
Journal of Energy Storage 89 (2024) 111578

A
2

S

Contents lists available at ScienceDirect

Journal of Energy Storage

journal homepage: www.elsevier.com/locate/est

Research papers

Uncertainty-observed virtual battery model for an electric vehicle parking lot
enabling charger-sharing modelling
Mahoor Ebrahimi ∗, Miadreza Shafie-khah, Hannu Laaksonen
chool of Technology and Innovations, University of Vaasa, Vaasa, Finland

A R T I C L E I N F O

Keywords:
Electric vehicle charging
Virtual battery model
EV parking lot
EV uncertainty

A B S T R A C T

With the increase in the penetration of electric vehicles (EVs), there is a substantial need for a proper solution
to meet the EVs’ charging demand. Due to the high investment cost of charging stations, the efficient operation
of EV chargers is crucial. In this regard, in this paper, charger-sharing charging has been proposed to charge
multiple EVs with a single EV charger. However, the existing models cannot model uncertain EV parking
lots (EVPLs) with charger-sharing charging. In addition, most presented methods for uncertainty modelling
of EVPLs are hard to implement in planning and large-scale system-level studies due to their complicated
process and high computational burden. Therefore, in this paper, a virtual battery model has been proposed
to model an EVPL enabling the charger-sharing charging modelling considering the uncertainty of arrival and
departure. Our proposed approach models the EVPL as a battery with time-variant parameters obtained from
EVs’ arrival and departure patterns. The proposed virtual battery model has been validated by comparing
its performance on day-ahead (DA) and real-time (RT) power market participation of a 24-bus distribution
system owning 12 EVPLs with the scenario-based method. The results show that its performance is similar to
scenario-based uncertainty modelling while its computational burden is around 2.24% of the scenario-based
model. In addition, the results indicate how by employing our proposed charging-sharing charging, EVPLs
can dramatically increase their profit as a result of increasing the number of hosted EVs. In this context, a
sufficiently high charging tariff motivates the EVPL owner to accommodate a substantial number of EVs. With
only 200 EV chargers, the EVPL can host approximately 3200 EVs, given the characteristics of EVs and EV
chargers outlined in the case study section. In contrast, the exclusive charger approach allows only 200 EVs
to enter the parking facility and undergo charging.
1. Introduction

1.1. Motivation

The increasing penetration of EVs in recent years makes it a prin-
cipal factor in the operational and planning decisions on energy and
energy-related sectors [1]. In this regard, studying the optimal oper-
ation and planning of EV charging facilities and infrastructures such
as EV Parking Lots (EVPLs) and charging stations is of undeniable
importance [2]. This way, the performance of the EV charging stations
could be studied from different points of view; such as EV owners,
parking lot or charging station owners, power system operators, po-
tential investors, and policymakers [3]. Studies that try to model EVs
from the point of view of EV owner deal with a single EV charging
modelling as EV owners own single EV [4]. However, for studying EV-
related problems from other agents’ points of view, it is crucial to have
a proper model for the aggregation of EVs such as EVPLs. In this regard,
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there are several papers that tried to provide a model that simulates
the operation of EV aggregation. In [5], a storage model is presented
to model the charging of an EVPL. In this study, the historical data
of an existing parking lot is utilized to obtain the parameters of the
equivalent storage model.

1.2. Research literature

In modelling electric vehicles, there are uncertain parameters such
as arrival and departure time. However, some papers in the field
neglected uncertainty, mainly for the sake of simplicity, to allow for
the deployment of straightforward and low-computational burden ap-
proaches. For instance, Authors in [6] proposed an approach for op-
timal scheduling of an EV aggregator for determining charge and
discharge strategy. The presented model for the EV aggregator is similar
to [5] without considering uncertainty. Ref. [7] proposes an approach
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Nomenclature

Indices

𝑐𝑙 EV class
𝑡 Time
𝑤𝐸𝑉 Scenario for arrival and departure of EVs in

the scenario-based approach.
𝑤𝑅𝐶𝐸𝑉 Scenario for arrival and departure of EVs in

realization.
𝑤𝑅𝐶𝑟𝑡 Scenario for RT electricity price in realiza-

tion.
𝑤𝑟𝑡 Scenario for RT electricity price in the

scenario-based approach.

Parameters

𝛥𝑡 Duration of time period.
𝜂𝑐ℎ Charging efficiency.
𝜂𝑑𝑐 Discharging efficiency.
𝜆𝐷𝐴
𝑡 DA electricity price at time t [€/kW].

𝜆𝑝𝑢𝑟,𝑟𝑡𝑤,𝑡 RT purchasing price at scenario w time t
[€/kW].

𝜆𝑠𝑒𝑙𝑙,𝑟𝑡𝑤,𝑡 RT selling price at scenario w time t
[€/kW].

𝐶𝑃𝐿,𝑐ℎ
𝑖𝑛𝑠 Total charging capacity of the installed EV

chargers [kWh].
𝐶𝑎𝑝𝐸𝑣

𝑐𝑙 Battery capacity of the EV class cl [kWh].
𝑆ℎ𝑐𝑙 Share of EVs class cl from all available EVs.
𝑆𝑂𝐶𝑎𝑟𝑟

𝑐𝑙 Arriving SOC of the EVs class cl.
𝑆𝑂𝐶𝑑𝑒𝑝

𝑐𝑙 Departing SOC of the EVs class cl.

Variables

𝐸𝑎𝑟𝑟
𝑡 Added energy to EVPL due to EVs arrival at

time t [kWh].
𝐸𝑑𝑒𝑝
𝑡 Depleted energy from EVPL due to EVs

departure at time t [kWh].
𝐸𝑃𝐿
𝑡 EVPL stored energy in time t [kWh].

𝐸𝑃𝐿
𝑤,𝑡 EVPL stored energy in real time for sce-

nario w [kWh].
𝑁𝐸𝑉 ,𝑒𝑛𝑡 Number of total arrived EVs in a day.
𝑁𝐸𝑣,𝑎𝑟𝑟

𝑡 Number of arrived EVs at time t.
𝑁𝐸𝑣,𝑑𝑒𝑝

𝑡 Number of departed EVs at time t.
𝑃 𝑐ℎ,𝑚𝑎𝑥
𝑐𝑙 Maximum charging power of the EVs class

cl [kW].
𝑃 𝑐ℎ,𝑚𝑖𝑛
𝑐𝑙 Minimum charging power of the EVs class

cl [kW].
𝑃 𝑑𝑐,𝑚𝑎𝑥
𝑐𝑙 Maximum discharging power of the EVs

class cl [kW].
𝑃 𝑑𝑐,𝑚𝑖𝑛
𝑐𝑙 Minimum discharging power of the EVs

class cl [kW].
𝑃𝑖∕𝑄𝑖∕𝑉𝑖∕𝜃𝑖 Active/reactive power injection/voltage

amplitude/angle of bus i
𝑃𝐷𝐴,𝑠𝑐
𝑡 EVPL scheduled power in DA stage at time

t [kW].

for optimal participation of an EVPL-owned microgrid in the energy
and reserve market without considering EV uncertainties. EVPL mod-
elling in this work is based on a single EV model. Ref. [8] proposed
an approach for load scheduling of EVs to reduce their charging cost
by optimally providing ancillary service for the grid. The uncertainty
2

i

𝑃 𝑃𝐿,𝑐ℎ
𝑡 Charging power of EVPL at time t [kW].

𝑃 𝑃𝐿,𝑑𝑐
𝑡 Discharging power of EVPL at time t [kW].

𝑃 𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤,𝑡 Purchasing power of EVPL in real time for

scenario w [kW].
𝑃 𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤,𝑡 Selling power of EVPL in real time for

scenario w [kW].

of the arrival and departure time of EVs has been neglected because
of the deterministic formulation of the problem. However, neglecting
uncertainty will result in unreliable analysis and inaccurate outputs.

A part of the literature attempted to consider EV uncertainties in EV-
related studies. Some studies addressed the uncertainty by generating
a value for uncertain parameters of each EV that is a part of the EV
aggregation based on the Probability Distribution Function (PDF) of
the uncertain parameters. In [9], an approach is proposed to assist
the distribution system operator with the optimal operation of the
system in the presence of an EVPL and demand response programme.
In this paper, the EV modelling is based on a single EV. However,
EV uncertainties have been taken into account by generating random
values for the uncertain parameter of each EV based on truncated
normal distribution. The other approach deployed in a part of literature
to consider EV uncertainty is to generate a single scenario by random
value generation based on parameters’ pdf or random value selection
among historical data. Ref. [10] studies EV aggregation’s role in in-
reasing the sustainability of the power system. It is given that number
f EVs arriving at the charging station is fixed. This way, random values
re generated for each EV’s arrival and departure based on the PDF
esulting from historical data. In [11], the impact of a PV-equipped
VPL operation on the distribution network is investigated. This paper
odelled EVPLs based on the expected loading profile generated by

andomly selected EVs’ parking duration.
Some other papers in the literature generate multiple scenarios for

ncertain EV parameters and proceed with scenario-based approaches
o utilize the generated scenarios. Ref. [12], similar to [5], proposed

a storage-equivalent model for EV parking addressing EV uncertainties
via a scenario-based stochastic formulation. Authors in [13] presented
transactive energy management for EVPLs equipped. Multiple scenarios
are generated for the arrival and departure times based on the normal
distribution, and energy management is performed according to the
generated scenarios. The uncertainty of EVs in [14] that intends to
integrate EVPLs in the distribution system, is handled via introducing
24 groups of EVs classified based on arrival and departure time. The
arrival and departure times are generated from the truncated normal
distribution function. In [15], authors proposed an approach for the
optimal bidding strategy of EV aggregators. EV aggregator charging is
modelled based on its expected strategy in the demand response pro-
gramme. To consider EV uncertainties, the problem is studied in a few
scenarios generated based on the type of EV. Similarly, in [16], energy
management of an EVPL is conducted under a load reduction-based
demand response programme. To take into account the uncertainty,
eight scenarios are generated for the reference power profile of the
parking lot based on the driving cycles of EVs. Authors in [17], for
onducting optimal planning of EVPLs generate several scenarios for
V uncertain parameters using Monte Carlo simulation. For decreasing
he simulation time Kantorovich distance technique is used to reduce
he number of scenarios. Ref. [18] proposed a stochastic approach
or optimal charge and discharge scheduling of a parking lot. This
ay, similar to [13], different scenarios are generated based on the

runcated normal distribution. However, the total number of arrived
Vs is given a fixed parameter. Ref. [19] utilized a scenario-based
pproach for formulating the uncertain smart EV charging to evaluate
he profitability of compressed air energy storage. Authors in Ref. [20]

nvestigated the flexibility potential of EV parking lots in both V2G and
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G2V modes as a component of microgrids. In this regard, a stochastic
programming methodology is used to address the EV uncertainty via
multiple scenarios.

In addition to the mentioned approaches, parameter prediction
based on historical data is the other method for considering EV uncer-
tainties. In this regard, [21] that tries to deploy the potential of EVPLs
or increasing the distribution system reliability, models an existing
VPL as available storage capacity. This way, sequential Monte Carlo
imulations are utilized to determine the equivalent model based on
he historical data of the parking lot. Ref. [22] presented a data-driven
pproach to predict EV owners’ behaviour in an EVPL. Then, EVPL is
odelled as an aggregation of single EVs. Authors in [23] deployed

n energy storage model for EV aggregators in order to present a
obust optimization approach for their participation in energy markets.
V aggregator modelling in this work is based on forecasted demand
or different types of EVs under the aggregator contract. Ref. [24]
resented an approach for defining the optimal operational strategy
or an EVPL equipped with local photovoltaic generation. To consider
he charging pattern and EV availability uncertainty, historical data
rom a real-case parking lot has been utilized to forecast the charging
haracteristic. EVs’ arrival and departure uncertainty in [25] that study
he optimal operation of an EVPL in a microgrid is addressed via
eploying a Markov chain model for predicting the EV availability
sing historical data.

.3. Research gap

EVPL (or EV aggregation) uncertainty modelling based on pre-
iction using historical data (Refs. [5,21,23,24], and [25]) is just
pplicable to the studies related to existing parking lots. Such ap-
roaches cannot be employed for planning studies. Because in such
pproaches the core of the modelling is forecasting the uncertain
arameters using the historical data of the EV charging stations, while
or planning studies, historical data is not available for the Parking lots
hat have not yet been constructed.

In addition, there are challenges in utilizing single or multiple-
cenario generation (Refs. [9] to [18]) for uncertainty modelling.
irstly, the limited number of generated scenarios cannot totally reflect
he characteristics of the PDF. Moreover, it imposes complexity on the
eployed approach due to stochastic aspects that add to the formulation
nd modelling. Furthermore, it will produce a computational burden
hen several uncertain parameters exist, and the number of generated

cenarios is high. Besides the mentioned disadvantages of the scenario
eneration approach, specifically, there is a critical difficulty in deploy-
ng this approach for considering EV uncertainties in the studies related
o EV aggregation charging. In this type of EV uncertainty modelling,
or all EVs, based on the selected PDF, random values are generated for
rrival and departure times. According to the generated values for each
V, the number of arrived EVs at the parking lot in each hour will be
efined. Therefore, in such approaches, the number of arrived/departed
Vs (in a day) is a parameter and predefined. This way, the scenarios
re generated with regard to the total arrived/departed EVs, and then
he generated scenarios are utilized in the deployed stochastic method.
onsequently, scenario generation cannot work for studies where the
umber of EVs is unknown or is a variable of the problem, especially
or some sorts of planning problems.

Furthermore, the literature review indicates that almost all papers
hat studies EVPLs in the power system assumed that EVPL charging
n the charging stations or EVPLs is exclusive-charger based. In other
ords, for every single EV in the parking lot, there is one charger

hat is connected to an EV all the time that the EV is parked in the
arking space. In such studies, it is assumed that all parking spaces
n the parking lot are equipped with a separate EV charger. However,
nowing that Each EV is parked in the parking for several hours while
he charging process takes a few hours, there is no need to equip
3

ach parking space with a separate charger. In this regard, our paper t
roposes a charger-sharing approach that empowers EVPL operators to
eploy one charger for multiple EV spaces. This way, more efficient
perational and planning decisions could be made for EVPL owners
hat assist them in increasing their operational profit (for operation
urposes) or decreasing investment costs (for planning purposes). It
s noteworthy that the nature of our proposed virtual battery model
llows us to study the EVPL with the charger-sharing approach, while
he other EVPL models that have been presented yet(due to their
imitations) cannot cope with the charger-sharing approach.

.4. Contributions

Although several studies have been conducted to model the charg-
ng of aggregated EVs, a straightforward compact model with low
omputational burden that is able to reflect EVs arrival and depar-
ure uncertainties and model charger-sharing charging is missing. The
roposed virtual battery model for modelling the EVPL (consisting
f unidirectional and bidirectional EV chargers) scheduling enables
he study of aggregated EV charging in interaction with other energy
ystem components from the point of view of the charging station
wner, power system operator, and all agents that intend to study
he system for the operation or planning purpose. Moreover, using the
irtual battery model, EV aggregation charging could be studied like a
attery. This way, using the CDF of the truncated normal distribution,
he number of arriving, departing, and parked EVs in each hour is
alculated based on the maximum number of hosted EVs in the day,
nd the characteristics of the proposed virtual model are determined
ccording to the obtained values. Therefore, the proposed modelling
an be utilized for large-scale operational or planning studies that deal
ith aggregated EV charging when arrival and departure uncertainty

s taken into consideration without imposing additional computational
urden on the simulation. Furthermore, the efficient performance of
he proposed virtual battery model has been validated by comparing its
erformance on DA and RT markets with the scenario-based method.
he comparison between our paper and related papers in the litera-
ure in terms of uncertainty model, EV model, planning applicability,
ccuracy, computational burden, and charger-sharing modelling is pre-
ented in Table 1. It is noteworthy that the High, Mid, and Low terms
sed for describing the accuracy and computational burden are related
o the overall EV aggregation and uncertainty model in the papers. The
erms are determined in comparison with our approach, and most of the
entioned papers have resealable accuracy and computational burden.

The other contribution of this paper lies in proposing an approach
hat empowers the EV charging place operator to utilize the charging
tations in the most efficient way. This way, the EVPL can host the
ost possible number of EVs. From the planning point of view, for

harging a specified number of EVs, there is no need to equip each
arking lot with one EV charger. Instead, multiple EVs can be charged
y one EV charger as depicted in Fig. 2. Note that EV chargers in (a)
xclusive charger and (b) charger-sharing are the same in terms of type
nd charging capacity. The idea is raised from the fact that each EV
ay be parked for several hours while the charging process may last
few hours. Therefore, there is no need to equip each parking space
ith a charging station. Instead, using the proposed charger-sharing
pproach, one charging station could be deployed for charging multiple
vs parked in different parking spaces. It is worth mentioning that
mong the EVs that share one charger, one EV is charged at each time.
herefore, the proposed model could also assist in planning decisions
n the optimal number of EV charging stations for a parking lot. It
hould be noted that our proposed virtual battery model enables us
o study and model EVPLs’ charger-sharing operation, while the other
V aggregation models cannot model the charger-sharing charging.
n this regard, in the charger-sharing charging mode, the maximum
umber of hosted EVs by EVPLs during the whole day is a decision
ariable of the problem that should be optimally determined in the
ptimization problem involving all of the EVPL and EVs constraints.
he graphical abstract of our paper is depicted in Fig. 1. To summarize,

he contributions of this paper are listed below.
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Table 1
EV modelling in the literature.

Ref Uncertainty model EV model AfP ac CB CS

Ref. [4] Parameter prediction Single EV-based ✘ Mid Low ✘

Ref. [5] Parameter prediction Storage model ✘ Mid Low ✘

Ref. [6] ✘ Storage model ✓ Low Low ✘

Ref. [7] ✘ Single EV-based ✓ Low Low ✘

Ref. [8] ✘ Single EV-based ✓ Low Low ✘

Ref. [9] Random generation Single EV-based ✓ High High ✘

Ref. [10] Random generation Storage model ✓ High High ✘

Ref. [11] Random generation Load profile ✓ High High ✘

Ref. [12] Scenario generation Storage model ✓ High High ✘

Ref. [13] Scenario generation Storage model ✓ High High ✘

Ref. [14] Scenario generation Storage model ✓ High High ✘

Ref. [15] Scenario generation Storage model ✓ High High ✘

Ref. [16] Scenario generation Load profile ✓ High High ✘

Ref. [17] Scenario generation Storage model ✓ High High ✘

Ref. [18] Scenario generation Storage model ✓ High High ✘

Ref. [19] Scenario generation Storage model ✓ High High ✘

Ref. [20] Scenario generation Storage model ✓ High High ✘

Ref. [21] Parameter prediction Storage model ✘ Mid Low ✘

Ref. [22] Parameter prediction Single EV ✘ Mid Low ✘

Ref. [23] Parameter prediction Load profile ✘ Mid Low ✘

Ref. [24] Parameter prediction Storage model ✘ Mid Low ✘

Ref. [25] Parameter prediction Storage model ✘ Mid Low ✘

Our paper PDF-based calculation Virtual battery ✓ High Low ✓

AfP: Applicable for Planning, ac: accuracy, CB: computational burden, CS:
Charger-sharing.

• Proposing a novel charger-sharing approach for EVPL charging
which defines the maximum number of EVs that an EVPL with a
specified number of charging stations can host while committing
to charging the EVs based on their desired final SOC upon their
departure.

• Developing a straightforward compact virtual battery model for
aggregated EV charging considering the uncertainty of departure
and arrival enabling charging station owner, system operator,
and other upper-level agents to study and model the EV park-
ing station and its charging process (in both charger-sharing
and exclusive charger mode) in interaction with other system
components with a very low computational burden.

• Designing a two-stage validation framework for evaluating the
performance of the proposed virtual battery model in market par-
ticipation of a 24-bus distribution system with high penetration of
EVs

The rest of the paper is organized as follows. In Section 2, the
roposed virtual battery model is presented. Section 3 explains the

process for validating our proposed virtual model for considering un-
certainty. Simulation results for the presented case study are discussed
in Section 4. Finally, our conclusions are presented in 5.

2. Proposed virtual battery model

In our proposed approach, the EVPL is modelled as a time-variant
storage system based on EVs’ arrival and departure times as presented
in Fig. 3. While a battery is characterized with its constant maxi-
mum charging and discharging power (𝑃 𝑐ℎ,𝑚𝑎𝑥 and 𝑃 𝑑𝑐,𝑚𝑎𝑥) as well
as constant maximum and minimum SOC (𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑚𝑖𝑛), the
proposed virtual battery is characterized with time-variant parameters
𝑃 𝑐ℎ,𝑚𝑎𝑥
𝑡 , 𝑃 𝑑𝑐,𝑚𝑎𝑥

𝑡 , 𝑆𝑂𝐶𝑚𝑎𝑥
𝑡 , and 𝑆𝑂𝐶𝑚𝑖𝑛

𝑡 . For each hour, the mentioned
parameters are determined based on the arriving, departing and parked
EVs in that hour. In our model, the uncertainty of arrival and departure
time is taken into account to define the parameters of the equiva-
lent storage model. After determining the equivalent-storage model,
energy management is done for optimal operation and planning of the
parking lot. In this paper, we consider that the parking lot will host
different classes of EVs with different battery capacities, charging and
discharging power as well as initial and final SOCs.
4

Fig. 1. The graphical abstract of our paper.

Fig. 2. (a) exclusive charger and (b) charger-sharing charging.

The stored energy in the parking lot in each hour is obtained based
on the stored energy in the parking lot in the previous hour as well
as stored energy in the arriving and departing EVs in that hour as
represented in (1). 𝜂𝑐ℎ and 𝜂𝑑𝑐 stand for the charging and discharging
fficiency. 𝛥𝑡 is the duration of a single time period. 𝛥𝑡 is multiplied
ith the charging and discharging power to obtain the energy within

he time period. Since in this paper, each single time period is equal
o one hour, 𝛥𝑡 is equal to 1. Therefore, each day consists of 24 time
eriods.

𝑃𝐿
𝑡 = 𝐸𝑃𝐿

𝑡−1 − 𝐸𝑑𝑒𝑝
𝑡 + 𝐸𝑎𝑟𝑟

𝑡 (1)
+𝛥𝑡𝜂𝑐ℎ𝑃

𝑃𝐿,𝑐ℎ
𝑡 − (𝛥𝑡∕𝜂𝑑𝑐 )𝑃

𝑃𝐿,𝑑𝑐
𝑡

To find the containing energy of the arriving and departing EVs, it
is required to find the number of arriving and departing EVs in each
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Fig. 3. Virtual battery model for an uncertain EVPL.

our. According to the literature, the uncertainty of the arriving and
eparting time of the EVs is modelled with a truncated normal distribu-
ion function. It must be noted that the truncated normal distribution
unction has been widely used in the literature as a reliable PDF for
odelling the uncertainty of arrival and departure such as [26,27],

nd [28]. This way, using the CDF of the truncated normal distribution,
he number of arriving and departing EVs in each hour is calculated.
f we consider that, 𝑁𝐸𝑉 ,𝑒𝑛𝑡 EVs could be parked in the whole day,
he number of arriving and departing EVs in each hour is determined
s represented in (2) and (3) where 𝐹 𝑇𝑁𝐷

𝑡 is cumulative distribution
unction (CDF) of truncated normal distribution. Eq. (4) presents how
he CDF of truncated normal distribution with the upper bound b and
ower bound a is calculated based on the CDF of the normal distribution
ith mean 𝜇 and standard deviation 𝜎. It should be noticed that in our
roposed method, in the process of energy management, the maximum
umber of EVs that could be parked in the parking lot (𝑁𝐸𝑉 ,𝑒𝑛𝑡) itself is
etermined according to the optimal operation of the system to utilize
he charging stations most efficiently. The maximum number of EVs
hat could be parked should be less than the number of available EVs
rriving in the parking as represented in (5).

𝑁𝐸𝑣,𝑎𝑟𝑟
𝑡 = 𝑁𝐸𝑉 ,𝑒𝑛𝑡(𝐹 𝑇𝑁𝐷,𝑎𝑟𝑟

𝑡+0.5 − 𝐹 𝑇𝑁𝐷,𝑎𝑟𝑟
𝑡−0.5 ); ∀𝑡 (2)

𝑁𝐸𝑣,𝑑𝑒𝑝
𝑡 = 𝑁𝐸𝑉 ,𝑒𝑛𝑡(𝐹 𝑇𝑁𝐷,𝑑𝑒𝑝

𝑡+0.5 − 𝐹 𝑇𝑁𝐷,𝑑𝑒𝑝
𝑡−0.5 ); ∀𝑡 (3)

𝑇𝑁𝐷(𝑥) =
𝛷(𝑥, 𝜇, 𝜎) −𝛷(𝑎, 𝜇, 𝜎)
𝛷(𝑏, 𝜇, 𝜎) −𝛷(𝑎, 𝜇, 𝜎)

(4)

𝑁𝐸𝑉 ,𝑒𝑛𝑡 ≤ 𝑁𝐸𝑉 ,𝑎𝑣𝑎 (5)

It is clear that the numbers that (2) and (3) generate are not
necessarily integer numbers. However, because the purpose of calcu-
lating the number of arriving and departing EVs in each hour is to
find the containing energy of the arriving and departing EVs as well
as the maximum and minimum charging and discharging power of
the parking lot, in addition to the fact that the number generation is
intended to model the uncertainty, there is no crucial need to convert
the generated numbers to integer numbers. Eqs. (6) and (7) represent
5

the containing energy of the arrived EVs equivalent to their initial d
SOC upon their arrival and the containing energy of the departed EVs
equivalent to their final SOC upon their departure in each hour. 𝐶𝑎𝑝𝑐𝑙
refers to the battery capacity of EV class cl.

𝐸𝑎𝑟𝑟
𝑡 = 𝑁𝐸𝑣,𝑎𝑟𝑟

𝑡 (
∑

𝑐𝑙
𝐶𝑎𝑝𝐸𝑣

𝑐𝑙 𝑆𝑂𝐶𝑎𝑟𝑟
𝑐𝑙 𝑆ℎ𝑐𝑙),∀𝑡 (6)

𝐸𝑑𝑒𝑝
𝑡 = 𝑁𝐸𝑣,𝑑𝑒𝑝

𝑡 (
∑

𝑐𝑙
𝐶𝑎𝑝𝐸𝑣

𝑐𝑙 𝑆𝑂𝐶𝑑𝑒𝑝
𝑐𝑙 𝑆ℎ𝑐𝑙); ∀𝑡 (7)

To obtain the EVPL’s equivalent storage model, the hourly maxi-
mum and minimum bounds for charging and discharging power as well
as stored energy in the EVPL should be defined. In this regard, firstly,
the charging power of the parking lot for each hour should be less
than the total charging capacity of the parking lot that is equal to the
total maximum charging power of the charging stations in the parking
lot as presented in (8). It is noteworthy that for the charger-sharing
charging the number of EV chargers can be less than the number of
parked EVs. Moreover, it should be noted that as the line that connects
the EVPL to the grid is designed based on the capacity of the whole
EV chargers existing in the parking lot, the line capacity is equal to
the whole charging capacity of EV chargers. This way, as the charging
power of EVPL in the charger-sharing approach is limited to the whole
charging capacity of the EV chargers as represented in, the line capacity
limitation will not be violated in the charger-sharing approach. In
addition, the charging power should be less than the summation of the
maximum charging power of the existing EVs in that hour as presented
in (9). This way, the number of parked EVs in each hour is obtained
according to the number of parked EVs in the previous hour and the
number of EVs that arrive and depart the parking in that hour as
represented in (12). Similarly, the discharging power of the EVPL is
constrained as represented in (10) and (11).

0 ≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑡 ≤ 𝐶𝑃𝐿,𝑐ℎ

𝑖𝑛𝑠 ; ∀𝑡 (8)

0 ≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑡 ≤ 𝑁𝐸𝑉 ,𝑝𝑎𝑟

𝑡 (
∑

𝑐𝑙
𝑃 𝑐ℎ,𝑚𝑎𝑥
𝑐𝑙 𝑆ℎ𝑐𝑙); ∀𝑡 (9)

0 ≤ 𝑃 𝑃𝐿,𝑑𝑐
𝑡 ≤ 𝐶𝑃𝐿,𝑑𝑐

𝑖𝑛𝑠 ,∀𝑡 (10)

0 ≤ 𝑃 𝑃𝐿,𝑑𝑐
𝑡 ≤ 𝑁𝐸𝑉 ,𝑝𝑎𝑟

𝑡 (
∑

𝑐𝑙
𝑃 𝑑𝑐,𝑚𝑎𝑥
𝑐𝑙 𝑆ℎ𝑐𝑙); ∀𝑡 (11)

𝑁𝐸𝑉 ,𝑝𝑎𝑟
𝑡 = 𝑁𝐸𝑉 ,𝑝𝑎𝑟

𝑡−1 +𝑁𝐸𝑣,𝑎𝑟𝑟
𝑡 −𝑁𝐸𝑣,𝑑𝑒𝑝

𝑡 ; ∀𝑡 (12)

The stored energy in the parking lot in each hour must be less
than the total allowed capacity of the parked EVs in that hour which
is obtained by the maximum allowed SOC of the EVs. In addition,
according to the minimum allowed SOC of the parked EVs in each
hour, the lower bound of parking lot stored energy in that hour is
calculated. This way, the stored energy in the Parking lot is constrained
as represented in (13).

𝐸𝑃𝐿,𝑚𝑖𝑛
𝑡 ≤ 𝐸𝑃𝐿

𝑡 ≤ 𝐸𝑃𝐿,𝑚𝑎𝑥
𝑡 ; ∀𝑡 (13)

𝐸𝑃𝐿,𝑚𝑖𝑛
𝑡 = 𝑁𝐸𝑉 ,𝑝𝑎𝑟

𝑡 (
∑

𝑐𝑙
𝐶𝑎𝑝𝐸𝑣

𝑐𝑙 𝑆𝑂𝐶𝑚𝑖𝑛𝑆ℎ𝑐𝑙); ∀𝑡 (14)

𝐸𝑃𝐿,𝑚𝑎𝑥
𝑡 = 𝑁𝐸𝑉 ,𝑝𝑎𝑟

𝑡 (
∑

𝑐𝑙
𝐶𝑎𝑝𝐸𝑣

𝑐𝑙 𝑆𝑂𝐶𝑚𝑎𝑥𝑆ℎ𝑐𝑙); ∀𝑡 (15)

Moreover, the charging and discharging power cannot be nonzero
simultaneously as presented in (16). To discard the non-linearity that
(16) generates, the big M approach is used according to (17) and (18).

𝑃 𝑃𝐿,𝑐ℎ
𝑡 𝑃 𝑃𝐿,𝑑𝑐

𝑡 = 0; ∀𝑡 (16)

≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑡 ≤ 𝑢𝑡𝑀 ; ∀𝑡 (17)

≤ 𝑃 𝑃𝐿,𝑑𝑐
𝑡 ≤ (1 − 𝑢𝑡)𝑀 ; ∀𝑡 (18)

All in all, the EVPL considering the uncertainty of arrival and

eparture times is modelled as a virtual battery according to (1)–(18).
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3. Validation approach

To evaluate our proposed virtual battery model, it is required to
investigate its performance in a representative problem and compare
it with other existing approaches. In this section, we have selected the
optimal operation of a distribution system (DS) with high penetration
of EVPLs in the DA market as a representative problem to assess
the performance of our proposed approach and compare it with the
scenario-based approach for EV uncertainty modelling that is widely
used in this field of research. We selected the operational market
participation problem for performance evaluation, as it validates the
performance of our approach precisely. This way, to show the effective-
ness of our virtual battery model in uncertainty modelling, the pricing
of the DA and RT market has been selected in such a way that error
in uncertainty evaluation imposes a cost to the EVPL. In other words,
the selling price in RT is lower in comparison with the DA market,
and the purchasing price in RT is higher than in RT. Therefore, if the
parking lot could not consider EVs uncertainties and estimate its load
profile correctly, it will be forced to trade in the RT market where
both purchasing and selling in this market is more costly than in the
DA market. This is the reason why we choose this kind of pricing
mechanism for the evaluation of the success of our approach in uncer-
tainty modelling. It should be noted that, because other EV uncertainty
modelling methodologies cannot model the charger-sharing approach,
in this section, we compare our proposed virtual battery modelling
with the scenario-based modelling in the exclusive charger charging
case. For the sake of simplicity, it is considered that all chargers in
the parking lot are unidirectional chargers without the capability of EV
discharge. In this case, the total number of the EVs that arrive in the
whole day is equal to EV chargers. The market participation problems
for each approach and their resulting cost calculation in realization
scenarios are described in the below sections. The overall validation
process flowchart is depicted in Fig. 4.

3.1. Market participation with proposed virtual battery model

Via the proposed virtual battery model, the market participation of
the DS is formulated as below where DS tries to minimize its cost in the
DA market. It is noteworthy that our virtual battery model does not in-
volve any stochastic process for RT status of EVs arrival and departure,
and the DA stage decisions are made based on the characteristics of
the virtual battery model that are extracted considering the PDF of the
uncertain parameters.

𝑂𝐹 = min
∑

𝑡
𝑃𝐷𝐴
𝑡 𝜆𝐷𝐴

𝑡

𝑠.𝑡. (1)–(18) and DS constraints

3.2. Market participation with scenario-based storage model

In the scenario-based approach for modelling EV uncertainty, based
on the generated scenarios for the RT state of EVs from the truncated
normal distribution function for all EVPLs, the optimal values regarding
the DA market decisions of DS will be obtained via two-stage stochastic
programming. This way, the parameters for the storage model of the
EVPLs in each scenario are obtained by the EVs’ arrival and departure
in that scenario. In this regard, the number of arrived and departed
EVs in each hour is generated for each scenario and based on that
𝐸𝑎𝑟𝑟
𝑡 , 𝐸𝑑𝑒𝑝

𝑡 , 𝑃 𝑃𝐿,𝑐ℎ,𝑚𝑎𝑥
𝑡 , 𝐸𝑃𝐿,𝑚𝑖𝑛

𝑡 , and 𝐸𝑃𝐿,𝑚𝑎𝑥
𝑡 are determined. Then, the

optimal DA decisions of the DS will be obtained by solving (19), that
is the objective function of the DS in the market participation problem,
subject to (20)–(24) which are the constraints of the problem. The first
term in the objective function indicates the DS cost in the DA stage,
and the second term is the weighted cost of DS related to the RT stage
considering the probability of each scenario. In this approach, the DA
decisions are made according to the possible scenarios that may occur
6

in RT and their expected costs. It should be noted that the RT price is
also an uncertain parameter. The RT price in each hour has a normal
PDF with the mean value of the DA price in that hour and the standard
deviation equal to 0.3𝜆𝐷𝐴

𝑡 as indicated in Fig. 5.

𝑂𝐹 = min
∑

𝑡
𝑃𝐷𝐴
𝑡 𝜆𝐷𝐴

𝑡 +

∑

𝑤𝐸𝑉

∑

𝑤𝑟𝑡

𝜋𝑤𝐸𝑉
𝜋𝑤𝑟𝑡

(𝑃 𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤𝐸𝑉 ,𝑡𝜆

𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤𝑟𝑡 ,𝑡

+ 𝑃 𝑝𝑢𝑟,𝑟𝑡
𝑤𝐸𝑉 ,𝑡𝜆

𝑝𝑢𝑟,𝑟𝑡
𝑤𝑟𝑡 ,𝑡

) (19)

s.t. DS constraints and

𝐸𝑃𝐿
𝑤𝐸𝑉 ,𝑡 = 𝐸𝑃𝐿

𝑤𝐸𝑉 ,𝑡−1 − 𝐸𝑑𝑒𝑝
𝑤𝐸𝑉 ,𝑡 + 𝐸𝑎𝑟𝑟

𝑤𝐸𝑉 ,𝑡 (20)

+𝛥𝑡𝜂𝑐ℎ𝑃
𝑃𝐿,𝑐ℎ
𝑤𝐸𝑉 ,𝑡 ; ∀𝑡, 𝑤𝐸𝑉

𝑃 𝑃𝐿,𝑐ℎ
𝑤𝐸𝑉 ,𝑡 = 𝑃𝐷𝐴

𝑡 + 𝑃 𝑝𝑢𝑟,𝑟𝑡
𝑤𝐸𝑉 ,𝑡 − 𝑃 𝑠𝑒𝑙𝑙,𝑟𝑡

𝑤𝐸𝑉 ,𝑡; ∀𝑡, 𝑤𝐸𝑉 (21)

0 ≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑤𝐸𝑉 ,𝑡 ≤ 𝐶𝑃𝐿,𝑐ℎ

𝑖𝑛𝑠 ; ∀𝑡, 𝑤𝐸𝑉 (22)

0 ≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑤𝐸𝑉 ,𝑡 ≤ 𝑃 𝑃𝐿,𝑐ℎ,𝑚𝑎𝑥

𝑤𝐸𝑉 ,𝑡 ; ∀𝑡, 𝑤𝐸𝑉 (23)
𝑃𝐿,𝑚𝑖𝑛
𝑤𝐸𝑉 ,𝑡 ≤ 𝐸𝑃𝐿

𝑤𝐸𝑉 ,𝑡 ≤ 𝐸𝑃𝐿,𝑚𝑎𝑥
𝑤𝐸𝑉 ,𝑡 ; ∀𝑡, 𝑤𝐸𝑉 (24)

.3. Cost calculation in the realization scenarios

In this section, new realization scenarios are generated for EVs
rrival and departure. Then, based on the determined DA power trade
n the previous section and realization scenarios, the RT power trade
re defined for each approach, and the total cost of the DS in the
ealization RT market is calculated according to the new scenarios
enerated to stand for the realization. In other words, realization
cenarios are generated from the truncated normal PDF to represent
he realization stage and 𝐸𝑎𝑟𝑟

𝑡 , 𝐸𝑑𝑒𝑝
𝑡 , 𝑃 𝑃𝐿,𝑐ℎ,𝑚𝑎𝑥

𝑡 , 𝐸𝑃𝐿,𝑚𝑖𝑛
𝑡 , and 𝐸𝑃𝐿,𝑚𝑎𝑥

𝑡 are
etermined. Then regarding the DA scheduled power of each approach,
he traded power in RT is calculated, and the cost of the DS in the RT
tage for realization scenarios resulting from each approach is obtained
y solving (25) subject to (26)–(30). Then the total cost of the DS in the
A and RT stages are calculated and compared for the two approaches

o give an overview of the performance of our proposed approach.
ultiple scenarios are generated for the realization instead of single

cenario to provide more reliable outputs.

𝐹 = min
∑

𝑤𝑅𝐶𝐸𝑉

∑

𝑤𝑅𝐶𝑟𝑡

𝜋𝑤𝑅𝐶𝐸𝑉
𝜋𝑤𝑅𝐶𝑟𝑡

.

𝑃 𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤𝑅𝐶𝐸𝑉 ,𝑡𝜆

𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤𝑅𝐶𝑟𝑡 ,𝑡

+ 𝑃 𝑝𝑢𝑟,𝑟𝑡
𝑤𝑅𝐶𝐸𝑉 ,𝑡𝜆

𝑝𝑢𝑟,𝑟𝑡
𝑤𝑅𝐶𝑟𝑡 ,𝑡

) (25)
.t. to DS constraints and

𝑃𝐿
𝑤𝑅𝐶𝐸𝑉 ,𝑡 = 𝐸𝑃𝐿

𝑤𝑅𝐶𝐸𝑉 ,𝑡−1 − 𝐸𝑑𝑒𝑝
𝑤𝑅𝐶𝐸𝑉 ,𝑡 + 𝐸𝑎𝑟𝑟

𝑤𝑅𝐶𝐸𝑉 ,𝑡 (26)

+𝛥𝑡𝜂𝑐ℎ𝑃
𝑃𝐿,𝑐ℎ
𝑤𝑅𝐶𝐸𝑉 ,𝑡; ∀𝑡, 𝑤𝑅𝐶𝐸𝑉

𝑃 𝑃𝐿,𝑐ℎ
𝑤𝑅𝐶𝐸𝑉 ,𝑡 = 𝑃𝐷𝐴,𝑠𝑐

𝑡 + 𝑃 𝑝𝑢𝑟,𝑟𝑡
𝑤𝑅𝐶𝐸𝑉 ,𝑡 (27)

−𝑃 𝑠𝑒𝑙𝑙,𝑟𝑡
𝑤𝑅𝐶𝐸𝑉 ,𝑡; ∀𝑡, 𝑤𝑅𝐶𝐸𝑉

0 ≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑤𝑅𝐶𝐸𝑉 ,𝑡 ≤ 𝐶𝑃𝐿,𝑐ℎ

𝑖𝑛𝑠 ; ∀𝑡, 𝑤𝑅𝐶𝐸𝑉 (28)

0 ≤ 𝑃 𝑃𝐿,𝑐ℎ
𝑤𝑅𝐶𝐸𝑉 ,𝑡 ≤ 𝑃 𝑃𝐿,𝑐ℎ,𝑚𝑎𝑥

𝑤𝑅𝐶𝐸𝑉 ,𝑡 ; ∀𝑡, 𝑤𝑅𝐶𝐸𝑉 (29)
𝑃𝐿,𝑚𝑖𝑛
𝑤𝑅𝐶𝐸𝑉 ,𝑡 ≤ 𝐸𝑃𝐿

𝑤𝑅𝐶𝐸𝑉 ,𝑡 ≤ 𝐸𝑃𝐿,𝑚𝑎𝑥
𝑤𝑅𝐶𝐸𝑉 ,𝑡; ∀𝑡, 𝑤𝑅𝐶𝐸𝑉 (30)

.4. Distribution system constraints

The constraints related to the power flow in the distribution sys-
em [29] is presented below.

𝑖𝑗 =
𝑟𝑖𝑗

𝑟2𝑖𝑗 + 𝑥2𝑖𝑗
(𝑉𝑖 − 𝑉𝑗 ) +

𝑥𝑖𝑗
𝑟2𝑖𝑗 + 𝑥2𝑖𝑗

(𝜃𝑖 − 𝜃𝑗 ) (31)

𝑖 =
𝑁𝐵
∑

𝑗=1,𝑖≠𝑗
𝑃𝑖,𝑗 (32)

𝑖𝑗 =
𝑥𝑖𝑗

2 2
(𝑉𝑖 − 𝑉𝑗 ) −

𝑟𝑖𝑗
2 2

(𝜃𝑖 − 𝜃𝑗 ) (33)

𝑟𝑖𝑗 + 𝑥𝑖𝑗 𝑟𝑖𝑗 + 𝑥𝑖𝑗
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Fig. 4. Validation process flowchart.
𝑄𝑖 =
𝑁𝐵
∑

𝑗=1,𝑖≠𝑗
𝑄𝑖,𝑗 (34)

𝑃 2
𝑖𝑗 +𝑄2

𝑖𝑗 ≤ 𝑆2
𝑖𝑗 (35)

for bus 0:

𝑃𝑅𝑇
𝑖 = 𝑃𝐷𝑁

𝑡 − 𝑃 𝐹 𝑖𝑥
𝐿,𝑖,𝑡 (36)

𝑄𝑅𝑇
𝑖 = 𝑃𝐷𝑁

𝑡 −𝑄𝐹 𝑖𝑥
𝐿,𝑖,𝑡 (37)

for EVPL buses:

𝑃𝑅𝑇
𝑖 = −𝑃𝐸𝑉 𝑃𝐿,𝑅𝑇

𝑘,𝑡 − 𝑃 𝐹 𝑖𝑥
𝐿,𝑖,𝑡 (38)

𝑄𝑅𝑇
𝑖 = −𝑄𝐹 𝑖𝑥

𝐿,𝑖,𝑡 (39)

for non-EVPL buses

𝑃𝑅𝑇
𝑖 = 𝑃 𝐹 𝑖𝑥

𝐿,𝑖,𝑡 (40)

𝑄𝑅𝑇
𝑖 = −𝑄𝐹 𝑖𝑥

𝐿,𝑖,𝑡 (41)

4. Simulation results

As presented in the previous section, to validate the performance of
our proposed virtual battery model and the profitability of the charger-
sharing approach, we study the problem of optimal participation of an
EVPL in DA and RT markets. This way, firstly, without considering the
charging-sharing approach, our proposed model is evaluated by com-
paring its performance with the performance of the scenario generation
approach. Then, the profitability of the charger-sharing approach in
7

comparison with the exclusive charger is presented.
Table 2
EV classes and characteristics.

cl 𝐶𝑎𝑝𝑐𝑙 𝑆𝑂𝐶𝑎𝑟𝑟
𝑐𝑙 𝑆𝑂𝐶𝑑𝑒𝑝

𝑐𝑙 𝑃 𝑐ℎ,𝑚𝑎𝑥
𝑐𝑙 𝑃 𝑑𝑐,𝑚𝑎𝑥

𝑐𝑙

1 15 0.33 0.85 7 7
2 20 0.33 0.85 10 10
3 20 0.16 0.85 10 10
4 15 0.4 0.85 7 7
5 20 0.1 0.85 10 10
6 15 0.45 0.85 7 7
7 10 0.5 0.85 5 5
8 10 0.2 0.85 5 5
9 15 0.33 0.85 7 7
10 20 0.2 0.85 10 10

4.1. Case study

In this section, the two case studies used for the validation of the
proposed approach and evaluation of the profitability of the charger-
sharing approach are explained. Firstly, For the validation purpose, as
depicted in 6, the distribution system of our case study is the modified
version of the case study used in [30] with adding EVPL to the system.
The DS owns 10 EVPLs buses. Secondly, for assessing the profitability
of the proposed charger sharing approach, an EVPL equipped with 100
bidirectional and 100 unidirectional EV chargers is used. It has been
assumed that ten classes of EV are available where the share of each
EV class from all available EVs is equal to other classes. To protect the
battery, it is assumed that 𝑆𝑂𝐶𝐸𝑉 ,𝑚𝑖𝑛 and 𝑆𝑂𝐶𝐸𝑉 ,𝑚𝑎𝑥 are 0.05 and
0.95, accordingly. Different EV classes information can be found in
Table 2. Moreover, the DA price and generated scenarios for the RT
price (purchasing and selling) are shown in Fig. 7.
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Fig. 5. PDF of RT purchasing and selling price for hour t.
Fig. 6. Case study.
Fig. 7. DA and RT electricity price.
4.2. Validation results

As explained in the previous section, to assess the performance
of our proposed virtual battery model in considering the arrival and
departure uncertainty, the operation cost of the EVPL-owned DS are
compared with the scenario-based approach. The results show that the
performance of our virtual battery model is similar to the scenario-
based approach with 21 scenarios while its computational burden is
way less than the scenario-based approach. Fig. 8(a) depicts that the
DA power purchased from the upstream grid is very close for two ap-
proaches. However, they are not equal as shown in Fig. 8(b) where the
difference in the DA power purchased from the upstream grid for the
two approaches is depicted. This different day-ahead decisions results
8

in different real-time trades for different realization scenarios as shown
in Fig. 9. However, overall the market strategy of two approaches are
similar that results in similar total DS cost. Table 3 presents that the
daily operational cost of the distribution system for providing power in
the DA and RT markets using the scenario-based approach is 1692.06 e.
While the DS operational cost with the proposed virtual batter model is
1689.78 e. The more important point is that the simulation time of our
proposed approach is 4.92 s while the simulation time of the scenario-
based approach is 219.53 s. This shows that the computational burden
of the proposed virtual battery model is 2.242% of the computational
burden of the scenario-based approach. This low computational burden
of our proposed approach is of way more importance in the large scale
problems where in addition to the uncertainty from numerous EVPLs,
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Fig. 8. (a) DA purchased power of DS for the proposed virtual battery and scenario-based approaches (b) difference of the DA purchased power for two approaches.
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Fig. 9. RT traded power of EVPL in (a) scenario-based approach and (b) the proposed
virtual battery model.

Table 3
Operational cost and simulation time of the proposed virtual battery model and the
scenario-based approach.

Approach Total cost Simulation time

Stochastic approach 1692.06 219.53
Proposed virtual battery model 1689.78 4.92

several other uncertainty resources, such as renewable generation exist
as well. This way, for large-scale problems, while using the scenario-
based approach, if the number of scenarios decreases the performance
of the scenario-based approach worsens. However, the proposed vir-
tual battery model will have similar performance for such large-scale
problems without imposing any additional computational burden. This
way, for large-scale problems, the proposed virtual battery model has a
way greater performance than the scenario-based approach. Therefore,
our proposed model is efficient model for deploying in the planning
problem and operational studies from the system level point of view
where the penetration of EVPLs is high. owing to its simple and
9

compact formulation. a
4.3. Charger-sharing approach profitability

In this section, the profitability of the charger-sharing charging
approach is shown by evaluating its role in the operation cost reduction
in comparison with the existing exclusive charger charging approach.
To this end, the optimal operation of an existing EVPL with a specified
number of EV chargers is investigated for the exclusive charging and
charger-sharing charging approach assuming that there are sufficient
parking spaces to host more EVs.

4.3.1. Exclusive-charger charging
The charging and discharging power of EVPL, the maximum capac-

ity of EV chargers for charging and discharging, and the maximum
charging and discharging power possibility from parked EVs in the
parking lot are depicted in Fig. 10. The maximum charging and dis-
harging power possibility result from the number of parked EVs in
ach hour extracted from the arrival and departure time of EVs. The
harging and discharging process is managed to meet the charging
emand at the lowest cost. This way, the EVPL do the charging in
he low-price hours and discharging in the high-price hours taking
nto account the Evs’ arrival and departure behaviour ensuring that all
Vs depart the parking lot at their desired departure time with their
esired final SOC. As expected, in the exclusive charger charging, the
ig share of the EV chargers’ charging and discharging capacity is not
eployed. This way, the total charging capacity of the whole parking lot
s 2000 kW, while in hour 14 when the charging power of the parking
ot is at the highest level, the charging power is around 1100 kW
hich is way less than the total charging capacity. In other hours the

ituation is worse. In this regard, it could be understood that a big part
f the charging capacity is unused. The purple arrows depict the unused
harging capacity of chargers in different hours. This is the motivation
or deploying the charger-sharing approach that empowers EVPLs for
aximum utilization of the charging and discharging capacity of exist-

ng chargers. Moreover, the maximum charging and discharging power
f the parked EVs is represented via the dotted curves. It is defined
ased on the number of EVs that are parked in the parking lot each
our and their nominal charging and discharging power. Therefore in
he hours when no EV is parked in the parking lot, it is equal to 0, and
s the number of parked EVs increases it rises. After hour 12, when
he number of departed EVs is getting more than the arrived EVs, the
umber of parked EVs decreases resulting in a decrease the maximum
harging and discharging power of the whole parked EVs.

Fig. 11 shows how the EVPL state of energy varies in each hour
ased on the previous hour’s state of energy, energy stored from charg-
ng, energy depleted from discharging, added energy of the arrived EVs

nd extracted energy from departed EVs. In this regard, EVs by arriving
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Fig. 10. Charging and discharging state of EVPL in exclusive-charger charging. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. EVPL state of energy in exclusive charger charging.

at the parking lot add their stored energy in their battery equivalent to
their initial SOC to the containing energy of the parking lot and deplete
the energy equivalent to their final SOC upon their departure from
the containing energy of EVPL. Moreover, the equivalent energy of the
EVs’ charging/discharging is added/subtracted to/from the containing
energy of EVPL. This way, the EVPL state of the energy varies in time
while the energy demand of the EVs is met optimally ensuring that all
EVs depart the parking lot at their desired departure time with their
desired final SOC.

4.3.2. Charger-sharing charging
The performance of the charger-sharing approach in increasing the

profit of EVPL is presented in this section. Firstly, Fig. 12 shows how
this approach assists in better deploying the capacity of EV chargers in
comparison with exclusive charger charging. In this regard, it is seen
that the total capacity of the chargers is fully deployed in hours 13,
14, and 15. Comparing the results with the exclusive charger charging
10
Table 4
Number of accepted EVs for connecting to unidirectional and bidirectional EV chargers
for different charging tariffs.

Tariff Accepted EVs for UDCH Accepted EVs for BDcH

0.07 0 160
0.08 220 181
0.09 343 221
0.1 514 514
0.11 1143 1143
0.12 1601 1601
0.13 1601 1601

shows the profitability of the charger-sharing approach in utilizing the
charging and discharging capacity of the chargers efficiently. This way,
when it comes to using one charger for charging multiple EVs, EVPL can
host more EVs (considering the parking space limitation) committing to
charging the EVs based on their desired final SOC upon their departure.
Therefore, it could gain more income from the efficient utilization of
EV chargers. We considered seven cases with different charging tariffs
assuming that in each case the tariff is acceptable by both the EVPL
owner and EV owners. The results show that if there is no limitation
on parking lot spaces, with the tariff of 0.09 e/kWh for charging EVs,
the optimal number of hosted EVs would be 343 for the EVs that just
want to be connected to UDEVCH and 221 for the EVs that are willing
to be connected to BDEVCH. When the charging tariff is higher, it is
profitable for EVPL to host more EVs (if EV chargers capacity allows
it). Table 4 presents the optimal number of hosted EVs for different
charging tariffs. It can be understood that when the charging tariff is
high, hosting more EVs would be very important in comparison with
the charging and discharging schedule, because just by hosting more
EVs, EVPL would gain a considerable profit. This way, when the tariff
increases the number of hosted EVs increases, but the limited capacity
of EV chargers does not allow for accepting EVs more than a specific
number. Because EVPL commits to charging the EVs based on their
desired final SOC upon their departure, and with the limited number
of chargers it can host a limited number of EVs. For instance, it is
seen that when the tariff increases from 0.07 e/kW to 0.12 e/kW the
number of accepted EVs increases, but when the tariff is 0.13 e/kW,
the number of accepted EVs cannot increase due to the limitation of
the EV chargers. Our charger-sharing charging approach’s performance
is evaluated by comparing the number of EV charges in EVPL and the
number of accepted EVs. When the tariff is high enough to motivate
the EVPL owner for hosting more EVs, EVPL can host around 3200 EVs
with just 200 EV chargers (considering the characteristics of EVs and
EV chargers explained in the case study section). However, when the
exclusive charger approach is deployed, 200 EVs are accepted to enter
the parking and be charged. This way, the charge-sharing approach
has a substantial performance in utilizing the potential of installed EV
chargers. In addition, this approach could be deployed in future EVPL
planning studies to minimize the investment cost for EV chargers. In
addition, Fig. 13 depicts the state of the energy of EVPL in each hour
resulting from the optimal scheduling of the EVPL.

4.4. Discussion

While comprehensive spatial–temporal models exist for considering
the location of EV charging stations, in line with the papers in the
literature that aims to model the EV parking lot for the power system
and energy market studies such as [31], in our paper the spatial
factor and location of the EV parking lot are incorporated within
the characteristics of a Truncated normal distribution. This approach
simplifies the modelling complexity and reduces computational burden,
particularly for large-scale system studies where various power system-
related components and associated uncertainties are involved. In this
context, based on the historical data of the EV owners’ behaviour in
each region the patterns of arrival and departure will be shaped via
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Fig. 12. Charging and discharging state of EVPL in charger-sharing charging.

Fig. 13. EVPL state of energy in charger-sharing charging.

pecific characteristics of the truncated normal distribution including
ean, standard deviation, maximum value, and minimum value. In

ther words, it is assumed that EVs’ arrival and departure behaviour
or a parking lot located in a certain geographical area, for example,

district of a city, follow a certain pattern [31]. Consequently, the
haracteristics of the truncated normal distribution vary for EV parking
ots located in different areas. Additionally, the maximum number of
vailable EVs in the region, as represented in Eq. (5), serves as a

determining factor for the maximum number of EVs that an EV parking
lot can host during the whole day. This factor also varies for EV
parking lots situated in different areas. In our case study, for the sake
of simplicity and comparability, we have considered unique truncated
normal distribution characteristics for different EV parking lots.

Another crucial aspect to note is that the proposed virtual model
for the EV parking lot primarily serves power system operation and
planning studies, offering a comprehensive overview of EV charging
behaviour rather than exact real-time charging process management
within the parking lot. Additionally, the key assumption here is that the
11

arrival and departure patterns of EVs conform to the truncated normal
distribution. In this regard, if EVs’ arrival and departure in the real-
case scenario, follows the truncated normal distribution, considering
the containing energy of the arriving and departing EVs and Eqs. (6)
and (7), it is guaranteed that all of the EVs depart the parking lot
in their desired time and with their desired final SOC based on the
primary optimal power consumption solution (for example in the day-
ahead stage). Otherwise, if the pattern does not exactly follow the
truncated normal distribution, a minor adjustment in the primary
charging process decisions guarantees the service quality of EV users.

For instance, in the validation section, we demonstrate that day-
ahead decisions are based on the assumption of a truncated normal
distribution for EV arrival patterns. However, in real-time operations,
slight modifications are made to the charging schedule to cope with the
actual EV arrival and departure patterns. The charger-sharing approach
has no adverse impact on the users’ service quality. This is because
our model ensures compliance with the requirements of EV aggregation
charging, considering both departure time and final SOC. The EV park-
ing lot operator is in charge of prioritizing the charging schedule within
the parked EVs in the parking based on their departure time. This
aspect of the work is not within the scope of our paper, since our main
purpose is to model the charging behaviour of the EV parking lot as an
EV aggregation. However by considering the mentioned constraints the
feasibility of the charging solution is guaranteed.

Moreover, Our proposed charger-sharing approach does not man-
date charging only one EV at a time per charger. This suggestion aims
to minimize potential technical barriers and reduce investment costs
associated with charging-sharing assets. Therefore, our approach allows
for the simultaneous charging of multiple EVs using a single charger.
Furthermore, charging a single EV at a time per charger does not result
in a queue or delayed departures beyond the preferred departure times.
This is because the charging schedule of the whole EV parking lot
satisfies the desired final SOC of the EVs upon their departure.

If multiple EVs are charging with one charger simultaneously, the
charging power of each EV is a share of the total charging capacity
of that charger. Therefore, the charging process takes more time for
each EV. However, when a single EV is charged via a charger at each
moment, it can utilize the whole charging capacity of the charger
resulting in higher charging power, and less charging time. When the
EV reaches its desired SOC, charging of the next EV assigned to the
same charger is started. Therefore, there is no difference in terms of the
final SOC of EVs, departure time, and the charging time of the group
of EVs that are sharing one charger, for the two mentioned cases. As
mentioned previously, the charger-sharing approach is presented for
the EV parking lots where the EVs are parked for several hours, and
it is intended to make the best use of the chargers for charging the
aggregation of EVs. This way, instead of dedicating one charger for
each parked car in the parking lot, multiple EVs can be charged via
one charger during their stay in the parking lot. Therefore, it may not
be applicable for charging stations that host EVs with short stays parked
just for charging, as a means of alleviating the existing queue.

5. Conclusions

In this paper, a virtual battery model was proposed for modelling
EVPLs considering the uncertainty of arrival and departure enabling
modelling the charger-sharing charging to use an EV charger for charg-
ing multiple EVs. For validating our proposed model to assess its
performance in reflecting the uncertainty of the arrival and departure
of EVs, the cost of a distribution system owning multiple EVPLs in
different buses in DA and RT markets was studied. In this regard, the
performance of our proposed model was compared with the scenario-
based approach. Validation results indicated that the performance of
our virtual battery model was similar to the scenario-based approach
in terms of cost. The daily operational cost of the distribution system
for providing power in the DA and RT markets using the scenario-based
approach is 1692.06 e, and the DS operation cost with the proposed
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virtual batter model is 1689.78 e. However, its computational burden
s way less than the scenario-based approach (2.24%). In addition, the
erformance of the EVPL with the charger-sharing charging approach
as studied. The results indicated how the charger-sharing charging ap-
roach empowers the EVPL to host more EVs. According to the results,
hen the charging tariff increased, the EVPL could host more EVs, as
osting more EVs was profitable for EVPL. For EVPL equipped with 100
nidirectional and 100 bidirectional charging stations, when the charg-
ng tariff was high enough for EVPL to host as many EVs as possible,
VPL could host 3202 EVs. However, in the exclusive-charger charging
pproach, EVPL could host 200 EVs. This result showed how the
harger-sharing charging approach facilitates the efficient deployment
f EV chargers. Therefore, by employing charger-sharing charging, the
nvestment cost for EVPL planning would also decrease dramatically
aving the way for increasing penetration of EVs. In the future, the
roposed virtual battery model will be used for modelling EV parking
ots for large-scale distribution system management containing sev-
ral uncertainty sources from RES. In addition, the charger-sharing
pproach will be further investigated to identify the possible technical
ifficulties.
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