
the fundamental frequency for a given N, as for a given N,
the fundamental frequency has to be high, relatively speaking,
for the asymptotic approximation to hold. In this case, only
noise is added to the desired signal at an SNR of 10 dB.
The results are shown in Figure 4(a). As could be expected,
the aforementioned approximate designs perform poorly (as
does the Capon-like filters SF-Capon), but, generally, the
performance of all the methods degrades as the fundamental
frequency is lowered. This is, however, to be expected. Note
that the reason FB-WNC (appx) performs well for certain
fundamental frequencies is that the harmonics may be close to
(or exactly) orthogonal, but this would merely be a coincidence
in all practical situations.

Now we will investigate the influence of the filter length by
varying M while keeping NV fixed at 200, here in the presence
of an interfering source. In this case, noise is added at an SNR
of 10 dB while the SIR was 10 dB. In Figure 4(b), the results
are shown. The conclusions are essentially the same as for
the other experiments; the proposed filter designs perform the
best, the SF-Capon filters behave erratically, and the static
designs FB-WNC and FB-WNC (appx) perform poorly when
interference is present. We note that for the respective matrices
to be invertible, the filter lengths cannot be too long. On the
other hand, one would expect that the longer the filters, the
better the performance as the filters have more degrees of
freedom to capture the desired signal while canceling noise
and interference, and this indeed seems to be the case.

These experiments generally show that the proposed filter
designs have a number of advantages over previous designs
and static designs alike when applied to the problem of
separating periodic signals. Among the proposed designs, SF-
APES and FB-APES appear to perform the best and equally
well while SF-APES (appx) is sometimes slightly worse.

F. Some Speech and Audio Examples

We will now demonstrate the applicability of the proposed
methods to real signals. In the experiments to follow, we
will use the SF-APES design. In the first such experiment,
we will use the filters obtained using the said method to
extract a real trumpet signal, a single tone sampled at ~ 8
kHz using 50 ms segments and a filter length of 100 and
the filter is updated every 5 ms. Note that both the signal
and the filters are complex by mapping the input signal to
its analytic counterpart using the Hilbert transform. For each
segment the fundamental frequency and the model order was
found using the approximate non-linear least squares method
of [27] and the optimal filter was updated every 1 ms. The
single tone has been buried in noise at an SNR of 0 dB and
interfering tones, which were also trumpet tones (both signals
are from the SQAM database [41]), have been added with
an SIR of -10 dB. The spectrogram of the original signal
is shown in Figure 5(a) and the same signal with noise and
interference added is depicted in Figure 5(b). The spectrogram
of the extracted signal is shown in Figure 5(c). These figures
clearly demonstrate the ability of the APES-like designs to

extract the signal while rejecting not only noise, but also strong
periodic interference even when these are fairly close to the
harmonics of the desired signal. Note that for this particular
example, because the SIR and SNR are quite low, the FS-
Capon method would also perform quite well.

Regarding the application of the proposed filters to speech
signals, an interesting question is whether the filters are
suitable for such signals, as they exhibit non-stationarity. To
address this question, we apply the SF-APES method to a
voiced speech signal, this particular signal being from the
SQAM database [41] and sampled at 11025 Hz. As with
the prior example, we estimate the pitch for each segment,
which are here of size 30 ms (corresponding to 165 complex
samples), a size commonly used in speech processing and
coding. From these segments, the optimal filterbank is then
also determined using the estimated pitch. In this example,
the complex filters of length 40 are updated every 2.5 ms.
The signal is depicted in Figure 6(a) and the extracted signal
is shown in Figure 6(b). The difference between the original
signal and the extracted one is shown in Figure 6(c) and
the estimated pitch is shown in Figure 6(d). A number of
observations can be made regarding the original signal. Firstly,
it is non-stationary at the beginning and the end with a time-
varying envelope, and the pitch can be observed to vary too.
It can, however, be observed from the extracted signal and
the corresponding error signal that the filters are indeed able
to track this signal, resulting in an SDR of 20 dB. This
demonstrates that the filters may be useful even if the signal
is not completely stationary.

Our final example involves the separation of two speech
signals, more specifically two quasi-stationary segments of
voiced speech mixed at an SIR of 0 dB. These signals are
sampled at 8 kHz and are from the EUROM.1 corpus [42].
As before 30 ms segments are used for determining the pitch
and the optimal filters resulting in segments consisting of 120
complex samples along with filters of length 30. We here
update the filters every 2.5 ms. In Figures 7(a) and 7(b), the
two signals are shown along with their mixture in Figure 7(c).
As before, the fundamental frequencies of the two sources
are estimated with the approximate non-linear least squares
method [27], and the resulting estimates are shown in Figure
7(d). It can be seen that one source has an average pitch of
approximately 162 Hz while that of the other is about 200 Hz.
The two extracted signals are shown in Figures 7(e) and 7(f),
respectively. As can be seen, the filters are able to separate
the signals achieving SDRs of 14 and 12 dB, respectively. Of
course, some errors occur, as can also clearly be seen, as parts
of the other interfering source will be passed by the filters.

VI. CONCLUSION

In this paper, new filter designs for extracting and separating
periodic signals have been proposed, a problem occurring
frequently in, for example, speech and audio processing. The
proposed filters are designed such that they have unit gain
at the frequencies of the harmonics of the desired signal
and suppress everything else. The novel part of the present
designs is that they are optimized for having an output that is
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was not extracted, and (d) the estimated pitch used in the filters.

approximately periodic too. Additionally, the obtained filters
are optimal for a segment of the observed signal and are
thus signal-adaptive. The filter designs can be used not only
for the aforementioned applications but also for estimating
the parameters of periodic signals. The designs have been
demonstrated to overcome the shortcomings of previous de-
signs while retaining their desirable properties, like the ability
to cancel out interfering signals. We have shown how the
new designs reduce to a number of well-known designs under
certain conditions and they can thus be seen as generalizations
of previous methods. In simulations, we have demonstrated the
superior performance of the obtained filters in enhancement
and separation applications.

REFERENCES

[11 American Standards Association (ASA), “Acoustical Terminology, SI,
1-1960,” 1960.

[2] D. Chazan, Y. Stettiner, and D. Malah, “Optimal multi-pitch estimation
using the EM algorithm for co-channel speech separation,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, 27-30 April 1993,
vol. 2, pp. 728-731.

Shown are: (a) the original voiced speech signal, (b) the extracted signal, (c) the difference between the two signals, i.e., the part of the signal that

[3] R. J. McAulay and T. F. Quatieri, “Sinusoidal coding,” in Speech
Coding and Synthesis, W. B. Kleijn and K. K. Paliwal, Eds., chapter 4,
pp. 121-174. Elsevier Science B.V., 1995.

B. Kostek, “Musical instrument classification and duet analysis employ-
ing music information retrieval techniques,” Proc. IEEE, vol. 92, no. 4,
pp. 712-729, Apr 2004.

J. H. Jensen, M. G. Christensen, D. P. W. Ellis, and S. H. Jensen,
“Quantitative analysis of a common audio similarity measure,” [EEE
Trans. Audio, Speech, and Language Process., vol. 17(4), pp. 693-703,
May 2009.

J.-F. Cardoso, “Blind signal separation: Statistical principles,” Proc.
IEEE, vol. 9(10), pp. 2009-2025, Oct. 1998.
A. Hyvarinen, J. Karhunen, and E. Oja,
Analysis, Wiley, 2001.

A. Nehorai and B. Porat, “Adaptive comb filtering for harmonic signal
enhancement,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34(5),
pp. 1124-1138, Oct. 1986.

P. Maragos, J. F. Kaiser, and T. F. Quatieri, “Energy Separation in Signal
Modulations with Application to Speech Analysis,” IEEE Trans. Signal
Process., vol. 41(10), pp. 3024-3051, Oct. 1993.

M.-Y. Zou, C. Zhenming, and R. Unbehauen, “Separation of periodic
signals by using an algebraic method,” in Proc. IEEE Int. Symp. Circuits
and Systems, 1991, vol. 5, pp. 2427-2430.

B. Santhanam and P. Maragos, ‘Demodulation of Discrete Multi-
component AM-FM Signals using Periodic Algebraic Separation and
Energy Demodulation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, 1997.

[4]

[5]

[6]

[7] Independent Component

[8]

[9]

(10]

(11]



3 3
2t 1 2t
1t : 1t
[} [}
e} =]
2 2
= o} s Of
€ IS
< <
_1 e _1 L
_2 5 e _2 L
-3 . . . L L L L L -3 . . . L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time [ms] Time [ms]
(2) (b)
4 300
3} 4 280f
~ 260
7 1=
> 240}
(]
1} 5
3 S 220t
2 I I
s Of L 200f---=-=-=-==--===-=---°°°%
£ E
& 180}
— E (]
' :
© 160f
-2 J LgL
140
-3 1 120t
-4 . . . . . . v ’ 100 . . . v L . L .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time [ms] Time [ms]
© (d)
3 3
2t 1 2t
1t . 1t
Q [}
e} =)
= 2
s o} s Of
£ S
< <
_1 e _l L
_2 3 e _2 L
-3 . . . L L L L L -3 L . . L L L L .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time [ms] Time [ms]
© ®

Fig. 7. Shown are the following signals: (a) voiced speech signal of source 1, (b) voiced speech signal of source 2, (c) the mixture of the two signals, (d) the
estimated pitch tracks for source 1 (dashed) and 2 (solid), (e) the estimate of source 1 obtained from the mixture, and (f) the estimate of source 2 extracted
from the mixture.

vol. 48(2), pp. 338-352, Feb. 2000.
[13] K. W. Chan and H. C. So, “Accurate frequency estimation for real

[12] P. Stoica, H. Li, and J. Li, “Amplitude estimation of sinusoidal signals:
Survey, new results and an application,” IEEE Trans. Signal Process.,



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]
(31]
[32]

[33]

[34]

[35]
[36]

(37]

(38]

[39]

harmonic sinusoids,” IEEE Signal Process. Lett., vol. 11(7), pp. 609—
612, July 2004.

A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency
estimator for speech and music,” J. Acoust. Soc. Am., vol. 111(4), pp.
1917-1930, Apr. 2002.

M. G. Christensen, S. H. Jensen, S. V. Andersen, and A. Jakobsson,
“Subspace-based fundamental frequency estimation,” in Proc. European
Signal Processing Conf., 2004, pp. 637-640.

M. G. Christensen, A. Jakobsson, and S. H. Jensen, “Joint high-
resolution fundamental frequency and order estimation,” IEEE Trans.
Audio, Speech, and Language Process., vol. 15(5), pp. 1635-1644, July
2007.

M. G. Christensen, A. Jakobsson, and S. H. Jensen, ‘“Fundamental
frequency estimation using the shift-invariance property,” in Rec.
Asilomar Conf. Signals, Systems, and Computers, 2007, pp. 631-635.
H. Li, P. Stoica, and J. Li, “Computationally efficient parameter
estimation for harmonic sinusoidal signals,” Signal Processing, vol. 80,
pp. 1937-1944, 2000.

M. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen, “Multi-
pitch estimation,” Elsevier Signal Processing, vol. 88(4), pp. 972-983,
Apr. 2008.

M. Noll, “Pitch determination of human speech by harmonic product
spectrum, the harmonic sum, and a maximum likelihood estimate,” in
Proc. Symposium on Computer Processing Communications, 1969, pp.
779-1797.

A. M. Noll, “Cepstrum pitch determination,” J. Acoust. Soc. Am., vol.
41(2), pp. 293-309, 1967.

A. T. Cemgil, H. J. Kappen, and D. Barber, “A generative model
for music transcription,” [EEE Transactions on Audio, Speech, and
Language Processing, vol. 14, no. 2, pp. 679-694, March 2006.

A. T. Cemgil, Bayesian Music Transcription, Ph.D. thesis, Nijmegen
University, 2004.

S. Godsill and M. Davy, “Bayesian harmonic models for musical pitch
estimation and analysis,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, 2002, vol. 2, pp. 1769-1772.

J. Moorer, “The optimum comb method of pitch period analysis of
continuous digitized speech,” [EEE Trans. Acoust., Speech, Signal
Process., vol. 22, no. 5, pp. 330-338, Oct 1974.

J. Lim, A. Oppenheim, and L. Braida, “Evaluation of an adaptive comb
filtering method for enhancing speech degraded by white noise addition,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 26, no. 4, pp. 354—
358, Aug 1978.

M. G. Christensen and A. Jakobsson, Multi-Pitch Estimation, vol. 5 of
Synthesis Lectures on Speech & Audio Processing, Morgan & Claypool
Publishers, 2009.

C. Fevotte and S. J. Godsill, “A Bayesian approach for blind separation
of sparse sources,” IEEE Trans. Signal Process., vol. 14(6), pp. 2174—
2188, Nov. 2006.

J. Li and P. Stoica, “An adaptive filtering approach to spectral estimation
and SAR imaging,” IEEE Trans. Signal Process., vol. 44(6), pp. 1469—
1484, June 1996.

P. Stoica, H. Li, and J. Li, “A new derivation of the APES filter,” IEEE
Signal Process. Lett., vol. 6(8), pp. 205-206, Aug. 1999.

P. Stoica and R. Moses, Spectral Analysis of Signals, Pearson Prentice
Hall, 2005.

P. M. Djuric, “Asymptotic MAP criteria for model selection,” [EEE
Trans. Signal Process., vol. 46, pp. 27262735, Oct. 1998.

M. G. Christensen, J. H. Jensen, A. Jakobsson, and S. H. Jensen, “Joint
fundamental frequency and order estimation using optimal filtering,” in
Proc. European Signal Processing Conf., 2009, pp. 1334-1338.

M. G. Christensen, J. H. Jensen, A. Jakobsson, and S. H. Jensen, “On
optimal filter designs for fundamental frequency estimation,” IEEE
Signal Process. Lett., vol. 15, pp. 745-748, 2008.

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57(8), pp. 1408-1418, 1969.

P. C. Loizou, Speech Enhancement: Theory and Practice, CRC Press,
2007.

R. Martin, “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,” [EEE Trans. Audio, Speech, and
Language Process., vol. 9(5), pp. 504-512, June 2001.

O. Yilmaz and S. Reckard, “Blind separation of speech mixtures via
time-frequency masking,” IEEE Signal Process. Lett., vol. 52(7), July
2004.

N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and
smoothness in Bayesian non-negative matrix factorization applied to
polyphonic music transcription,” IEEE Trans. Audio, Speech, and
Language Process., vol. 18(3), pp. 538-549, Mar. 2010.

[40] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Signal Process., vol. 14(4),
pp. 1462-1469, July 2006.

European Broadcasting Union,

[41] Sound Quality Assessment Material

Recordings for Subjective Tests, EBU, Apr. 1988, Tech. 3253.

Center for PersonKommunikation, Documentation of the Danish EU-
ROM.1 Database, Institute of Electronic Systems, Aalborg University,
1995.

[42]

Mads Graesbgll Christensen Mads Grasbgll Chris-
tensen was born in Copenhagen, Denmark in March
1977. He received the M.Sc. and Ph.D. degrees in
2002 and 2005, respectively, from Aalborg Univer-
sity in Denmark, where he is also currently em-
ployed at the Department of Architecture, Design
and Media Technology as Associate Professor. He
was previously with the Department of Electronic
Systems, Aalborg University and has been a visiting
researcher at Philips Research Labs, Ecole Nationale
Supérieure des Télécommunications (ENST), and
Columbia University. Dr. Christensen has received several awards, namely
an IEEE Int. Conf. Acoust. Speech, and Signal Proc. Student Paper Contest
Award, the Spar Nord Foundation’s Research Prize awarded annually for an
excellent Ph.D. thesis, and a Danish Independent Research Council’s Young
Researcher’s Award. He has published more than 75 papers in peer-reviewed
conference proceedings and journals is author (with A. Jakobsson) of the
book "Multi-Pitch Estimation", Morgan & Claypool Publishers, 2009. He
is a Member of the IEEE and an Associate Editor for the IEEE Signal
Processing Letters. His research interests include digital signal processing
theory and methods with application to speech and audio, in particular
parametric analysis, modeling, and coding.

Andreas Jakobsson received his M.Sc. from Lund
Institute of Technology and his Ph.D. in Signal
Processing from Uppsala University in 1993 and
2000, respectively. Since, he has held positions with
Global IP Sound AB, the Swedish Royal Institute
of Technology, King’s College London, and Karlstad
University, as well as an Honorary Research Fellow-
ship at Cardiff University. He is currently Professor
of Mathematical Statistics at Lund University, Swe-
den. He has published his research findings in over
100 refereed journal and conference papers, and has
filed four patents. He has also co-authored (together with M. G. Christensen)
a recent book on multi-pitch estimation (Morgan & Claypool, 2009). He is a
Senior Member of IEEE, a member of the IEEE Sensor Array and Multichan-
nel (SAM) Signal Processing Technical Committee, and an Associate Editor
for the IEEE Transactions on Signal Processing, the IEEE Signal Processing
Letters and the Research Letters in Signal Processing. His research interests
include statistical and array signal processing, detection and estimation
theory, and related application in remote sensing, telecommunication and
biomedicine.




