W) Check for updates

Received: 3 October 2023 Revised: 27 January 2024 Accepted: 9 March 2024

DOI: 10.1112/jlms.12900

Journal of the London
RESEARCH ARTICLE Mathematical Society

Complementation and Lebesgue-type
decompositions of linear operators and relations

S. Hassi! | H.S.V.de Snoo?

IDepartment of Mathematics and

Statistics, University of Vaasa, Vaasa, Abstract
Finland In this paper, a new general approach is developed
*Bernoulli Institute for Mathematics, to construct and study Lebesgue-type decompositions

Computer Science and Artificial

Intelligence, University of Groningen, of linear operators or relations T in the Hilbert space

Groningen, The Netherlands setting. The new approach allows to introduce an essen-
tially wider class of Lebesgue-type decompositions than

Correspondence . . .

S. Hassi, Department of Mathematics and what has been studied in the literature so far. The key

Statistics, University of Vaasa, P.O. Box point is that it allows a nontrivial interaction between

700, 65101 Vaasa, Finland.

) ) ] the closable and the singular components of T. The
Email: seppo.hassi@uwasa.fi

motivation to study such decompositions comes from
the fact that they naturally occur in the correspond-
ing Lebesgue-type decomposition for pairs of quadratic
forms. The approach built in this paper uses so-called
complementation in Hilbert spaces, a notion going back
to de Branges and Rovnyak.

MSC 2020
46C07, 47A65 (primary), 47A05, 47A06, 47A07 (secondary)

1 | INTRODUCTION

The usual Lebesgue decomposition of measures has inspired the study of similar decompositions
of, for instance, pairs of positive operators and semibounded forms; see [1, 2, 13, 33]. In the context
of linear operators or linear relations such decompositions can be seen as the source for all the
other Lebesgue-type decompositions. It should be noted that the standard Lebesgue decomposi-
tion of a pair of positive measures can be obtained as a special case of the Lebesgue decomposition
of a pair of nonnegative forms; for details, see [13].
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In this paper, a new general type of decomposition of linear operators and, more generally,
of linear relations is introduced and explained which allows a nontrivial interaction between the
regular (closable) component and the singular component. This work is inspired by the Lebesgue-
type decompositions for a pair of forms that have been studied in [13]. It turned out that in the
Lebesgue-type decompositions of a nonnegative form t written as the additive sum t =t; +t,,
where

domt = domt; = domt,,

while t, is a regular (closable) form and t, is a singular form, the components t; and t, need not
in general be singular with respect to each other. In the setting of measures this corresponds to the
situation, where the absolutely continuous and the singular components are not mutually singular
with respect to each other. On the other hand, all Lebesgue-type decompositions of a nonnegative
quadratic form can be derived by introducing a so-called representing map Q :  — & (here
and K are Hilbert spaces) for the form t: t[h, k] = (Qh, Qk), h,k € domt = dom Q, where one
can assume that ran Q = K; a detailed study of representing maps will appear in [18]. A key fact
in the connection of quadratic forms is that the components t; and t, generate a nonnegative
contraction K acting in the space &, such that

1 1 1 1
t,[h, k] = ((1 —K)ih,(I - K)> k) Jtylh, k] = (Kz hK> k> ,h,k € domt,
and then one can prove the following general formula

(t, : k] =T —K) : K)Qh,Qk), h,k€domt=domQ, 1.1)
where “:” stands for the parallel sum of the involved components; see [18]. Recall from [13,
Proposition 2.10] that the forms t; and t, are mutually singular precisely when t; : t, = 0, while
(I —K) : K =0ifand only if K is an orthogonal projection, which is equivalent to the intersec-
tion ran (I — K) nran K = {0} being nontrivial; further details for this special case of forms can
be found in [18]. Closely related is a recent treatment of Lebesgue-type decompositions via the
technique of reproducing kernel Hilbert spaces; see [3].

The new approach developed here to analyze this phenomenon on the side of linear operators
or relations and their Lebesgue-type decompositions allowing such an interaction between the
regular and singular parts is built in this paper by using the notion of complementation going back
to de Branges and Rovnyak. This leads to several new results on Lebesgue-type decompositions
of unbounded operators and linear relations. In particular, the results generalize recent results
obtained in the case of orthogonal operator range decompositions in [14, 17]. For instance, among
the set of all such Lebesgue-type decompositions there is still a unique decomposition, whose
regular part in this new setting continues to be maximal; it is called the Lebesgue decomposition
of linear operators, see [17].

Let T € L($, &), that is, T is a linear relation from a Hilbert space $ to a Hilbert space &
(note that all linear operators from $ to & belong to this class); if § = K the shorter notation
T € L(&) is used. Denote by T** the closure of T (as a graph in the Cartesian product § X K);
moreover, mul T** stands for the linear space of all ¢ € & for which {0, g} € T**. For T** there
are two extreme cases: the regular (closable) case is defined by the equality mul T** = {0}, that is,
the closure T** is an operator, and the singular case is defined by the equality T** = dom T** X
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COMPLEMENTATION AND LEBESGUE-TYPE DECOMPOSITIONS | 30f32

mul T**, that is, T** is the Cartesian product of closed linear subspaces of $ and K. Clearly, T is
singular if and only if dom T** C ker T** or ran T** C mul T**. In particular, T is singular if and
only if T* is singular; see [4, 14] for further details. In general, a linear relation is neither closable
nor singular. However, every T € L($, &) has a sum decomposition T = T; + T, of the form

T={{f,g}€f)><@: g=91+.92’{f7gl}ET17{f792}eT2},

where T, T, € L(9, &) withdom T = dom T, = dom T,, while T is closable and T, is singular.
Such a sum decomposition T = T, + T, is called an orthogonal Lebesgue-type decomposition of T if
the Hilbert space & is the orthogonal sum of the closed linear subspaces ¥ and 9) of &, such that
ranT, C ¥ andran T, C 9. The usual Lebesgue decomposition of T is an example of an orthog-
onal Lebesgue-type decomposition. In the case of an orthogonal Lebesgue-type decomposition, it
is clear that ran T; Nran T, = {0}. Orthogonal Lebesgue-type decompositions have been studied
in [14, 17], extending earlier work of Izumino [20-22].

In this paper more general, pseudo-orthogonal, decompositions T = T, + T, will be intro-
duced. The decomposition of the space & will be based on a pair of complemented operator range
spaces X and %) with inner products (-, )¢ and (-, -)2) that are contained contractively in &; such
spaces were introduced by de Branges and Rovnyak, see [5, 7, 8, 10]. It is assumed that X and )
are generated by nonnegative contractions X,Y € B(K), that is the linear space of all bounded
linear operators from K to itself, for which

2 _ 2 2
Ihllg = IXhl% +1IYRIG, he S,

and this is equivalent to the condition X + Y = I; moreover, this condition automatically
leads to & = X + 9. For the sum decomposition T = T, + T, that satisfies domT = domT; =
domT,, while T, closable and T, singular, one now requires that ranT; C X and ranT, C
9), in which case for every {f, g} € T with {f, ¢} € T}, {f, 9} € T2, 9 = g9; + ¢, one has the
inequality

2 2 2
gl < llgrl + gy 1.

If, instead of this inequality, one has the Pythagorean equality

2 _ 2 2
g% = Ngull% + llga13,

then one speaks of a pseudo-orthogonal Lebesgue-type decomposition of T. In the orthogonal case,
the closed linear subspaces X and ¥) are isometrically contained in & andranT; 1 ranT,, so that
the Pythagorean equality is automatically satisfied. The new feature with complemented opera-
tor range spaces X and %) that are contractively contained in the original Hilbert space K is that
there is an overlapping space ¥ N %); moreover ¥ N Y contains the intersection ranX NranY.
This overlapping space has consequences for the interaction of the components T, and T,: it
may now happen that ran T; N ran T, is nontrivial, or even that ran T; N ran T, is nontrivial. This
interaction can be also explained in measure-theoretic terms; there is no interaction between the
components T; and T, when they are mutually singular, that is, singular with respect to each
other. This will be shown by studying a linear relation L(T;, T,) that is generated by T, and T;
see Definition 3.11.
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It will be shown that the pseudo-orthogonal Lebesgue-type decompositions of a linear relation
T € L($, &) are all of the form

T=T +T, with T,=-KT, T,=KT,

where K € B(&) is a nonnegative contraction for which (I — K)T is closable and KT is sin-
gular. The pseudo-orthogonal Lebesgue-type decomposition is orthogonal precisely if K is an
orthogonal projection. The usual Lebesgue decomposition T = T\, + T, is orthogonal and it
is uniquely defined by the property that T\ is the largest closable part of T among all pseudo-
orthogonal decompositions of T. Furthermore, there is a characterization of the situation where
the Lebesgue decomposition is the only pseudo-orthogonal Lebesgue-type decomposition of T.
As a consequence, one can always find in the nonunique case a pseudo-orthogonal Lebesgue-type
decomposition that is not orthogonal; see Lemma 5.5.
In the special case that T is an operator range relation, that is,

T = {{®n,¥n} : n € G}, 1.2)

where ® € B(€, ), ¥ € B(€, &), and €, 9, and K are Hilbert spaces, the pseudo-orthogonal
Lebesgue-type decompositions of T translate into the so-called pseudo-orthogonal Lebesgue-type
decompositions of the operator ¥ in terms of ®; for the orthogonal case and the notion of Radon-
Nikodym derivative, see [17]. It should be mentioned that so far there are only partial results for
Lebesgue-type decompositions of operator range relations T of the above form (1.2) when either
® or ¥ is unbounded.

The contents of the paper are now described. A short introduction to pairs of complemented
operator range spaces can be found in Section 2. This section is modeled on the relevant
appendix in [7]. General pseudo-orthogonal decompositions of a linear relation are introduced
in Section 3, where some material on the occurrence of overlapping in a pseudo-orthogonal
decomposition can be found. There also the linear relation L(T, T,) is introduced as an operator-
theoretic analog for the parallel sum in (1.1). For arelation T € L($, &) and a selfadjoint operator
R € B(8K) there are a number of criteria in Section 4 under which the product relation RT is
regular or singular. In Section 5, the previous characterizations are used to study the pseudo-
orthogonal Lebesgue-type decompositions of a linear relation T. The particular case where T is
an operator range relation is briefly reviewed in Section 6; see [17] for the orthogonal case and the
corresponding Radon-Nikodym derivatives.

The Lebesgue decomposition for measures and the associated Radon-Nikodym derivatives
for their absolutely continuous parts have seen many generalizations to more abstract settings.
At this stage it suffices to mention the work of Dye [9] and Henle [19]. The second half of the
seventies saw the work of Ando [1] for pairs of nonnegative operators and the work of Simon
[33] for nonnegative forms. This lead to many papers devoted to related contexts, such as C*-
algebras and the theory of positive maps; see, for instance, the references in [2, 12, 13, 26], and
note also, more recently, [6, 41], and, for example, the construction of Lebesgue decomposition
of noncommutative measures in multi-variable setting into absolutely continuous and singular
parts via Lebesgue decompositions for quadratic forms and via reproducing kernel space tech-
niques; see [3, 24, 25]. Shortly after the papers of Ando and Simon appeared the work of Jorgensen
[23] and Ota [27-29], which was devoted to the decompositions of linear operators. This con-
text (linear operators and also linear relations) was taken up in [15] and later in [14, 17]. The
Lebesgue-type decompositions in those papers were orthogonal, whereas in the present paper

d °s *$TOT ‘0SLLEIYT

/:sdny woxy

sdny) SUONIPUO)) puE SuIa 1 o 30 (pZ07/S0/90] U0 ATEIQIT AUIUO) ASTIAN “ESEEA JO ANSIATUA £Q 00671 SWIZT [1°01/10p/wW00" Kol

fop:

5URDFT SUOWWIOD) AAERL) 9[qeadde o Aq PAIPAOS AIE SITOTIE YO SN JO SA[NI 10 ATEIQI] AUIUQ) ASTIA U0



COMPLEMENTATION AND LEBESGUE-TYPE DECOMPOSITIONS | 50f32

the pseudo-orthogonal case is dealt with. Decomposition results in the context of forms, based
on a Hilbert space decomposition similar to the de Branges-Rovnyak decomposition (as worked
out at the end of Section 2), will appear in [18] and include the results in Simon [33]. In the
pseudo-orthogonal decompositions the notion of overlapping spaces appears in a natural way.
Furthermore, the pseudo-orthogonal situation for a pair of nonnegative bounded operators (as in
[1]) and for a pair of forms on a linear space (as in [13]) can also be treated in the context of the
associated linear relations; this is connected to the recent work by Sebestyén, Sziics, Tarcsay, and
Titkos [31, 32, 34-40].

It is a pleasure to thank Michael Dritschel for discussions about complementation, Robert Mar-
tin for making available a copy of [3], and the anonymous referees for several constructive remarks
and comments.

2 | PSEUDO-ORTHOGONAL DECOMPOSITIONS

This section provides a short review of pseudo-orthogonal decompositions of a Hilbert space.
These decompositions involve linear subspaces of such a Hilbert space, which are generated by
a pair of nonnegative contractions. In such decompositions there is in general an overlapping of
the summands; see [5, 7, 8, 10] and also [11]. At the end of this section there is a brief discussion
of an analogous overlapping decomposition; see [18].

This review begins with the notion of an operator range space. Let & be a Hilbert space and let

1
A € B(R) be a nonnegative contraction. Provide the range 2f = ran A2, a subspace of &, with the
inner product

(Alp.429), = (. 7p)s, pYES, @1

1 1
where 7 is the orthogonal projection in & onto fan A2 = (ker A2)*. Note that it follows from
(2.1) that the mapping

1 1
o A2p, @ ETanA2, 2.2)

— 1 . .. . . .
is unitary from ran A2 onto 2. Clearly, 2 with this inner product is a Hilbert space. As A is a
contraction, one has

1 1
lA2pllg = lA27ellg < llTpllg, ¢ € R,
and, hence, the identity (2.1) shows that

1 1
lA2plly > l1AZ0llg, €. (2.3)

It is a consequence of (2.1) that

(A%0.4p), =i p)s. p¥eS, @4)
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6 of 32 | HASSI and DE SNOO

which shows that the linear space ran A is dense in the Hilbert space 2. Moreover, (2.4) leads to
the useful identities

(Ap. APy = (Ug. g and (A2paa%y) = (42g.4%9) . gpefk @3

1
Itis clear that A maps 2 = ran Az into itself; in fact, it can be seen from (2.5) that A is nonnegative
in 2 and that A maps 2 contractively into itself. Note that if A is an orthogonal projection in &,
then 7 = A and

(A%go,A%zp)%[ - (A%C/),A%zp)ﬁ, 0.0 €K, (2.6)

so that the inner product (-, -)9; on ranA% = ran A coincides with the inner product of K.

The equality (2.1) and the inequality (2.3) can be formalized. Recall that a linear subspace I
of a Hilbert space K is called a contractive operator range space, when I has an inner product
(-, )9n»> such that

@ lellg < llellm, ¢ € M;
(b) I with the inner product (-, -)gy is a Hilbert space.

It is clear that the space 2 above is an example of a contractive operator range space. In fact, it is
the only example; see [17].

The interest in this section is in pairs of nonnegative contractions X,Y € B(&) with the con-
necting property X + Y = I. For the convenience of the reader some simple, but useful facts are
presented.

Lemma 2.1. Let & be a Hilbert space and let X,Y € B(&K) be nonnegative contractions with X +
Y =1 Then XY = YX € B(K) is a nonnegative contraction with
ker XY =ker X @ ker Y. 2.7

Moreover, the following identities hold:

ranX NranY =ranXY,

1 1 1 1
ranX2 NranY2 =ranX2Y2, (2.8)

ranX NnranY =ranXY.

Consequently, each of the following statements
1 1
ranX NranY = {0}, ranX2 nNranY:2 = {0},

1 1
(or, similarly, with the closures of the ranges) and, in particularranX 1 ranY orranX2 L ranYz2,
is equivalent to the nonnegative contractions X and Y being orthogonal projections.

Proof. The commutativity of X and Y and of their square roots is clear. Hence, the nonnegativity

1 1
of the product XY follows from XY = X2YX2. Note that ker X and ker Y are perpendicularin K.
Itis clear that the right-hand side of (2.7) is contained in the left-hand side. To show the remaining
inclusion let h € ker XY. Thenh =Yh + XhwithYh € ker X and Xh € ker Y.

d °s *$TOT ‘0SLLEIYT
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To see the first identity in (2.8), let ¢ € ranX NnranY. Then clearly one has ¢ = Xh = Yk for
some h,k € K. Hence, h = Y(h + k) EranY and g € ran XY. The reverse inclusion is clear. For

1 1 1 1
the second identity in (2.8), let ¢ € ran X2 Nnran Y2. Then one has, similarly, g = X2h = Y2k for
some h,k € K. Hence,

1 1 1 1 1
h=Yh+X2Y2keranY2 and g€ranX:zY:.

The reverse inclusion is clear.
By taking orthogonal complements in (2.7) one obtains the third identity in (2.8) for the closures
of the ranges. Ol

Let & be a Hilbert space and let X,Y € B(&) be nonnegative contractions with X + Y =1.

1 1
Let X =ran X2 and ¥ = ran Y2 be the corresponding operator range spaces; see (2.1). Then the
Hilbert space has a decomposition of the form

R=%+9. (2.9)

This can be seen as follows. By definition one has X € & and ¥ C &, so that the right-hand side
of (2.9) is contained in the left-hand side. For the converse, observe that for all h € & one has
h=Xh+YhwithXh € X and Yh € 9, which gives & C X + ¥). The intersection 8 = X n 9 is
called the overlapping space of the Hilbert spaces X and %) with respect to the decomposition (2.9).
It is characterized in the following lemma.

Lemma 2.2. Let & be a Hilbert space and let X, Y € B(K) be nonnegative contractions with X +

1 1
Y = 1. The overlapping space & = X N'%Y) is an operator range space associated with X2Y 2, whose
inner product satisfies

(@Yo =(@.,P)x + (@ Py, @.PeEXN. (2.10)

1 1
Proof. The overlapping = X n%) in (2.9) is a linear space given by = ranX2Y 2, as follows
from Lemma 2.1. To see (2.10) first observe for h, k € K that the identity X + Y = I gives

(h,K)g = (Yh,K)g + (Xh, k) = (Y21, Y2K)g + (X2 1, X2K)g. 2.11)

1i__ 1.1 __ 1 i___ 1.1 __ 1 p
Note that Y2ranX2Y2 C ranX2 and X2ranX2Y2 C ranY 2. Hence, if in (2.11) one takes h,k €
1 1
ran X2Y 2, then it follows that

1.1 1.1 1.1 1.1 1.1 1.1
(X2Y2h,X2Y2k>g = (XzYzh,Xzsz)3€ + (Yzth,Yzsz)g).

Moreover, it is clear that the last identity holds for all h,k € &. Therefore, the inner product on
L satisfies (2.10). O

Let & be a Hilbert space and let X,Y € B(&) be nonnegative contractions with X + Y =1.
Provide the Cartesian product X X g with the inner product generated by X and ), respectively.
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Define the column operator V from & to X X 9) by

V = col (X, Y) = {{h (if:)} : he@}. 2.12)

The operator V is clearly isometric, as
||Xh||§€ + ||Yh||2¥) =Xhh)g+Yhh)g=(X+Y)hh), heRg, (2.13)

see (2.5). Hence, V is a closed operator and ran V is closed. In general, the isometry V' does not
map onto X X 9.

Proposition 2.3. Let & be a Hilbert space, let X, Y € B(K) be nonnegative contractions, and assume
that X + Y = I. Let the column operator V be given by (2.12). Then the adjoint mapping V* from
X x 9 to K is a partial isometry, given by

v* <J;>=f+g, fex ge¥. (2.14)
Consequently, forall f € X and g € %), there is the inequality
If + gll < IFI% + lgli2, (2.15)
with equality in (2.15) ifand only if f = Xh and g = Yh for some h € &, namely, h = f + g.

Proof. A simple calculation gives forall f € X, g € ), and h € & that

«(f _((f _((F\ (Xh
<V <g>’h>§_<<g>,‘/h>x>@_<<9>,<Yh>>xxg)
=(f,.Xh)x + (g9, Yh)gy = (f. W)g + (9, W)g
=(f+g,ng,

which follows from (2.1); the identity shows (2.14). As V is an isometry, V* is partially isometric
and, in particular, V* is contractive. Moreover, according to (2.9), the mapping V* is onto. Thus,
(2.14) implies (2.15). Finally, there is equality in (2.15) if and only if (g ) EranV. O

The connection between the overlapping space = X n 2) and the range of the isometry V' is
now clear.

Proposition 2.4. The isometry V satisfies

1.1
anv)t = 4 (XY Lk emmxy b (2.16)
X3Y3k

Moreover, V is surjective if and only if X and Y are orthogonal projections.
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Proof. Itis clear that (ran V)* = ker V* and (2.14) shows that

ker V* = { (—io) Q€ 2}. (2.17)

Now apply Lemma 2.2 to obtain the assertion (2.16). In particular, (2.17) and the isometric prop-
erty of V, see (2.13), show that V is surjective if and only if = {0}. The conclusion follows from
Lemma 2.2. O

Recall that X and Y act as nonnegative contractions in X and ), respectively. The next corollary
presents the orthogonal projection VV* as a common dilation in the Hilbert space X x 9) for this
pair of nonnegative contractions; see [30].

Corollary 2.5. The orthogonal projection VV* onto ran 'V is given by

(Y (X X\ (f
o ()-( ) rex oo

The terminology in the following definition will be used in the rest of this paper.
Definition 2.6. Let X and %) be linear subspaces of the Hilbert space &. Then K is said to have
a pseudo-orthogonal decompositionK = X + 9) if
(a) X and ) are contractive operator range spaces that are contractively contained in K;
(b) the corresponding nonnegative contractions X and Y satisfy X + Y = I.
Recall that the condition X + Y = I is equivalent to the condition

2 _ 2 2
Ihllg = IXRl% +IYRIG, ke S, (218)

see (2.13) and Proposition 2.3. Moreover, if X and Y in Definition 2.6 are orthogonal projections,
then the definition reduces to the usual orthogonal decomposition as the contractive operator
range spaces X and ) are closed linear subspaces of &; see Lemma 2.1 and (2.6).

At the end of the section a closely related situation will be reviewed for nonnegative contrac-
tions X,Y € B(R) that satisfy X + Y = I. Provide the closed linear subspaces &, = ranX and
K, = ranY with the inner product inherited from K. It is clear that the Hilbert space & has the
decomposition

The intersection &, N &, is called the overlapping space of the Hilbert spaces &, and &, with
respect to the decomposition (2.19). It is characterized by

&, NK,=fanX Nrany = @nXxy;

see Lemma 2.1.
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1 1
Note that the column operator W = col (X 2,Y2 ) defined by

Wh::{{h,(xfh>} : heﬁ}, (2.20)
Yih

is a closed isometric mapping from & to &; X &,. The mapping W in (2.20) is closely related to
the mapping V in (2.12). To see this, first observe that the operator matrix

1 K X
U= <X2 01> X — X (2.21)
0 Y2
K 9

between the indicated Hilbert spaces is a unitary mapping; compare this with the property (2.2)
of the operator A € B(K) in (2.1). Next observe that U connects the operators W and V via

Uw =V. (2.22)
Hence, the following result is a consequence of Proposition 2.3.

Proposition 2.7. Let & be a Hilbert space and let X,Y € B(K) be nonnegative contractions with
X +Y = I. Let the column operator W be given by (2.20). Then the adjoint mapping W* from K, X
K, to K is a partial isometry, given by

w* <];> =X%f+Y%g, feER, g€ R, (2.23)

Consequently, forall f € &, and g € K,, there is the inequality
3 I o2 2 2
IX2f +Yzgllg < Iflig + llgllg (2.24)

with equality in (2.24) if and only if f = X%h and g = Y%hfor some h € &, namely h = X%f +
1
Yzgq.

Furthermore, the isometry W is not onto in general and the intersection of ran X and ran Y
comes into play.

Proposition 2.8. The isometry W satisfies

1
(ran W)+ = ker W* = {<_lek> ke ﬁXY}. (2.25)
X2k

Moreover, W is surjective if and only if X and Y are orthogonal projections.

Proof. The operator U in (2.21) maps ker W* in (2.25) onto ker V* in (2.16). Hence, the assertion
(2.25) follows from Proposition 2.4. The characterization of surjectivity follows from (2.22) and
Proposition 2.4. O
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Note that X and Y act as nonnegative contractions in &; and &,, respectively. The following
corollary presents the orthogonal projection WW™* as a common dilation in the Hilbert space
K, X &, for this pair of nonnegative contractions; see [30]. It can be seen as a consequence of
Corollary 2.5, as WW* = U*VV*U.

Corollary 2.9. The orthogonal projection WW™ onto ran W is given by

11
WW*<f>=< X X2Y2><f>, fef,geR,.
g Y2X2 Y g

The model involving &; =ranX and &, =ranY is connected to the de Branges-Rovnyak

model involving ¥ = ranX ; and 9 = ran Y% via the unitary mapping (2.21), and the overlap-
ping spaces satisfy X N9 C &, N K,. The present model and the mapping W in (2.20) and its
properties will play a role in the Lebesgue-type decompositions of a single semibounded form
[18].

3 | PSEUDO-ORTHOGONAL DECOMPOSITIONS

In this section, one can find a brief introduction to sum decompositions of linear operators or
relations from a Hilbert space $) to a Hilbert space & with respect to a so-called pseudo-orthogonal

decomposition of K. First some preliminary properties about sums of relations are discussed.
Let T, and T, belong to L($, &). The sum T; + T, € L(9, K) is defined by

Ty + T = {f.f + "} {f. fYeTuif. f'r e T, (EXY)
With the sum T = T, + T, it is clear that for the domains one has
domT =domT,; ndomT,,
while it is straightforward to check for the ranges that there is an inclusion
ranT CranT; +ranT,.
However, for the multivalued parts there is equality
mulT = mulT; + mulT,, (3.2)
sothatmulT; C mulT and mul7T, C mulT.
Definition 3.1. The sum in (3.1) is said to be strict if the sum in (3.2) is direct, that is,
mulT; N mul T, = {0}.

In other words, the sum in (3.1) is strict precisely when the elements f/ and f” in (3.1) are uniquely
determined by the sum f’ + f”'.
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In particular, the sum T = T, + T, is strict if either T} or T, is an operator. A variation on the
theme of sums is given in the following lemma.

Lemma 3.2. Let T, T, and T, belong to L(9, K). Assume the domain equalitydomT = domT; =
dom T, and the inclusion

TCT,+T,. (3.3)
Then there is equality T = T, + T, in (3.3) if and only if
mulT = mulT; + mulT,. (3.4)
Consequently, there is equality in (3.3) if and only if
mulT, CmulT and mulT, CmulT.
Proof. By assumption one has dom T = dom (T, + T,) and it follows from the inclusion (3.3) that
mulT C mul (T, + T,). Hence, by an observation that goes back to Arens (see [4, Corollary 1.1.3]),
there is equality T = T + T, if and only if mul (T} + T,) C mulT, that is, (3.4) holds. O

The next corollary illustrates a situation that will be of interest in the rest of the paper; see [14].

Corollary 3.3. Let T € L($, &) and let X,Y € B(K) be nonnegative contractions such that X +
Y =1. ThendomT = dom XT = dom YT and, in addition,

TCXT+YT. (3.5)
There is equality T = XT + YT in (3.5) if and only if
mulT =XmulT + YmulT.
Consequently, there is equality in (3.5) if and only if
XmulT CmulT or, equivalently, YmulT C mulT. (3.6)
Moreover, in this case
XmulT N YmulT = XY mulT; (3.7)
thus the sum T = XT + YT is strict in the sense of Definition 3.1 if and only if mul T C ker XY.
Proof. These assertions follow from Lemma 3.2 except the identity (3.7). To see (3.7) let h €
XmulTNnYmulT, so that h = X¢ = Y where ¢, € mulT. Now it follows from (I —Y)p =

Y3 that ¢ = Y(p + ¢) with ¢ + ¢ € mulT. Thus, h € XYmul T, which shows that X mulT n
Y mulT C XY mulT. The reverse inclusion follows immediately from (3.6). O
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COMPLEMENTATION AND LEBESGUE-TYPE DECOMPOSITIONS | 13 of 32

For a linear relation T € L($, &), it has been shown in Corollary 3.3 that with T; = XT and
T, =YT onehasT =T, + T, if and only if the linear subspace mul T is invariant under X or Y.
Under these circumstances, it is clear that

ranT, NranT, CranX NranY =ranXY.
To give a characterization for the intersection ran T, N ranT),, it is convenient to introduce the
maximal linear subspace I of ran T, which is mapped back into ran T by X or by Y

M={neranT: XneranT } ={neranT : Yn€EranT }. (3.8)

Note thatmulT Cc M if T =T, + T,.
Theorem 3.4. Let T € L(9, &) have a decompositionT =T, + T,, whereT; = XT andT, =YT
for some nonnegative contractions X,Y € B(])with X + Y =I. ThenranT; Nnran T, is given by

ranT, NranT, = XY I, 3.9)

where IN is given in (3.8). Consequently, the intersection ran T; N ran T, is nontrivial if and only if
M ¢ ker XY. In particular, if X or Y is an orthogonal projection, then ranT, N ran T, = {0}.

Proof. For the inclusion (C) in (3.9), assume that w € ranT; NnranT,. Then for some ¢, € ranT
one has

w=Xp=Y1. (3.10)

This shows ) = X7, wherezn = ¢ + 9; hence,n € ranT. Asyp = X7 € ran T, one sees thatyn € IN.
Moreover, it follows from (3.10) that

w=YYp=YXneXYIM,

which givesranT, nranT, C XY .

For the inclusion (D) in (3.9), assume that n € M. Then, by (3.8), n €ranT, Xn € ran T, and
Yn €ranT. It follows that XY»n € YranT =ranT; and that XY» € Xran T = ranT,. Therefore,
one sees that XY»n € ranT, nranT,. Thus, XY M C ranT, nranT,.

The final statement follows directly from the identity (3.9). In particular, if X or Y is an
orthogonal projection then XY = 0. [l

There is a similar result for the intersection of ran T; Nran T, in the presence of a minimality
condition.

Lemma3.5. LetT € L(9, &) have a decompositionT =T, + T,, whereT, = XT and T, = YT for
some nonnegative contractions X,Y € B(R) with X +Y = I. Assume in addition that ranT = K.
Then

ranT; NnranT, =ran XY. (3.11)

Consequently, ranT; Nnran T, = {0} if and only if X or Y are orthogonal projections.
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Proof. AssumeranT = K. To see (3.11) observe the identitiesran T, = ranX,ranT, = ranY, and
ran (XY)T = ran XY. It remains to apply (2.8), which shows thatran X Nran Y = ran XY. For the
last statement, see also Lemma 2.1. O

The interest in this paper is in decompositions T = T + T, with linear relations or operators
going from a Hilbert space $ to a Hilbert space &, which have a pseudo-orthogonal decomposition
K = X + 9. Before the formal definition is given, note that any element {f, g} € T can be written
as

3= a+ab {fLaleT, {f,.ul€eT, g=g+g.

IfranT, c ¥ andranT, C ¥, then by Proposition 2.3 there is the general inequality

9113 < gl + g, 113 (3.12)

In the following definition, a special class of such sum decompositions is introduced, involving a
Pythagorean equality in (3.12).

Definition 3.6. Let T € L($, &) and assume that & has a pseudo-orthogonal decompositionK] =
X + %) with associated nonnegative contractions X and Y such that X +Y =1. Let T, and T,
belong to L($, &), then the sum

T=T,+T, with domT =domT; =domT,, (3.13)

is said to be a pseudo-orthogonal decomposition of T connected with the pseudo-orthogonal
decomposition & = X + 9 (or, equivalently, with the pair of nonnegative contractions X and Y
inB(])withX +Y =1)if

(@) ranT; Cc ¥andranT, C 9);
(b) for every {f’ g} € T with {f5 gl} € Tl’ {fa 92} € T25 9=9 + 92, ONE has

2 _ 2 2
g% = gy 1% + g 13,

The definition of pseudo-orthogonal decompositions has an important consequence for the
sum (3.13); see Definition 3.1.

Lemma3.7. LetT = T, + T, in (3.13) be a pseudo-orthogonal decomposition. Then the sum is strict
in the sense of Definition 3.1.

Proof. Let ¢ € mulT; N mulT,. Then {0, ¢} € T;, {0,—¢} € T, and for the sum one sees that
g =¢ — ¢ = 0. It follows that ||cp||2x + || = go||§) = 0. This shows that ¢ = 0. Therefore, mul T; N

mul T, = {0} and the sum T = T, + T, is strict. O

The pseudo-orthogonal decompositions in Definition 3.6 will now be characterized by means
of nonnegative contractions in B(&). Observe that the condition (3.14) in Theorem 3.8 is
automatically satisfied if  — K)mul T = {0} or K mul T = {0}.
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Theorem 3.8. Let T € L(9, &) be a linear relation. Assume that K € B(K) is a nonnegative
contraction that satisfies

mulT = —K)mulT + KmulT, direct sum, (3.14)
and define
T,=(I-K)T and T,=KT. (3.15)

Then the sum T =T, + T, in (3.13) is a pseudo-orthogonal decomposition of T, connected with the
pairI — K and K in the sense of Definition 3.6.

Conversely, let the sum T =T, + T, in (3.13) be a pseudo-orthogonal decomposition of T €
L(9, &) in the sense of Definition 3.6. Then there exists a nonnegative contraction K € B(K) for
which (3.14) and (3.15) are satisfied.

Proof. Let T € L(9, &) and let K € B(&) be a nonnegative contraction, such that (3.14) holds.
By Corollary 3.3 the relations Ty = (I — K)T and T, = KT in (3.15) satisfy domT;, = dom T, =
domTandT C T, + T,. Again by Corollary 3.3 and the identity in (3.14) there is the decomposition
T =T, + T,. Thus, the identities in (3.13) are satisfied. As the sum in (3.14) is direct, the sum
T =T, + T, is strict.

Now let X and g) be the operator range spaces generated by the nonnegative contractions X =
I —KandY = K, respectively. Clearly, X and 2) form a pair of complemented spaces, contractively
contained in &, and furthermore

ranT, Cran{—K)c ¥ and ranT, CranK C %),

which gives (a) in Definition 3.6. To check the Pythagorean equality (b) in Defini-
tion 3.6, let {f,g} € T. Then g = ¢; + g, = I — K)g + Kg, where {f, ,},{f,(I —K)g} € T, and
{fs p}hif,Kg} € T,. By the strictness of the sum T = T, + T, one concludes that g; = (I — K)g
and g, = Kg; see Definition 3.1. With (2.5), this implies that

2 2 _ 2 2
lgilly + llgally = 1T = K)glly + IKglly
= (T -K)g, 9)g + (Kg, 9g = llglly,

and the Pythagorean property has been shown. Hence, the conditions in Definition 3.6
are satisfied.

Conversely, let T = T, + T, be a pseudo-orthogonal decomposition of T of the form (3.13). Let
{f, g} €T, then by (a) and (b) of Definition 3.6 one has for all {f, ¢;} € T, and {f, ¢,} € T, with
9= g1 + g,, that

2 _ 2 2
g% = g2 + llgzl3.

Thanks to this Pythagorean identity and Proposition 2.3 one obtains g; = X g and ¢, = Y ¢, which
shows {f,Xg} ={f,g;} € T, and {f, Y ¢} = {f, 9o} € T,. Consequently, one sees the inclusions

XTCT, and YT CT,. (3.16)
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By definition, domT = dom T, and dom T = dom T,, and it follows from (3.16) and [4, Proposi-
tion 1.1.2] that

T, =XT ¥({0}xmulT;) and T, =YT F({0} x mulT,); (3.17)

here “+” stands for the componentwise sum (linear spans) of the graphs. Observe that (3.16)
impliesXmulT ¢ mulT; and YmulT C mulT,. Nowlet{0,h} € mulT; C mulT.ThenX +Y =
I gives

h—Xh=Yh with h—XhemulT, and Yh € mulT,.

By Lemma 3.7, one has h = Xh and thus ({0} X mul T;) C XT. Hence, by (3.17) one sees that T, =
XT and, likewise, T, = YT. Consequently, with K = Y one obtains a nonnegative contraction
K € B(8) for which (3.14) and (3.15) hold. O

Let T, T, and T, belong to L($, &) and assume that (3.13) holds. Let the Hilbert space &
have the orthogonal decomposition & = X @ 9, where X and %) are closed subspaces of &. Then
the corresponding nonnegative contractions X and Y, which satisfy X + Y = I, are orthogonal
projections onto X and ). Clearly, the condition (a) of Definition 3.6 implies the condition (b).
Therefore, the following definition is natural.

Definition 3.9. Let T € L($, &) and assume that & has an orthogonal decomposition & = X +
9). Then the sum (3.13) is called an orthogonal sum decomposition of T connected with the orthog-
onal decomposition & = X + 9 (or, equivalently, with the orthogonal projections X = I — P and
Y =P)ifranT c XandranT, C 9.

The characterization of orthogonal sum decompositions can be given as a corollary of
Theorem 3.8; see [14, 17].

Corollary 3.10. Let T € L($, &) be a linear relation. Assume that P € B(K) is an orthogonal
projection that satisfies

mulT = —P)mulT + PmulT, (3.18)
and define
T,=I—-P)T and T,=PT. (3.19)

Then the sum T =T, + T, in (3.13) is an orthogonal sum decomposition of T, connected with the
pair I — P and P in the sense of Definition 3.9.

Conversely, let thesum T = T, + T, in (3.13) be an orthogonal sum decomposition of T € L(9, &)
in the sense of Definition 3.9. Then there exists an orthogonal projection P € B(&K) for which (3.18)
and (3.19) are satisfied.

Note that the nonnegative contraction K € B(&) in (3.15) is uniquely determined if the relation
T is minimal in the sense that ranT = K. In the case of decompositions of semibounded forms
via representing maps the minimality may be assumed without loss of generality (see also [18]).
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The independence of the components T, and T, in a decomposition of the form T' =T, + T,
will be defined in measure-theoretic terms as follows.

Definition 3.11. LetT = T, + T, in(3.13) be a pseudo-orthogonal decomposition of T € L($, K).
Define the linear relation L(T,, T,) € L(&) by

L(T,,T,) = {{gp oy Afs ot €Ty, {f, 93 € T, with f € domT } (3.20)

Then the components T, and T, in the sum T = T, + T, are said to be mutually singular if the
linear relation L(T;, T,) is singular.

If T =T, +T, is connected with the pair of nonnegative contractions I —K and K as in
Theorem 3.8, then L(T, T,) can be written as follows

L(T,,T,) = {{I -K)g,Kg}: g€E€ranT}, (3.21)
where the operators I — K and K are acting on the range of T.

Proposition 3.12. Let T = T, + T, be a pseudo-orthogonal decomposition of T connected with the
pairI — K and K as in Theorem 3.8. Then T, and T, are mutually singular if and only if

ran Pr(I — K) nran P;K = {0}, (3.22)

where Py stands for the orthogonal projection onto ran T. In particular, if T is minimal then T, and
T, are mutually singular if and only if K is an orthogonal projection in K.

Proof. The statement is proved via the adjoint of the linear relation L(T;,T,) in (3.21). Indeed,
note that {p, ¥} € L(T, T,)* if and only if for all {f, g} € T one has

b, -K)g) = (p.K9) (3.23)

or, equivalently, (I — K)i — K¢ € (ranT)* = ker P;. Repeating the same argument for the linear
relation L((I — K)Py, KPy) with (I — K)Pr, KP; € B(K), one concludes that

L(T,,T,)* = L(I — K)Pp, KPy)". (3.24)

Therefore, L(T;,T,) is singular if and only if L((I — K)P;,KPy) is singular. According to [17,
Lemma 5.2] this last condition is equivalent to (3.22).

IfranT = & then P; = I ¢ and hence the condition (3.22) holds if and only if K is an orthogonal
projection; see Lemma 2.1. O

Proposition 3.12 shows that for a minimal T the mutual singularity of T; and T, is equivalent
to each of the conditions stated in Lemma 2.1, for instance, the overlapping space X N %) with
X =1-K,Y =K being trivial; see also Theorem 3.4, Lemma 3.5. In particular, Proposition 3.12
connects mutual singularity of T, and T, in pseudo-orthogonal sum decompositions T = T, + T,
to the orthogonality of the ranges of T, and T, via Lemma 2.1.
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4 | REGULARITY AND SINGULARITY OF SOME PRODUCT
RELATIONS

Let T € L($, &) and let R € B(K). The interest is in properties of the product
RT = {{f.Rf"}: {f.f'} €T},
so that RT € L(9, &) with dom RT = dom T. Recall the general fact that
mulRT = RmulT.

In particular, RT is an operator if and only if
mul T C ker R. (4.1)

Moreover, one has (RT)* = T*R*; see, for example, [4]. In particular, if R is selfadjoint, then
(RT)* = T*R. Thus, if R € B(K) is selfadjoint one has the inclusions

RT** c (RT)** and RmulT** C mul (RT)"*. (4.2)
Still assuming that R € B(&) is selfadjoint, define the linear subset D C ran R by

D ={keranR : Rk € domT*}. (4.3)

Then it is clear from the decomposition & = ker R @ ran R that
domT*R ={k € & : Rk € domT"} =ker R@® D. (4.4

It follows from (4.4) and the definition in (4.3), respectively, that
R(domT*R) = RD =ranRndomT". (4.5)
The next two lemmas give criteria for the relation RT to be regular (closable) or singular, respec-

tively; see [14] for the case where R is an orthogonal projection. First the characterization of the
closable case will be considered.

Lemma4.1. LetT € L($, &) and let R € B(K) be selfadjoint. Then RT is closable if and only if
clos{k €eranR : Rk € domT*} =ranR. (4.6)
Furthermore, if RT is closable, then
clos(ranR Nndom T*) = ranR, 4.7)
and, in particular,

ranR Cc domT* or, equivalently, mulT** C ker R. (4.8)
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If ranR is closed, then the conditions (4.6) and (4.7) are equivalent. Moreover, if R € B(K) is
invertible, then RT is closable if and only if T is closable.

Proof. Recall that RT is closable if and only if its adjoint (RT)* is densely defined. Thus, it follows
from dom (RT)* = dom T*R and (4.4) that RT is closable if and only if D is dense in ran R, that is,
if and only if (4.6) is satisfied.

Now assume that RT is closable, that is, (4.6) holds. Then D is dense in ran R. As a consequence,
also RD is dense in ran R. Thanks to (4.5) one sees that (4.7) holds.

The assertion mul 7** C ker R in (4.8) follows directly from (4.2). It is clearly equivalent to
ran R c dom T*. Both assertions can also be seen as consequences of the identity (4.7).

As to the last assertions, it suffices to show that (4.7) implies (4.6) if ran R is closed. In this case
R maps Tan R bijectively onto itself and it follows from (4.5) that D = R~!(ran R n dom T*). Thus,
if ran R N dom T* is dense in ran R then D is dense ran R. Therefore, (4.7) implies (4.6). O

Note that in the special case when R is an orthogonal projection closability of RT was
characterized in [14, Lemmas 2.5 and 3.4] via the condition (4.7).

Corollary 4.2. With T and R as in Lemma 4.1, the following statements hold.

(a) IfRT is closable and mul T** nker R = {0}, then T is closable.
(b) If dom T* is closed, then RT is closable if and only if ran R C dom T*. In this case (RT)** €
B(domT, &).

Proof.

(a) IfRT be closable, then mul T** C ker R by Lemma 4.1. An equivalent statement is mul T** =
mul T** N ker R. Thus, (a) is clear.

(b) Assume that dom T* is closed. If RT is closable, then ranR C dom T* by Lemma 4.1. Con-
versely, if ranR C domT* then domT*R = & and RT is closable. As domT*R = & and
(RT)** = (T*R)*, the domain of (RT)** is closed (see [4]) and hence equal to dom T. Thus,
(RT)** € B(dom T, &) by the closed graph theorem. O

Next the characterization of the singular case will be considered.
Lemma4.3. Let T € L(9, &) and let R € B(K) be selfadjoint. Then RT is singular if and only if
ranRNndomT* C ker T*. (4.9)
IfT € L(9, K) has a dense range, then RT is singular if and only if
ranRndom T = {0}.

Proof. Recall that RT is singular if and only if the adjoint (RT)* = T*R is singular or, equivalently,

domT*R C ker T*R. (4.10)
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As by (4.5) one has R(dom T*R) = RD, the condition (4.10) holds if and only if RD C ker T*. By
(4.5) this is equivalent to (4.9). O

Remark 4.4. The characterization of closability in Lemma 4.1 has an alternative formulation. If
the relation RT is closable then dom T*R is dense, which implies mul T** C ker R (cf. (4.2)), and
then

domT*R={k € & : Rk € domT"}

=mulT** @ {k € domT* : Rk € domT"},

where now the orthogonal decomposition & = dom T* @ mul T** is used. It is easily seen that
the closability of RT is equivalent to

mul T** C ker R,
clos {k €domT* : Rk € domT*} =domT*.

5 | PSEUDO-ORTHOGONAL LEBESGUE-TYPE DECOMPOSITIONS

In this section, the general notion of a pseudo-orthogonal Lebesgue-type decomposition for linear
operators or relations is developed. In [14] the Lebesgue-type decompositions of a linear relation
T were always orthogonal. The new notion allows a nontrivial intersection of the components;
see Theorem 3.4.

Definition 5.1. Let the relations T, T, and T, belong to L($, &). Then the sum decomposition

T=T,+T, with domT =domT; =domT,, (5.1)

is called a pseudo-orthogonal Lebesgue-type decomposition if it is a pseudo-orthogonal decom-
position as in Definition 3.6, such that T, is closable and T, is singular.

The following characterization of pseudo-orthogonal Lebesgue-type decompositions is a
straightforward consequence of Theorem 3.8, Lemma 4.1, and Lemma 4.3. Note that now the
condition (3.14) is automatically satisfied.

Theorem 5.2. Let T € L(9, &) be a linear relation. Assume that K € B(K) is a nonnegative
contraction that satisfies

clos{k etan(I —K) : (I - K)k € domT*} =tan(I — K), (5.2)

ranK ndom T C ker T", (5.3)
and define

T,=(I—-K)T and T,=KT. (5.4)
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Then the sum T =T, + T, as in (5.1) is a pseudo-orthogonal Lebesgue-type decomposition of T,
connected with the pair I — K and K in the sense of Definition 5.1.

Conversely, let the sum T = T, + T, in (5.1) be a pseudo-orthogonal Lebesgue-type decomposition
of T € L(9, K) in the sense of Definition 5.1. Then there exists a nonnegative contraction K € B(K)
such that (5.2), (5.3), and (5.4) are satisfied.

Proof. Let K € B(R) be a nonnegative contraction and assume that (5.2) and (5.3) hold.
Then T; = (I — K)T is a closable operator and T, = KT is a singular relation by Lemmas 4.1
and 4.3. Hence, mulT; = {0} so that (3.14) is satisfied. By Theorem 3.8 T=T,+7T, is a
pseudo-orthogonal decomposition, which is a pseudo-orthogonal Lebesgue-type decomposition
according to Definition 5.1.

Conversely, let T = T, + T, be a pseudo-orthogonal Lebesgue-type decomposition. Hence, by
definition it is a pseudo-orthogonal decomposition, where T; is closable and T, is singular.
According to Theorem 3.8, there exists a nonnegative contraction K € B(K) for which the identi-
tiesin (3.14) (trivially,asmul T} = {0}) and (5.4) hold. In fact, by Lemmas 4.1 and 4.3, the assertions
in (5.2) and (5.3) follow. ]

The sum decomposition (5.1) in Definition 5.1 is said to be an orthogonal Lebesgue-type decom-
position if it is an orthogonal decomposition as in Definition 3.9, such that T is closable and T,
singular. Hence, the following characterization of orthogonal Lebesgue-type decompositions is a
direct consequence of Theorem 5.2, Lemma 4.1, and Lemma 4.3; see [14].

Corollary 5.3. Let T € L($, &) be a linear relation. Assume that P € B(K) is an orthogonal
projection that satisfies

clos (ker P ndom T*) = ker P, (5.5)
ranP ndom T* C ker T*, (5.6)

and define
T,=(I—-P)T and T,=PT. (5.7)

Then thesum T = T, + T, as in (5.1) is an orthogonal Lebesgue-type decomposition of T, connected
with the pair I — P and P.

Conversely, let the sum T =T, + T, in (5.1) be an orthogonal Lebesgue-type decomposition of
T € L($, K). Then there exists an orthogonal projection P € B(&K) such that (5.5), (5.6), and (5.7)
are satisfied.

Let P, stand for the orthogonal projection onto mul 7**. Then it is clear that the conditions (5.5)
and (5.6) in Corollary 5.3 are satisfied and it follows that

T=Tpg+T Treg = —POT, Tgpne =Py, (5.8)

sing?® sing

is an orthogonal Lebesgue-type decomposition of T'. Here the regular part T ., is closable and the
singular part T, is singular. The decomposition in (5.8) is called the Lebesgue decomposition of
T; see [15, 23, 27-29]. The Lebesgue decomposition in (5.8) shows the existence of Lebesgue-type
decompositions of T. Note that T ey is bounded if and only if dom T* is closed; see [14].
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Among all Lebesgue-type decomposition of a linear relation T € L($, &) the Lebesgue decom-
position in (5.8) is distinguished by the maximality property of its regular part T .. Recall that for
linear relations S; and S, from $ to & one says that S; is dominated (contractively dominated) by
S,,innotation S; < S, (S; <, S,),ifCS, C S, for some bounded (contractive) operator C € B(K).
When S; and S, are operators this is equivalent to dom S, C dom S; and ||S; k|| < c||S,h|| for all
h € dom S, forsome 0 < ¢ (0 < ¢ < 1);see[16] and [14, Definition 8.1, Lemma 8.2]. The next result
is a strengthening of the maximality property established earlier for orthogonal Lebesgue-type
decompositions in [14] to the wider setting of pseudo-orthogonal Lebesgue-type decompositions
of T.

Theorem 5.4. Let T € L(H,K) and let T =T, + T, be a pseudo-orthogonal Lebesgue-type
decomposition of T. Then

Tl <c Treg’

that is, the regular part T, of the Lebesgue decomposition is the maximal closable part of T, in the
sense of domination, among all pseudo-orthogonal Lebesgue-type decompositions of T.

Proof. InT =T, + T, one has T, = (I — K)T for a nonnegative contraction and note that I — K
is also a nonnegative contraction. Hence, one concludes T; <, T. This domination is preserved
by their regular parts, see [14, Theorem 8.3]. As T, is closable, it is equal to its regular part and it
follows that T <. T\eg. O

For a further consideration of Lebesgue-type decompositions the class of contractions in B(K)
will now be restricted to contractions of the form

mul T**  mul T**
K=<I O): & - @ | (5.9)

domT* domT*

where G € B (dom T*> is a nonnegative contraction. It follows from Theorem 5.2 that K in (5.9)

satisfies (5.2) if and only if
clos{k etan(I-G) : I -Gk e domT*} =ran(I - G), (5.10)
and K satisfies (5.3) if and only if

ranG Nndom T* C ker T*. (5.11)

Conversely, any G € B (dom T*) with the properties (5.10) and (5.11) gives via (5.9) a nonnegative

contraction K € B(&) as in Theorem 5.2. The case G = 0 corresponds to K = Py, the orthogonal
projection onto mul T**, and gives the Lebesgue decomposition, while any orthogonal Lebesgue-
type decomposition corresponds via (5.9) to an orthogonal projection G that satisfies (5.10) and
(5.11).
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Now assume that dom T* is not closed. Let & C dom T* \ dom T* be a closed linear subspace
of dom T* and decompose this space accordingly:

domT* = (do_mT* ) 2) oL

This decomposition will be used in the lemma below. As to the existence of such subspaces &,
recall that dom T* is an operator range space. Hence, one has dim (dom T* \ dom T*) = o; see
[10, Corollary to Theorem 2.3]. Therefore, one may choose for any n € N an n-dimensional linear
subspace & C dom T* \ dom T*. The following lemmas describe special classes of nonnegative
contractions K € B(K) that illustrate several features discussed earlier.

Lemma 5.5. Let T € L(9, &) and assume that dom T* is not closed. Let  be a nontrivial closed
linear subspace of dom T* \ dom T*. Let H € B(R) be a nonnegative contraction, then the operator
G, defined by

domT* 6 domT*6 L
G = <0 : [a3) - (&) ’ (5.12)
L L

belongs to B (do_m T*) and satisfies the condition (5.11). Assume in addition that (I — H)™! € B(R),
then the operator G in (5.12) satisfies the condition (5.10). Hence, K in (5.9) satisfies the conditions
(5.5) and (5.6). Consequently, the sum T = T; + T, with (5.4) is a pseudo-orthogonal Lebesgue-type
decomposition of T.

Proof. Let G be as in (5.12). Then ran G C &, so that ran G N dom T* = {0} by the definition of L.
Hence, the condition (5.11) is automatically satisfied. Furthermore, one sees from the condition

(I-H)'eB(®)thatI-G€B (dom T*) is invertible. Thus, the linear space (I — G)~"'dom T*
is dense in dom T*. Therefore, (5.10) is satisfied if (I — H)™' € B(). O

The next lemma goes back to [14].

Lemma5.6. Let T € L(9, &) and assume that dom T* is not closed. Let 2 be a finite-dimensional
linear subspace of dom T* \ dom T*. Let H € B(R) be an orthogonal projection. Then the operator
K € B(R), defined by (5.9) and (5.12), is an orthogonal projection K = P that satisfies the condi-
tions (5.5) and (5.6). Consequently, the sum T = T, + T, with (5.7) is an orthogonal Lebesgue-type
decomposition of T.

Lemmas 5.5 and 5.6 answer questions about the existence of Lebesgue-type decompositions,
different from the Lebesgue decomposition: when dom T* is not closed there are infinitely many
different Lebesgue-type decompositions of T, both pseudo-orthogonal and orthogonal. A nec-
essary and sufficient condition for the uniqueness of the Lebesgue decomposition among all
pseudo-orthogonal Lebesgue-type decompositions (thus including the orthogonal ones) is given
in the next theorem.

Theorem 5.7. Let T € L(9, &), then the following statements are equivalent.
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(i) The Lebesgue decomposition of T is the only pseudo-orthogonal Lebesgue-type decomposition of
T.
(ii) dom T* is closed.

Proof. (i) = (ii) Assume that dom T* is not closed. According to Lemmas 5.5 and 5.6, there
exist Lebesgue-type decompositions of T, which are pseudo-orthogonal or orthogonal, which are
different from the Lebesgue decomposition. This contradiction shows (ii).

(ii) = (i) Assume that dom T* is closed. Let T = (I — K)T + KT have a Lebesgue-type decom-
position (5.4), where K is a nonnegative contraction; see Corollary 4.2. Then with the convention
(5.9)one hasran G C dom T* that, combined with (5.11), leads to ran G C ker T* or, equivalently,
ranT C ker G. It follows from (5.9) that

Therefore, the following identities
(I-KT=(—-P)T =T, and KT =PyT =Ty,

are clear. Thus, the pseudo-orthogonal decomposition of T corresponding to K coincides with the
Lebesgue decomposition. O

Theorem 5.7 is a strengthening of the corresponding result in [14] from the case of orthogonal
Lebesgue-type decompositions to the case of pseudo-orthogonal Lebesgue-type decompositions.
The uniqueness condition in (ii) is equivalent to the condition that the operator Ty is bounded,
see [14]. To see this equivalence, recall that dom T* is closed if and only if dom T** is closed, while

dom T™* = dom (T*"),eg = dom (Tyeg) ™"

The original statement of such a uniqueness result in the setting of pairs of nonnegative bounded
operators goes back to Ando [1]. In [35], there is an extensive treatment of the uniqueness question
in the context of forms, including a list of the relevant literature.

Finally, it should be observed that Lemma 5.5 provides some concrete examples for nontrivial
intersection of the components in a Lebesgue-type decomposition.

Corollary 5.8. Assume the conditions in Lemma 5.5 and let T =T + T, be the corresponding
Lebesgue-type decomposition. Then the following statements hold.

(a) Theintersection of ran T, and ran T, satisfies
ranT; NranT, = {0}gge @ HUI — H)P¢IM, (5.13)

where IN is given by (3.8) and Pg, is the orthogonal projection onto L.
(b) IfranT = K, then the intersection of ran T, and ran T, satisfies

fanT, NTanT, = {0}goq ® Fan H. (5.14)

Consequently, if H # 0 thentan T, Nnran T, # {0}.
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Proof. First observe with the matrix representations in (5.9) and (5.12) that

0 0 0 0
(I—K)K:<0 (I_G)G> and (I—G)G:(O (I—H)H)' (5.15)

(a) The description (5.13) is obtained directly from Theorem 3.4 by using the block formulae in
(5.15).

(b) By assumption I — H is surjective and hence ran (I — H)H = ran H. As T is minimal, the
statement in (5.14) follows from Lemma 3.5 again by means of (5.15). O

6 | PAIRS OF BOUNDED LINEAR OPERATORS

Let ® € B(C, ) and ¥ € B(E, &) be bounded linear operators. With these operators, one
associates the linear relation L(®, ¥) € L($, &), defined by

L(®,¥) = {{®n,¥n} : n€C}, (6.1)

so that L(®, ¥) is an operator range relation in the sense of [4, 17]; see (3.20) in Definition 3.11. It
follows directly from the definition of L(®, ¥) that its domain and range are given by

domL(®,¥)=ran® and ranL(®,¥)=ranV¥, (6.2)
while its kernel and multivalued part are given by
ker L(®,¥) = ®&(ker ¥), mul L(®,¥) = ¥(ker ®). (6.3)

This section gives a brief overview of the decompositions ¥ = ¥, + ¥, with respect to ®, with
bounded operators ¥; and ¥,, in the present context of a pseudo-orthogonal decomposition of
the space &, allowing interaction between the components as in Sections 3 and 4. These decom-
positions of W with respect to @ will be obtained via the corresponding decompositions of the
corresponding linear relation L(®, ¥); for the orthogonal case, see [17].

The present interest is in sums ¥ = ¥, + ¥, and their interplay with the corresponding linear
relations L(®, ¥, + ¥,).

Lemma 6.1. Let ® € B(C, ), ¥ € B(C, &), and assume that ¥ =¥, + ¥, where ¥,,¥, €
B(G, K). Then there is domain equality

dom L(®,¥) = dom L(®,¥;) = dom L(D, ¥,),
and inclusion of the relations
L(®,¥) C L(®,¥,) + L(D, P,). (6.4)
Moreover, there is equality in (6.4):

L(®,¥) = L(®,¥,) + L(®,¥,) (6.5)
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ifand only if
Y(ker @) = ¥, (ker @) + ¥,(ker D). (6.6)
The sum in (6.5) is strict (i.e., the sum in (6.6) is direct) if and only if
P, (ker @) N¥,(ker @) = {0}. (6.7)

Furthermore, if ¥, (ker @) = {0} or ¥, (ker @) = {0}, then (6.6) and (6.7) are automatically satisfied.

Proof. From the definition of the relation L(®, ¥) in (6.1), it is clear that
dom L(®,¥) = dom L(®,¥;) = dom L(P, ¥,) = ran D,

see (6.2). Furthermore, it follows from the definition of the sum in (3.1) that (6.4) holds. Now recall
from Lemma 3.2 that there is equality in (6.4) if and only if

mul L(®, ¥) = mul L(®, ¥,) + mul L(®, ¥,),
which is clearly equivalent to (6.6); see (6.3). O

Remark 6.2. Let & have a pseudo-orthogonal decomposition & = X + %) with associated nonneg-
ative contractions X and Y such that X + Y = I. Then by Definition 3.6 the decomposition (6.5)
of the relation L(®, ¥) is pseudo-orthogonal if and only if

(a) ran¥; c ¥ andran¥, C 9);
(b) for eachn € € there exist elements n’,n” € € with @y = &’ = ®y” and ¥y = ¥’ + ¥,n"”
for which

Iwnlg = 1917115 + I1¥27" 13-

Note that (b) implies  — ', — n’" € ker ® and ¥,7’ + ¥,n"" = ¥n = ¥, + ¥,7, so that
¥, (n" —n) =0 —7"). (6.8)

By Lemma 3.7, the sum in (6.5) is strict, thus one has (6.7). Therefore, (6.8) gives that ¥,n' = ¥;n
and ¥,n"" = ¥,7. Hence, (b) implies that

Inllg = 1¥ll5 + 1¥7l5, 7 €6C. (6.9)

Note that if (6.9) is satisfied, then (b) holds automatically. Thus, the conditions (b) and (6.9)
are equivalent.

Definition 6.3. Let ®, ¥, ¥, and ¥, be bounded linear operators in B(€, $) and assume that ¥
has the decomposition

Y=Y +¥, with WY(ker ®) =¥, (ker ®)+ ¥,(ker &), directsum. (6.10)

Let & have a pseudo-orthogonal decomposition® = X + ¥) with associated nonnegative contrac-
tions X and Y such that X + Y = I. Then the decomposition (6.10) of ¥ with respect to @ is called
pseudo-orthogonal if ®, ¥, ¥,, and ¥, satisfy the conditions
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(a) ran¥, c ¥ andran¥, C 9);
() 1¥yI% = 19,7113 + [¥9]13 for all y € 6.

It is clear from Remark 6.2 that the decomposition (6.10) of ¥ with respect to @ is pseudo-
orthogonal if and only if the corresponding operator range relation L(®, ¥) in (6.1) is pseudo-
orthogonal. The pseudo-orthogonal decompositions of ¥ with respect to ® in Definition 6.3 can
now be characterized by means of nonnegative contractions in B(RK).

Theorem 6.4. Let ® € B(€, H) and ¥ € B(E, K). Assume that K € B(K) is a nonnegative
contraction that satisfies

Y(ker ®) = (I — K)¥(ker ®) + K¥(ker ®), direct sum, (6.11)
and define
Y, =I—-KW¥ and V¥,=KV. (6.12)

Then thesum¥ =¥, + ¥, asin (6.10) is a pseudo-orthogonal decomposition of ¥ with respect to ®,
connected with the pair I — K and K in the sense of Definition 6.3.

Conversely, let ¥ = ¥, + W, in (6.10) be a pseudo-orthogonal decomposition of ¥ with respect to ®
in the sense of Definition 6.3. Then there exists a nonnegative contraction K € B(K) such that (6.11)
and (6.12) are satisfied.

Proof. Let ® € B(C, 9), ¥ € B(C, &), and let K € B(K) be a nonnegative contraction. Define
the operators ¥, ¥, € B(C, &) by (6.12), so that ¥ = ¥, + ¥,. Let X and %) be the pair of com-
plemented operator range spaces, contractively contained in &, associated with the nonnegative
contractions X = I — K and Y = K. By definition

ran¥, =ran(/ - K)¥c ¥ and ran¥,=ranK¥ C ¥,
so that condition (a) in Definition 6.3 is satisfied. To see (b) in Definition 6.3 observe that
%7115 + II‘Pzﬂllzg, = (T - KWyl + IIK‘PnH%
= ((I = K)¥1,¥n)g + (K¥n, ¥n)g = 975,

so that condition (b) in Remark 6.2 is satisfied. Hence, ¥ = ¥, + ¥, is a pseudo-orthogonal
decomposition of ¥ with respect to ® in the sense of Definition 6.3.

Conversely, assume that ¥ = ¥, + ¥, is a pseudo-orthogonal decomposition with respect to ®
as in Definition 6.3. Then L(®, ¥) in (6.1) has a pseudo-orthogonal decomposition of the form

L(©7 lp) = L(¢7 lpl) + L((D’ lpz),
see Remark 6.2. Therefore, by Theorem 3.8 there exists a nonnegative contraction K € B(K) gives
L(®,¥,) = (I -K)L(®,¥) and L®,¥,)=KL(®,¥),

which reads

L(®,¥,) = L(®,(I —K)¥) and L(®,¥,) = L(®,K¥). (6.13)
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To verify the identities in (6.12) let € €. Then due to (6.13) there exist ', 5" € € such that &7 =
@y’ = on’, while (I — K)¥n = ¥,n' and K% = ¥,7". From ¥,n' + ¥,n" = ¥n =¥;n + ¥,p it
follows that ;7' = ¥,z and W,n" = ¥,7; see (6.7) and Remark 6.2. Therefore, the identities in
(6.12) hold. O

Let ® and ¥ be in B(K) and let L(®, ¥) be defined as in (6.1). Now consider the case of operator
range relations L(®, ¥) that are closable or singular. Recall that L(®, W) is closable if and only if
mul L(®, ¥)** = {0} or, equivalently, for every sequence 7,, € € one has

&y, -0 and ¥Y(,-71, -0 = Pn, -0 (6.14)

n

Likewise, L(®, ¥) is singular if and only if ran L(®, ¥)** C mul L(®, ¥)** (cf. [14, Proposition 2.8])
or, equivalently, for every sequence 7),, in € there exists a subsequence, denoted by w,,, such that

Y0, —Nn) >0 = du,—>0. (6.15)
Note that L(¥, ®) = L(®, ¥)~! implies that L(®, ¥) is singular if and only if L(¥, ®) is singular.
Remark 6.5. The characterizations in (6.14) and (6.15) of closable and singular operator range

relations remain valid if the sequences ¢,, are taken from a dense set R C €. To see this, observe
that for any sequence 7,, € € there exists an approximating sequence 7, € R, such that

1 . . 1
17, =1 ll < o which case  [[ILn, |l — Ly, lI] < EIILII,
for any L € B(G, &), where & is a Hilbert space.

The following simple observations about the adjoint relation L(®, ¥)* play a role in the rest of
this section; see [17]. A direct calculation shows that

L(@,9)" ={{k,h}e K xH : ¥k =D"h}.

Thus, by means of the linear subspaces
DD,V ={ke & : Yk erand®*}, R@®Y)={heH : ®'h €ran¥*},
the domain and the range of L(®, ¥)* are given by
dom L(®,¥)* = D(®,¥), ranL(®,¥)* = NR(P, V),
and, likewise, the kernel and multivalued part of L(®, ¥)* are given by
ker L(®,¥)* = ker ¥*, mul L(®, ¥)* = ker ®*.

Definition 6.6. The operator W is called regular with respect to ® if D(®, ¥) is dense in &, which
is the case if and only if the relation L(®, ¥) is regular. Likewise, the operator ¥ is called singular

with respect to @ if D(P, W) C ker ¥* or, equivalently, R(®D, ¥) C ker ®*, which is the case if and
only if the relation L(®, ¥) is singular.
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Clearly, an equivalent characterization for singularity is that
ran ®* Nnran ¥* = {0}, (6.16)

(expressing the symmetry between ® and ¥); see also [17, Lemma 5.2].

Remark 6.7. Both notions appearing in Definition 6.6 have equivalent characterizations that
resemble their measure-theoretic analogs. In particular, ¥ is regular with respect to ® if and only
if ¥ is almost dominated by ®. In this case ¥ has a Radon-Nikodym derivative with respect to @,
which is given by the closed operator

R(®,¥) = L(,¥)"" € L(D, K),

and then W can be written as ¥ = R(®, ¥)®. Likewise, ¥ is singular with respect to ® (or @ is
singular with respect to W) precisely if for any E € B(&) one has

E<® and E<Y¥Y = E=0.
For the definitions and the arguments, see [17, sections 5 and 6].

Definition 6.8. Let ® € B(€, ) and ¥ € B(C, &). Then ¥ is said to have a pseudo-orthogonal
Lebesgue-type decomposition

with respect to @ if the sum (6.17) is a pseudo-orthogonal decomposition of ¥ with respect to ® as
in Definition 6.3, where ¥, is regular with respect to ® and ¥, is singular with respect to ®.

The following characterization is now straightforward.

Theorem 6.9. Let ® € B(C, H) and ¥ € B(C, K). Assume that K € B(K) is a nonnegative
contraction that satisfies

clos{keran(I-K): (I —-K)k € D(@,¥)} =ran(I — K), (6.18)
ranK N D(®,¥) C ker ¥, (6.19)

and define
Y, =I-KW¥ and ¥,=KV. (6.20)

Then the sum ¥ =¥, + ¥, as in (6.17) is a pseudo-orthogonal Lebesgue-type decomposition of ¥
with respect to ®, connected with the pair I — K and K in the sense of Definition 6.8.

Conversely, let ¥ = ¥, + ¥, in (6.17) be a pseudo-orthogonal Lebesgue-type decomposition of ¥
with respect to ® in the sense of Definition 6.8. Then there exists a nonnegative contraction K € B(K)
such that (6.18), (6.19), and (6.20) are satisfied.

To verify the theorem, recall Theorem 6.4 and apply Definition 6.6 to the components ¥; and
WY, in (6.20); see also Theorem 5.2, or Lemmas 4.1 and 4.3. Note that the condition for the sum
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in (6.11), as stated in Theorem 6.4, is now absent because this condition automatically follows
from the condition (6.18): one has W(ker ®) C ker (I — K); see Lemma 6.1. Observe, also that the
singularity condition (6.19) for the component ¥, = KW is equivalent to ran ¥*K N ran ®* = {0};
see (6.16).

Furthermore, the components ¥, and ¥, in Theorem 6.9 are mutually singular if and only if
the linear relation L(¥,, ¥,) is singular, or equivalently,

ranP*(I — K) nran ¥*K = {0}.

In particular, if ran L(®, ¥) = ran ¥ is dense in &, then ¥, and ¥, are mutually singular if and
only if K is an orthogonal projection; see Proposition 3.12.

Let P, be the orthogonal projection onto D(®, ¥)*. Then the pair of operators Wieg = U —Pp)¥
and ¥;,, = Py, gives an orthogonal Lebesgue-type decomposition ¥ = ¥\, + ¥, with respect
to ®. It is called the Lebesgue decomposition of ¥ with respect to ®. Note that it follows from
Theorem 6.9 that (I — K)P, = 0, so that (I — K)(I — P,) = I — K. Hence, for the regular part Wieo
there is the following characterization; see [17].

Corollary 6.10. Let ® € B(C, 9) and ¥ € B(€, K). Let ¥ =¥, + ¥, be a pseudo-orthogonal
Lebesgue-type decomposition of ¥ with respect to ®@, then

“lplh” < “lpregh”y h (S Gj

Corollary 6.11. Let® € B(€, ) and¥ € B(€, K). Then the following statements are equivalent.

(i) W admits a unique pseudo-orthogonal Lebesgue-type decomposition with respect to .
(i) D(P,¥) is closed.
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