
Received: 9 January 2024 Revised: 16 March 2024 Accepted: 30 March 2024 IET Generation, Transmission & Distribution

DOI: 10.1049/gtd2.13169

ORIGINAL RESEARCH

Enhancing DC microgrid performance through machine

learning-optimized droop control

Younes Saeidinia1 Mohammadreza Arabshahi1 Mohammad Aminirad2

Miadreza Shafie-khah3

1Faculty of Electrical Engineering, Shahid Beheshti
University, Tehran, Iran

2Faculty of Technology and Engineering, Iran
University of Science and Technology (IUST),
Tehran, Iran

3School of Technology and Innovations, University
of Vaasa, Vaasa, Finland

Correspondence

Younes Saeidinia, Faculty of Electrical Engineering,
Shahid Beheshti University, AC, Tehran, Iran.
Email: y.saeidiniya@alumni.sbu.ac.ir

Abstract

A machine learning-based optimized droop method is suggested here to simultaneously
reduce the production cost (PC) and power line losses (PLL) for a class of direct cur-
rent (DC) microgrids (MGs). Traditionally, a communication-less technique known as the
hybrid droop method has been employed to decrease PC and PLL in DC MGs. How-
ever, achieving the desired reduction in either PC or PLL requires arbitrary adjustments
of weighting coefficients for each distributed generator in the conventional hybrid droop
method. To address this challenge, this paper introduces a systematic approach that capi-
talizes on the benefits of artificial intelligence to accurately predict both the PC and PLL
in a DC MG. Furthermore, an optimization technique relying on the gradient descendent
method is employed to independently optimize both PC and PLL for each scenario. The
effectiveness of the proposed method is confirmed through a comparative study with clas-
sical and hybrid droop coordination schemes under various scenarios such as rapid load
changes.

1 INTRODUCTION

Renewable energies, including solar, wind, hydro, and biomass,
are sources of electricity generation that do not rely on fos-
sil fuels [1]. By replacing carbon-intensive energy sources, they
play a crucial role in significantly mitigating greenhouse gas
emissions and addressing climate change. The transition to
renewable energy is essential for achieving global climate targets,
as outlined in agreements like the Paris Agreement. In this con-
text, microgrids (MGs) offer a promising architecture to meet
the zero-carbon targets.

MGs are generally classified into three types: direct current
(DC) MGs, AC MGs, and hybrid [2]. Among these, DC MGs
have gained considerable interest due to their distinctive fea-
tures. A DC MG typically incorporates local energy sources,
such as solar panels, wind turbines, batteries, or fuel cells, along
with loads and energy storage devices. The MG can be inter-
connected with the main power grid or operate autonomously,
providing electricity to a specific area or building [3].
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While DC MGs offer promising advantages, including effi-
ciency, reliability, and incorporation of renewable energy, they
also encounter challenges, particularly when there is a substan-
tial increase in the penetration of renewable energy sources
(RESs). These challenges arise from the need to effectively
manage and control the fluctuating nature of renewable energy
generation within the MG. The intermittent nature of renewable
sources can lead to voltage fluctuations, necessitating the imple-
mentation of advanced control and power management systems
to maintain stability and ensure grid reliability. To design a suit-
able power management strategy in the presence of various
distributed generations (DGs), many attempts have been made
by the researchers.

Some researchers have explored control plans to ensure the
efficient, coordinated, and reliable operation of multiple RESs
and ESSs. The focus of these control strategies is to opti-
mize the distribution of loads and minimize generation costs,
particularly when aiming for cost-effective operation and deter-
mining the most suitable combination of dispatchable and
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non-dispatchable DG units. Consequently, researchers are moti-
vated to include an economic dispatch as part of their control
measures to achieve these objectives.

For this goal, centralized controllers and optimization algo-
rithms including genetic algorithms (GA) [4], hybrid particle
swarm optimization (PSO) algorithms [5], and quadratic pro-
gramming [6] have been proposed in some research publi-
cations. These approaches aim to employ economic dispatch
to minimize the operational costs of DGs with diverse char-
acteristics. While centralized controllers offer accurate power
distribution, they have limitations in terms of flexibility and
reliability since they rely on communication lines for data trans-
fer. Moreover, if a central controller unit fails, it can have a
significant adverse impact on the overall performance of the sys-
tem. To overcome these issues, a number of distributed control
strategies have been presented to enhance the reliability, flexibil-
ity, and economic dispatch of MGs [7]. For example, distributed
control schemes based on consensus protocols have been sug-
gested in references [8–12]. These schemes rely solely on the
local information of DGs and can improve the reliability of
DC MG by leveraging sparse communication channels. Refer-
ence [13] presents a decentralized control strategy for achieving
cost-efficient performance, where the incremental costs (ICs)
are equally distributed among DGs to ensure fair maintenance
and minimum total cost. Similarly, in reference [14], economic
dispatch is performed in the second layer of the hierarchical
control system. By sharing the frequencies of DGs, frequency
restoration is achieved, and the ICs are maintained at equal lev-
els. Moreover, in reference [15], a distributed control method
has been elaborated that operates on a fixed-time basis, aiming
to achieve rapid convergence in solving the economic dispatch
problem.

These methods mainly depend on traditional droop control
as the primary control mechanism and require a communication
network to enable cost optimization in power dispatch. Despite
these advancements, there is still a risk of failure due to the
presence of communication links.

To address this, numerous enhancements to the droop con-
trol strategy have been suggested to improve the performance
of a typical DC MG [16, 17]. In [18, 19], adaptive droop
approaches are introduced to enhance the accuracy of power
sharing and mitigate voltage drops in DC MGs. A different
study [20] suggests the implementation of a dynamic droop gain
to mitigate power fluctuations. In [21], a dynamic droop con-
trol approach is presented to improve the stability of DC MGs.
Additionally, [22] proposes a novel converter control method
with schedulable variable droop coefficients, addressing low DC
voltage issues during drastic power changes and improving vari-
able droop control in multi-terminal DC MGs under heavy
loads. On the other hand, [23] introduces a dynamic droop
control method optimizing resistance in response to stochastic
loads in DC MGs, enhancing current sharing, maintaining sta-
ble bus voltage, and effectively addressing random load changes
in both common and local loads across distributed sources.

While the classical droop scheme ensures reasonable power
distribution among DGs, it does not inherently guarantee the
economic operation of DC MGs. Therefore, modifications

to the droop control mechanism are necessary for economic
operation [24]. To reduce dependence on communication
infrastructure, decentralized droop control methods based on
cost optimization have been suggested. In reference [24], the
classical droop control is adjusted by incorporating offsets for-
mulated from the cost functions of DGs aiming to minimize
production costs. These offsets have a non-linear relationship
with the generated power. Nonetheless, this scheme is only
dependent on one DG as a point of comparison for determin-
ing the offsets of other DGs, which may affect the effectiveness
of cost-cutting. To address this limitation, a non-linear CD
scheme is introduced in [25], considering economic factors in
the control strategy.

In reference [26], linear and non-linear droop methods have
been introduced. Ranking DGs by their cost-effectiveness pro-
vides the ability to deactivate costly DGs during periods of low
demand, thereby further reducing the overall cost. However,
relying solely on no-load costs for prioritizing DG dispatch
may not always be feasible, especially when DGs with vary-
ing cost structures are the same in terms of no-load costs. It
is worth noting that the power-sharing commands in [25] and
[26] are determined by multiple factors beyond just the DG
KW rating. In reference [27], a linear cost-prioritized scheme
is employed, regarding multiple factors like production costs,
generating capacity, and the quantity of DGs.

An optimal decentralized control approach described in ref-
erence [28] is used to achieve cost-effective power distribution
by integrating the IC of different DGs in the primary droop
control system. On the other hand, in reference [29], the IC
is incorporated with decentralized control in the tertiary layer
rather than the primary layer. In reference [30], an IC-based
droop (ICD ) scheme governs power distribution in hybrid MGs
for the AC system in a decentralized manner. Reference [31]
uses ICD control at the primary control level to manage power
distribution among a group of MGs. Finally, in [32], mixed-
integer conic programming is utilized to compute optimal active
and reactive power droop gains. The objective is to minimize
costs while adhering to voltage limits, enabling more efficient
and economic operation of the MG system.

Several studies including [33–36] have introduced cost-based
droop (CD) schemes to incorporate the operational cost of DGs
into the droop control method. In reference [34], for instance, a
blended approach that utilizes both FD and CD strategies were
suggested to enhance the functioning of a DC MG in islanded
mode. In reference [35], a frequency-based control method with
an embedded cost-based criterion was suggested. Meanwhile,
studies such as [34] and [37] demonstrated that by appropriately
selecting weighting and scaling factors, the CD scheme can sig-
nificantly diminish the production cost (PC) in comparison to
the classical droop method.

This paper introduces a novel machine learning (ML)-based
hybrid droop strategy for simultaneous minimization of PC
and power line loss (PLL) in DC MGs. The approach is
designed to optimize MG operation by considering cost and
transmission loss factors. As a form of droop scheme, the pro-
posed technique inherits the advantages associated with droop
control.
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The most challenging aspect of hybrid droop-based strate-
gies lies in determining the importance and effectiveness of each
factor, which is measured by the weighting coefficients (WCs).
This novel method seeks to optimize these WCs to minimize
PC and PLL efficiently. Multiple linear regression is employed
to estimate PC and PLL for various WC combinations, and the
gradient descent method is utilized to identify optimized WCs
leading to the most favourable PC and PLL values. Integrating
droop control with ML enhances the accuracy and efficiency of
the optimization process, contributing to improved economic
and operational performance in DC MGs. To validate the effec-
tiveness of the proposed approach, simulation studies have been
conducted under various scenarios. The findings revealed that
the suggested droop control strategy generated encouraging
outcomes. It is worth mentioning that the DC MG configu-
ration presented in this paper includes both non-dispatchable
and dispatchable DGs. Table 1 delineates the contributions of
the preceding papers, providing a comparative analysis with the
proposed method. To summarize, the main contributions of this
paper are outlined as follows:

∙ Enhanced performance across load levels: The proposed
method ensures superior performance of the DC MG by
optimizing PC and PLL across varying load levels, resulting
in improved economic and operational efficiency.

∙ Integration of droop control and machine learning: The
paper introduces a novel approach that combines droop con-
trol techniques with ML methodologies. This integration
utilizes predictive models to estimate PC and PLL, incor-
porating a gradient descent method to optimize the weights
of the controllers. This synergistic approach enhances the
accuracy and efficiency of the optimization process.

∙ Systematic optimization of WCs: The assignment of WCs
follows a systematic optimization process, eliminating sub-
jectivity or arbitrariness in their selection. This systematic
approach enhances the overall performance of the DC MG,
ensuring objectivity in the decision-making process.

The paper is arranged in the following way: Section 2 pro-
vides an introduction to the arrangement of the DC MG in
islanded mode, as well as the coordination objective. Section 3
discusses the ICD method and the philosophy of a hybrid
droop coordination method. Section 4 presents the multiple lin-
ear regression. In Section 5, the suggested strategy optimized
multiple linear regression based on the droop strategy is intro-
duced. Simulation studies are presented in Section 6 to evaluate
the effectiveness of the proposed method. Finally, the paper
concludes with Section 7.

2 DC MG STRUCTURE

This paper examines the structure of an islanded DC MG
that includes a photovoltaic (PV) power unit, battery storage,
dispatchable DGs, and DC loads (Figure 1).

The PV panel is attached to the DC link via a boost converter,
and the battery storage is coupled to the DC link using a bidi-

TABLE 1 Summary of the literature review conducted for direct current
microgrid (DC MG).

Reference

No. Contribution Objective function

Considering the

effect of

transmission

power loss

[5] Optimal scheduling
model using hybrid
PSO

Minimizing operation
cost and emission

✗

[4] Optimization of droop
values using GA

Minimizing operation
cost

✗

[13] Droop-based
consensus control
scheme

Performing economic
dispatch

✗

[24] Autonomous droop
scheme

Performing economic
dispatch

✗

[25] Cost-based droop
method

Performing economic
dispatch

✗

[26] Linear and non-linear
cost-prioritized
droop scheme

Performing economic
dispatch

✗

[27] Linear cost-prioritized
droop scheme

Performing economic
dispatch

✗

[28] IC in the primary
droop

Performing economic
dispatch

✗

[29] IC in the tertiary droop Performing economic
dispatch

✗

[32] Mixed-integer conic
programming

Performing economic
dispatch

✗

[36] Hybrid cost-based
droop control

Ensuring economical
operation and
stability

✗

[34] Hybrid droop control
strategy

Economical operation
and flexibility

✗

[37] Hybrid droop
coordination
strategy

PC and PLL reduction ✗

Proposed
method

Proposed optimized
droop control
strategy

A machine
learning-based
approach for
minimizing PC and
PLL

✓

Abbreviations: GA, genetic algorithms; IC, Incremental cost; PC, production cost; PLL,
power line losses; PSO, particle swarm optimization.

rectional buck/boost converter [38]. The coordinated control
scheme aims to ensure stable operation of the DC MG under
varying circumstances of generation and consumption, as well
as optimizing the PLL and PC for different power supply and
demand ratios.

To achieve these objectives, a set of fundamental principles
were implemented, such as giving distributed energy resources
(DERs) with the lowest power generation cost a greater empha-
sis in power distribution to reduce PC, and assigning a more
significant position in power distribution to DERs located elec-
trically closer to the DC bus to reduce PLL. Additionally, the
fundamental concept of the various droop control methods
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FIGURE 1 A single-line representation of the proposed direct current
(DC) microgrid (MG) configuration.

such as classical, hybrid, etc., and optimized multiple linear
regression strategy have been discussed briefly in the following
section.

3 EVALUATING THE PERFORMANCE
OF DROOP CONTROL METHODS FOR
MGS

This section will undertake a comprehensive examination of
various droop control methods.

3.1 Classical droop control method

The classical droop control is employed for power sharing
among DGs in a DC MG. In this method, the power distri-
bution of DGs is based on their generation capability [39]. The
droop control technique utilizes local parameters for power dis-
tribution, thereby eliminating the need for a communication link
[39]. The droop method equations for MGs can be described
simply in the following manner, according to reference
[28]:

VR,i = Vmax − kiPi (1)

ki =
Vmax −Vmin

Pmax i
. (2)

In the above equations, VR,i represents the bus voltage, Pi
denotes the output power of the ith DG, and ki signifies the
droop coefficient associated with that DG. By assuming that the
terminal voltages of all DGs are equal and using Equation (1),
the equation provided can be derived for an MG consisting of n
DGs. [27, 30, 31]:

k1P1 = k2P2 = ⋯ = kn Pn (3)

3.2 ICD technique

In the classical droop control technique, DGs with higher nom-
inal power are given higher priority. However, if the aim is to
reduce operational costs, the ICD method is employed to allo-
cate power between various DGs. In this approach, DGs with
lower operating costs are given higher priority in supplying the
load. As a result, it is possible to reduce the PC without the need
for any communication infrastructure. The following equation
is utilized to calculate the PC of the DC MG with n number of
inputs [37]:

PC =
n∑

i=1

Ci (Pi ) (4)

where Ci(Pi ) is incur generation costs of the ith DG. The optimal
power distribution among the DGs is achieved by equating their
IC functions, which are the derivatives of their respective cost
functions. This helps minimize the PC without requiring any
communication infrastructure. This approach is formulated as
follows [37]:

VR,i = Vmax − Q
(
ICP ,i (Pi )

)
(5)

Q =
Vmax −Vmin

max {(IC1 (P1 max)) , (IC2 (P2 max)) , … , (ICi (Pi max))}
(6)

In the method discussed, the droop slope is denoted as Q,
while ICP ,i (Pi ) represents the cost function’s derivative. Equa-
tion (5) shows that the reference voltage of the ith DG depends
on its generation cost. This means that each DG is given
priority based on its cost-to-value ratio relative to the most
expensive unit. Equation (7) ensures economic validity in the
mentioned method by maintaining voltage equality among the
DGs [37].

ICP ,1 (P1) = ICP ,2 (P2) = ⋯ = ICP ,i (Pi ) (7)

3.3 Loss-based droop method

The loss-based droop method is defined through a formulated
quadratic power loss function for each dispatchable DG. This
method aims to optimize power-sharing in an MG while mini-
mizing transmission line power losses. Equation (8) defines this
function, where PLoss,i denotes the transmission line power loss
and Ii represents the injecting current of the ith DG, with RL,i
denoting the resistance of the line connecting the load bus to
the ith DG [37].

PLoss,i = RL,i I 2
i (8)

The cumulative power loss of the transmission line in the MG
is represented by Equation (9) [37].

TL =
n∑

i=1

PLoss,i (Ii ) (9)
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To determine the reference voltage for power sharing, Equa-
tions (10) and (11) are employed, where N represents a constant
obtained from (11) signifying the slope of the loss-based power
sharing, and P

′

Loss,i denotes the derivative of the power loss
function:

Vref,i = Vmax − N
(

P
′

Loss,i (Ii )
)

(10)

N =
Vmax −Vmin

max
{(

P
′

Loss,1

)
,
(

P
′

Loss,2

)
, … ,

(
P
′

Loss,i

)} (11)

From Equation (10), it is evident that Vref,i is correlated with
the power loss of the ith DG. Consequently, each DG is priori-
tized based on the ratio of its power loss function derivative to
the maximum power loss function derivative of units at nominal
value [37].

Under the assumption of terminal voltage equality for DGs in
(10), power-sharing in the presence of power loss, ensuring min-
imal power loss, is consistently upheld by (12) [37]. Unlike the
ICD method where optimization is demonstrated by the equal-
ity of cost function derivatives, our proposed loss-based droop
method achieves optimization through the equality of power
loss function derivatives of units.

P
′

Loss,1 (I1) = P
′

Loss,2 (I2) = ⋯ = P
′

Loss,n (In ) (12)

3.4 Hybrid droop coordination strategy

As mentioned in the preceding subsection, the ICD method allo-
cates power among DGs by prioritizing each DG based on its
economic criterion. However, in the hybrid droop technique,
it is possible to consider both PC and PLL simultaneously.
The hybrid method involves finding a balance between the
ICD method and the LD method, where both methods con-
tribute to power distribution according to their respective
WCs.

In scenarios where minimizing power loss is of higher
importance, it can be advantageous to allocate power between
units based on the loss criterion. This implies that units con-
nected through lower-resistance lines are prioritized in power
distribution to meet the load demand.

Following the presentation of the ICD and LD methods in
[36], a hybrid droop coordination approach that incorporates
both power loss and cost function has been introduced. The
method’s effectiveness is demonstrated through Equations (13)
and (14).

VR,i = Vmax − Hi (13)

Hi = (Vmax −Vmin) (WC1a + WC2b) (14)

a =
ICP ,i (Pi )

max {(IC1 (P1 max)) , (IC2 (P2 max)) , … , (ICi (Pi max))}

FIGURE 2 Hybrid droop method: Incorporating IC-based droop (ICD )
and loss-based droop (LD ) approaches with weighting coefficients (WCs).

b =
P
′

Loss,i

max
{(

P
′

Loss,1

)
,
(

P
′

Loss,2

)
, … ,

(
P
′

Loss,i

)}

Similar to Equation (14), the constant value Hi corresponds
to the slope of the hybrid droop in Equation (15). The weight
factors for cost and loss are represented by WC1 and WC2,
respectively. As mitigating costs and power losses both are
important, the WCs are chosen by the operator in a way that
WC1 and WC2 add up to one. Equation (15) ensures the consis-
tent effectiveness of the hybrid droop coordination method by
maintaining the equality of the bus voltage of each DG [36].

H1 = H2 = ⋯ = Hn (15)

Figure 2 illustrates the merging of the ICD plus LD methods
through the utilization of WCs. As both methods are incorpo-
rated into the hybrid droop coordination approach based on the
WCs, they contribute to the method’s effectiveness.

4 LINEAR REGRESSION

Linear regression is a statistical method that employs a linear
equation to model the correlation between an affiliate variable
Y and one or more autonomous variables X. Its primary goal is
to determine the most suitable line of best fit that can predict
the value of Y with precision based on a given value of X. When
there are several independent variables, the linear regression
formula expands to Equation (16):

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽kXk + 𝜀. (16)

The equation for multiple linear regression involves k inde-
pendent variables, denoted as X1, X2, …, Xk and their
corresponding coefficients, represented by 𝛽1, 𝛽2, …, 𝛽k. The
goal remains to determine the ideal coefficients that minimize
the sum of squared errors between the predicted and observed
values of Y. The MSE gauges the mean squared difference
between the predicted values and the real values in the dataset.
It can be calculated as follows (17):

MSE = 1
n

n∑
i=1

(
yi − ŷi

)2
, (17)
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where n is the number of data points, yi is the actual value of the
affiliate variable for the ith data point, and ŷi is the forecasted
value of the affiliate variable for the ith data point.

In simpler terms, the MSE is the average of the squared
differences between the predicted and actual values of the
dependent variable. A lower MSE indicates that the model is fit-
ting the data better. Furthermore, R-squared is a different metric
employed to evaluate the goodness of fit of a linear regression
model. The formula for R-squared is (18):

R2 = 1 − (SSE∕SST ) , (18)

where SSE is the sum of squared errors and SST is the
total sum of squares. It should be noted that SST mea-
sures the total variation in the dependent variable, while
SSE measures the unexplained variation in the dependent
variable.

5 PROPOSED METHOD: OPTIMIZED
HYBRID DROOP COORDINATION
STRATEGY USING LINEAR REGRESSION

The hybrid droop strategy has emerged as a promising approach
to enhance the efficiency of DC MGs by combining the bene-
fits of both ICD and LD techniques. However, the effectiveness
of this strategy heavily relies on the appropriate selection of
WCs governing the contribution of each droop strategy. In the
existing literature, the determination of WCs has often been
subjective, relying on arbitrary choices or empirical observa-
tions. This lack of systematic optimization limits the ability
to fully exploit the potential benefits of the hybrid droop
strategy. Given the significance of the aforementioned chal-
lenge, an ML-based method is suggested in this study to
address the existing concerns. The suggested method utilizes
multiple linear regression and gradient descent techniques to
optimize the WCs and enhance the performance of the hybrid
droop strategy. By modelling the relationship between WCs,
PC, PLL, and loads, the suggested method aim to find the
optimal WCs and tune them to optimize the hybrid droop strat-
egy. The proposed method involves two primary steps: firstly,
training the linear regression model, and secondly, determin-
ing the optimized WCs using the gradient descent algorithm.
Subsequent sections will elaborate on each of these steps in
detail.

5.1 Linear regression model training

Using multiple linear regression, the WCs and loads are consid-
ered independent variables, while the dependent variables are
PCs and PLLs. A multiple linear regression model is trained
using simulation data that includes various combinations of
WCs, loads, PCs, and PLLs. This allows the model to learn
the underlying patterns and relationships between these vari-
ables. Once the multiple linear regression model is trained,
it can be used to predict the values of PC and PLL for a

FIGURE 3 Linear regression tuning process flowchart. PC, production
cost; PLL, power line loss.

given set of WCs and loads. This prediction capability enables
us to optimize the hybrid droop strategy by finding the opti-
mal combination of WCs that minimizes PC and PLL, leading
to improved performance. Here’s a breakdown of the tuning
process:

1. Data generation: We simulate the strategy for a specified
number of iterations to generate a dataset of PC and PLL
values for each set of WCs and loads.

2. Dataset splitting: The generated dataset is split into train-
ing and testing subsets to facilitate model training and
evaluation.

3. Model training: We train a linear regression model using the
training subset to learn the relationship between the WCs,
loads, PC, and PLL values.

4. Model evaluation: The accuracy of the trained linear regres-
sion model is evaluated using the testing subset based on
criteria such as MSE and R-squared (R2).

5. Prediction with trained model: Once the linear regression
model is trained using the dataset, it becomes capable of pre-
dicting the PC and PLL values for a large number of random
combinations of WCs and loads. These predictions are based
on the learned relationships between the independent vari-
ables (WCs and loads) and the dependent variables (PC and
PLL).

Furthermore, the multiple linear regression model can also
be utilized to predict DC MG quantities such as PC and PLL.
This information can provide valuable insights into the over-
all system behaviour and assist in decision-making processes.
Figure 3 illustrates the steps involved in the gradient descent
process.
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5.2 Optimization with gradient descent

After obtaining predictions for PC and PLL, the next
step is to optimize these values to identify the most suit-
able WCs for the hybrid droop coordination approach.
This is where the gradient descent algorithm comes into
play.

The suggested method incorporates the use of the gradi-
ent descent algorithm to fine-tune the WCs and minimize the
values of PC and PLL. This choice is rooted in the algo-
rithm’s demonstrated efficacy in optimizing high-dimensional
models, making it well-suited for this paper’s specific prob-
lem. Its simplicity and versatility enhance the efficiency of
our optimization process by seamlessly integrating with the
multiple linear regression model. To fine-tune the WCs and
minimize the values of PC and PLL, the multiple linear regres-
sion model generates multiple results and predictions based
on different combinations of WCs and loads. The gradient
descent algorithm takes the predictions from the multiple
linear regression model and iteratively adjusts the WCs to
minimize the values of PC and PLL. By iteratively updat-
ing the weighting factors in the direction that reduces the
error, the algorithm progressively converges toward the optimal
values.

The optimization with gradient descent process involves the
following steps:

1. Initialization: Start with an initial guess for the WCs. This
could be random or based on prior knowledge.

2. Calculate gradient: Compute the gradient of the cost or loss
function with respect to each WC. The gradient indicates the
direction of the steepest increase of the function.

3. Update WCs: Adjust the WCs in the direction opposite to
the gradient to minimize the cost or loss function. This
adjustment is proportional to the gradient and a predefined
learning rate, which determines the size of the steps taken in
each iteration.

4. Iterate: Repeat steps 2 and 3 until convergence criteria are
met. Convergence is typically achieved when the changes in
the WCs become very small or when the cost or loss function
reaches a minimum.

5. Iterative optimization: During each iteration of gradient
descent, the algorithm adjusts the WCs to minimize the pre-
dicted values of PC and PLL. By iteratively updating the WCs
in the direction that reduces the error between the predicted
and actual values, the algorithm gradually converges toward
the optimal values of the WCs.

6. Identification of suitable WCs: Once the gradient descent
optimization process converges, the optimized PC and PLL
values are utilized to identify the most suitable WCs for the
hybrid droop coordination approach. These WCs represent
the optimal configuration that minimizes production cost
and power line losses, thus enhancing the performance of
the hybrid droop strategy.

Figure 4 illustrates the steps involved in the gradient descent
process.

FIGURE 4 Gradient descent-based tuning algorithm for hybrid droop
coordination optimization. WC, weighting coefficient.

Through this iterative optimization process, the suggested
method can effectively determine the weighting factors that
offer the best performance for the hybrid droop strategy.
The combination of multiple linear regression and the gra-
dient descent algorithm allows for a systematic approach
to finding and fine-tuning the WCs, overcoming the limita-
tions of subjective or empirical methods used in previous
studies.

6 SIMULATION RESULTS AND
ANALYSIS

To implement the proposed droop control method on our DC
MG (see Figure 1), Matlab/Simulink has been used. The simula-
tion parameters have also been provided in Tables A1 and A2 in
the Appendix. Notably, the quadratic cost functions are chosen
based on references [25], [27], and [28], with the cost function
coefficients (ai1, ai2, and ai3) of each DGs scaled identically to
those in references [25], [27], and [28].

6.1 Simulation parameters and assumptions

To demonstrate the entire process and evaluate the system’s per-
formance in the worst-case scenario, different transmission line
resistances are taken into account. For instance, the proposed
method’s power distribution performance is compared with
the hybrid droop coordination method and the classical one.
Moreover, the dispatchable DGs are considered to be identical
in nominal power. Additionally, the MG under study includes
five resistance loads. The following parameters are essential for
understanding the system’s behaviour:
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FIGURE 5 Schematic of direct current (DC) microgrid (MG) in the case
study.

FIGURE 6 Different load levels.

-DC link voltage: Set to 100 volts, with a permissible
fluctuation range between 95 and 105 V.

-Solar power generation: Operates under MPPT (maxi-
mum power point tracking) conditions utilizing fuzzy
logic, consistently producing 1.6 kW of power.

-Converters: The boost converter parameters, including
controller coefficients, inductor and capacitor values,
input voltage, rated power, and switching frequency of
50 kHz, are specified.

These parameters collectively contribute to the comprehen-
sive evaluation of the system’s performance and provide insights
into its behaviour under various operating conditions.

6.2 Case study

The DC MG comprising six DGs with the same nominal power
is depicted in Figure 5. Moreover, Figure 6 illustrates the load
levels. Notably, a comparative study has also been considered to
evaluate the performance of different methods.

Figure 7a–e illustrates the power waveforms of DERs.
Figure 7f illustrates the power waveforms of DERs using the

suggested method, incorporating tuned WCs, under different
load levels. Initially, the assessment of the proposed approach
is based on the MSE and R2 metrics. These metrics are used to
determine the accuracy of predictions. Incorporating the pro-
posed strategy yields: MSE = 37, R2 = 0.98. Furthermore,
Table 2 presents the actual and predicted values for PC and PLL,
indicating that the suggested method’s accuracy is valid. Consid-
ering the following scenarios, the performance of the optimized
droop technique proposed here is also evaluated with classical
droop and hybrid one.

a) Scenario 1: 0 < t < t1

At the beginning, there is a load level of 35.5 kW that needs
to be met with the power generated by DERs for loads 2, 3, and
4. In this case, the WCs for forecasting the optimum PC and
PLL of the suggested method are equal to:

WC1 = 0.0, WC2 = 1, WC3 = 0.85, WC4 = 0.15,
WC5 = 0.35, WC6 = 0.65, WC7 = 0.88, WC8 = 0.12,
WC9 = 0.96, WC10 = 0.04, WC11 = 0.18, WC12 = 0.82.

b) Scenario 2: t1 < t < t2

when t = t1, the power demand for load 4 becomes zero, leading
to a reduction in power consumption from 35.5 to 30 kW. As a
result, the suggested method employs the following WCs:

WC1 = 0.02, WC2 = 0.98, WC3 = 0.58, WC4 = 0.42,
WC5 = 0.57, WC6 = 0.43, WC7 = 0.91, WC8 = 0.09,
WC9 = 0.31, WC10 = 0.69, WC11 = 0.14, WC12 = 0.86

c) Scenario 3: t2 < t < t3

At time t = t2, load 1′s demand must be met, causing load
3′s power demand to drop to zero (30 to 22.5 kW). The method
adapts WCs to optimize PC and PLL for supplying loads 1 and
2.

WC1 = 0.01, WC2 = 0.99, WC3 = 0.49, WC4 = 0.51,
WC5 = 0.78, WC6 = 0.22, WC7 = 0.81, WC8 = 0.19,
WC9 = 0.48, WC10 = 0.52, WC11 = 0.14, and WC12 = 0.86.

d) Scenario 4: t3 < t < t4

At t = t3, the power demand for load 5 also needs to be ful-
filled, leading to an increase in power consumption from 22.5 to
26 kW. As a result, to meet the energy demands of loads 1, 2, 3,
and 5, the DERs must produce electricity. To achieve the opti-
mal PC and PLL in this situation, the suggested method utilizes
the following WCs:

WC1 = 0.13, WC2 = 0.87, WC3 = 0.67, WC4 = 0.33,
WC5 = 0.33, WC6 = 0.67, WC7 = 0.8, WC8 = 0.2,
WC9 = 0.68, WC10 = 0.32, WC11 = 0.64, and WC12 =
0.36.

e) Scenario 5: t4 < t < t5

At t = t4, the power required for load 1 drops to zero, which
causes a decrease in power consumption from 26 to 27 kW.
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FIGURE 7 Power waveforms of different distributed energy resources (DERs): (a) Classical, (b) IC-based droop (ICD), (c) hybrid in first status, (d) hybrid in
third status, (e) hybrid second status, and (f) proposed method.

TABLE 2 A comparison of direct current microgrid’s (DCMG)’s actual values with its predicted values.

WCs Predicted values Actual values Error

WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 WC11 WC12 Load PC PLL PC PLL PC PLL

1 0.15 0.85 0.85 0.15 0.35 0.65 0.1 0.9 0.85 0.15 0.75 0.25 29.955 82.58 222.23 81.1 214.38 1.8% 3.66%

2 0.1 0.9 0.75 0.25 0.25 0.75 0.4 0.6 0.65 0.35 0.2 0.8 29.9 80.24 207.568 85.4 202 6% 2.75%

3 0.8 0.2 0.65 0.35 0.5 0.5 0.9 0.1 0.15 0.85 0.25 0.75 29.732 80.336 206.55 78.62 207.2 2.18% 0.31%

4 0.7 0.3 0.25 0.75 0.55 0.45 0.45 0.55 0.4 0.6 0.8 0.2 24.984 57.816 145.613 55.37 136.7 4.41% 6.52%

5 0.1 0.9 0.2 0.8 0.45 0.55 0.5 0.5 0.85 0.15 0.75 0.25 24.88 51.05 142.315 53 144.1 3.67% 1.23%

6 0.25 0.75 0.9 0.1 0.35 0.65 0.85 0.15 0.6 0.4 0.25 0.75 24.93 47.904 133.271 51.6 140.5 7.16% 5.14%

7 0.15 0.85 0.85 0.15 0.35 0.65 0.65 0.35 0.55 0.45 0.45 0.55 24.83 50.187 133.382 52 138.25 3.48% 3.52%

8 0.1 0.9 0.2 0.8 0.45 0.55 0.5 0.5 0.85 0.15 0.75 0.25 34.245 103.58 280.672 104 287.9 0.4% 2.51%

9 0.25 0.75 0.4 0.6 0.55 0.45 0.55 0.45 0.3 0.7 0.7 0.3 34.223 107.714 277.054 106.8 271.8 0.8% 1.93%

10 0.6 0.4 0.3 0.7 0.75 0.25 0 1 1 0 0.1 0.9 34.64 109.049 290.809 109.45 295 0.3% 1.42%

Abbreviations: PC, production cost; PLL, power line losses; WC, weighting coefficient.

Therefore, the suggested method uses the set of WCs listed
below to optimize PC and PLL:

WC1 = 0.25, WC2 = 0.75, WC3 = 0.73, WC4 = 0.27,
WC5 = 0.62, WC6 = 0.38, WC7 = 0.98, WC8 = 0.02,
WC9 = 0.8, WC10 = 0.2, WC11 = 0.18, and WC12 = 0.82.

The hybrid droop coordination method comprises three
distinct statuses, as follows:

∙ First status: WC1 = 0.7, WC2 = 0.3, WC3 = 0.7, WC4 = 0.3,
WC5 = 0.7, WC6 = 0.3, WC7 = 0.7, WC8 = 0.3, WC9 = 0.7,
WC10 = 0.3, WC11 = 0.7, WC12 = 0.3

∙ Second status: WC1 = 0.5, WC2 = 0.5, WC3 = 0.5,
WC4 = 0.5, WC5 = 0.5, WC6 = 0.5, WC7 = 0.5,
WC8 = 0.5, WC9 = 0.5, WC10 = 0.5, WC11 = 0.5,
WC12 = 0.5
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FIGURE 8 Comparative analysis of the proposed method versus classical,
ICD method, hybrid method: (a) production cost (PC); (b) power line losses
(PLL); (c) direct current (DC) link voltage.

∙ Third status: WC1 = 0.3, WC2 = 0.7, WC3 = 0.3, WC4 = 0.7,
WC5 = 0.3, WC6 = 0.7, WC7 = 0.3, WC8 = 0.7, WC9 = 0.3,
WC10 = 0.7, WC11 = 0.3, WC12 = 0.7

As it turns out, an AC-based droop control scheme can
be deduced using the hybrid scheme. When the WCs in the
hybrid method are set to WC1 = 1 and WC2 = 0, the perfor-
mance of this method becomes equivalent to that of the ICD
method.

6.3 Comparative study

A comparison is made between the proposed method ver-
sus classical and hybrid methods and the obtained results are
depicted in Figure 8a–c. The figure demonstrates that the
method elaborated here exhibits improvements regarding PLL
and PC compared to other aforesaid techniques.

In the method presented here, the WCs are predicted using
the multiple linear regression algorithm in a way that leads to
the optimal PC and PLL. This strategy yields reduced PC and
PLL values, as shown in Figure 9 when compared to both the
hybrid droop coordination and classical methods. The classical
method is used as a benchmark for comparison. The reduction

in PC and PLL is represented by positive percentages, while any
increase is indicated by negative percentages.

Another superiority of the suggested method is the track-
ing of PC and PLL with the accurate selection of WCs. The
DC link voltage in the suggested method is evaluated with var-
ious scenarios of the conventional and hybrid droop methods
in Figure 8c. The suggested approach demonstrates a smaller
reduction in the DC link voltage in comparison to the classical
and hybrid droop methods.

6.4 Sensitivity analysis

In this subsection, we conducted a sensitivity analysis of the
eigenvalues to assess the impact of the droop coefficients on
system stability. To commence, Figure 10 illustrates an aver-
aged equivalent model of the droop-controlled DC MG with
n DG, incorporating the dynamic elements of the DG convert-
ers. For the sake of simplicity, we examined a two-DG system,
as depicted in Figure 11.

With the state equations in place, small-signal modelling of
the DC MG can be achieved. By using perturbation and lin-
earization of the model described in Equations (19)–(22), the
small-signal model can be expressed with the following general
state-space form:

L j

diL j

dt
= Vin j

u j − vc j
, (19)

Cj

dvc j

dt
= iL j

− io j
, (20)

Le j

dio j

dt
= vc j

− io j

(
Rd j

+ RL j

)
− vdcbus , (21)

Cdc−bus
dvdcbus

dt
=

2∑
j=1

io j
−

vdcbus

R
. (22)

The state equation describing the model is given as follows:

̇̂x = Asysx̂ − Bsys û (23)

where x̂ = [x̂1 îL1
v̂c1 îo1

x̂2 îL2
v̂c2 îo2

v̂dcbus]
T

are state variables,
with x̂1 and x̂2 being the integration variable of the output volt-
age of DGs. The overall Asys in Equation (23) can be derived
as:

Asys =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a13 a14 0 0 0 0 0
a21 0 a23 a24 0 0 0 0 0
0 a32 0 a34 0 0 0 0 0
0 0 a43 a44 0 0 0 0 a49
0 0 0 0 0 0 a57 a58 0
0 0 0 0 a65 0 a67 a68 0
0 0 0 0 0 a76 0 a78 0
0 0 0 0 0 0 a87 a88 a89
0 0 0 a94 0 0 0 a98 a99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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FIGURE 9 Performance evaluation of proposed method versus classical and hybrid droop coordination methods: (a) production cost (PC); (b) power line
losses (PLL).

FIGURE 10 Averaged model of the droop-controlled direct current (DC) microgrid (MG).
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FIGURE 11 Averaged model of the droop-controlled direct current (DC)
microgrid (MG) with two DGs.

FIGURE 12 The movement of eigenvalues for the two-DG system with
varying droop resistance.

The parameters in the above matrix are given in Appendix.
With the system matrix Asys established, eigenvalue analysis can
be performed in the presence of controllers and droop coef-
ficients. We investigated the impact of droop coefficients on
the stability of the entire system by varying the values of droop
resistances (0.33 ≤ Rd1

≤ 1, 0.33 ≤ Rd2
≤ 1), and the obtained

results are illustrated in Figure 12. It is worth noting that the
“participation factor method” can be employed to precisely deter-
mine the contribution or influence of a specific state variable
to a specific mode for various system design requirements such
as droop resistance. In our system, as depicted in Figure 11, the
real part of eigenvalues, especially those in close proximity to the

origin, shifts from right to left as the droop coefficient values
increase, which is beneficial to the system’s stability.

7 CONCLUSION

This paper presented an ML-based optimized droop control
method for DC MGs, aiming to minimize the PC and PLL.
By introducing a systematic approach that harnesses the ben-
efits of AI, accurate predictions of PLL and PC were made
possible. Leveraging the gradient descent method, the sug-
gested technique independently optimized PC and PLL for
each scenario, eliminating the need for arbitrary adjustments
of WCs as required in traditional hybrid droop coordination
strategies. The comparative analysis confirmed the superiority
of the droop scheme presented here over the traditional and
hybrid approaches, showcasing its effectiveness in enhancing
the performance of DC MGs regarding operating cost opti-
mization and transmission loss reduction. Thus, PC and PLL
in the proposed method, considering the conventional method
as a benchmark in different scenarios, have been improved by
about 6% and 4.5%, respectively. Furthermore, the decentral-
ized nature of the suggested coordination technique eliminated
the need for costly infrastructure, offered greater reliability,
and reduced complexity when compared to communication
link-based strategies. Overall, this research contributed to the
advancement of droop control in DC MGs, demonstrating the
potential of ML and optimization techniques for achieving sig-
nificant improvements in economic and operational efficiency.
In future work, the proposed ML-based optimized droop con-
trol method for DC MGs could be extended and adapted for
application in AC MGs.

NOMENCLATURE

ML Machine learning
DC Direct current
DG Distributed generation

AI Artificial intelligence
MSE Mean squared error
MG Microgrid
RES Renewable energy source

MPPT Maximum power point tracking
IC Incremental cost
PC Production cost

PLL Power line loss
DER Distributed energy resources

PV Photovoltaic
SSE Sum of squared errors
SST Total sum of squares
TSS Total sum of squares
WC Weighting coefficient
CD Cost-based droop

ICD IC-based droop
LD Loss-based droop
FD Flexibility-based droop
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APPENDIX

The parameters of Asys :

a13 = −kiH a65 = Vin2
∕L2

a14 = −kiRd1
H a67 = −

(
kpVin2

H + 1
)
∕L2

a21 = Vin1
∕L1 a68 = −

(
kpVin2

Rd2
H
)
∕L2

a23 = −
(
kpVin1

H + 1
)
∕L1 a76 = 1∕C2

FIGURE A1 The block diagram of the voltage control loop for
dispatchable units.

a24 = −
(
kpVin1

Rd1
H
)
∕L1 a78 = −1∕C2

a32 = 1∕C1 a87 = 1∕Le2

a34 = −1∕C1 a88 = −
(
Rd2

+ RL2

)
∕Le2

a43 = 1∕Le1 a89 = −1∕Le2

a44 = −
(
Rd1

+ RL1

)
∕Le1 a94 = 1∕Cdc−bus

a49 = −1∕Le1 a98 = 1∕Cdc−bus

a57 = −kiH a99 = −1∕RCdc−bus

a58 = −kiRd2
H

Figure A1 outlines the control system employed in our pro-
posed method for DGs. This diagram succinctly illustrates the
integration of both ICD and the loss-based droop methods at
the primary control level.
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TABLE A1 Simulation parameters of direct current (DC) microgrid (MG).

Part I

Parameters Symbolism Value

Voltages Voltage reference (VR ) 100 V

Minimum voltage (VMin) 95 V

Maximum voltage (VMax) 105 V

PV PMPPT 1.6 KW

C (µF) 330

L (mH) 0.12

Battery Nominal battery capacity (Cbat ) 5 Ah

Controllers coefficients kp 1

ki 60

Resistive loads Load#1 (R1 ) 1 Ω
Load#2 (R2 ) 0.7 Ω
Load#3 (R3 ) 0.56 Ω
Load#4 (R4 ) 2.05 Ω
Load#5 (R5 ) 2.75 Ω

DC/DC power converters L (µH) 75

C (µF) 350

DC-bus capacitor (Cdc−bus) 2000 µF

Output power 6 KW

Line inductance (Le j
) 100 µH

Input voltage (Vin) 48 V

Switching frequency 50 KHz

Sensor gain (H ) 0.01

Part II

Coefficients Line resistance

Unit ai1 ai2 ai3 RLine(𝛀)

Cost function and line
resistance coefficients

DG1 0.01 0.01 0.004 0.02

DG2 0.01 0.01 0.004 0.01

DG3 0.01 0.008 0.002 0.01

DG4 0.01 0.008 0.005 0.01

DG5 0.01 0.008 0.002 0.02

DG6 0.01 0.008 0.005 0.02

Part III

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Weighting coefficient and
loads in different scenarios

W1, W2 0.0, 1 0.02, 0.98 0.01, 0.99 0.13, 0.87 0.25, 0.75

W3, W4 0.85, 0.15 0.58, 0.42 0.49, 0.51 0.67, 0.33 0.73, 0.27

W5, W6 0.35, 0.65 0.57, 0.43 0.78, 0.22 0.33, 0.77 0.62, 0.38

W7, W8 0.88, 0.12 0.91, 0.09 0.81, 0.19 0.8, 0.2 0.98, 0.02

W9, W10 0.96, 0.04 0.31, 0.69 0.48, 0.52 0.68, 0.32 0.8, 0.2

W11, W12 0.18, 0.82 0.14, 0.86 0.14, 0.86 0.64, 0.36 0.18, 0.82

Load 35.5 kW 30 kW 22.5 kW 26 kW 27 kW

Abbreviations: DC, direct current; DG, distributed generation.
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TABLE A2 Cost function coefficients and loss resistance for direct
current (DC) microgrid (MG) units.

Coefficients Line resistance

Unit ai1 ai2 ai3 RLine (𝛀)

DG1 0.01 0.01 0.004 0.02

DG2 0.01 0.01 0.004 0.01

DG3 0.01 0.008 0.002 0.01

DG4 0.01 0.008 0.005 0.01

DG5 0.01 0.008 0.002 0.02

DG6 0.01 0.008 0.005 0.02
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