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Abstract
In this paper, a new general approach is developed
to construct and study Lebesgue-type decompositions
of linear operators or relations 𝑇 in the Hilbert space
setting. The new approach allows to introduce an essen-
tially wider class of Lebesgue-type decompositions than
what has been studied in the literature so far. The key
point is that it allows a nontrivial interaction between
the closable and the singular components of 𝑇. The
motivation to study such decompositions comes from
the fact that they naturally occur in the correspond-
ing Lebesgue-type decomposition for pairs of quadratic
forms. The approach built in this paper uses so-called
complementation in Hilbert spaces, a notion going back
to de Branges and Rovnyak.
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1 INTRODUCTION

The usual Lebesgue decomposition of measures has inspired the study of similar decompositions
of, for instance, pairs of positive operators and semibounded forms; see [1, 2, 13, 33]. In the context
of linear operators or linear relations such decompositions can be seen as the source for all the
other Lebesgue-type decompositions. It should be noted that the standard Lebesgue decomposi-
tion of a pair of positivemeasures can be obtained as a special case of the Lebesgue decomposition
of a pair of nonnegative forms; for details, see [13].
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In this paper, a new general type of decomposition of linear operators and, more generally,
of linear relations is introduced and explained which allows a nontrivial interaction between the
regular (closable) component and the singular component. This work is inspired by the Lebesgue-
type decompositions for a pair of forms that have been studied in [13]. It turned out that in the
Lebesgue-type decompositions of a nonnegative form 𝔱 written as the additive sum 𝔱 = 𝔱1 + 𝔱2,
where

dom 𝔱 = dom 𝔱1 = dom 𝔱2,

while 𝔱1 is a regular (closable) form and 𝔱2 is a singular form, the components 𝔱1 and 𝔱2 need not
in general be singular with respect to each other. In the setting ofmeasures this corresponds to the
situation,where the absolutely continuous and the singular components are notmutually singular
with respect to each other. On the other hand, all Lebesgue-type decompositions of a nonnegative
quadratic form can be derived by introducing a so-called representing map 𝑄 ∶ ℌ → 𝔎 (here ℌ
and 𝔎 are Hilbert spaces) for the form 𝔱: 𝔱[ℎ, 𝑘] = (𝑄ℎ,𝑄𝑘), ℎ, 𝑘 ∈ dom 𝔱 = dom𝑄, where one
can assume that ran𝑄 = 𝔎; a detailed study of representing maps will appear in [18]. A key fact
in the connection of quadratic forms is that the components 𝔱1 and 𝔱2 generate a nonnegative
contraction 𝐾 acting in the space𝔎, such that

𝔱1[ℎ, 𝑘] =
(
(𝐼 − 𝐾)

1
2 ℎ, (𝐼 − 𝐾)

1
2 𝑘

)
, 𝔱2[ℎ, 𝑘] =

(
𝐾

1
2 ℎ, 𝐾

1
2 𝑘

)
, ℎ, 𝑘 ∈ dom𝔱,

and then one can prove the following general formula

(𝔱1 ∶ 𝔱2)[ℎ, 𝑘] = (((𝐼 − 𝐾) ∶ 𝐾)𝑄ℎ,𝑄𝑘), ℎ, 𝑘 ∈ dom 𝔱 = dom𝑄, (1.1)

where “∶” stands for the parallel sum of the involved components; see [18]. Recall from [13,
Proposition 2.10] that the forms 𝔱1 and 𝔱2 are mutually singular precisely when 𝔱1 ∶ 𝔱2 = 0, while
(𝐼 − 𝐾) ∶ 𝐾 = 0 if and only if 𝐾 is an orthogonal projection, which is equivalent to the intersec-
tion ran (𝐼 − 𝐾) ∩ ran𝐾 = {0} being nontrivial; further details for this special case of forms can
be found in [18]. Closely related is a recent treatment of Lebesgue-type decompositions via the
technique of reproducing kernel Hilbert spaces; see [3].
The new approach developed here to analyze this phenomenon on the side of linear operators

or relations and their Lebesgue-type decompositions allowing such an interaction between the
regular and singular parts is built in this paper by using the notion of complementation going back
to de Branges and Rovnyak. This leads to several new results on Lebesgue-type decompositions
of unbounded operators and linear relations. In particular, the results generalize recent results
obtained in the case of orthogonal operator range decompositions in [14, 17]. For instance, among
the set of all such Lebesgue-type decompositions there is still a unique decomposition, whose
regular part in this new setting continues to be maximal; it is called the Lebesgue decomposition
of linear operators, see [17].
Let 𝑇 ∈ 𝐋(ℌ,𝔎), that is, 𝑇 is a linear relation from a Hilbert space ℌ to a Hilbert space 𝔎

(note that all linear operators from ℌ to 𝔎 belong to this class); if ℌ = 𝔎 the shorter notation
𝑇 ∈ 𝐋(𝔎) is used. Denote by 𝑇∗∗ the closure of 𝑇 (as a graph in the Cartesian product ℌ×𝔎);
moreover, mul 𝑇∗∗ stands for the linear space of all g ∈ 𝔎 for which {0, g} ∈ 𝑇∗∗. For 𝑇∗∗ there
are two extreme cases: the regular (closable) case is defined by the equalitymul 𝑇∗∗ = {0}, that is,
the closure 𝑇∗∗ is an operator, and the singular case is defined by the equality 𝑇∗∗ = dom𝑇∗∗ ×

 14697750, 2024, 5, Downloaded from https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.12900 by University Of Vaasa, Wiley Online Library on [06/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License



COMPLEMENTATION AND LEBESGUE-TYPE DECOMPOSITIONS 3 of 32

mul 𝑇∗∗, that is, 𝑇∗∗ is the Cartesian product of closed linear subspaces ofℌ and𝔎. Clearly, 𝑇 is
singular if and only if dom𝑇∗∗ ⊂ ker 𝑇∗∗ or ran𝑇∗∗ ⊂ mul 𝑇∗∗. In particular, 𝑇 is singular if and
only if 𝑇∗ is singular; see [4, 14] for further details. In general, a linear relation is neither closable
nor singular. However, every 𝑇 ∈ 𝐋(ℌ,𝔎) has a sum decomposition 𝑇 = 𝑇1 + 𝑇2 of the form

𝑇 =
{
{𝑓, g} ∈ ℌ ×𝔎 ∶ g = g1 + g2, {𝑓, g1} ∈ 𝑇1, {𝑓, g2} ∈ 𝑇2

}
,

where 𝑇1, 𝑇2 ∈ 𝐋(ℌ,𝔎) with dom𝑇 = dom𝑇1 = dom𝑇2, while 𝑇1 is closable and 𝑇2 is singular.
Such a sumdecomposition𝑇 = 𝑇1 + 𝑇2 is called an orthogonal Lebesgue-type decomposition of𝑇 if
the Hilbert space𝔎 is the orthogonal sum of the closed linear subspaces𝔛 and𝔜 of𝔎, such that
ran𝑇1 ⊂ 𝔛 and ran𝑇2 ⊂ 𝔜. The usual Lebesgue decomposition of 𝑇 is an example of an orthog-
onal Lebesgue-type decomposition. In the case of an orthogonal Lebesgue-type decomposition, it
is clear that ran𝑇1 ∩ ran𝑇2 = {0}. Orthogonal Lebesgue-type decompositions have been studied
in [14, 17], extending earlier work of Izumino [20–22].
In this paper more general, pseudo-orthogonal, decompositions 𝑇 = 𝑇1 + 𝑇2 will be intro-

duced. The decomposition of the space𝔎will be based on a pair of complemented operator range
spaces 𝔛 and 𝔜 with inner products (⋅, ⋅)𝔛 and (⋅, ⋅)𝔜 that are contained contractively in𝔎; such
spaces were introduced by de Branges and Rovnyak, see [5, 7, 8, 10]. It is assumed that 𝔛 and 𝔜
are generated by nonnegative contractions 𝑋,𝑌 ∈ 𝐁(𝔎), that is the linear space of all bounded
linear operators from𝔎 to itself, for which

‖ℎ‖2
𝔎
= ‖𝑋ℎ‖2

𝔛
+ ‖𝑌ℎ‖2

𝔜
, ℎ ∈ 𝔎,

and this is equivalent to the condition 𝑋 + 𝑌 = 𝐼; moreover, this condition automatically
leads to 𝔎 = 𝔛+𝔜. For the sum decomposition 𝑇 = 𝑇1 + 𝑇2 that satisfies dom𝑇 = dom𝑇1 =

dom𝑇2, while 𝑇1 closable and 𝑇2 singular, one now requires that ran𝑇1 ⊂ 𝔛 and ran𝑇2 ⊂

𝔜, in which case for every {𝑓, g} ∈ 𝑇 with {𝑓, g1} ∈ 𝑇1, {𝑓, g2} ∈ 𝑇2, g = g1 + g2, one has the
inequality

‖g‖2
ℌ
⩽ ‖g1‖2𝔛 + ‖g1‖2𝔜.

If, instead of this inequality, one has the Pythagorean equality

‖g‖2
𝔎
= ‖g1‖2𝔛 + ‖g2‖2𝔜,

then one speaks of a pseudo-orthogonal Lebesgue-type decomposition of 𝑇. In the orthogonal case,
the closed linear subspaces𝔛 and𝔜 are isometrically contained in𝔎 and ran𝑇1 ⟂ ran𝑇2, so that
the Pythagorean equality is automatically satisfied. The new feature with complemented opera-
tor range spaces 𝔛 and 𝔜 that are contractively contained in the original Hilbert space𝔎 is that
there is an overlapping space 𝔛 ∩𝔜; moreover 𝔛 ∩𝔜 contains the intersection ran𝑋 ∩ ran𝑌.
This overlapping space has consequences for the interaction of the components 𝑇1 and 𝑇2: it
may now happen that ran𝑇1 ∩ ran𝑇2 is nontrivial, or even that ran𝑇1 ∩ ran𝑇2 is nontrivial. This
interaction can be also explained in measure-theoretic terms; there is no interaction between the
components 𝑇1 and 𝑇2 when they are mutually singular, that is, singular with respect to each
other. This will be shown by studying a linear relation 𝐿(𝑇1, 𝑇2) that is generated by 𝑇1 and 𝑇2;
see Definition 3.11.
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It will be shown that the pseudo-orthogonal Lebesgue-type decompositions of a linear relation
𝑇 ∈ 𝐋(ℌ,𝔎) are all of the form

𝑇 = 𝑇1 + 𝑇2 with 𝑇1 = (𝐼 − 𝐾)𝑇, 𝑇2 = 𝐾𝑇,

where 𝐾 ∈ 𝐁(𝔎) is a nonnegative contraction for which (𝐼 − 𝐾)𝑇 is closable and 𝐾𝑇 is sin-
gular. The pseudo-orthogonal Lebesgue-type decomposition is orthogonal precisely if 𝐾 is an
orthogonal projection. The usual Lebesgue decomposition 𝑇 = 𝑇reg + 𝑇sing is orthogonal and it
is uniquely defined by the property that 𝑇reg is the largest closable part of 𝑇 among all pseudo-
orthogonal decompositions of 𝑇. Furthermore, there is a characterization of the situation where
the Lebesgue decomposition is the only pseudo-orthogonal Lebesgue-type decomposition of 𝑇.
As a consequence, one can always find in the nonunique case a pseudo-orthogonal Lebesgue-type
decomposition that is not orthogonal; see Lemma 5.5.
In the special case that 𝑇 is an operator range relation, that is,

𝑇 =
{
{Φ𝜂, Ψ𝜂} ∶ 𝜂 ∈ 𝔈

}
, (1.2)

where Φ ∈ 𝐁(𝔈,ℌ), Ψ ∈ 𝐁(𝔈,𝔎), and 𝔈, ℌ, and 𝔎 are Hilbert spaces, the pseudo-orthogonal
Lebesgue-type decompositions of 𝑇 translate into the so-called pseudo-orthogonal Lebesgue-type
decompositions of the operatorΨ in terms ofΦ; for the orthogonal case and the notion of Radon–
Nikodym derivative, see [17]. It should be mentioned that so far there are only partial results for
Lebesgue-type decompositions of operator range relations 𝑇 of the above form (1.2) when either
Φ or Ψ is unbounded.
The contents of the paper are now described. A short introduction to pairs of complemented

operator range spaces can be found in Section 2. This section is modeled on the relevant
appendix in [7]. General pseudo-orthogonal decompositions of a linear relation are introduced
in Section 3, where some material on the occurrence of overlapping in a pseudo-orthogonal
decomposition can be found. There also the linear relation 𝐿(𝑇1, 𝑇2) is introduced as an operator-
theoretic analog for the parallel sum in (1.1). For a relation 𝑇 ∈ 𝐋(ℌ,𝔎) and a selfadjoint operator
𝑅 ∈ 𝐁(𝔎) there are a number of criteria in Section 4 under which the product relation 𝑅𝑇 is
regular or singular. In Section 5, the previous characterizations are used to study the pseudo-
orthogonal Lebesgue-type decompositions of a linear relation 𝑇. The particular case where 𝑇 is
an operator range relation is briefly reviewed in Section 6; see [17] for the orthogonal case and the
corresponding Radon–Nikodym derivatives.
The Lebesgue decomposition for measures and the associated Radon–Nikodym derivatives

for their absolutely continuous parts have seen many generalizations to more abstract settings.
At this stage it suffices to mention the work of Dye [9] and Henle [19]. The second half of the
seventies saw the work of Ando [1] for pairs of nonnegative operators and the work of Simon
[33] for nonnegative forms. This lead to many papers devoted to related contexts, such as 𝐶∗-
algebras and the theory of positive maps; see, for instance, the references in [2, 12, 13, 26], and
note also, more recently, [6, 41], and, for example, the construction of Lebesgue decomposition
of noncommutative measures in multi-variable setting into absolutely continuous and singular
parts via Lebesgue decompositions for quadratic forms and via reproducing kernel space tech-
niques; see [3, 24, 25]. Shortly after the papers of Ando and Simon appeared the work of Jorgensen
[23] and Ôta [27–29], which was devoted to the decompositions of linear operators. This con-
text (linear operators and also linear relations) was taken up in [15] and later in [14, 17]. The
Lebesgue-type decompositions in those papers were orthogonal, whereas in the present paper
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the pseudo-orthogonal case is dealt with. Decomposition results in the context of forms, based
on a Hilbert space decomposition similar to the de Branges–Rovnyak decomposition (as worked
out at the end of Section 2), will appear in [18] and include the results in Simon [33]. In the
pseudo-orthogonal decompositions the notion of overlapping spaces appears in a natural way.
Furthermore, the pseudo-orthogonal situation for a pair of nonnegative bounded operators (as in
[1]) and for a pair of forms on a linear space (as in [13]) can also be treated in the context of the
associated linear relations; this is connected to the recent work by Sebestyén, Szücs, Tarcsay, and
Titkos [31, 32, 34–40].
It is a pleasure to thankMichael Dritschel for discussions about complementation, RobertMar-

tin formaking available a copy of [3], and the anonymous referees for several constructive remarks
and comments.

2 PSEUDO-ORTHOGONAL DECOMPOSITIONS

This section provides a short review of pseudo-orthogonal decompositions of a Hilbert space.
These decompositions involve linear subspaces of such a Hilbert space, which are generated by
a pair of nonnegative contractions. In such decompositions there is in general an overlapping of
the summands; see [5, 7, 8, 10] and also [11]. At the end of this section there is a brief discussion
of an analogous overlapping decomposition; see [18].
This review begins with the notion of an operator range space. Let𝔎 be a Hilbert space and let

𝐴 ∈ 𝐁(𝔎) be a nonnegative contraction. Provide the range𝔄 = ran𝐴
1
2 , a subspace of𝔎, with the

inner product (
𝐴

1
2 𝜑, 𝐴

1
2 𝜓

)
𝔄
= (𝜋𝜑, 𝜋𝜓)𝔎, 𝜑, 𝜓 ∈ 𝔎, (2.1)

where 𝜋 is the orthogonal projection in 𝔎 onto ran𝐴
1
2 = (ker 𝐴

1
2 )⟂. Note that it follows from

(2.1) that the mapping

𝜑 ↦ 𝐴
1
2 𝜑, 𝜑 ∈ ran𝐴

1
2 , (2.2)

is unitary from ran𝐴
1
2 onto 𝔄. Clearly, 𝔄 with this inner product is a Hilbert space. As 𝐴 is a

contraction, one has

‖𝐴1
2 𝜑‖𝔎 = ‖𝐴1

2 𝜋𝜑‖𝔎 ⩽ ‖𝜋𝜑‖𝔎, 𝜑 ∈ 𝔎,

and, hence, the identity (2.1) shows that

‖𝐴1
2 𝜑‖𝔄 ⩾ ‖𝐴1

2 𝜑‖𝔎, 𝜑 ∈ ℌ. (2.3)

It is a consequence of (2.1) that(
𝐴

1
2 𝜑, 𝐴𝜓

)
𝔄
= (𝐴

1
2 𝜑, 𝜓)𝔎, 𝜑, 𝜓 ∈ 𝔎, (2.4)
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which shows that the linear space ran𝐴 is dense in the Hilbert space 𝔄. Moreover, (2.4) leads to
the useful identities

(𝐴𝜑,𝐴𝜓)𝔄 = (𝐴𝜑, 𝜓)𝔎 and
(
𝐴

1
2 𝜑, 𝐴𝐴

1
2 𝜓

)
𝔄
=
(
𝐴

1
2 𝜑, 𝐴

1
2 𝜓

)
𝔎
, 𝜑, 𝜓 ∈ 𝔎. (2.5)

It is clear that𝐴maps𝔄 = ran𝐴
1
2 into itself; in fact, it can be seen from (2.5) that𝐴 is nonnegative

in 𝔄 and that 𝐴maps 𝔄 contractively into itself. Note that if 𝐴 is an orthogonal projection in𝔎,
then 𝜋 = 𝐴 and (

𝐴
1
2 𝜑, 𝐴

1
2 𝜓

)
𝔄
=
(
𝐴

1
2 𝜑, 𝐴

1
2 𝜓

)
𝔎
, 𝜑, 𝜓 ∈ 𝔎, (2.6)

so that the inner product (⋅, ⋅)𝔄 on ran𝐴
1
2 = ran𝐴 coincides with the inner product of𝔎.

The equality (2.1) and the inequality (2.3) can be formalized. Recall that a linear subspace𝔐
of a Hilbert space 𝔎 is called a contractive operator range space, when𝔐 has an inner product
(⋅, ⋅)𝔐, such that

(a) ‖𝜑‖𝔎 ⩽ ‖𝜑‖𝔐, 𝜑 ∈ 𝔐;
(b) 𝔐 with the inner product (⋅, ⋅)𝔐 is a Hilbert space.

It is clear that the space𝔄 above is an example of a contractive operator range space. In fact, it is
the only example; see [17].
The interest in this section is in pairs of nonnegative contractions 𝑋,𝑌 ∈ 𝐁(𝔎) with the con-

necting property 𝑋 + 𝑌 = 𝐼. For the convenience of the reader some simple, but useful facts are
presented.

Lemma 2.1. Let 𝔎 be a Hilbert space and let 𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions with 𝑋 +

𝑌 = 𝐼. Then 𝑋𝑌 = 𝑌𝑋 ∈ 𝐁(𝔎) is a nonnegative contraction with

ker 𝑋𝑌 = ker 𝑋 ⊕ ker 𝑌. (2.7)

Moreover, the following identities hold:

⎧⎪⎨⎪⎩
ran𝑋 ∩ ran𝑌 = ran𝑋𝑌,

ran𝑋
1
2 ∩ ran𝑌

1
2 = ran𝑋

1
2 𝑌

1
2 ,

ran𝑋 ∩ ran𝑌 = ran𝑋𝑌.

(2.8)

Consequently, each of the following statements

ran𝑋 ∩ ran𝑌 = {0}, ran𝑋
1
2 ∩ ran𝑌

1
2 = {0},

(or, similarly, with the closures of the ranges) and, in particular ran𝑋 ⟂ ran𝑌 or ran𝑋
1
2 ⟂ ran𝑌

1
2 ,

is equivalent to the nonnegative contractions 𝑋 and 𝑌 being orthogonal projections.

Proof. The commutativity of 𝑋 and 𝑌 and of their square roots is clear. Hence, the nonnegativity
of the product𝑋𝑌 follows from𝑋𝑌 = 𝑋

1
2 𝑌𝑋

1
2 . Note that ker 𝑋 and ker 𝑌 are perpendicular in𝔎.

It is clear that the right-hand side of (2.7) is contained in the left-hand side. To show the remaining
inclusion let ℎ ∈ ker 𝑋𝑌. Then ℎ = 𝑌ℎ + 𝑋ℎ with 𝑌ℎ ∈ ker 𝑋 and 𝑋ℎ ∈ ker 𝑌.
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To see the first identity in (2.8), let g ∈ ran𝑋 ∩ ran𝑌. Then clearly one has g = 𝑋ℎ = 𝑌𝑘 for
some ℎ, 𝑘 ∈ 𝔎. Hence, ℎ = 𝑌(ℎ + 𝑘) ∈ ran𝑌 and g ∈ ran𝑋𝑌. The reverse inclusion is clear. For
the second identity in (2.8), let g ∈ ran𝑋

1
2 ∩ ran𝑌

1
2 . Then one has, similarly, g = 𝑋

1
2 ℎ = 𝑌

1
2 𝑘 for

some ℎ, 𝑘 ∈ 𝔎. Hence,

ℎ = 𝑌ℎ + 𝑋
1
2 𝑌

1
2 𝑘 ∈ ran𝑌

1
2 and g ∈ ran𝑋

1
2 𝑌

1
2 .

The reverse inclusion is clear.
By taking orthogonal complements in (2.7) one obtains the third identity in (2.8) for the closures

of the ranges. □

Let 𝔎 be a Hilbert space and let 𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions with 𝑋 + 𝑌 = 𝐼.
Let 𝔛 = ran𝑋

1
2 and 𝔜 = ran𝑌

1
2 be the corresponding operator range spaces; see (2.1). Then the

Hilbert space has a decomposition of the form

𝔎 = 𝔛+𝔜. (2.9)

This can be seen as follows. By definition one has 𝔛 ⊂ 𝔎 and 𝔜 ⊂ 𝔎, so that the right-hand side
of (2.9) is contained in the left-hand side. For the converse, observe that for all ℎ ∈ 𝔎 one has
ℎ = 𝑋ℎ + 𝑌ℎ with 𝑋ℎ ∈ 𝔛 and 𝑌ℎ ∈ 𝔜, which gives𝔎 ⊂ 𝔛+𝔜. The intersection 𝔏 = 𝔛 ∩ 𝔜 is
called the overlapping space of the Hilbert spaces𝔛 and𝔜with respect to the decomposition (2.9).
It is characterized in the following lemma.

Lemma 2.2. Let 𝔎 be a Hilbert space and let 𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions with 𝑋 +

𝑌 = 𝐼. The overlapping space 𝔏 = 𝔛 ∩ 𝔜 is an operator range space associated with 𝑋
1
2 𝑌

1
2 , whose

inner product satisfies

(𝜑, 𝜓)𝔏 = (𝜑, 𝜓)𝔛 + (𝜑, 𝜓)𝔜, 𝜑, 𝜓 ∈ 𝔛 ∩ 𝔜. (2.10)

Proof. The overlapping 𝔏 = 𝔛 ∩ 𝔜 in (2.9) is a linear space given by 𝔏 = ran𝑋
1
2 𝑌

1
2 , as follows

from Lemma 2.1. To see (2.10) first observe for ℎ, 𝑘 ∈ 𝔎 that the identity 𝑋 + 𝑌 = 𝐼 gives

(ℎ, 𝑘)𝔎 = (𝑌ℎ, 𝑘)𝔎 + (𝑋ℎ, 𝑘)𝔎 = (𝑌
1
2 ℎ, 𝑌

1
2 𝑘)𝔎 + (𝑋

1
2 ℎ, 𝑋

1
2 𝑘)𝔎. (2.11)

Note that 𝑌
1
2 ran𝑋

1
2 𝑌

1
2 ⊂ ran𝑋

1
2 and 𝑋

1
2 ran𝑋

1
2 𝑌

1
2 ⊂ ran𝑌

1
2 . Hence, if in (2.11) one takes ℎ, 𝑘 ∈

ran𝑋
1
2 𝑌

1
2 , then it follows that(

𝑋
1
2 𝑌

1
2 ℎ, 𝑋

1
2 𝑌

1
2 𝑘

)
𝔏
=
(
𝑋

1
2 𝑌

1
2 ℎ, 𝑋

1
2 𝑌

1
2 𝑘

)
𝔛
+
(
𝑌

1
2 𝑋

1
2 ℎ, 𝑌

1
2 𝑋

1
2 𝑘

)
𝔜
.

Moreover, it is clear that the last identity holds for all ℎ, 𝑘 ∈ 𝔎. Therefore, the inner product on
𝔏 satisfies (2.10). □

Let 𝔎 be a Hilbert space and let 𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions with 𝑋 + 𝑌 = 𝐼.
Provide the Cartesian product 𝔛 ×𝔜 with the inner product generated by 𝔛 and 𝔜, respectively.
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Define the column operator 𝑉 from𝔎 to 𝔛 ×𝔜 by

𝑉 = col (𝑋, 𝑌) =

{{
ℎ,

(
𝑋ℎ

𝑌ℎ

)}
∶ ℎ ∈ 𝔎

}
. (2.12)

The operator 𝑉 is clearly isometric, as

‖𝑋ℎ‖2
𝔛
+ ‖𝑌ℎ‖2

𝔜
= (𝑋ℎ, ℎ)𝔎 + (𝑌ℎ, ℎ)𝔎 = ((𝑋 + 𝑌)ℎ, ℎ), ℎ ∈ 𝔎, (2.13)

see (2.5). Hence, 𝑉 is a closed operator and ran𝑉 is closed. In general, the isometry 𝑉 does not
map onto𝔛 ×𝔜.

Proposition 2.3. Let𝔎 be aHilbert space, let𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions, andassume
that 𝑋 + 𝑌 = 𝐼. Let the column operator 𝑉 be given by (2.12). Then the adjoint mapping 𝑉∗ from
𝔛 ×𝔜 to𝔎 is a partial isometry, given by

𝑉∗

(
𝑓

g

)
= 𝑓 + g , 𝑓 ∈ 𝔛, g ∈ 𝔜. (2.14)

Consequently, for all 𝑓 ∈ 𝔛 and g ∈ 𝔜, there is the inequality

‖𝑓 + g‖2
𝔎
⩽ ‖𝑓‖2

𝔛
+ ‖g‖2

𝔜
, (2.15)

with equality in (2.15) if and only if 𝑓 = 𝑋ℎ and g = 𝑌ℎ for some ℎ ∈ 𝔎, namely, ℎ = 𝑓 + g .

Proof. A simple calculation gives for all 𝑓 ∈ 𝔛, g ∈ 𝔜, and ℎ ∈ 𝔎 that(
𝑉∗

(
𝑓

g

)
, ℎ

)
𝔎

=

((
𝑓

g

)
, 𝑉ℎ

)
𝔛×𝔜

=

((
𝑓

g

)
,

(
𝑋ℎ

𝑌ℎ

))
𝔛×𝔜

= (𝑓, 𝑋ℎ)𝔛 + (g , 𝑌ℎ)𝔜 = (𝑓, ℎ)𝔎 + (g , ℎ)𝔎

= (𝑓 + g , ℎ)𝔎,

which follows from (2.1); the identity shows (2.14). As 𝑉 is an isometry, 𝑉∗ is partially isometric
and, in particular, 𝑉∗ is contractive. Moreover, according to (2.9), the mapping 𝑉∗ is onto. Thus,
(2.14) implies (2.15). Finally, there is equality in (2.15) if and only if

(𝑓
g

)
∈ ran𝑉. □

The connection between the overlapping space 𝔏 = 𝔛 ∩ 𝔜 and the range of the isometry 𝑉 is
now clear.

Proposition 2.4. The isometry 𝑉 satisfies

(ran𝑉)⟂ =

{(
−𝑋

1
2 𝑌

1
2 𝑘

𝑋
1
2 𝑌

1
2 𝑘

)
∶ 𝑘 ∈ ran𝑋𝑌

}
. (2.16)

Moreover, 𝑉 is surjective if and only if 𝑋 and 𝑌 are orthogonal projections.
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Proof. It is clear that (ran𝑉)⟂ = ker 𝑉∗ and (2.14) shows that

ker 𝑉∗ =

{(
𝜑

−𝜑

)
∶ 𝜑 ∈ 𝔏

}
. (2.17)

Now apply Lemma 2.2 to obtain the assertion (2.16). In particular, (2.17) and the isometric prop-
erty of 𝑉, see (2.13), show that 𝑉 is surjective if and only if 𝔏 = {0}. The conclusion follows from
Lemma 2.2. □

Recall that𝑋 and𝑌 act as nonnegative contractions in𝔛 and𝔜, respectively. The next corollary
presents the orthogonal projection 𝑉𝑉∗ as a common dilation in the Hilbert space𝔛 ×𝔜 for this
pair of nonnegative contractions; see [30].

Corollary 2.5. The orthogonal projection 𝑉𝑉∗ onto ran𝑉 is given by

𝑉𝑉∗

(
𝑓

g

)
=

(
𝑋 𝑋

𝑌 𝑌

)(
𝑓

g

)
, 𝑓 ∈ 𝔛, g ∈ 𝔜.

The terminology in the following definition will be used in the rest of this paper.

Definition 2.6. Let 𝔛 and 𝔜 be linear subspaces of the Hilbert space𝔎. Then𝔎 is said to have
a pseudo-orthogonal decomposition𝔎 = 𝔛+𝔜 if

(a) 𝔛 and𝔜 are contractive operator range spaces that are contractively contained in𝔎;
(b) the corresponding nonnegative contractions 𝑋 and 𝑌 satisfy 𝑋 + 𝑌 = 𝐼.

Recall that the condition 𝑋 + 𝑌 = 𝐼 is equivalent to the condition

‖ℎ‖2
𝔎
= ‖𝑋ℎ‖2

𝔛
+ ‖𝑌ℎ‖2

𝔜
, ℎ ∈ 𝔎, (2.18)

see (2.13) and Proposition 2.3. Moreover, if 𝑋 and 𝑌 in Definition 2.6 are orthogonal projections,
then the definition reduces to the usual orthogonal decomposition as the contractive operator
range spaces 𝔛 and𝔜 are closed linear subspaces of𝔎; see Lemma 2.1 and (2.6).
At the end of the section a closely related situation will be reviewed for nonnegative contrac-

tions 𝑋,𝑌 ∈ 𝐁(𝔎) that satisfy 𝑋 + 𝑌 = 𝐼. Provide the closed linear subspaces 𝔎1 = ran𝑋 and
𝔎2 = ran𝑌 with the inner product inherited from𝔎. It is clear that the Hilbert space𝔎 has the
decomposition

𝔎 = 𝔎1 +𝔎2. (2.19)

The intersection 𝔎1 ∩𝔎2 is called the overlapping space of the Hilbert spaces 𝔎1 and 𝔎2 with
respect to the decomposition (2.19). It is characterized by

𝔎1 ∩𝔎2 = ran𝑋 ∩ ran𝑌 = ran𝑋𝑌;

see Lemma 2.1.
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Note that the column operator𝑊 = col
(
𝑋

1
2 , 𝑌

1
2

)
, defined by

𝑊ℎ ∶=

{{
ℎ,

(
𝑋

1
2 ℎ

𝑌
1
2 ℎ

)}
∶ ℎ ∈ 𝔎

}
, (2.20)

is a closed isometric mapping from 𝔎 to 𝔎1 ×𝔎2. The mapping𝑊 in (2.20) is closely related to
the mapping 𝑉 in (2.12). To see this, first observe that the operator matrix

𝑈 =

(
𝑋

1
2 0

0 𝑌
1
2

)
∶

𝔎1

×

𝔎2

→

𝔛

×

𝔜

(2.21)

between the indicated Hilbert spaces is a unitary mapping; compare this with the property (2.2)
of the operator 𝐴 ∈ 𝐁(𝔎) in (2.1). Next observe that 𝑈 connects the operators𝑊 and 𝑉 via

𝑈𝑊 = 𝑉. (2.22)

Hence, the following result is a consequence of Proposition 2.3.

Proposition 2.7. Let 𝔎 be a Hilbert space and let 𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions with
𝑋 + 𝑌 = 𝐼. Let the column operator𝑊 be given by (2.20). Then the adjoint mapping𝑊∗ from𝔎1 ×

𝔎2 to𝔎 is a partial isometry, given by

𝑊∗

(
𝑓

g

)
= 𝑋

1
2 𝑓 + 𝑌

1
2 g , 𝑓 ∈ 𝔎1, g ∈ 𝔎2. (2.23)

Consequently, for all 𝑓 ∈ 𝔎1 and g ∈ 𝔎2, there is the inequality

‖𝑋 1
2 𝑓 + 𝑌

1
2 g‖2

𝔎
⩽ ‖𝑓‖2

𝔎
+ ‖g‖2

𝔎
, (2.24)

with equality in (2.24) if and only if 𝑓 = 𝑋
1
2 ℎ and g = 𝑌

1
2 ℎ for some ℎ ∈ 𝔎, namely ℎ = 𝑋

1
2 𝑓 +

𝑌
1
2 g .

Furthermore, the isometry 𝑊 is not onto in general and the intersection of ran𝑋 and ran𝑌
comes into play.

Proposition 2.8. The isometry𝑊 satisfies

(ran𝑊)⟂ = ker 𝑊∗ =

{(
−𝑌

1
2 𝑘

𝑋
1
2 𝑘

)
∶ 𝑘 ∈ ran𝑋𝑌

}
. (2.25)

Moreover,𝑊 is surjective if and only if 𝑋 and 𝑌 are orthogonal projections.

Proof. The operator 𝑈 in (2.21) maps ker 𝑊∗ in (2.25) onto ker 𝑉∗ in (2.16). Hence, the assertion
(2.25) follows from Proposition 2.4. The characterization of surjectivity follows from (2.22) and
Proposition 2.4. □
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Note that 𝑋 and 𝑌 act as nonnegative contractions in 𝔎1 and 𝔎2, respectively. The following
corollary presents the orthogonal projection 𝑊𝑊∗ as a common dilation in the Hilbert space
𝔎1 ×𝔎2 for this pair of nonnegative contractions; see [30]. It can be seen as a consequence of
Corollary 2.5, as𝑊𝑊∗ = 𝑈∗𝑉𝑉∗𝑈.

Corollary 2.9. The orthogonal projection𝑊𝑊∗ onto ran𝑊 is given by

𝑊𝑊∗

(
𝑓

g

)
=

(
𝑋 𝑋

1
2 𝑌

1
2

𝑌
1
2 𝑋

1
2 𝑌

)(
𝑓

g

)
, 𝑓 ∈ 𝔎1, g ∈ 𝔎2.

The model involving 𝔎1 = ran𝑋 and 𝔎2 = ran𝑌 is connected to the de Branges–Rovnyak
model involving 𝔛 = ran𝑋

1
2 and 𝔜 = ran𝑌

1
2 via the unitary mapping (2.21), and the overlap-

ping spaces satisfy 𝔛 ∩𝔜 ⊂ 𝔎1 ∩ 𝔎2. The present model and the mapping 𝑊 in (2.20) and its
properties will play a role in the Lebesgue-type decompositions of a single semibounded form
[18].

3 PSEUDO-ORTHOGONAL DECOMPOSITIONS

In this section, one can find a brief introduction to sum decompositions of linear operators or
relations fromaHilbert spaceℌ to aHilbert space𝔎with respect to a so-called pseudo-orthogonal
decomposition of𝔎. First some preliminary properties about sums of relations are discussed.
Let 𝑇1 and 𝑇2 belong to 𝐋(ℌ,𝔎). The sum 𝑇1 + 𝑇2 ∈ 𝐋(ℌ,𝔎) is defined by

𝑇1 + 𝑇2 =
{
{𝑓, 𝑓′ + 𝑓′′} ∶ {𝑓, 𝑓′} ∈ 𝑇1, {𝑓, 𝑓

′′} ∈ 𝑇2
}
. (3.1)

With the sum 𝑇 = 𝑇1 + 𝑇2 it is clear that for the domains one has

dom𝑇 = dom𝑇1 ∩ dom𝑇2,

while it is straightforward to check for the ranges that there is an inclusion

ran𝑇 ⊂ ran𝑇1 + ran𝑇2.

However, for the multivalued parts there is equality

mul 𝑇 = mul 𝑇1 + mul 𝑇2, (3.2)

so thatmul 𝑇1 ⊂ mul 𝑇 andmul 𝑇2 ⊂ mul 𝑇.

Definition 3.1. The sum in (3.1) is said to be strict if the sum in (3.2) is direct, that is,

mul 𝑇1 ∩ mul 𝑇2 = {0}.

In otherwords, the sum in (3.1) is strict preciselywhen the elements𝑓′ and𝑓′′ in (3.1) are uniquely
determined by the sum 𝑓′ + 𝑓′′.
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In particular, the sum 𝑇 = 𝑇1 + 𝑇2 is strict if either 𝑇1 or 𝑇2 is an operator. A variation on the
theme of sums is given in the following lemma.

Lemma 3.2. Let 𝑇, 𝑇1, and 𝑇2 belong to 𝐋(ℌ,𝔎). Assume the domain equality dom𝑇 = dom𝑇1 =

dom𝑇2 and the inclusion

𝑇 ⊂ 𝑇1 + 𝑇2. (3.3)

Then there is equality 𝑇 = 𝑇1 + 𝑇2 in (3.3) if and only if

mul 𝑇 = mul 𝑇1 + mul 𝑇2. (3.4)

Consequently, there is equality in (3.3) if and only if

mul 𝑇1 ⊂ mul 𝑇 and mul 𝑇2 ⊂ mul 𝑇.

Proof. By assumption one has dom𝑇 = dom (𝑇1 + 𝑇2) and it follows from the inclusion (3.3) that
mul 𝑇 ⊂ mul (𝑇1 + 𝑇2). Hence, by an observation that goes back to Arens (see [4, Corollary 1.1.3]),
there is equality 𝑇 = 𝑇1 + 𝑇2 if and only ifmul (𝑇1 + 𝑇2) ⊂ mul 𝑇, that is, (3.4) holds. □

The next corollary illustrates a situation that will be of interest in the rest of the paper; see [14].

Corollary 3.3. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and let 𝑋,𝑌 ∈ 𝐁(𝔎) be nonnegative contractions such that 𝑋 +

𝑌 = 𝐼. Then dom𝑇 = dom𝑋𝑇 = dom𝑌𝑇 and, in addition,

𝑇 ⊂ 𝑋𝑇 + 𝑌𝑇. (3.5)

There is equality 𝑇 = 𝑋𝑇 + 𝑌𝑇 in (3.5) if and only if

mul 𝑇 = 𝑋mul 𝑇 + 𝑌mul 𝑇.

Consequently, there is equality in (3.5) if and only if

𝑋mul 𝑇 ⊂ mul 𝑇 or, equivalently, 𝑌mul 𝑇 ⊂ mul 𝑇. (3.6)

Moreover, in this case

𝑋mul 𝑇 ∩ 𝑌mul 𝑇 = 𝑋𝑌mul 𝑇; (3.7)

thus the sum 𝑇 = 𝑋𝑇 + 𝑌𝑇 is strict in the sense of Definition 3.1 if and only ifmul 𝑇 ⊂ ker 𝑋𝑌.

Proof. These assertions follow from Lemma 3.2 except the identity (3.7). To see (3.7) let ℎ ∈
𝑋mul 𝑇 ∩ 𝑌mul 𝑇, so that ℎ = 𝑋𝜑 = 𝑌𝜓 where 𝜑, 𝜓 ∈ mul 𝑇. Now it follows from (𝐼 − 𝑌)𝜑 =

𝑌𝜓 that 𝜑 = 𝑌(𝜑 + 𝜓) with 𝜑 + 𝜓 ∈ mul 𝑇. Thus, ℎ ∈ 𝑋𝑌mul 𝑇, which shows that 𝑋mul 𝑇 ∩
𝑌mul 𝑇 ⊂ 𝑋𝑌mul 𝑇. The reverse inclusion follows immediately from (3.6). □
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For a linear relation 𝑇 ∈ 𝐋(ℌ,𝔎), it has been shown in Corollary 3.3 that with 𝑇1 = 𝑋𝑇 and
𝑇2 = 𝑌𝑇 one has 𝑇 = 𝑇1 + 𝑇2 if and only if the linear subspacemul 𝑇 is invariant under 𝑋 or 𝑌.
Under these circumstances, it is clear that

ran 𝑇1 ∩ ran𝑇2 ⊂ ran𝑋 ∩ ran𝑌 = ran𝑋𝑌.

To give a characterization for the intersection ran𝑇1 ∩ ran𝑇2, it is convenient to introduce the
maximal linear subspace𝔐 of ran𝑇, which is mapped back into ran𝑇 by 𝑋 or by 𝑌:

𝔐 =
{
𝜂 ∈ ran𝑇 ∶ 𝑋𝜂 ∈ ran𝑇

}
=
{
𝜂 ∈ ran𝑇 ∶ 𝑌𝜂 ∈ ran𝑇

}
. (3.8)

Note thatmul 𝑇 ⊂ 𝔐 if 𝑇 = 𝑇1 + 𝑇2.

Theorem 3.4. Let 𝑇 ∈ 𝐋(ℌ,𝔎) have a decomposition 𝑇 = 𝑇1 + 𝑇2, where 𝑇1 = 𝑋𝑇 and 𝑇2 = 𝑌𝑇

for some nonnegative contractions 𝑋,𝑌 ∈ 𝐁(𝔎) with 𝑋 + 𝑌 = 𝐼. Then ran𝑇1 ∩ ran𝑇2 is given by

ran𝑇1 ∩ ran𝑇2 = 𝑋𝑌𝔐, (3.9)

where𝔐 is given in (3.8). Consequently, the intersection ran𝑇1 ∩ ran𝑇2 is nontrivial if and only if
𝔐 ⊄ ker 𝑋𝑌. In particular, if 𝑋 or 𝑌 is an orthogonal projection, then ran𝑇1 ∩ ran𝑇2 = {0}.

Proof. For the inclusion (⊂) in (3.9), assume that𝜔 ∈ ran𝑇1 ∩ ran𝑇2. Then for some 𝜑, 𝜓 ∈ ran𝑇

one has

𝜔 = 𝑋𝜑 = 𝑌𝜓. (3.10)

This shows𝜓 = 𝑋𝜂, where 𝜂 = 𝜑 + 𝜓; hence, 𝜂 ∈ ran𝑇. As𝜓 = 𝑋𝜂 ∈ ran𝑇, one sees that 𝜂 ∈ 𝔐.
Moreover, it follows from (3.10) that

𝜔 = 𝑌𝜓 = 𝑌𝑋𝜂 ∈ 𝑋𝑌𝔐,

which gives ran𝑇1 ∩ ran𝑇2 ⊂ 𝑋𝑌𝔐.
For the inclusion (⊃) in (3.9), assume that 𝜂 ∈ 𝔐. Then, by (3.8), 𝜂 ∈ ran𝑇, 𝑋𝜂 ∈ ran𝑇, and

𝑌𝜂 ∈ ran𝑇. It follows that 𝑋𝑌𝜂 ∈ 𝑌ran𝑇 = ran𝑇1 and that 𝑋𝑌𝜂 ∈ 𝑋ran𝑇 = ran𝑇2. Therefore,
one sees that 𝑋𝑌𝜂 ∈ ran𝑇1 ∩ ran𝑇2. Thus, 𝑋𝑌𝔐 ⊂ ran𝑇1 ∩ ran𝑇2.
The final statement follows directly from the identity (3.9). In particular, if 𝑋 or 𝑌 is an

orthogonal projection then 𝑋𝑌 = 0. □

There is a similar result for the intersection of ran𝑇1 ∩ ran𝑇2 in the presence of a minimality
condition.

Lemma 3.5. Let𝑇 ∈ 𝐋(ℌ,𝔎) have a decomposition𝑇 = 𝑇1 + 𝑇2, where𝑇1 = 𝑋𝑇 and𝑇2 = 𝑌𝑇 for
some nonnegative contractions 𝑋,𝑌 ∈ 𝐁(𝔎) with 𝑋 + 𝑌 = 𝐼. Assume in addition that ran𝑇 = 𝔎.
Then

ran𝑇1 ∩ ran𝑇2 = ran𝑋𝑌. (3.11)

Consequently, ran𝑇1 ∩ ran𝑇2 = {0} if and only if 𝑋 or 𝑌 are orthogonal projections.
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Proof. Assume ran𝑇 = 𝔎. To see (3.11) observe the identities ran𝑇1 = ran𝑋, ran𝑇2 = ran𝑌, and
ran (𝑋𝑌)𝑇 = ran𝑋𝑌. It remains to apply (2.8), which shows that ran𝑋 ∩ ran𝑌 = ran𝑋𝑌. For the
last statement, see also Lemma 2.1. □

The interest in this paper is in decompositions 𝑇 = 𝑇1 + 𝑇2 with linear relations or operators
going fromaHilbert spaceℌ to aHilbert space𝔎, whichhave a pseudo-orthogonal decomposition
𝔎 = 𝔛+𝔜. Before the formal definition is given, note that any element {𝑓, g} ∈ 𝑇 can be written
as

{𝑓, g} = {𝑓, g1 + g2}, {𝑓, g1} ∈ 𝑇1, {𝑓, g2} ∈ 𝑇2, g = g1 + g2.

If ran𝑇1 ⊂ 𝔛 and ran 𝑇2 ⊂ 𝔜, then by Proposition 2.3 there is the general inequality

‖g‖2
𝔎
⩽ ‖g1‖2𝔛 + ‖g2‖2𝔜. (3.12)

In the following definition, a special class of such sum decompositions is introduced, involving a
Pythagorean equality in (3.12).

Definition 3.6. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and assume that𝔎 has a pseudo-orthogonal decomposition𝔎 =

𝔛+𝔜 with associated nonnegative contractions 𝑋 and 𝑌 such that 𝑋 + 𝑌 = 𝐼. Let 𝑇1 and 𝑇2
belong to 𝐋(ℌ,𝔎), then the sum

𝑇 = 𝑇1 + 𝑇2 with dom𝑇 = dom𝑇1 = dom𝑇2, (3.13)

is said to be a pseudo-orthogonal decomposition of 𝑇 connected with the pseudo-orthogonal
decomposition 𝔎 = 𝔛+𝔜 (or, equivalently, with the pair of nonnegative contractions 𝑋 and 𝑌
in 𝐁(𝔎) with 𝑋 + 𝑌 = 𝐼) if

(a) ran𝑇1 ⊂ 𝔛 and ran𝑇2 ⊂ 𝔜;
(b) for every {𝑓, g} ∈ 𝑇 with {𝑓, g1} ∈ 𝑇1, {𝑓, g2} ∈ 𝑇2, g = g1 + g2, one has

‖g‖2
𝔎
= ‖g1‖2𝔛 + ‖g2‖2𝔜.

The definition of pseudo-orthogonal decompositions has an important consequence for the
sum (3.13); see Definition 3.1.

Lemma 3.7. Let 𝑇 = 𝑇1 + 𝑇2 in (3.13) be a pseudo-orthogonal decomposition. Then the sum is strict
in the sense of Definition 3.1.

Proof. Let 𝜑 ∈ mul 𝑇1 ∩ mul 𝑇2. Then {0, 𝜑} ∈ 𝑇1, {0, −𝜑} ∈ 𝑇2, and for the sum one sees that
g = 𝜑 − 𝜑 = 0. It follows that ‖𝜑‖2

𝔛
+ ‖ − 𝜑‖2

𝔜
= 0. This shows that 𝜑 = 0. Therefore, mul 𝑇1 ∩

mul 𝑇2 = {0} and the sum 𝑇 = 𝑇1 + 𝑇2 is strict. □

The pseudo-orthogonal decompositions in Definition 3.6 will now be characterized by means
of nonnegative contractions in 𝐁(𝔎). Observe that the condition (3.14) in Theorem 3.8 is
automatically satisfied if (𝐼 − 𝐾)mul 𝑇 = {0} or 𝐾mul 𝑇 = {0}.
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Theorem 3.8. Let 𝑇 ∈ 𝐋(ℌ,𝔎) be a linear relation. Assume that 𝐾 ∈ 𝐁(𝔎) is a nonnegative
contraction that satisfies

mul 𝑇 = (𝐼 − 𝐾)mul 𝑇 + 𝐾mul 𝑇, direct sum, (3.14)

and define

𝑇1 = (𝐼 − 𝐾)𝑇 and 𝑇2 = 𝐾𝑇. (3.15)

Then the sum 𝑇 = 𝑇1 + 𝑇2 in (3.13) is a pseudo-orthogonal decomposition of 𝑇, connected with the
pair 𝐼 − 𝐾 and 𝐾 in the sense of Definition 3.6.
Conversely, let the sum 𝑇 = 𝑇1 + 𝑇2 in (3.13) be a pseudo-orthogonal decomposition of 𝑇 ∈

𝐋(ℌ,𝔎) in the sense of Definition 3.6. Then there exists a nonnegative contraction 𝐾 ∈ 𝐁(𝔎) for
which (3.14) and (3.15) are satisfied.

Proof. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and let 𝐾 ∈ 𝐁(𝔎) be a nonnegative contraction, such that (3.14) holds.
By Corollary 3.3 the relations 𝑇1 = (𝐼 − 𝐾)𝑇 and 𝑇2 = 𝐾𝑇 in (3.15) satisfy dom𝑇1 = dom𝑇2 =

dom𝑇 and𝑇 ⊂ 𝑇1 + 𝑇2. Again byCorollary 3.3 and the identity in (3.14) there is the decomposition
𝑇 = 𝑇1 + 𝑇2. Thus, the identities in (3.13) are satisfied. As the sum in (3.14) is direct, the sum
𝑇 = 𝑇1 + 𝑇2 is strict.
Now let 𝔛 and 𝔜 be the operator range spaces generated by the nonnegative contractions 𝑋 =

𝐼 − 𝐾 and𝑌 = 𝐾, respectively. Clearly,𝔛 and𝔜 forma pair of complemented spaces, contractively
contained in𝔎, and furthermore

ran𝑇1 ⊂ ran (𝐼 − 𝐾) ⊂ 𝔛 and ran𝑇2 ⊂ ran𝐾 ⊂ 𝔜,

which gives (a) in Definition 3.6. To check the Pythagorean equality (b) in Defini-
tion 3.6, let {𝑓, g} ∈ 𝑇. Then g = g1 + g2 = (𝐼 − 𝐾)g + 𝐾g , where {𝑓, g1}, {𝑓, (𝐼 − 𝐾)g} ∈ 𝑇1 and
{𝑓, g2}, {𝑓, 𝐾g} ∈ 𝑇2. By the strictness of the sum 𝑇 = 𝑇1 + 𝑇2 one concludes that g1 = (𝐼 − 𝐾)g

and g2 = 𝐾g ; see Definition 3.1. With (2.5), this implies that

‖g1‖2𝔛 + ‖g2‖2𝔜 = ‖(𝐼 − 𝐾)g‖2
𝔛
+ ‖𝐾g‖2

𝔜

= ((𝐼 − 𝐾)g , g)𝔎 + (𝐾g , g)𝔎 = ‖g‖2
𝔎
,

and the Pythagorean property has been shown. Hence, the conditions in Definition 3.6
are satisfied.
Conversely, let 𝑇 = 𝑇1 + 𝑇2 be a pseudo-orthogonal decomposition of 𝑇 of the form (3.13). Let

{𝑓, g} ∈ 𝑇, then by (a) and (b) of Definition 3.6 one has for all {𝑓, g1} ∈ 𝑇1 and {𝑓, g2} ∈ 𝑇2 with
g = g1 + g2, that

‖g‖2
𝔎
= ‖g1‖2𝔛 + ‖g2‖2𝔜.

Thanks to this Pythagorean identity and Proposition 2.3 one obtains g1 = 𝑋g and g2 = 𝑌g , which
shows {𝑓, 𝑋g} = {𝑓, g1} ∈ 𝑇1 and {𝑓, 𝑌g} = {𝑓, g2} ∈ 𝑇2. Consequently, one sees the inclusions

𝑋𝑇 ⊂ 𝑇1 and 𝑌𝑇 ⊂ 𝑇2. (3.16)
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By definition, dom𝑇 = dom𝑇1 and dom𝑇 = dom𝑇2, and it follows from (3.16) and [4, Proposi-
tion 1.1.2] that

𝑇1 = 𝑋𝑇 +̂ ({0} × mul 𝑇1) and 𝑇2 = 𝑌𝑇 +̂ ({0} × mul 𝑇2); (3.17)

here “ +̂ ” stands for the componentwise sum (linear spans) of the graphs. Observe that (3.16)
implies𝑋mul 𝑇 ⊂ mul 𝑇1 and𝑌mul 𝑇 ⊂ mul 𝑇2. Now let {0, ℎ} ∈ mul 𝑇1 ⊂ mul 𝑇. Then𝑋 + 𝑌 =

𝐼 gives

ℎ − 𝑋ℎ = 𝑌ℎ with ℎ − 𝑋ℎ ∈ mul 𝑇1 and 𝑌ℎ ∈ mul 𝑇2.

By Lemma 3.7, one has ℎ = 𝑋ℎ and thus ({0} × mul 𝑇1) ⊂ 𝑋𝑇. Hence, by (3.17) one sees that 𝑇1 =
𝑋𝑇 and, likewise, 𝑇2 = 𝑌𝑇. Consequently, with 𝐾 = 𝑌 one obtains a nonnegative contraction
𝐾 ∈ 𝐁(𝔎) for which (3.14) and (3.15) hold. □

Let 𝑇, 𝑇1, and 𝑇2 belong to 𝐋(ℌ,𝔎) and assume that (3.13) holds. Let the Hilbert space 𝔎
have the orthogonal decomposition𝔎 = 𝔛⊕𝔜, where𝔛 and𝔜 are closed subspaces of𝔎. Then
the corresponding nonnegative contractions 𝑋 and 𝑌, which satisfy 𝑋 + 𝑌 = 𝐼, are orthogonal
projections onto 𝔛 and 𝔜. Clearly, the condition (a) of Definition 3.6 implies the condition (b).
Therefore, the following definition is natural.

Definition 3.9. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and assume that𝔎 has an orthogonal decomposition𝔎 = 𝔛+

𝔜. Then the sum (3.13) is called an orthogonal sumdecomposition of𝑇 connectedwith the orthog-
onal decomposition𝔎 = 𝔛+𝔜 (or, equivalently, with the orthogonal projections 𝑋 = 𝐼 − 𝑃 and
𝑌 = 𝑃) if ran𝑇 ⊂ 𝔛 and ran𝑇2 ⊂ 𝔜.

The characterization of orthogonal sum decompositions can be given as a corollary of
Theorem 3.8; see [14, 17].

Corollary 3.10. Let 𝑇 ∈ 𝐋(ℌ,𝔎) be a linear relation. Assume that 𝑃 ∈ 𝐁(𝔎) is an orthogonal
projection that satisfies

mul 𝑇 = (𝐼 − 𝑃)mul 𝑇 + 𝑃mul 𝑇, (3.18)

and define

𝑇1 = (𝐼 − 𝑃)𝑇 and 𝑇2 = 𝑃𝑇. (3.19)

Then the sum 𝑇 = 𝑇1 + 𝑇2 in (3.13) is an orthogonal sum decomposition of 𝑇, connected with the
pair 𝐼 − 𝑃 and 𝑃 in the sense of Definition 3.9.
Conversely, let the sum𝑇 = 𝑇1 + 𝑇2 in (3.13) be an orthogonal sumdecomposition of𝑇 ∈ 𝐋(ℌ,𝔎)

in the sense of Definition 3.9. Then there exists an orthogonal projection 𝑃 ∈ 𝐁(𝔎) for which (3.18)
and (3.19) are satisfied.

Note that the nonnegative contraction𝐾 ∈ 𝐁(𝔎) in (3.15) is uniquely determined if the relation
𝑇 is minimal in the sense that ran𝑇 = 𝔎. In the case of decompositions of semibounded forms
via representing maps the minimality may be assumed without loss of generality (see also [18]).
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The independence of the components 𝑇1 and 𝑇2 in a decomposition of the form 𝑇 = 𝑇1 + 𝑇2
will be defined in measure-theoretic terms as follows.

Definition 3.11. Let𝑇 = 𝑇1 + 𝑇2 in (3.13) be a pseudo-orthogonal decomposition of𝑇 ∈ 𝐋(ℌ,𝔎).
Define the linear relation 𝐿(𝑇1, 𝑇2) ∈ 𝐋(𝔎) by

𝐿(𝑇1, 𝑇2) =
{
{g1, g2} ∶ {𝑓, g1} ∈ 𝑇1, {𝑓, g2} ∈ 𝑇2 with 𝑓 ∈ dom𝑇

}
. (3.20)

Then the components 𝑇1 and 𝑇2 in the sum 𝑇 = 𝑇1 + 𝑇2 are said to be mutually singular if the
linear relation 𝐿(𝑇1, 𝑇2) is singular.

If 𝑇 = 𝑇1 + 𝑇2 is connected with the pair of nonnegative contractions 𝐼 − 𝐾 and 𝐾 as in
Theorem 3.8, then 𝐿(𝑇1, 𝑇2) can be written as follows

𝐿(𝑇1, 𝑇2) =
{
{(𝐼 − 𝐾)g , 𝐾g} ∶ g ∈ ran𝑇

}
, (3.21)

where the operators 𝐼 − 𝐾 and 𝐾 are acting on the range of 𝑇.

Proposition 3.12. Let 𝑇 = 𝑇1 + 𝑇2 be a pseudo-orthogonal decomposition of 𝑇 connected with the
pair 𝐼 − 𝐾 and 𝐾 as in Theorem 3.8. Then 𝑇1 and 𝑇2 are mutually singular if and only if

ran 𝑃𝑇(𝐼 − 𝐾) ∩ ran𝑃𝑇𝐾 = {0}, (3.22)

where 𝑃𝑇 stands for the orthogonal projection onto ran𝑇. In particular, if 𝑇 is minimal then 𝑇1 and
𝑇2 are mutually singular if and only if 𝐾 is an orthogonal projection in𝔎.

Proof. The statement is proved via the adjoint of the linear relation 𝐿(𝑇1, 𝑇2) in (3.21). Indeed,
note that {𝜑, 𝜓} ∈ 𝐿(𝑇1, 𝑇2)

∗ if and only if for all {𝑓, g} ∈ 𝑇 one has

(𝜓, (𝐼 − 𝐾)g) = (𝜑, 𝐾g) (3.23)

or, equivalently, (𝐼 − 𝐾)𝜓 − 𝐾𝜑 ∈ (ran𝑇)⟂ = ker 𝑃𝑇 . Repeating the same argument for the linear
relation 𝐿((𝐼 − 𝐾)𝑃𝑇, 𝐾𝑃𝑇) with (𝐼 − 𝐾)𝑃𝑇, 𝐾𝑃𝑇 ∈ 𝐁(𝔎), one concludes that

𝐿(𝑇1, 𝑇2)
∗ = 𝐿((𝐼 − 𝐾)𝑃𝑇, 𝐾𝑃𝑇)

∗. (3.24)

Therefore, 𝐿(𝑇1, 𝑇2) is singular if and only if 𝐿((𝐼 − 𝐾)𝑃𝑇, 𝐾𝑃𝑇) is singular. According to [17,
Lemma 5.2] this last condition is equivalent to (3.22).
If ran𝑇 = 𝔎 then 𝑃𝑇 = 𝐼𝔎 and hence the condition (3.22) holds if and only if𝐾 is an orthogonal

projection; see Lemma 2.1. □

Proposition 3.12 shows that for a minimal 𝑇 the mutual singularity of 𝑇1 and 𝑇2 is equivalent
to each of the conditions stated in Lemma 2.1, for instance, the overlapping space 𝔛 ∩𝔜 with
𝑋 = 𝐼 − 𝐾, 𝑌 = 𝐾 being trivial; see also Theorem 3.4, Lemma 3.5. In particular, Proposition 3.12
connects mutual singularity of 𝑇1 and 𝑇2 in pseudo-orthogonal sum decompositions 𝑇 = 𝑇1 + 𝑇2
to the orthogonality of the ranges of 𝑇1 and 𝑇2 via Lemma 2.1.

 14697750, 2024, 5, Downloaded from https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.12900 by University Of Vaasa, Wiley Online Library on [06/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License



18 of 32 HASSI and DE SNOO

4 REGULARITY AND SINGULARITY OF SOME PRODUCT
RELATIONS

Let 𝑇 ∈ 𝐋(ℌ,𝔎) and let 𝑅 ∈ 𝐁(𝔎). The interest is in properties of the product

𝑅𝑇 =
{
{𝑓, 𝑅𝑓′} ∶ {𝑓, 𝑓′} ∈ 𝑇

}
,

so that 𝑅𝑇 ∈ 𝐋(ℌ,𝔎) with dom𝑅𝑇 = dom𝑇. Recall the general fact that

mul 𝑅𝑇 = 𝑅mul 𝑇.

In particular, 𝑅𝑇 is an operator if and only if

mul 𝑇 ⊂ ker 𝑅. (4.1)

Moreover, one has (𝑅𝑇)∗ = 𝑇∗𝑅∗; see, for example, [4]. In particular, if 𝑅 is selfadjoint, then
(𝑅𝑇)∗ = 𝑇∗𝑅. Thus, if 𝑅 ∈ 𝐁(𝔎) is selfadjoint one has the inclusions

𝑅𝑇∗∗ ⊂ (𝑅𝑇)∗∗ and 𝑅mul 𝑇∗∗ ⊂ mul (𝑅𝑇)∗∗. (4.2)

Still assuming that 𝑅 ∈ 𝐁(𝔎) is selfadjoint, define the linear subset ⊂ ran𝑅 by

 =
{
𝑘 ∈ ran𝑅 ∶ 𝑅𝑘 ∈ dom𝑇∗

}
. (4.3)

Then it is clear from the decomposition𝔎 = ker 𝑅 ⊕ ran𝑅 that

dom𝑇∗𝑅 =
{
𝑘 ∈ 𝔎 ∶ 𝑅𝑘 ∈ dom𝑇∗

}
= ker 𝑅 ⊕. (4.4)

It follows from (4.4) and the definition in (4.3), respectively, that

𝑅(dom𝑇∗𝑅) = 𝑅 = ran𝑅 ∩ dom𝑇∗. (4.5)

The next two lemmas give criteria for the relation𝑅𝑇 to be regular (closable) or singular, respec-
tively; see [14] for the case where 𝑅 is an orthogonal projection. First the characterization of the
closable case will be considered.

Lemma 4.1. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and let 𝑅 ∈ 𝐁(𝔎) be selfadjoint. Then 𝑅𝑇 is closable if and only if

clos {𝑘 ∈ ran𝑅 ∶ 𝑅𝑘 ∈ dom𝑇∗} = ran𝑅. (4.6)

Furthermore, if 𝑅𝑇 is closable, then

clos (ran𝑅 ∩ dom𝑇∗) = ran𝑅, (4.7)

and, in particular,

ran𝑅 ⊂ dom𝑇∗ or, equivalently, mul 𝑇∗∗ ⊂ ker 𝑅. (4.8)
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If ran𝑅 is closed, then the conditions (4.6) and (4.7) are equivalent. Moreover, if 𝑅 ∈ 𝐁(𝔎) is
invertible, then 𝑅𝑇 is closable if and only if 𝑇 is closable.

Proof. Recall that 𝑅𝑇 is closable if and only if its adjoint (𝑅𝑇)∗ is densely defined. Thus, it follows
from dom (𝑅𝑇)∗ = dom𝑇∗𝑅 and (4.4) that 𝑅𝑇 is closable if and only if is dense in ran 𝑅, that is,
if and only if (4.6) is satisfied.
Now assume that𝑅𝑇 is closable, that is, (4.6) holds. Then is dense in ran𝑅. As a consequence,

also 𝑅 is dense in ran𝑅. Thanks to (4.5) one sees that (4.7) holds.
The assertion mul 𝑇∗∗ ⊂ ker 𝑅 in (4.8) follows directly from (4.2). It is clearly equivalent to

ran𝑅 ⊂ dom𝑇∗. Both assertions can also be seen as consequences of the identity (4.7).
As to the last assertions, it suffices to show that (4.7) implies (4.6) if ran𝑅 is closed. In this case

𝑅maps ran𝑅 bijectively onto itself and it follows from (4.5) that = 𝑅−1(ran𝑅 ∩ dom𝑇∗). Thus,
if ran𝑅 ∩ dom𝑇∗ is dense in ran𝑅 then is dense ran𝑅. Therefore, (4.7) implies (4.6). □

Note that in the special case when 𝑅 is an orthogonal projection closability of 𝑅𝑇 was
characterized in [14, Lemmas 2.5 and 3.4] via the condition (4.7).

Corollary 4.2. With 𝑇 and 𝑅 as in Lemma 4.1, the following statements hold.

(a) If 𝑅𝑇 is closable andmul 𝑇∗∗ ∩ ker 𝑅 = {0}, then 𝑇 is closable.
(b) If dom𝑇∗ is closed, then 𝑅𝑇 is closable if and only if ran𝑅 ⊂ dom𝑇∗. In this case (𝑅𝑇)∗∗ ∈

𝐁(dom𝑇,𝔎).

Proof.

(a) If 𝑅𝑇 be closable, thenmul 𝑇∗∗ ⊂ ker 𝑅 by Lemma 4.1. An equivalent statement ismul 𝑇∗∗ =
mul 𝑇∗∗ ∩ ker 𝑅. Thus, (a) is clear.

(b) Assume that dom𝑇∗ is closed. If 𝑅𝑇 is closable, then ran𝑅 ⊂ dom𝑇∗ by Lemma 4.1. Con-
versely, if ran 𝑅 ⊂ dom𝑇∗ then dom𝑇∗𝑅 = 𝔎 and 𝑅𝑇 is closable. As dom𝑇∗𝑅 = 𝔎 and
(𝑅𝑇)∗∗ = (𝑇∗𝑅)∗, the domain of (𝑅𝑇)∗∗ is closed (see [4]) and hence equal to dom𝑇. Thus,
(𝑅𝑇)∗∗ ∈ 𝐁(dom𝑇,𝔎) by the closed graph theorem. □

Next the characterization of the singular case will be considered.

Lemma 4.3. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and let 𝑅 ∈ 𝐁(𝔎) be selfadjoint. Then 𝑅𝑇 is singular if and only if

ran𝑅 ∩ dom𝑇∗ ⊂ ker 𝑇∗. (4.9)

If 𝑇 ∈ 𝐋(ℌ,𝔎) has a dense range, then 𝑅𝑇 is singular if and only if

ran𝑅 ∩ dom𝑇∗ = {0}.

Proof. Recall that 𝑅𝑇 is singular if and only if the adjoint (𝑅𝑇)∗ = 𝑇∗𝑅 is singular or, equivalently,

dom𝑇∗𝑅 ⊂ ker 𝑇∗𝑅. (4.10)
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As by (4.5) one has 𝑅(dom𝑇∗𝑅) = 𝑅, the condition (4.10) holds if and only if 𝑅 ⊂ ker 𝑇∗. By
(4.5) this is equivalent to (4.9). □

Remark 4.4. The characterization of closability in Lemma 4.1 has an alternative formulation. If
the relation 𝑅𝑇 is closable then dom𝑇∗𝑅 is dense, which impliesmul 𝑇∗∗ ⊂ ker 𝑅 (cf. (4.2)), and
then

dom𝑇∗𝑅 = {𝑘 ∈ 𝔎 ∶ 𝑅𝑘 ∈ dom𝑇∗}

= mul 𝑇∗∗ ⊕
{
𝑘 ∈ dom𝑇∗ ∶ 𝑅𝑘 ∈ dom𝑇∗

}
,

where now the orthogonal decomposition 𝔎 = dom𝑇∗ ⊕mul 𝑇∗∗ is used. It is easily seen that
the closability of 𝑅𝑇 is equivalent to

⎧⎪⎨⎪⎩
mul 𝑇∗∗ ⊂ ker 𝑅,

clos
{
𝑘 ∈ dom𝑇∗ ∶ 𝑅𝑘 ∈ dom𝑇∗

}
= dom𝑇∗.

5 PSEUDO-ORTHOGONAL LEBESGUE-TYPE DECOMPOSITIONS

In this section, the general notion of a pseudo-orthogonal Lebesgue-type decomposition for linear
operators or relations is developed. In [14] the Lebesgue-type decompositions of a linear relation
𝑇 were always orthogonal. The new notion allows a nontrivial intersection of the components;
see Theorem 3.4.

Definition 5.1. Let the relations 𝑇, 𝑇1, and 𝑇2 belong to 𝐋(ℌ,𝔎). Then the sum decomposition

𝑇 = 𝑇1 + 𝑇2 with dom𝑇 = dom𝑇1 = dom𝑇2, (5.1)

is called a pseudo-orthogonal Lebesgue-type decomposition if it is a pseudo-orthogonal decom-
position as in Definition 3.6, such that 𝑇1 is closable and 𝑇2 is singular.

The following characterization of pseudo-orthogonal Lebesgue-type decompositions is a
straightforward consequence of Theorem 3.8, Lemma 4.1, and Lemma 4.3. Note that now the
condition (3.14) is automatically satisfied.

Theorem 5.2. Let 𝑇 ∈ 𝐋(ℌ,𝔎) be a linear relation. Assume that 𝐾 ∈ 𝐁(𝔎) is a nonnegative
contraction that satisfies

clos
{
𝑘 ∈ ran (𝐼 − 𝐾) ∶ (𝐼 − 𝐾)𝑘 ∈ dom𝑇∗

}
= ran (𝐼 − 𝐾), (5.2)

ran𝐾 ∩ dom𝑇∗ ⊂ ker 𝑇∗, (5.3)

and define

𝑇1 = (𝐼 − 𝐾)𝑇 and 𝑇2 = 𝐾𝑇. (5.4)
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Then the sum 𝑇 = 𝑇1 + 𝑇2 as in (5.1) is a pseudo-orthogonal Lebesgue-type decomposition of 𝑇,
connected with the pair 𝐼 − 𝐾 and 𝐾 in the sense of Definition 5.1.
Conversely, let the sum 𝑇 = 𝑇1 + 𝑇2 in (5.1) be a pseudo-orthogonal Lebesgue-type decomposition

of 𝑇 ∈ 𝐋(ℌ,𝔎) in the sense of Definition 5.1. Then there exists a nonnegative contraction 𝐾 ∈ 𝐁(𝔎)

such that (5.2), (5.3), and (5.4) are satisfied.

Proof. Let 𝐾 ∈ 𝐁(𝔎) be a nonnegative contraction and assume that (5.2) and (5.3) hold.
Then 𝑇1 = (𝐼 − 𝐾)𝑇 is a closable operator and 𝑇2 = 𝐾𝑇 is a singular relation by Lemmas 4.1
and 4.3. Hence, mul 𝑇1 = {0} so that (3.14) is satisfied. By Theorem 3.8 𝑇 = 𝑇1 + 𝑇2 is a
pseudo-orthogonal decomposition, which is a pseudo-orthogonal Lebesgue-type decomposition
according to Definition 5.1.
Conversely, let 𝑇 = 𝑇1 + 𝑇2 be a pseudo-orthogonal Lebesgue-type decomposition. Hence, by

definition it is a pseudo-orthogonal decomposition, where 𝑇1 is closable and 𝑇2 is singular.
According to Theorem 3.8, there exists a nonnegative contraction 𝐾 ∈ 𝐁(𝔎) for which the identi-
ties in (3.14) (trivially, asmul 𝑇1 = {0}) and (5.4) hold. In fact, by Lemmas 4.1 and 4.3, the assertions
in (5.2) and (5.3) follow. □

The sum decomposition (5.1) in Definition 5.1 is said to be an orthogonal Lebesgue-type decom-
position if it is an orthogonal decomposition as in Definition 3.9, such that 𝑇1 is closable and 𝑇2
singular. Hence, the following characterization of orthogonal Lebesgue-type decompositions is a
direct consequence of Theorem 5.2, Lemma 4.1, and Lemma 4.3; see [14].

Corollary 5.3. Let 𝑇 ∈ 𝐋(ℌ,𝔎) be a linear relation. Assume that 𝑃 ∈ 𝐁(𝔎) is an orthogonal
projection that satisfies

clos (ker 𝑃 ∩ dom𝑇∗) = ker 𝑃, (5.5)

ran 𝑃 ∩ dom𝑇∗ ⊂ ker 𝑇∗, (5.6)

and define

𝑇1 = (𝐼 − 𝑃)𝑇 and 𝑇2 = 𝑃𝑇. (5.7)

Then the sum 𝑇 = 𝑇1 + 𝑇2 as in (5.1) is an orthogonal Lebesgue-type decomposition of 𝑇, connected
with the pair 𝐼 − 𝑃 and 𝑃.
Conversely, let the sum 𝑇 = 𝑇1 + 𝑇2 in (5.1) be an orthogonal Lebesgue-type decomposition of

𝑇 ∈ 𝐋(ℌ,𝔎). Then there exists an orthogonal projection 𝑃 ∈ 𝐁(𝔎) such that (5.5), (5.6), and (5.7)
are satisfied.

Let 𝑃0 stand for the orthogonal projection ontomul 𝑇∗∗. Then it is clear that the conditions (5.5)
and (5.6) in Corollary 5.3 are satisfied and it follows that

𝑇 = 𝑇reg + 𝑇sing, 𝑇reg = (𝐼 − 𝑃0)𝑇, 𝑇sing = 𝑃0𝑇, (5.8)

is an orthogonal Lebesgue-type decomposition of 𝑇. Here the regular part 𝑇reg is closable and the
singular part 𝑇sing is singular. The decomposition in (5.8) is called the Lebesgue decomposition of
𝑇; see [15, 23, 27-29]. The Lebesgue decomposition in (5.8) shows the existence of Lebesgue-type
decompositions of 𝑇. Note that 𝑇reg is bounded if and only if dom𝑇∗ is closed; see [14].
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Among all Lebesgue-type decomposition of a linear relation 𝑇 ∈ 𝐋(ℌ,𝔎) the Lebesgue decom-
position in (5.8) is distinguished by the maximality property of its regular part 𝑇reg. Recall that for
linear relations 𝑆1 and 𝑆2 fromℌ to𝔎 one says that 𝑆1 is dominated (contractively dominated) by
𝑆2, in notation 𝑆1 ≺ 𝑆2 (𝑆1 ≺𝑐 𝑆2), if𝐶𝑆2 ⊂ 𝑆1 for some bounded (contractive) operator𝐶 ∈ 𝐁(𝔎).
When 𝑆1 and 𝑆2 are operators this is equivalent to dom𝑆2 ⊂ dom𝑆1 and ‖𝑆1ℎ‖ ⩽ 𝑐‖𝑆2ℎ‖ for all
ℎ ∈ dom𝑆2 for some 0 < 𝑐 (0 < 𝑐 ⩽ 1); see [16] and [14, Definition 8.1, Lemma 8.2]. The next result
is a strengthening of the maximality property established earlier for orthogonal Lebesgue-type
decompositions in [14] to the wider setting of pseudo-orthogonal Lebesgue-type decompositions
of 𝑇.

Theorem 5.4. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and let 𝑇 = 𝑇1 + 𝑇2 be a pseudo-orthogonal Lebesgue-type
decomposition of 𝑇. Then

𝑇1 ≺𝑐 𝑇reg,

that is, the regular part 𝑇reg of the Lebesgue decomposition is the maximal closable part of 𝑇, in the
sense of domination, among all pseudo-orthogonal Lebesgue-type decompositions of 𝑇.

Proof. In 𝑇 = 𝑇1 + 𝑇2 one has 𝑇1 = (𝐼 − 𝐾)𝑇 for a nonnegative contraction and note that 𝐼 − 𝐾

is also a nonnegative contraction. Hence, one concludes 𝑇1 ≺𝑐 𝑇. This domination is preserved
by their regular parts, see [14, Theorem 8.3]. As 𝑇1 is closable, it is equal to its regular part and it
follows that 𝑇1 ≺𝑐 𝑇reg. □

For a further consideration of Lebesgue-type decompositions the class of contractions in 𝐁(𝔎)
will now be restricted to contractions of the form

𝐾 =

(
𝐼 0

0 𝐺

)
∶

mul 𝑇∗∗

⊕

dom𝑇∗

→

mul 𝑇∗∗

⊕

dom𝑇∗

, (5.9)

where 𝐺 ∈ 𝐁
(
dom𝑇∗

)
is a nonnegative contraction. It follows from Theorem 5.2 that 𝐾 in (5.9)

satisfies (5.2) if and only if

clos
{
𝑘 ∈ ran (𝐼 − 𝐺) ∶ (𝐼 − 𝐺)𝑘 ∈ dom𝑇∗

}
= ran (𝐼 − 𝐺), (5.10)

and 𝐾 satisfies (5.3) if and only if

ran𝐺 ∩ dom𝑇∗ ⊂ ker 𝑇∗. (5.11)

Conversely, any𝐺 ∈ 𝐁
(
dom𝑇∗

)
with the properties (5.10) and (5.11) gives via (5.9) a nonnegative

contraction 𝐾 ∈ 𝐁(𝔎) as in Theorem 5.2. The case 𝐺 = 0 corresponds to 𝐾 = 𝑃0, the orthogonal
projection ontomul 𝑇∗∗, and gives the Lebesgue decomposition, while any orthogonal Lebesgue-
type decomposition corresponds via (5.9) to an orthogonal projection 𝐺 that satisfies (5.10) and
(5.11).
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Now assume that dom𝑇∗ is not closed. Let 𝔏 ⊂ dom𝑇∗ ⧵ dom𝑇∗ be a closed linear subspace
of dom𝑇∗ and decompose this space accordingly:

dom𝑇∗ =
(
dom𝑇∗ ⊖ 𝔏

)
⊕𝔏.

This decomposition will be used in the lemma below. As to the existence of such subspaces 𝔏,
recall that dom𝑇∗ is an operator range space. Hence, one has dim (dom𝑇∗ ⧵ dom𝑇∗) = ∞; see
[10, Corollary to Theorem 2.3]. Therefore, one may choose for any 𝑛 ∈ ℕ an 𝑛-dimensional linear
subspace 𝔏 ⊂ dom𝑇∗ ⧵ dom𝑇∗. The following lemmas describe special classes of nonnegative
contractions 𝐾 ∈ 𝐁(𝔎) that illustrate several features discussed earlier.

Lemma 5.5. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and assume that dom𝑇∗ is not closed. Let 𝔏 be a nontrivial closed
linear subspace of dom𝑇∗ ⧵ dom𝑇∗. Let𝐻 ∈ 𝐁(𝔏) be a nonnegative contraction, then the operator
𝐺, defined by

𝐺 =

(
0 0

0 𝐻

)
∶

dom𝑇∗ ⊖ 𝔏

⊕

𝔏

→

dom𝑇∗ ⊖ 𝔏

⊕

𝔏

, (5.12)

belongs to𝐁
(
dom𝑇∗

)
and satisfies the condition (5.11). Assume in addition that (𝐼 − 𝐻)−1 ∈ 𝐁(𝔏),

then the operator 𝐺 in (5.12) satisfies the condition (5.10). Hence, 𝐾 in (5.9) satisfies the conditions
(5.5) and (5.6). Consequently, the sum 𝑇 = 𝑇1 + 𝑇2 with (5.4) is a pseudo-orthogonal Lebesgue-type
decomposition of 𝑇.

Proof. Let 𝐺 be as in (5.12). Then ran𝐺 ⊂ 𝔏, so that ran𝐺 ∩ dom𝑇∗ = {0} by the definition of 𝔏.
Hence, the condition (5.11) is automatically satisfied. Furthermore, one sees from the condition
(𝐼 − 𝐻)−1 ∈ 𝐁(𝔏) that 𝐼 − 𝐺 ∈ 𝐁

(
dom𝑇∗

)
is invertible. Thus, the linear space (𝐼 − 𝐺)−1dom𝑇∗

is dense in dom𝑇∗. Therefore, (5.10) is satisfied if (𝐼 − 𝐻)−1 ∈ 𝐁(𝔏). □

The next lemma goes back to [14].

Lemma 5.6. Let 𝑇 ∈ 𝐋(ℌ,𝔎) and assume that dom𝑇∗ is not closed. Let 𝔏 be a finite-dimensional
linear subspace of dom𝑇∗ ⧵ dom𝑇∗. Let 𝐻 ∈ 𝐁(𝔏) be an orthogonal projection. Then the operator
𝐾 ∈ 𝐁(𝔎), defined by (5.9) and (5.12), is an orthogonal projection 𝐾 = 𝑃 that satisfies the condi-
tions (5.5) and (5.6). Consequently, the sum 𝑇 = 𝑇1 + 𝑇2 with (5.7) is an orthogonal Lebesgue-type
decomposition of 𝑇.

Lemmas 5.5 and 5.6 answer questions about the existence of Lebesgue-type decompositions,
different from the Lebesgue decomposition: when dom𝑇∗ is not closed there are infinitely many
different Lebesgue-type decompositions of 𝑇, both pseudo-orthogonal and orthogonal. A nec-
essary and sufficient condition for the uniqueness of the Lebesgue decomposition among all
pseudo-orthogonal Lebesgue-type decompositions (thus including the orthogonal ones) is given
in the next theorem.

Theorem 5.7. Let 𝑇 ∈ 𝐋(ℌ,𝔎), then the following statements are equivalent.
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(i) The Lebesgue decomposition of 𝑇 is the only pseudo-orthogonal Lebesgue-type decomposition of
𝑇.

(ii) dom𝑇∗ is closed.

Proof. (i) ⇒ (ii) Assume that dom𝑇∗ is not closed. According to Lemmas 5.5 and 5.6, there
exist Lebesgue-type decompositions of 𝑇, which are pseudo-orthogonal or orthogonal, which are
different from the Lebesgue decomposition. This contradiction shows (ii).
(ii)⇒ (i) Assume that dom𝑇∗ is closed. Let 𝑇 = (𝐼 − 𝐾)𝑇 + 𝐾𝑇 have a Lebesgue-type decom-

position (5.4), where 𝐾 is a nonnegative contraction; see Corollary 4.2. Then with the convention
(5.9) one has ran𝐺 ⊂ dom𝑇∗ that, combined with (5.11), leads to ran𝐺 ⊂ ker 𝑇∗ or, equivalently,
ran𝑇 ⊂ ker 𝐺. It follows from (5.9) that

𝐾 − 𝑃0 =

(
0 0

0 𝐺

)
.

Therefore, the following identities

(𝐼 − 𝐾)𝑇 = (𝐼 − 𝑃0)𝑇 = 𝑇reg and 𝐾𝑇 = 𝑃0𝑇 = 𝑇sing

are clear. Thus, the pseudo-orthogonal decomposition of 𝑇 corresponding to𝐾 coincides with the
Lebesgue decomposition. □

Theorem 5.7 is a strengthening of the corresponding result in [14] from the case of orthogonal
Lebesgue-type decompositions to the case of pseudo-orthogonal Lebesgue-type decompositions.
The uniqueness condition in (ii) is equivalent to the condition that the operator 𝑇reg is bounded,
see [14]. To see this equivalence, recall that dom𝑇∗ is closed if and only if dom𝑇∗∗ is closed, while

dom𝑇∗∗ = dom (𝑇∗∗)reg = dom (𝑇reg)
∗∗.

The original statement of such a uniqueness result in the setting of pairs of nonnegative bounded
operators goes back toAndo [1]. In [35], there is an extensive treatment of the uniqueness question
in the context of forms, including a list of the relevant literature.
Finally, it should be observed that Lemma 5.5 provides some concrete examples for nontrivial

intersection of the components in a Lebesgue-type decomposition.

Corollary 5.8. Assume the conditions in Lemma 5.5 and let 𝑇 = 𝑇1 + 𝑇2 be the corresponding
Lebesgue-type decomposition. Then the following statements hold.

(a) The intersection of ran𝑇1 and ran𝑇2 satisfies

ran𝑇1 ∩ ran𝑇2 = {0}𝔎⊖𝔏 ⊕𝐻(𝐼 − 𝐻)𝑃𝔏𝔐, (5.13)

where𝔐 is given by (3.8) and 𝑃𝔏 is the orthogonal projection onto 𝔏.
(b) If ran𝑇 = 𝔎, then the intersection of ran𝑇1 and ran𝑇2 satisfies

ran𝑇1 ∩ ran𝑇2 = {0}𝔎⊖𝔏 ⊕ ran𝐻. (5.14)

Consequently, if𝐻 ≠ 0 then ran𝑇1 ∩ ran𝑇2 ≠ {0}.
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Proof. First observe with the matrix representations in (5.9) and (5.12) that

(𝐼 − 𝐾)𝐾 =

(
0 0

0 (𝐼 − 𝐺)𝐺

)
and (𝐼 − 𝐺)𝐺 =

(
0 0

0 (𝐼 − 𝐻)𝐻

)
. (5.15)

(a) The description (5.13) is obtained directly from Theorem 3.4 by using the block formulae in
(5.15).

(b) By assumption 𝐼 − 𝐻 is surjective and hence ran (𝐼 − 𝐻)𝐻 = ran𝐻. As 𝑇 is minimal, the
statement in (5.14) follows from Lemma 3.5 again by means of (5.15). □

6 PAIRS OF BOUNDED LINEAR OPERATORS

Let Φ ∈ 𝐁(𝔈,ℌ) and Ψ ∈ 𝐁(𝔈,𝔎) be bounded linear operators. With these operators, one
associates the linear relation 𝐿(Φ,Ψ) ∈ 𝐋(ℌ,𝔎), defined by

𝐿(Φ,Ψ) =
{
{Φ𝜂, Ψ𝜂} ∶ 𝜂 ∈ 𝔈

}
, (6.1)

so that 𝐿(Φ,Ψ) is an operator range relation in the sense of [4, 17]; see (3.20) in Definition 3.11. It
follows directly from the definition of 𝐿(Φ,Ψ) that its domain and range are given by

dom𝐿(Φ,Ψ) = ranΦ and ran 𝐿(Φ,Ψ) = ranΨ, (6.2)

while its kernel and multivalued part are given by

ker 𝐿(Φ,Ψ) = Φ(ker Ψ), mul 𝐿(Φ,Ψ) = Ψ(ker Φ). (6.3)

This section gives a brief overview of the decompositions Ψ = Ψ1 + Ψ2 with respect to Φ, with
bounded operators Ψ1 and Ψ2, in the present context of a pseudo-orthogonal decomposition of
the space𝔎, allowing interaction between the components as in Sections 3 and 4. These decom-
positions of Ψ with respect to Φ will be obtained via the corresponding decompositions of the
corresponding linear relation 𝐿(Φ,Ψ); for the orthogonal case, see [17].
The present interest is in sums Ψ = Ψ1 + Ψ2 and their interplay with the corresponding linear

relations 𝐿(Φ,Ψ1 + Ψ2).

Lemma 6.1. Let Φ ∈ 𝐁(𝔈,ℌ), Ψ ∈ 𝐁(𝔈,𝔎), and assume that Ψ = Ψ1 + Ψ2 where Ψ1,Ψ2 ∈
𝐁(𝔈,𝔎). Then there is domain equality

dom𝐿(Φ,Ψ) = dom𝐿(Φ,Ψ1) = dom𝐿(Φ,Ψ2),

and inclusion of the relations

𝐿(Φ,Ψ) ⊂ 𝐿(Φ,Ψ1) + 𝐿(Φ,Ψ2). (6.4)

Moreover, there is equality in (6.4):

𝐿(Φ,Ψ) = 𝐿(Φ,Ψ1) + 𝐿(Φ,Ψ2) (6.5)
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if and only if

Ψ(ker Φ) = Ψ1(ker Φ) + Ψ2(ker Φ). (6.6)

The sum in (6.5) is strict (i.e., the sum in (6.6) is direct) if and only if

Ψ1(ker Φ) ∩ Ψ2(ker Φ) = {0}. (6.7)

Furthermore, ifΨ1(ker Φ) = {0} orΨ2(ker Φ) = {0}, then (6.6) and (6.7) are automatically satisfied.

Proof. From the definition of the relation 𝐿(Φ,Ψ) in (6.1), it is clear that

dom𝐿(Φ,Ψ) = dom𝐿(Φ,Ψ1) = dom𝐿(Φ,Ψ2) = ranΦ,

see (6.2). Furthermore, it follows from the definition of the sum in (3.1) that (6.4) holds. Now recall
from Lemma 3.2 that there is equality in (6.4) if and only if

mul 𝐿(Φ,Ψ) = mul 𝐿(Φ,Ψ1) + mul 𝐿(Φ,Ψ2),

which is clearly equivalent to (6.6); see (6.3). □

Remark 6.2. Let𝔎 have a pseudo-orthogonal decomposition𝔎 = 𝔛+𝔜with associated nonneg-
ative contractions 𝑋 and 𝑌 such that 𝑋 + 𝑌 = 𝐼. Then by Definition 3.6 the decomposition (6.5)
of the relation 𝐿(Φ,Ψ) is pseudo-orthogonal if and only if

(a) ranΨ1 ⊂ 𝔛 and ranΨ2 ⊂ 𝔜;
(b) for each 𝜂 ∈ 𝔈 there exist elements 𝜂′, 𝜂′′ ∈ 𝔈withΦ𝜂 = Φ𝜂′ = Φ𝜂′′ andΨ𝜂 = Ψ1𝜂

′ + Ψ2𝜂
′′

for which

‖Ψ𝜂‖2
𝔎
= ‖Ψ1𝜂′‖2𝔛 + ‖Ψ2𝜂′′‖2𝔜.

Note that (b) implies 𝜂 − 𝜂′, 𝜂 − 𝜂′′ ∈ ker Φ and Ψ1𝜂′ + Ψ2𝜂
′′ = Ψ𝜂 = Ψ1𝜂 + Ψ2𝜂, so that

Ψ1(𝜂
′ − 𝜂) = Ψ2(𝜂 − 𝜂′′). (6.8)

By Lemma 3.7, the sum in (6.5) is strict, thus one has (6.7). Therefore, (6.8) gives that Ψ1𝜂′ = Ψ1𝜂

and Ψ2𝜂′′ = Ψ2𝜂. Hence, (b) implies that

‖Ψ𝜂‖2
𝔎
= ‖Ψ1𝜂‖2𝔛 + ‖Ψ2𝜂‖2𝔜, 𝜂 ∈ 𝔈. (6.9)

Note that if (6.9) is satisfied, then (b) holds automatically. Thus, the conditions (b) and (6.9)
are equivalent.

Definition 6.3. Let Φ, Ψ, Ψ1, and Ψ2 be bounded linear operators in 𝐁(𝔈,ℌ) and assume that Ψ
has the decomposition

Ψ = Ψ1 + Ψ2 with Ψ(ker Φ) = Ψ1(ker Φ) + Ψ2(ker Φ), direct sum. (6.10)

Let 𝔎 have a pseudo-orthogonal decomposition𝔎 = 𝔛+𝔜 with associated nonnegative contrac-
tions 𝑋 and 𝑌 such that 𝑋 + 𝑌 = 𝐼. Then the decomposition (6.10) ofΨwith respect toΦ is called
pseudo-orthogonal if Φ, Ψ, Ψ1, and Ψ2 satisfy the conditions
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(a) ranΨ1 ⊂ 𝔛 and ranΨ2 ⊂ 𝔜;
(b) ‖Ψ𝜂‖2

𝔎
= ‖Ψ1𝜂‖2𝔛 + ‖Ψ2𝜂‖2𝔜 for all 𝜂 ∈ 𝔈.

It is clear from Remark 6.2 that the decomposition (6.10) of Ψ with respect to Φ is pseudo-
orthogonal if and only if the corresponding operator range relation 𝐿(Φ,Ψ) in (6.1) is pseudo-
orthogonal. The pseudo-orthogonal decompositions of Ψ with respect to Φ in Definition 6.3 can
now be characterized by means of nonnegative contractions in 𝐁(𝔎).

Theorem 6.4. Let Φ ∈ 𝐁(𝔈,ℌ) and Ψ ∈ 𝐁(𝔈,𝔎). Assume that 𝐾 ∈ 𝐁(𝔎) is a nonnegative
contraction that satisfies

Ψ(ker Φ) = (𝐼 − 𝐾)Ψ(ker Φ) + 𝐾Ψ(ker Φ), direct sum, (6.11)

and define

Ψ1 = (𝐼 − 𝐾)Ψ and Ψ2 = 𝐾Ψ. (6.12)

Then the sumΨ = Ψ1 + Ψ2 as in (6.10) is a pseudo-orthogonal decomposition ofΨwith respect toΦ,
connected with the pair 𝐼 − 𝐾 and 𝐾 in the sense of Definition 6.3.
Conversely, letΨ = Ψ1 + Ψ2 in (6.10) be a pseudo-orthogonal decomposition ofΨwith respect toΦ

in the sense of Definition 6.3. Then there exists a nonnegative contraction 𝐾 ∈ 𝐁(𝔎) such that (6.11)
and (6.12) are satisfied.

Proof. Let Φ ∈ 𝐁(𝔈,ℌ), Ψ ∈ 𝐁(𝔈,𝔎), and let 𝐾 ∈ 𝐁(𝔎) be a nonnegative contraction. Define
the operators Ψ1,Ψ2 ∈ 𝐁(𝔈,𝔎) by (6.12), so that Ψ = Ψ1 + Ψ2. Let 𝔛 and 𝔜 be the pair of com-
plemented operator range spaces, contractively contained in𝔎, associated with the nonnegative
contractions 𝑋 = 𝐼 − 𝐾 and 𝑌 = 𝐾. By definition

ranΨ1 = ran (𝐼 − 𝐾)Ψ ⊂ 𝔛 and ranΨ2 = ran𝐾Ψ ⊂ 𝔜,

so that condition (a) in Definition 6.3 is satisfied. To see (b) in Definition 6.3 observe that

‖Ψ1𝜂‖2𝔛 + ‖Ψ2𝜂‖2𝔜 = ‖(𝐼 − 𝐾)Ψ𝜂‖2
𝔛
+ ‖𝐾Ψ𝜂‖2

𝔜

= ((𝐼 − 𝐾)Ψ𝜂,Ψ𝜂)𝔎 + (𝐾Ψ𝜂,Ψ𝜂)𝔎 = ‖Ψ𝜂‖2
𝔎
,

so that condition (b) in Remark 6.2 is satisfied. Hence, Ψ = Ψ1 + Ψ2 is a pseudo-orthogonal
decomposition of Ψ with respect to Φ in the sense of Definition 6.3.
Conversely, assume that Ψ = Ψ1 + Ψ2 is a pseudo-orthogonal decomposition with respect to Φ

as in Definition 6.3. Then 𝐿(Φ,Ψ) in (6.1) has a pseudo-orthogonal decomposition of the form

𝐿(Φ,Ψ) = 𝐿(Φ,Ψ1) + 𝐿(Φ,Ψ2),

see Remark 6.2. Therefore, by Theorem 3.8 there exists a nonnegative contraction𝐾 ∈ 𝐁(𝔎) gives

𝐿(Φ,Ψ1) = (𝐼 − 𝐾)𝐿(Φ,Ψ) and 𝐿(Φ,Ψ2) = 𝐾𝐿(Φ,Ψ),

which reads

𝐿(Φ,Ψ1) = 𝐿(Φ, (𝐼 − 𝐾)Ψ) and 𝐿(Φ,Ψ2) = 𝐿(Φ,𝐾Ψ). (6.13)
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To verify the identities in (6.12) let 𝜂 ∈ 𝔈. Then due to (6.13) there exist 𝜂′, 𝜂′′ ∈ 𝔈 such thatΦ𝜂 =
Φ𝜂′ = Φ𝜂′′, while (𝐼 − 𝐾)Ψ𝜂 = Ψ1𝜂

′ and 𝐾Ψ𝜂 = Ψ2𝜂
′′. From Ψ1𝜂

′ + Ψ2𝜂
′′ = Ψ𝜂 = Ψ1𝜂 + Ψ2𝜂 it

follows that Ψ1𝜂′ = Ψ1𝜂 and Ψ2𝜂′′ = Ψ2𝜂; see (6.7) and Remark 6.2. Therefore, the identities in
(6.12) hold. □

LetΦ andΨ be in 𝐁(𝔎) and let 𝐿(Φ,Ψ) be defined as in (6.1). Now consider the case of operator
range relations 𝐿(Φ,Ψ) that are closable or singular. Recall that 𝐿(Φ,Ψ) is closable if and only if
mul 𝐿(Φ,Ψ)∗∗ = {0} or, equivalently, for every sequence 𝜂𝑛 ∈ 𝔈 one has

Φ𝜂𝑛 → 0 and Ψ(𝜂𝑛 − 𝜂𝑚) → 0 ⇒ Ψ𝜂𝑛 → 0. (6.14)

Likewise, 𝐿(Φ,Ψ) is singular if and only if ran 𝐿(Φ,Ψ)∗∗ ⊂ mul 𝐿(Φ,Ψ)∗∗ (cf. [14, Proposition 2.8])
or, equivalently, for every sequence 𝜂𝑛 in𝔈 there exists a subsequence, denoted by 𝜔𝑛, such that

Ψ(𝜂𝑛 − 𝜂𝑚) → 0 ⇒ Φ𝜔𝑛 → 0. (6.15)

Note that 𝐿(Ψ,Φ) = 𝐿(Φ,Ψ)−1 implies that 𝐿(Φ,Ψ) is singular if and only if 𝐿(Ψ,Φ) is singular.

Remark 6.5. The characterizations in (6.14) and (6.15) of closable and singular operator range
relations remain valid if the sequences 𝜑𝑛 are taken from a dense setℜ ⊂ 𝔈. To see this, observe
that for any sequence 𝜂𝑛 ∈ 𝔈 there exists an approximating sequence 𝜂′𝑛 ∈ ℜ, such that

‖𝜂𝑛 − 𝜂′𝑛‖ ⩽ 1

𝑛
, in which case ||‖𝐿𝜂𝑛‖ − ‖𝐿𝜂′𝑛‖|| ⩽ 1

𝑛
‖𝐿‖,

for any 𝐿 ∈ 𝐁(𝔈,𝔏), where 𝔏 is a Hilbert space.

The following simple observations about the adjoint relation 𝐿(Φ,Ψ)∗ play a role in the rest of
this section; see [17]. A direct calculation shows that

𝐿(Φ,Ψ)∗ =
{
{𝑘, ℎ} ∈ 𝔎 ×ℌ ∶ Ψ∗𝑘 = Φ∗ℎ

}
.

Thus, by means of the linear subspaces

𝔇(Φ,Ψ) = {𝑘 ∈ 𝔎 ∶ Ψ∗𝑘 ∈ ranΦ∗}, ℜ(Φ,Ψ) = {ℎ ∈ ℌ ∶ Φ∗ℎ ∈ ranΨ∗},

the domain and the range of 𝐿(Φ,Ψ)∗ are given by

dom𝐿(Φ,Ψ)∗ = 𝔇(Φ,Ψ), ran 𝐿(Φ,Ψ)∗ = ℜ(Φ,Ψ),

and, likewise, the kernel and multivalued part of 𝐿(Φ,Ψ)∗ are given by

ker 𝐿(Φ,Ψ)∗ = ker Ψ∗, mul 𝐿(Φ,Ψ)∗ = ker Φ∗.

Definition 6.6. The operatorΨ is called regular with respect toΦ if𝔇(Φ,Ψ) is dense in𝔎, which
is the case if and only if the relation 𝐿(Φ,Ψ) is regular. Likewise, the operator Ψ is called singular
with respect to Φ if𝔇(Φ,Ψ) ⊂ ker Ψ∗ or, equivalently,ℜ(Φ,Ψ) ⊂ ker Φ∗, which is the case if and
only if the relation 𝐿(Φ,Ψ) is singular.
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Clearly, an equivalent characterization for singularity is that

ranΦ∗ ∩ ranΨ∗ = {0}, (6.16)

(expressing the symmetry between Φ and Ψ); see also [17, Lemma 5.2].

Remark 6.7. Both notions appearing in Definition 6.6 have equivalent characterizations that
resemble their measure-theoretic analogs. In particular, Ψ is regular with respect to Φ if and only
if Ψ is almost dominated by Φ. In this case Ψ has a Radon–Nikodym derivative with respect to Φ,
which is given by the closed operator

𝑅(Φ,Ψ) = 𝐿(Φ,Ψ)∗∗ ∈ 𝐋(ℌ,𝔎),

and then Ψ can be written as Ψ = 𝑅(Φ,Ψ)Φ. Likewise, Ψ is singular with respect to Φ (or Φ is
singular with respect to Ψ) precisely if for any 𝛯 ∈ 𝐁(𝔎) one has

𝛯 ≺ Φ and 𝛯 ≺ Ψ ⇒ 𝛯 = 0.

For the definitions and the arguments, see [17, sections 5 and 6].

Definition 6.8. Let Φ ∈ 𝐁(𝔈,ℌ) and Ψ ∈ 𝐁(𝔈,𝔎). Then Ψ is said to have a pseudo-orthogonal
Lebesgue-type decomposition

Ψ = Ψ1 + Ψ2 (6.17)

with respect toΦ if the sum (6.17) is a pseudo-orthogonal decomposition ofΨwith respect toΦ as
in Definition 6.3, where Ψ1 is regular with respect to Φ and Ψ2 is singular with respect to Φ.

The following characterization is now straightforward.

Theorem 6.9. Let Φ ∈ 𝐁(𝔈,ℌ) and Ψ ∈ 𝐁(𝔈,𝔎). Assume that 𝐾 ∈ 𝐁(𝔎) is a nonnegative
contraction that satisfies

clos
{
𝑘 ∈ ran (𝐼 − 𝐾) ∶ (𝐼 − 𝐾)𝑘 ∈ 𝔇(Φ,Ψ)

}
= ran (𝐼 − 𝐾), (6.18)

ran𝐾 ∩𝔇(Φ,Ψ) ⊂ ker Ψ∗, (6.19)

and define

Ψ1 = (𝐼 − 𝐾)Ψ and Ψ2 = 𝐾Ψ. (6.20)

Then the sum Ψ = Ψ1 + Ψ2 as in (6.17) is a pseudo-orthogonal Lebesgue-type decomposition of Ψ
with respect to Φ, connected with the pair 𝐼 − 𝐾 and 𝐾 in the sense of Definition 6.8.
Conversely, let Ψ = Ψ1 + Ψ2 in (6.17) be a pseudo-orthogonal Lebesgue-type decomposition of Ψ

with respect toΦ in the sense of Definition 6.8. Then there exists a nonnegative contraction𝐾 ∈ 𝐁(𝔎)

such that (6.18), (6.19), and (6.20) are satisfied.

To verify the theorem, recall Theorem 6.4 and apply Definition 6.6 to the components Ψ1 and
Ψ2 in (6.20); see also Theorem 5.2, or Lemmas 4.1 and 4.3. Note that the condition for the sum
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in (6.11), as stated in Theorem 6.4, is now absent because this condition automatically follows
from the condition (6.18): one has Ψ(ker Φ) ⊂ ker (𝐼 − 𝐾); see Lemma 6.1. Observe, also that the
singularity condition (6.19) for the component Ψ2 = 𝐾Ψ is equivalent to ranΨ∗𝐾 ∩ ranΦ∗ = {0};
see (6.16).
Furthermore, the components Ψ1 and Ψ2 in Theorem 6.9 are mutually singular if and only if

the linear relation 𝐿(Ψ1, Ψ2) is singular, or equivalently,

ranΨ∗(𝐼 − 𝐾) ∩ ranΨ∗𝐾 = {0}.

In particular, if ran 𝐿(Φ,Ψ) = ranΨ is dense in 𝔎, then Ψ1 and Ψ2 are mutually singular if and
only if 𝐾 is an orthogonal projection; see Proposition 3.12.
Let 𝑃0 be the orthogonal projection onto𝔇(Φ,Ψ)⟂. Then the pair of operatorsΨreg = (𝐼 − 𝑃0)Ψ

andΨsing = 𝑃0Ψ, gives an orthogonal Lebesgue-type decompositionΨ = Ψreg + Ψsingwith respect
to Φ. It is called the Lebesgue decomposition of Ψ with respect to Φ. Note that it follows from
Theorem 6.9 that (𝐼 − 𝐾)𝑃0 = 0, so that (𝐼 − 𝐾)(𝐼 − 𝑃0) = 𝐼 − 𝐾. Hence, for the regular part Ψreg
there is the following characterization; see [17].

Corollary 6.10. Let Φ ∈ 𝐁(𝔈,ℌ) and Ψ ∈ 𝐁(𝔈,𝔎). Let Ψ = Ψ1 + Ψ2 be a pseudo-orthogonal
Lebesgue-type decomposition of Ψ with respect to Φ, then

‖Ψ1ℎ‖ ⩽ ‖Ψregℎ‖, ℎ ∈ 𝔈.

Corollary 6.11. LetΦ ∈ 𝐁(𝔈,ℌ) andΨ ∈ 𝐁(𝔈,𝔎). Then the following statements are equivalent.

(i) Ψ admits a unique pseudo-orthogonal Lebesgue-type decomposition with respect to Φ.
(ii) 𝔇(Φ,Ψ) is closed.
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