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A B S T R A C T   

This paper addresses an iterative optimization model for self-healing distribution expansion planning considering 
distributed energy resources, electric vehicles’ parking lots, and energy storage systems. The main contribution 
of this model is that the smart devices of smart homes are modeled and the impacts of their commitments are 
explored in the expansion planning exercise. The proposed algorithm is another contribution of this paper that 
consists of tri-stage optimization processes. In the first stage, the optimal commitment of smart devices of smart 
homes is solved considering the worst-case external shock impacts on the consumers’ comfort levels. Then, the 
optimal expansion planning of the distribution system is determined in the second stage problem. Finally, in the 
third stage, the optimal topology and dispatch of distributed energy resources are determined for the external 
shock conditions. The effectiveness of the proposed algorithm was assessed for the modified 123-bus system. 
Based on the simulation results, the aggregated costs of the 123-bus system were reduced by about 42.62 % using 
the proposed framework. Further, the expected energy not supplied costs of the system were reduced from 113 
million monetary units to 0.284 million monetary units based on the fact that the model endeavored to minimize 
the interruption of critical loads.   

1. Introduction 

An electrical distribution system should be planned and operated in a 
way that it can tolerate stochastic shocks and recover to new steady- 
state conditions [1]. The most common practical planning paradigm of 
the electrical distribution systems is the N-1 criterion, which may not 
apply to natural catastrophic disasters [2]. Further, the unprecedented 
shock may reduce the residential consumers’ comfort levels based on the 
duration and location of system outages. 

A Self-Healing Electrical Distribution System (SHEDS) should 
consider the impacts of the system’s shocks on the consumers’ comfort 
levels in expansion planning practices. A SHEDS may utilize intermittent 
electricity generation facilities, electric vehicles’ parking lots, energy 
storage systems, and Distributed Generation (DG) facilities [1]. 

Over the recent years, different aspects of SHEDS planning are pre-
sented and the impacts of external shocks on the distribution systems are 
explored. Gilasi et al. [3] introduced a model for allocating distributed 
energy resources. The model minimized the planning and operating 

costs. Further, the load shedding of the system in the external shock 
conditions was minimized. The non-dominated sorting genetic algo-
rithm II using fuzzy decision-making was utilized to determine the 
Pareto solutions. Akbari et al. [4] explored a two-stage hybrid robust 
expansion-planning model that utilized a min-max-min optimization 
process considering the AC power flow. The column-and-constraint- 
generation process was used to find the best solution for the problem. 
Refs. [3, 4] did not consider the smart appliances’ models, consumer 
comfort levels, and optimal microgrid formation of the distribution 
system. Zhou et al. [5] assessed a stochastic model for joint expansion 
planning of network and distributed energy resources considering 
intermittent electricity generation uncertainties. The system constraints 
considered radiality, reserve connection, and DG interconnections. The 
model minimized investment, operational, and environmental penalty 
costs. Firoozjaee et al. [6] proposed a hybrid expansion planning tech-
nique that determined the optimal penetration rate of microgrids. The 
model utilized a two-stage process. The first stage problem solved the 
generation and transmission expansion-planning problem. The second 
stage utilized the Monte-Carlo simulation process to determine the 
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expected demand not served values and calculate the resilience index. 
Masoumi-Amiri et al. [7] introduced a bi-level optimization framework 
for expansion planning that maximized the microgrid owner profit and 
minimized the investment and operating costs of the planning problem. 
The microgrid and distribution system optimization models were solved 
in the upper-level and lower-level problems, respectively. Refs. [5–7] 
did not model consumer comfort levels and smart appliances’ commit-
ment. Further, the optimal demand response pricing process was not 
considered in these papers. Nasri et al. [8] proposed a six-step frame-
work for expansion planning of the distribution system. The basic 
network topology formation and hurricane occurrence simulation were 
carried out in the first and second steps, respectively. The reinforcement 
process of the network in a preventive way and the operating optimi-
zation processes were performed in the third and fourth steps, respec-
tively. Finally, the resiliency assessment and overall optimization of the 
formulated problems were considered in the fifth and sixth steps, 
respectively. Shahbazi et al. [9] introduced a resilient architecture 
strategy for a distribution system that utilized backup DGs and network 

hardening. The investment, operating, and resiliency objective functions 
were considered in the optimization process. The uncertainties of energy 
price, loads, and outages were modeled using stochastic models. Refs. 
[8, 9] did not explore the optimal microgrid formation of the distribu-
tion system in external shock conditions, smart appliance models, and 
consumer comfort levels. 

Mousavizadeh et al. [10] assessed the resiliency level of a distribu-
tion system considering microgrid formations. The worst-case external 
shocks were modeled and multiple switching scenarios and un-
certainties of loads were considered. Wu et al. [11] proposed a stochastic 
optimization model that determined the optimal allocation and sizing of 
energy resources considering the system’s shocks. The mixed-integer 
linear programming was utilized to solve the problem and the surviv-
ability level of the system was evaluated. Gilani et al. [12] introduced a 
linear model to restore critical loads of the system and a multi-micro grid 
formation process was utilized to reduce the impacts of the worst-case 
external shock. The uncertainties of intermittent electricity genera-
tions and loads were modeled. Bessani et al. [13] explored a time-to- 

Nomenclature 

Abbreviations 
ARIMA Auto-Regressive Integrated Moving Average 
DG Distributed Generation 
SHEDS Self-Healing Electrical Distribution System 
DRP Demand Response Program 
EENSC Expected Energy Not Supplied Cost 
MU Monetary Unit 
PHEV Plug-in Hybrid Electric Vehicle 
PV Photovoltaic System 
WT Wind Turbine 

Set and indices 
K Smart homes set 
T Daily simulation period set 
N Smart devices set 
k smart home index 
t Daily simulation period index 
n Smart device index 
SD The set of smart devices 
j External shock index 
NES External shock scenarios set 
NESEC The set of system switches 
l Switch index 
NCLS Comfort levels of consumers scenario set 
m Comfort level scenario index 
NCS Consumers set 
m′ Consumer index 
NWMPS Wholesale market price scenarios set 
r Wholesale market price index 
NIEGS Intermittent energy generation scenarios set 
r′ Intermittent energy generation scenario index 

Scalars and parameters 
aWD

k , bWD
k The washing-drying machine parameters that consumer k 

determines based on his/her preference 
aAC

k , bAC
k The air conditioning system parameters that consumer k 

determines based on his/her preference 
Tempin

k , Tempcom
k The inside and outside temperatures of the house 

Tempout
k The outdoor temperature of the house 

ξ The heat transfer between the indoor and outdoor 
environments of the house 

ϑ The thermal efficiency of the air conditioner 

aPHEV
k , bPHEV

k The PHEV parameters that consumer k determines 
based on his/her preference 

pLight.comf The desired brightness 
aEnt

k , bEnt
k The entertainment system parameters that consumer k 

determines based on his/her preference 
pEnt.comf The desired entertainment 
CINV Investment cost 
probES Probability of external shock scenario 
W Weighting factor 
probCL Probability of consumers’ comfort level 
probWMP Probability of wholesale market price 
probIEG Probability of intermittent energy generation facilities’ 

electricity generation 

Variables 
ESD

k Energy consumption of smart device SD of smart home k 
PSD

k Power consumption of smart device SD of smart home k 
Φn

k Smart home owner k welfare is defined as Φn
k that derives 

from using smart device n 
Γ Comfort level of consumer 
PSD CRI

k Critical loads of kth consumer 
PSD DEF

k Deferrable loads of kth consumer 
PSD INT

k Interruptible loads of kth consumer 
βINT, βDEF The interruptible load fee and deferrable load fee. 
ISHEDS Binary decision variable of facility investment 
COP Operational cost of distributed energy resource 

commitment 
CIMP Cost of energy imported from wholesale market 
ψCRI

tk Binary decision variable of critical load commitment 
ψDEF

tk Binary decision variable of deferrable load commitment 
ψ INT

tk Binary decision variable of interruptible load commitment 
CCRI

k Cost of critical load that is not committed 
CDEF

k Cost of deferrable load that is not committed 
CINT

k Cost of interruptible load that is not committed 
X Binary decision variable of switch status 
pWD

k (t) power consumption of washing-drying machine 
pAC

k (t) power consumption of the air conditioning system 
pPHEV

k (t) power consumption of plug-in hybrid electric vehicle 
pLight

k (t) power consumption of the lighting system 
pEnt

k (t) power consumption of entertainment system  
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event model that assessed the structural resilience of the system. The 
performance and structural indices were utilized to assess the post- 
contingency conditions and the resiliency levels of the system were 
analyzed in shock conditions. Refs. [10–13] did not assess the impacts of 
smart appliances’ commitment and consumer comfort levels on the 
expansion-planning problem. Further, the demand response pricing 
process was not modeled in these papers. Wei Yuan et al. [14] utilized 
the N–K contingency method to assess the resiliency of the distribution 
system. The column constraint generation decomposition was utilized 
for the proposed two-stage robust optimization algorithm. The network 
hardening and DGs’ allocations were modeled in the problem. Bahra-
mabadi et al. [15] utilized a model to allocate the switching device 
allocation and enhance the resiliency level of the system. The extreme 
weather condition was modeled in the first stage. Further, the resiliency 
index was determined in the second stage. Refs. [14, 15] did not model 
the smart appliances models and consumer comfort levels. Mishra et al. 
[16] proposed an algorithm for optimal resilient expansion planning 
considering the coordinated operational scheduling of microgrids. The 
worst-case contingency was considered an external shock and a mixed- 
integer linear programming algorithm was utilized to solve the problem. 
Lin et al. [17] assessed a defender-attacker-defender model to enhance 
the resiliency level of the system. The model consists of three stages and 
the hardening process was carried out in the first stage. The worst-case 
external shock and resilient operating conditions were analyzed in the 
second and third stages, respectively. Zakernezhad et al. [18] presented 
a multi-stage expansion planning optimization algorithm that consid-
ered the capacity withholding process of non-utility electricity genera-
tion facilities. The model assessed the bidding strategies of non-utility 
generations and calculated the withholding indices to explore the value 
of withholdings. Refs. [16–18] did not model smart appliances and 
consumer comfort levels. The smart appliances’ commitment can 
change the available energy resources of the distribution systems in 
normal and external shock conditions. An integrated model that 

considers the consumer comfort levels and smart appliances’ commit-
ment in the expansion planning exercise is less frequent in the literature. 
Table 1 shows the comparison of the proposed model with the other 
papers. 

The main contributions of this paper are:  

• The optimization model determines the optimal topology of the 
distribution system and smart appliances’ commitment in the worst- 
case external shock;  

• The proposed algorithm models the consumer comfort levels and 
smart appliances commitment in the expansion planning of the dis-
tribution system;  

• The model presents a pricing algorithm for determining the optimal 
values of interruptible and deferrable electricity consumption of 
smart home appliances. 

2. Problem modeling and formulation 

A self-healing electrical distribution system can transact energy with 
smart homes in normal and shock conditions. It is assumed that the 
SHEDS has multiple distributed energy resources and PHEV parking lots 
and transacts electricity with the wholesale electricity market. Further, 
it is assumed that there is not any local electricity market in the SHEDS, 
and all of the distributed energy resources and PHEV parking lots are 
centrally controlled by the SHEDS operator. 

At the first-stage optimization process, the optimal scheduling of 
smart home appliances is carried out. Then, in the second stage problem, 
the optimal expansion planning of the self-healing distribution system is 
performed. Finally, in the third-stage problem, the optimal scheduling of 
the distribution system in external shock conditions is determined. The 
following subsections present the detailed modeling and formulation of 
the proposed method. 

Table 1 
Comparison of the proposed method with other papers. 

H. Hosseini et al.                                                                                                                                                                                                                                



Journal of Energy Storage 82 (2024) 110592

4

2.1. First-stage problem formulation 

The optimization process consists of 24 snapshots and t represents 
the daily simulation periodt ∈ T = {1,2,…,24} [19]. It is assumed that 
the SHEDS supplies K smart homes and k ∈ K presents each smart home. 
Further, each smart home has a set of smart devices (N), and n ∈ N 
presents each smart device. Thus, the energy and power consumption of 
smart home k can be presented as ESD

k and PSD
k , respectively. 

It is assumed that each smart home has the following smart devices: 
1) a washing-drying machine, 2) an air conditioning system, 3) a plug-in 
hybrid electric vehicle (PHEV), 4) a lighting system, and 5) an enter-
tainment system [19]. Thus, the following set can be defined: SD =
{washing-drying machine, air conditioning system, PHEV, lighting sys-
tem, entertainment system}. 

The smart homeowner k welfare is defined as Φn
k that derived from 

using smart device n. Further, Φn
k can be represented as the electricity 

consumption cost of device n. Thus, the comfort level of the consumer is 
defined as Γ which equals the net welfare of the consumer. The net 
welfare of the consumer equals his/her comfort level minus the cost of 
his/her electricity consumption. Thus, the higher value of Γ corresponds 
to the higher value of the comfort level of the consumer. The welfare 
that the consumer derives from using the smart device k can be cate-
gorized into the following equations:  

A. Washing-drying machine: 

The welfare of the consumer derived from using the washing-drying 
machine can be presented as Eq. (1): 

ΦWD
k = aWD

k EWD
k + bWD

k (1) 

where, aWD
k and bWD

k are parameters that consumer k determines 
based on his/her preference. TWD

k presents the set of times that the 
washing-drying machine is utilized. The following constraints are 
considered for the washing-drying machine.  

• Eq. (2) presents the maximum value of power consumption for the 
washing-drying machine. 

0 ≤ pWD
k (t) ≤ pWD Max

k ,∀t ∈ TWD
k (2)    

• Eq. (3) considers the aggregated power consumption of washing- 
drying machine. 

EWD Min
k ≤

∑

TWD
k

pWD
k (t) ≤ EWD Max

k ,∀t ∈ TWD
k (3)  

where, pWD Max
k , EWD Min

k , and EWD Max
k are maximum power consumption, 

minimum energy consumption, and maximum energy consumption of 
the washing-drying machine, respectively.  

B. Air conditioning system: 

The welfare of the consumer derived from using the air conditioning 
system can be formulated as Eq. (4): 

ΦAC
k = aAC

k − bAC
k

(
Tempin

k − Tempcom
k

)2 (4)  

where, aAC
k and bAC

k are selected by consumer k. Tempin
k and Tempcom

k are 
the inside temperature of the house and the comfort temperature of the 
consumer. TAC

k presents the set of times that the air conditioning system 
is utilized. Further, the following equations are constraints for the air 
conditioning system.  

• Eq. (5) presents the maximum value of power consumption for the 
air conditioning system. 

0 ≤ pAC
k (t) ≤ pAC Max

k ,∀t ∈ TAC
k (5)    

• The minimum and maximum values of inside temperature should be 
considered as constraints of the air conditioning system, which is 
presented in Eq. (6). 

Tempcom Min
k ≤ Tempin

k (t) ≤ Tempcom Max
k (6)  

where, Tempcom Min
k and Tempcom Max

k are the minimum and maximum 
values of comfort temperature of the consumer’s house.  

• The air-conditioning system controls the inside temperature of the 
consumer’s house based on Eq. (7), which Tempout

k (t) is the outside 
temperatures of the consumer’s house: 

Tempin
k (t) = Tempin

k (t − 1)+ ξ⋅
(
Tempout

k (t) − Tempin
k (t − 1)

)
+ ϑ⋅pAC

k (t) (7)  

where, ξ is the heat transfer between the indoor and outdoor environ-
ments of the house, and θ is the thermal efficiency of the air conditioner 
[19].  

C. Plug-in hybrid electric vehicle: 

The welfare of the consumer derives from using the plug-in hybrid 
electric vehicle is formulated as Eq. (8): 

ΦPHEV
k = aPHEV

k ⋅EPHEV
k + bPHEV

k (8)  

where, aPHEV
k and bPHEV

k are adjusted by the consumer k based on his/her 
preferences. The following constraints are considered for the plug-in 
hybrid electric vehicle.  

• Eq. (9) presents the maximum value of the charging power of the 
plug-in hybrid electric vehicle. 

0 ≤ pPHEV
k (t) ≤ pPHEV Max

k , ∀t ∈ TPHEV
k (9)    

• Eq. (10) considers the aggregated energy charging and discharging of 
plug-in hybrid electric vehicles. 

EPHEV Min
k ≤

∑

TPHEV
k

Ef PHEV
k ⋅pPHEV

k (t) ≤ EPHEV Max
k , ∀t ∈ TPHEV

k (10)  

where, pPHEV
k , EPHEV Min

k , EPHEV Max
k , and EfPHEV

k are maximum power 
consumption, minimum energy consumption, maximum energy con-
sumption, and energy efficiency of the battery system of the plug-in 
hybrid electric vehicle, respectively. Further, TPHEV

k presents the set of 
times that the plug-in hybrid electric vehicle is utilized.  

D. Lighting system: 

The welfare of the consumer derives from using the lighting system is 
formulated as Eq. (11): 

ΦLight
k = aLight

k − bLight
k

(
pLight

k − pLight.comf
k

)2 (11)  

where, aLight
k and bLight

k are adjusted by the consumer k. pLight.comf is the 
desired brightness. The following equations are constraints for the 
lighting system. 
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• Eq. (12) presents the maximum value of power consumption for the 
lighting system. 

0 ≤ pLight
k (t) ≤ pLight Max

k ,∀t ∈ TLight
k (12)  

where, pLight
k and TLight

k are the maximum power consumption of the 
lighting system and the set of times that the system is utilized, 
respectively. 

Fig. 1. The flowchart of the suggested procedure.  
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E. Entertainment system: 

The welfare of the consumer derived from using the entertainment 
system can be formulated as Eq. (13): 

ΦEnt
k = aEnt

k − bEnt
k

(
pEnt

k − pEnt.comf
k

)2 (13)  

where, aEnt
k and bEnt

k are adjusted by the consumer k. pEnt.comf is the 
desired entertainment. The following equations are constraints for the 
entertainment system.  

• Eq. (14) presents the maximum value of power consumption for the 
entertainment system. 

0 ≤ pEnt
k (t) ≤ pEnt Max

k ,∀t ∈ TEnt
k (14)  

where, pEnt
k and TEnt

k are the maximum power consumption of the 
entertainment system and the set of times that the system is utilized, 
respectively. More detailed models of smart appliances are presented in 
[19] and are not presented for the sake of space. The consumer k en-
deavors to maximize his/her net welfare. It is assumed that the home 
energy management system determines the initial values of a and b 
parameters of smart devices and communicates with the SHEDS based 
on the smart grid infrastructure. Thus, the objective function of the first 
stage optimization problem can be defined as (15): 

Max Γk = Max
∑

t∈T

(
∑

n∈N

(
ΦSD

ktn − CSD
ktn

)
∀ ∈ {WD,AC,PHEV, Light,Ent}

S.t : H1(x, y, z) = 0, G1(x, y, z) ≥ 0
(15)  

where, CSD
ktn is the kth consumer energy consumption cost at the time t for 

using device n of set SD = {washing-drying machine, air conditioning 
system, PHEV, lighting system, entertainment system}. Eq. (15) is con-
strained by Eqs. (2), (3), (5), (6), (7), (9), (10), (12), (14) [19]. The 
compact form of the first stage problem is presented as H1(x, y, z) = 0,
G1(x, y, z) ≥ 0 that x, y, and z are control, state, and topology variables, 
respectively. 

Based on Eq. (15), the home energy management system of consumer 
k can prioritize its smart device power and energy consumption in the 
following groups. It is assumed that the SHEDS communicates with the 
energy management system of the smart home and it can pay capacity 
and option fees to consumers to encourage them to participate in the 
Demand Response Programs (DRPs).  

• The critical loads (PSD CRI
k ) that consist of the lighting system (at 

night), PHEV when its state of charge is lower than a predetermined 
level, and air conditioning system,  

• The deferrable loads (PSD DEF
k ) that consist of washing-drying 

machines,  

• The interruptible loads (PSD INT
k ) that consist of the entertainment 

system and PHEV when its state of charge is higher than a pre-
determined level. 

Based on the above categorization, any change in the volume and 
time of consumers’ energy consumption can reduce their comfort levels. 
Thus, the SHEDS should pay consumers the interruptible load fee and 
deferrable load fee to compensate for the reduction of comfort levels and 
encourage the consumer to participate in the DRPs. Thus, Eq. (15) can be 
rewritten as (16) considering the consumer load priorities: 

Max Γk = Max
∑

t∈T

(
∑

n∈N

(
ΦSD

ktn + βktn
DEF⋅PSD DEF

ktn + βktn
INT ⋅PSD INT

ktn − CSD
ktn

)

∀ ∈ {WD,AC,PHEV,Light,Ent}

S.t : H1(x, y, z) = 0, G1(x, y, z) ≥ 0
(16)  

where, βINT and βDEF are the interruptible load fee and deferrable load 
fee, respectively. 

Based on the proposed optimization model, the values of βINT and 
βDEF are decision variables of SHEDS, and higher values of these vari-
ables can compensate for the reduction in consumers’ comfort levels. 

The initial value of βINT can be calculated from the following pro-
cedure: At first, the value of Eq. (16) is calculated for βDEF = 0 and when 
the consumers are reducing the volume of their energy consumption 
using only the interruptible load demand response program. The initial 
value of βINT should be selected in the manner that the value of Eq. (16) 
is equal to Eq. (15) based on the fact that the interruptible load fee is 
paid to compensate for the reduction in consumers’ comfort levels for 
their contribution in interruptible load DRP. 

Further, in the same procedure, the initial value of βDEF is calculated 
based on the following process: the value of Eq. (16) is calculated for 
βINT = 0 and when the consumers are reducing the volume of their en-
ergy consumption using only the deferrable load demand response 
program. The initial value of βDEF should be calculated in the way that 
the value of Eq. (16) is equal to Eq. (15) because the deferrable load fee 
is paid to compensate for the reduction in consumers’ comfort levels for 
their contribution to deferrable load DRP. Different comfort levels of 
consumers should be considered to generate different values of βINT and 
βDEF that are considered in the second and third stage optimization 
processes. 

2.2. Second-stage problem formulation 

The expansion planning should maximize the social welfare of 
overall system participants, which consists of minimizing SHEDS in-
vestment, operating, and energy purchasing costs, and maximizing 
consumers’ welfare in normal and shock conditions for the planning 
horizon. 

Max M2 =
∑NYear

i=1

∑NWMPS

r=1
probWMP

r ⋅
∑NIEGS

r’=1
probIEG

r’ ⋅

[
∑T

t=1

(
− CINV i⋅ISHEDS

i − COP it − CIMP it
)
+

∑NCS

m’=1

∑NCLS

m=1
probCL

m ⋅
∑T

t=1

∑K

k=1
Γm’itk − M3

]

S.t : H2(x, y, z) = 0, G2(x, y, z) ≥ 0

(17)   
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Thus, the objective function of the expansion-planning problem can 
be presented as (17):   

The objective function consists of 1) the investment costs of SHEDS 
(CINV i⋅ISHEDS

i ), 2) the operating costs of SHEDS in the normal operating 
condition of the system (COP), 3) the cost of imported active and reactive 
powers (CIMP), and 4) the net welfare of consumers (

∑K
k=1Γitk). Further, 

probCL, probWMP, and probIEG are the probability of comfort level of 
consumers, probability of wholesale market price, and probability of 
intermittent energy generation facilities, respectively. probCL is consid-
ered to encounter the probability of different types of consumers’ 
comfort levels in the expansion planning process. ISHEDS

it is the binary 
decision variable of distribution facility investment for the ith year of 
planning horizon and tth hour and it is assumed that the installation of 
facilities are performed in the beginning of each year of the planning 
years. Γitk are the comfort levels of consumers that are determined in the 
first stage problem and M3 is the objective function of the third-stage 
optimization process. CINV is the investment costs of distributed en-
ergy resources, switches, energy storages, and parking lots [2]. COP is the 
normal operating costs of distributed energy resources, switches, energy 
storages, and parking lots [2]. CIMP is the cost of energy that is imported 
from the wholesale market. 

The second-stage problem constraints are decomposed into 1) AC 
load-flow, 2) device-loading constraints, 3) supply-demand balancing 
constraints, 4) static-security constraints, and 5) radiality constraints 
that are available in [2]. The compact form of the second stage problem 
is presented as H2(x, y, z) = 0, G2(x, y, z) ≥ 0 that x, y, and z are con-
trol, state, and topology variables, respectively. 

Based on the proposed formulation for Eqs. (16) and (17), it leads to 
the conclusion that the values of Γ (consumers’ comfort levels) are 
initially determined in the first stage optimization problem. However, 
the consumers’ comfort levels are determined in the second stage opti-
mization process considering the expansion planning alternatives and 
uncertainties of the wholesale market, intermittent electricity genera-
tion facilities, and external shock conditions. Further, the optimal values 
of Eq. (17) are determined when the precise value of the objective 
function of the third stage optimization is calculated in the higher 
number of iterations. 

2.3. Third-stage problem formulation 

The third-stage optimization process considers the optimal commit-
ment of consumers’ loads and attempts to determine the optimal 
switching process of system switches in external shock conditions. This 
process endeavors to minimize the expected costs of critical loads, 
deferrable loads, and interruptible loads that are not committed 
considering the external shock conditions using the switching process of 
the system’s switches. The objective function of the third stage problem 
can be described as (18):  

where, CCRI, CDEF, and CINT are the costs of critical loads, deferrable 
loads, and interruptible loads that are not committed, respectively. 
probES is the probability of external shock occurrence. Further, ψCRI, 
ψDEF, and ψ INT are the commitment decision variables of critical loads, 
deferrable loads, and interruptible loads, respectively. X is the binary 
decision variable that determines the status of the switch and the zero 
value X means the switch is open. W is the weighting factor. EENSC is the 
expected energy not supplied costs that its formulation is presented in 
Eq. (18). 

The third-stage problem constraints consist of 1) AC load-flow, 2) 
SHEDS device-loading constraints, 3) limits of electricity generation and 
ramp rates of power generation facilities, 4) supply-demand balancing 
constraints, 5) the constraints of energy storage facilities that are cate-
gorized into the state of charge constraints and the maximum charge 
limits, 6) static-security constraints, and 7) radiality constraints. The 
compact form of the third stage problem is presented as H3(x, y, z) = 0,
G3(x, y, z) ≥ 0 that x, y, and z are control, state, and topology variables, 
respectively. 

By comparing Eq. (15) and Eq. (18) it can be concluded that the 
consumers’ comfort levels in normal and external shock conditions are 
not equal based on the fact that Eq. (18) endeavors to optimally find the 
values of the critical loads, deferrable loads, and interruptible loads 
based on their contingent condition of SHEDS and available electricity 
generation of distributed energy generation facilities. 

3. Solution algorithm 

The proposed model is an iterative mixed-integer non-linear pro-
gramming. The linearization technique is adopted to linearize the first 
and second problems. The CPLEX solver of GAMS is utilized to solve the 
first and second problems. The KNITRO solver of GAMS is utilized to 
solve the third problem. The following procedures and assumptions are 
considered:  

• Different types of uncertainties are considered in the proposed model 
that consist of the following parameters: Wholesale market price 
scenarios that are considered in the second stage of the optimization 
process. Any change in wholesale electricity market prices can 
change the optimal volume of electricity transactions of distribution 
with the wholesale market and change the values of capacity, loca-
tion, and the volume of distributed energy resources.  

• Three comfort levels of consumers are considered to generate 
different values of βINT and βDEF for the second and third stage 
optimization processes. The value of probCL is considered 0.33 for 
each consumer’s comfort level.  

• Different scenarios of intermittent electricity generation facilities are 
considered [2].  

• Numerous scenarios for the state of charge of plug-in hybrid electric 
vehicles are generated. The state of charge constraints and the 
minimum energy level of plug-in hybrid electric vehicles are 
considered in the optimization process [2]. 

Min M3 =
∑NES

j=1
probES

j ⋅

(
∑T

t=1
W1⋅EENSC + W2⋅

∑NESEC

l=1
Xtl

)

EENSC =
∑NCS

m’=1

∑NCLS

m=1
probCL

m ⋅
∑K

k=1

(
CCRI

m’tk⋅PSD CRI
m’tk

(
1 − ψCRI

m’tk

)
+ CDEF

m’tk ⋅PSD DEF
m’tk ⋅ψDEF

m’tk + CINT
m’tk⋅PSD INT

m’tk ⋅ψINT
m’tk

)

S.t : H3(x, y, z) = 0, G3(x, y, z) ≥ 0

(18)   
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• Multiple scenarios are considered for the hourly outdoor 
temperatures.  

• The Auto-Regressive Integrated Moving Average (ARIMA) algorithm 
is utilized to model the wholesale market price, plug-in hybrid 
electric vehicles’ electricity transactions, hourly outdoor tempera-
ture, and intermittent electricity generation [2].  

• The magnitude and location of external shocks are determined by the 
Monte-Carlo simulation process [2]. The values of probES are calcu-
lated based on the Monte-Carlo simulation process.  

• The AC load flow constraints were linearized using the proposed 
model of Ref. [20]. The error of the linearization method is formu-
lated as Eq. (19): 

ε’ =
[
1
/

cos
(
π
/

2ϖ+1) ] − 1 (19)  

where, ϖ is a parameter that determines the number of additional var-
iables and constraints that are added to the constraint to linearize the AC 
load flow equations [20]. It was assumed: ϖ = 15. Thus, the error of the 
linearization method was ϖ = 1.148973 E − 9. The details of the line-
arizing process are available in Ref. [20] and are not presented for the 
sake of space. 

Fig. 1 presents the flowchart of the proposed optimization process. 
As shown in Fig. 1, at first, the scenario generation and reduction pro-
cesses are performed for yearly wholesale market prices, outdoor 

temperatures, intermittent power generations, and parking lots’ charges 
and discharges. Then, different types of comfort levels of consumers 
should be determined. The location and magnitude of external shocks 
are determined by the Monte-Carlo simulation process. Then, the worst- 
case contingency selection process is utilized to model the duration of 
external shocks. 

At the first stage of the optimization process, the data of different 
types of smart homes and their smart appliances are uploaded. The first 
stage optimization process is performed and the values of interruptible, 

Fig. 2. The modified 123-bus test system.  

Table 2 
The scenario generation and reduction scenarios.  

System parameter Value 

Number of solar irradiation scenarios  50 
Number of wind turbine power generation scenarios  50 
Number of hourly temperature scenarios  50 
Number of wholesale market price scenarios  25 
Number of plug-in hybrid electric vehicles scenarios  25 
Number of solar irradiation-reduced scenarios  5 
Number of wind turbine power generation reduced scenarios  5 
Number of hourly temperature-reduced scenarios  5 
Number of wholesale market price reduced scenarios  5 
Number of plug-in hybrid electric vehicles reduced scenarios  5  
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Fig. 3. The hourly wind speed of the planning site for the horizon year and one of the reduced scenarios.  

Fig. 4. The estimated hourly temperature of the planning site for the horizon year and one of the reduced scenarios.  

Fig. 5. The estimated hourly solar radiation of the planning site for the horizon year and one of the reduced scenarios.  
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deferrable, and critical loads of smart homes are calculated. Different 
comfort levels of consumers are considered and the values of βINT and 
βDEF are determined for each level of consumers’ comfort levels. 

Then, the second stage optimization process is carried out for each 
year of the planning horizon and 24*365 interval simulation. At the first 
iteration of the algorithm, the value of M3 can be considered as 10 % of 
aggregated hourly system energy, which this value is obtained from the 
trial-and-error process. However, for the higher number of iterations, 
the exact value of M3, which is calculated in the third stage problem, is 
replaced. At this stage, the initial values of distributed energy resource 
capacity, their locations, and year of installation are determined. As 

Table 3 
The parameters of consumers’ smart devices for different types of consumers’ 
comfort levels.  

Consumer 
type       

1 aAC =

3.45 
bAC =

0.06 
aPHEV =

0.0009 
bPHEV =

0.37 
aWD =

0.002 
bWD =

0.466 
aLight =

0.76 
bLight = 0.06 aEnt = 0.3 bEnt =

0.03  
2 aAC =

3.75 
bAC =

0.05 
aPHEV =

0.00102 
bPHEV =

0.39 
aWD =

0.0025 
bWD =

0.479 
aLight =

0.79 
bLight =

0.067 
aEnt =

0.32 
bEnt =

0.033  
3 aAC =

3.91 
bAC =

0.075 
aPHEV =

0.0011 
bPHEV =

0.41 
aWD =

0.0034 
bWD =

0.502 
aLight =

0.81 
bLight =

0.072 
aEnt =

0.36 
bEnt =

0.039  

Table 4 
The data of simulation for the smart homes [19].  

Preferred household temperature (Celsius) 
Tempcomf 23.89◦ Tempcomf,max 25◦ Tempcomf ,min 21.11◦

Household PHEV 
Capacity 12 kWh PPHEVmax 3.7 kWh 
EPHEVmax 10.4 kW EPHEVmin 9.88 kW  

Household washer-dryer (1500 RPM, 8.5 kg) 
EWDmax 5.44 kWh EWDmin 5.3 kWh PWDmax 2.2 kW  

Controllable LED lights (45 W LED, 5800 lm) 
pLight max 580 W pLight.comf 435 W   

TV (85″ QLED 8K UHD HDR Smart TV) 
TV ave. power 255 W TV max. power 585 W  

5.1-Channel home theatre system 
Ave. power 275 W Max. power 580 W  

Game console 
Ave. power 158.2 W Max. power 310 W  

Computer 
Ave. power 185 W Max. power 295 W  

Fig. 6. The consumers’ desired time of using entertainment systems for three types of consumers.  

Table 5 
The characteristics of distributed generation units.  

Electrical 
power output 
(kW) 

Fuel consumption 
(m3/kWh) 

Operating and 
maintenance costs 
(MUs/kWh) 

Investment costs 
(MUs) * 103  

80  0.085  10.22  62.9632  
100  0.092  11.36  70.6927  
110  0.093  12.59  72.3961  
120  0.097  14.35  74.3964  
140  0.11  17.51  78.9321  
150  0.131  18.32  86.6347  
160  0.168  18.65  88.3914  
180  0.189  19.02  91.2347  
200  0.218  19.69  94.3921  

Table 6 
The input parameters of the simulation process [1].   

Parameters 

Photovoltaic system Investment cost = 1.48E+5 (MMUs/m2.MW), Lifetime = 25 
(years), Maintenance cost = 5.55E+01 (MMUs/MWh) 

Wind turbine 3.5(kW) @ 250 (rpm), Cut-in speed = 3(m/s), Total length =
3 (m), Type: Up-wind horizontal rotor, noise: 37 dB(A) from 
60 (m) with a wind speed 8 (m/s), Investment cost =
2.4E+03 (MMUs), Maintenance cost = 3.7E+04 (MUs/MWh) 

Electrical storage 
system 

Modules capacity = 100 (kW), Type: Lead-acid battery, 
Efficiency = 0.75, Investment cost = 11.285E+03 (MMUs/ 
MWh), Operating and maintenance costs = 5.55E+02 
(MMUs/MWh), Lifetime = 3500 (cycle number) 

Natural gas fuel 
price 

44 MU/kWh 

PHEV Minimum PHEVs energy = 4 kWh, Maximum PHEVs energy 
= 18 kWh 

PHEV parking lot Maximum number of PHEV = 500, Investment cost =
2.10E+05 (MMUs/MWh), Operating and maintenance costs 
= 1.0095E+04 (MMUs/MWh), 

Electrical feeder Electrical feeder fixed investment cost = 143,267 (MUs/kW), 
Electrical feeder length dependent investment costs = 32,641 
(MUs/m) 

Switching device Investment cost = 1.13 E+5 (MUs), Lifetime = 15(years), 
Maintenance cost = 0.25E+01 (MUs) 

Threshold for 
EENSC 

5 % of aggregated hourly system energy  
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Fig. 7. The hourly minimum and maximum values of βDEF for the final planning year and the three types of consumers’ comfort levels.  

Fig. 8. The hourly minimum and maximum values of βINT for the final planning year and the three types of consumers’ comfort levels.  

Fig. 9. The aggregated values of smart homes’ critical loads, deferrable loads, and interruptible loads for the final year of the planning horizon and the three types of 
consumers’ comfort levels. 
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mentioned in the second stage optimization process, it is assumed that 
the installation of facilities is performed at the beginning of each year of 
the planning years, and the corresponding variable ISHEDS

it is the binary 
decision variable of distribution facility investment for the ith year of 
planning horizon and tth hour. Thus, the computational burden of the 
second optimization is highly reduced based on this assumption. Hence, 
the third stage optimization process is performed for the worst-case 
interruption scenarios of smart homes in 24-hour simulation intervals. 
The third stage optimization process endeavors to minimize EENSC 
using the switching of the system’s switches. If all of the worst-case 
scenarios are considered and the value of EENSC is less than a pre-
defined threshold, the optimization process stops. However, if the value 
of EENSC is greater than a predefined value, the optimization process 
should be continued from the second stage optimization process and the 
distributed energy location, capacity, and time of installation should be 
revised. Further, the optimal values of switching devices’ locations are 
recalculated. The output results determine the optimal values of smart 
home load commitment, βINT, βDEF, system topology, and distributed 
energy resource allocation and capacity. 

4. Simulation results 

The modified 123-bus system [2], Fig. 2, was considered for this 
section. The planning horizon was considered 5 years and the final year 
of planning was assumed 2028. 

The scenario generation and reduction scenarios are presented in 
Table 2. 

Fig. 3 presents the estimated hourly wind speed of the planning site 
for the horizon year and one of the reduced scenarios in Table 2. Figs. 4 
and 5 depict the estimated hourly temperature and solar radiation of the 
planning site for the horizon year and one of the reduced scenarios in 
Table 2. 

It was assumed that all of the test system electrical loads are resi-
dential consumers and three types of consumers were considered. 
Table 3 shows the parameters of consumers’ smart devices for three 
comfort levels of consumers. 

Based on the first stage optimization model, the data of smart ap-
pliances of consumers’ smart homes are presented in Table 4. It is 
assumed that the comfort temperatures of consumers are equal and only 
the parameters of smart appliances are different as shown in Table 3. 

Fig. 6 depicts the consumers’ desired time of using entertainment 
systems for three types of consumers. 

Table 5 presents the characteristics of distributed generation units. 
The lifetime of DGs is 25 years [1]. MUs and MMUs stand for monetary 
units and million monetary units, respectively. 

Table 6 presents the input data of the simulation process. 
The optimization process was performed for the first-stage problem. 

Fig. 7 presents the hourly minimum and maximum values of βDEF for the 
final planning year and the three types of consumers’ comfort levels. As 
shown in Fig. 7, the average value of the minimum and maximum values 
of βDEF were 37.48 MU/kWh and 54.31 MU/kWh, respectively. The 
maximum and minimum values of βDEF were 71.78 MU/kWh and 24.29 
MU/kWh, respectively. 

Fig. 8 depicts the hourly minimum and maximum values of βINT for 

Fig. 10. The estimated values of electricity consumption of smart appliances of type 1 consumers for the final planning year and hours 2880–2903.  

Fig. 11. The estimated values of electricity consumption of smart appliances of type 2 consumers for the final planning year and hours 2880–2903.  
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Fig. 12. The estimated values of electricity consumption of smart appliances of type 3 consumers for the final planning year and hours 2880–2903.  

Fig. 13. The final topology of the 123-bus system for the final planning year.  
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the final planning year and the three types of consumers’ comfort levels. 
As shown in Fig. 8, the average values of the minimum and maximum of 
βINT were 41.44 MU/kWh and 70.87 MU/kWh, respectively. The 
maximum and minimum values of βINT were 107.82 MU/kWh and 8.29 
MU/kWh, respectively. 

Fig. 9 presents the aggregated values of smart homes’ critical loads, 
deferrable loads, and interruptible loads considering the values of βINT 

and βDEF for the final year of the planning horizon and one of the reduced 
scenarios in Table 2. The aggregated values of critical loads, deferrable 
loads, and interruptible loads were about 17,106.2 MWh, 17,093.55 
MWh, and 22,758.31 MWh, respectively. 

Based on the proposed optimization process, the optimal commit-

ments of critical loads, deferrable loads, and interruptible loads of three 
types of consumers’ comfort levels were performed for the 8760 h of 
each year of the planning horizon. Based on Eq. (16), the first stage 
optimization process calculated the estimated values of critical loads 
(PSD CRI

k ), deferrable loads (PSD DEF
k ), and interruptible loads (PSD INT

k ) 
that consist of the following smart appliances’ energy consumptions:  

• Critical loads (PSD CRI
k ) that consisted of the lighting system (at 

night), PHEV when its state of charge is lower than a predetermined 
level, and air conditioning system,  

• Deferrable loads (PSD DEF
k ) that consisted of washing-drying 

machines,  
• Interruptible loads (PSD INT

k ) that consisted of the entertainment 
system and PHEV when its state of charge is higher than a pre-
determined level. 

Fig. 10 depicts the estimated values of electricity consumption of 
smart appliances of type 1 consumers for the final planning year and 
hours 2880–2903. As shown in Fig. 10, the aggregated values of the air- 
conditioning system, PHEVs, washing-drying machine, lighting, and 
entertainment systems were about 1.71 MWh, 0.49 MWh, 0.41 MWh, 
0.586 MWh, and 0.259 MWh, respectively. 

Table 7 
The distributed generation facilities’ location and capacity.  

Bus 
number 

Capacity 
(kW) 

Bus 
number 

Capacity 
(kW) 

Bus 
number 

Capacity 
(kW)  

13  80  21  180  35  120  
44  140  48  100  49  160  
67  110  73  140  76  140  
78  120  81  80  87  140  
93  100  101  150  108  160  

Fig. 14. The estimated values of hourly electricity generation of wind turbines, photovoltaic arrays, and distributed generation facilities for the final year of the 
planning horizon and one of the reduced scenarios. 

Fig. 15. The estimated values of hourly electricity transactions of parking lots for the final year of the planning horizon and one of the reduced scenarios.  

H. Hosseini et al.                                                                                                                                                                                                                                



Journal of Energy Storage 82 (2024) 110592

15

Fig. 11 shows the estimated values of electricity consumption of 
smart appliances of type 2 consumers for the final planning year and 
hours 2880–2903. As shown in Fig. 11, the aggregated values of the air- 
conditioning system, PHEVs, washing-drying machine, lighting, and 
entertainment systems were about 0.72 MWh, 0.082 MWh, 0.293 MWh, 
0.61 MWh, and 0.133 MWh, respectively. 

Fig. 12 presents the estimated values of electricity consumption of 
smart appliances of type 3 consumers for the final planning year and 
hours 2880–2903. As shown in Fig. 12, the aggregated values of the air- 
conditioning system, PHEVs, washing-drying machine, lighting, and 
entertainment systems were about 1.12 MWh, 0 MWh, 0.48 MWh, 2.368 
MWh, and 1.25 MWh, respectively. 

Then, the second-stage optimization process was performed. Fig. 13 
shows the final topology of the 123-bus system for the final planning 
year. The optimization process determined the location and capacity of 
distributed energy resources and system topology. The system consisted 
of eleven microgrids. 

Table 7 presents the location and capacity of distributed energy re-
sources for the final year of the planning horizon. 

Fig. 14 depicts the estimated values of hourly electricity generation 
of wind turbines, photovoltaic arrays, and distributed generation facil-
ities for the final year of the planning horizon and one of the reduced 
scenarios in Table 2. The aggregated value of Wind Turbines (WTs) and 
PhotoVoltaic (PV) array electricity generation was about 12,309.14 
MWh for the final year. Further, the aggregated value of electricity 
generation of distributed generation facilities was about 13,887.49 
MWh for the final year of the planning horizon. 

Fig. 15 shows the estimated values of hourly electricity transactions 
of parking lots for the final year of the planning horizon and one of the 
reduced scenarios in Table 2. The aggregated value of electricity trans-
actions of parking lots was about 729.43 MWh for the final year. Fig. 16 
shows the estimated values of hourly electricity transactions of the 
distribution system with the wholesale market for the final year of the 
planning horizon and one of the reduced scenarios in Table 2. The 
aggregated value of electricity transactions of the distribution system 
was about 30,032.1 MWh for the final year. 

The following two cases were considered in the optimization process: 

Fig. 16. The estimated values of hourly electricity transactions of the distribution system with the wholesale market for the final year of the planning horizon and 
one of the reduced scenarios. 

Fig. 17. The average values of type 1 consumers’ welfare for the first and second cases for the final year of the planning horizon.  
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1. The first case did not consider the first-stage optimization process 
and only performed the second and third stages of the proposed 
model.  

2. The second case performed the proposed model. 

The simulation was carried out for the first and second cases 
considering the worst-case external shock for each hour of the planning 
horizon. The values of the consumers’ welfare for the worst-case 
external shock were calculated for the first and second cases. 

Fig. 17 shows the average values of type 1 consumers’ welfare for the 

first and second cases for the final year of the planning horizon. As 
shown in Fig. 17, the average values of consumers’ welfare were 70.88 
MUs and 80.56 MUs for the first and second cases, respectively. The 
proposed model increased the consumers’ welfare by about 13.65 % for 
the worst-case external shocks. 

Fig. 18 presents the average values of type 2 consumers’ welfare for 
the first and second cases for the final year of the planning horizon. As 
shown in Fig. 18, the average values of consumers’ welfare were 71.77 
MUs and 85.08 MUs for the first and second cases, respectively. The 
proposed model increased the consumers’ welfare by about 18.54 % for 

Fig. 18. The average values of type 2 consumers’ welfare for the first and second cases for the final year of the planning horizon.  

Fig. 19. The average values of type 3 consumers’ welfare for the first and second cases for the final year of the planning horizon.  
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Fig. 20. The optimal topology of the system considering the worst-case external shock that occurred in lines #18–117 and #72–122.  

Fig. 21. The estimated values of electricity consumption of smart appliances of type 1 consumers for the external shock.  
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Fig. 22. The estimated values of electricity consumption of smart appliances of type 2 consumers for the external shock.  

Fig. 23. The estimated values of electricity consumption of smart appliances of type 3 consumers for the considered external shock.  

Fig. 24. The estimated values of electricity consumption of smart homes and electricity generation of distributed energy resources for normal and the worst-case 
external shock conditions. 
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the worst-case external shocks. Fig. 19 shows the average values of type 
3 consumers’ welfare for the first and second cases for the final year of 
the planning horizon. 

As shown in Fig. 19, the average values of consumers’ welfare were 
71.78 MUs and 85.67 MUs for the 1st and 2nd cases, respectively. The 
proposed model increased the consumer’s welfare by about 19.35 % for 
the worst-case external shocks. 

One of the worst-case external shocks was the simultaneous outage of 
lines 18–117 and 72–122 that occurred in the 2892nd hour and corre-
sponded to 12:00 AM of day 5/1/2027. Fig. 20 presents the third-stage 
optimization simulation results for this worst-case external shock. 

Fig. 21 depicts the estimated values of electricity consumption of 
smart appliances of type 1 consumers for the considered worst-case 
external shock. 

As shown in Fig. 21, the aggregated values of the air-conditioning 
system, PHEVs, washing-drying machine, lighting, and entertainment 
systems were about 1.71 MWh, 0.49 MWh, 0.41 MWh, 0.586 MWh, and 
0.19 MWh, respectively. By comparing Fig. 21 and Fig. 10, it can be 
concluded that only the entertainment loads were reduced by about 
0.069 MWh, and all of the critical loads of type 1 consumers were 
supplied using the proposed method. 

Fig. 22 shows the estimated values of electricity consumption of 
smart appliances of type 2 consumers for the considered worst-case 
external shock. As shown in Fig. 22, the aggregated values of the air- 
conditioning system, PHEVs, washing-drying machine, lighting, and 
entertainment systems were about 0.72 MWh, 0.082 MWh, 0.175 MWh, 
0.586 MWh, and 0.104 MWh, respectively. By comparing Fig. 22 and 
Fig. 11, it can be concluded that all of the critical loads of type 2 

Fig. 25. The estimated values of electricity generation of intermittent energy resources, parking lots’ and energy storages’ electricity transactions, and distribution 
system transactions with the wholesale market for normal and the worst-case external shock conditions. 

Fig. 26. The electricity generation costs, energy purchased costs, EENSC, and investment costs for the first and second cases.  

Table 8 
The characteristics of the simulation in the first and second case studies.  

Case 
study 
number 

Number 
of 
iterations 

Stage of 
optimization 

CPU time 
(sec) for 
the final 
iteration 

Cont. 
variables 
for the final 
iteration 

Disc. 
variables 
for the 
final 
iteration  

1 – – – – – 
1 Stage 2 12,328 275,981 221,981 
1 Stage 3 1202 1,254,202 602,962  

2 2 Stage 1 891 389,257 324,174 
2 Stage 2 23,259 536,989 431,928 
2 Stage 3 1407 1,298,369 617,874  
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consumers were supplied using the proposed method. 
Fig. 23 presents the estimated values of electricity consumption of 

smart appliances of type 3 consumers for the considered worst-case 
external shock. As shown in Fig. 23, the aggregated values of the air- 
conditioning system, PHEVs, washing-drying machine, lighting, and 
entertainment systems were about 1.12 MWh, 0 MWh, 0.48 MWh, 2.345 
MWh, and 1.25 MWh, respectively. 

By comparing Fig. 23 and Fig. 12, it can be concluded that all of the 
critical loads of type 3 consumers were supplied using the proposed 
method. 

Fig. 24 presents the estimated values of electricity consumption of 
smart homes and electricity generation of distributed energy resources 
for normal and worst-case external shock conditions. As shown in 
Fig. 24, it can be concluded that the critical loads were fully supplied in 
the worst-case external shock. Further, the deferrable loads were 
reduced from 1.8726 MWh to 0.85 MWh, the interruptible loads were 
reduced from 1.6051 MWh to 0.85 MWh, and finally, the distributed 
generation electricity generation was increased from 1.65 MWh to 1.92 
MWh. 

Fig. 25 presents the estimated values of electricity generation of 
intermittent energy resources, parking lots, and energy storages’ elec-
tricity transactions, distribution system transactions with the wholesale 
market for normal and the worst-case external shock conditions. As 
shown in Fig. 25, it can be concluded that the parking lots’ electricity 
transactions increased from − 0.35 MWh to 0.65 MWh, and electrical 
energy storages increased the electricity injection from 0.238 MWh to 
0.75 MWh. The distribution system reduced imported energy from the 
wholesale market from 2.6 MWH to 1.4 MWh based on the fact that the 
external shock changed the topology of the system and the optimal load 
flow of the third stage problem endeavored to find the optimal topology 
and energy resources dispatch considering the double fault condition of 
the system. 

Fig. 26 shows the electricity generation costs, energy purchased 
costs, EENSC, and investment costs for the first and second cases. By 
comparing the total costs of the first case and second case, it can be 
concluded that the proposed method reduced the total costs of the sys-
tem by about 42.62 % considering the consumers’ optimal load 
commitment. Further, the EENSC of the system was reduced from 113 
million MUs to 0.284 million MUs based on the fact that all of the critical 
loads of consumers were supplied, and the deferrable and interruptible 
loads were scheduled by the consumers to gain more profit. 

The characteristics of the simulation in the first and second case 
studies are presented in Table 8. The number of iterative processes is 
based on Fig. 1. The simulation was carried out on a PC (Intel Core 
i7–13,700 processor, 128 GB memory, DDR4 3200 MT). 

5. Conclusion 

This paper explored the effectiveness of a tri-stage optimization 
process for expansion planning of a self-healing distribution system. The 
consumer comfort levels were considered in the model and the smart 
appliances’ commitments were modeled. The first stage problem 
modeled the smart homes’ appliances consisted of washing-drying ma-
chines, air conditioning systems, plug-in hybrid electric vehicles, light-
ing systems, and entertainment systems. The optimal scheduling of 
smart appliances was determined considering the worst-case external 
shocks. Then, in the second stage, the optimal expansion planning of the 
system was carried out considering the first stage objective function. 
Finally, in the third stage problem, the optimal topology and distributed 
energy resources dispatch were determined considering the worst-case 
external shocks of the first stage problem. The 123-bus system was uti-
lized to assess the model. Two cases were considered in the simulation 
process. The first case did not encounter the consumer comfort levels in 
the expansion planning practice. The second case utilized the proposed 
model. The investment costs of the second case expanded by about 
28.95 % regarding the first case. However, the aggregated operational 

costs of the second case were reduced by about 48.88 % regarding the 
base case. The proposed model decreased the aggregated investment 
and operational costs of the system by about 42.62 % regarding the first 
case result. In conclusion, the proposed model decreased significantly 
the system-aggregated costs and endeavored to maximize consumer 
comfort levels. The authors are working on the modeling of other smart 
appliances and defining a new framework for the optimization process 
to reduce the computational burden. 
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