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1 | INTRODUCTION
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Abstract

This paper presents an analysis of the performance of the Energy Aware Scheduling Algo-
rithm (EASA) in a 5G green communication system. 5G green communication systems
rely on EASA to manage resource sharing. The aim of the proposed model is to improve
the efficiency and energy consumption of resource sharing in 5G green communication
systems. The main objective is to address the challenges of achieving optimal resource
utilization and minimizing energy consumption in these systems. To achieve this goal,
the study proposes a novel energy-aware scheduling model that takes into consideration
the specific characteristics of 5G green communication systems. This model incorporates
intelligent techniques for optimizing resource allocation and scheduling decisions, while
also considering energy consumption constraints. The methodology used involves a com-
bination of mathematical analysis and simulation studies. The mathematical analysis is used
to formulate the optimization problem and design the scheduling model, while the simu-
lations are used to evaluate its performance in various scenarios. The proposed EASM
reached a 91.58% false discovery rate, a 64.33% false omission rate, a 90.62% prevalence
threshold, and a 91.23% critical success index. The results demonstrate the effectiveness
of the proposed model in terms of reducing energy consumption while maintaining a high
level of resource utilization.

emissions and energy costs while accelerating operations [6].
5G’s higher bandwidth facilitates faster internet access and

The emergence of 5G green communication systems signi-
fies a revolutionary leap in 21st-century technology, offering
faster, more reliable, and secure internet connectivity [1]. These
systems minimize energy consumption and infrastructure instal-
lation, fostering sustainability and enabling efficient remote
monitoring and control [2]. They support the Industrial Inter-
net of Things (IloT) and cloud computing, reducing energy
costs and emissions [3]. Additionally, 5G can enable distributed
energy grids, enhancing clean energy production and distri-
bution [4]. 5G green communication systems revolutionize
various industries and new technologies, delivering speed, reli-
ability, and sustainability [5]. They provide an alternative to
less energy-efficient networks, reducing Carbon dioxide (CO,)

new tech applications. These systems also improve global
data transfer, benefitting businesses and rural areas [7]. The
emergence of 5G green communication systems brings vastly
increased speed and capacity, drastically improving energy effi-
ciency and supporting numerous applications [8]. It reduces
energy wastage while maintaining a stable, reliable connection
[9]. These systems serve diverse sectors like automotive, agti-
culture, and video streaming, improving real-time navigation,
environmental monitoring, and cost reductions [10]. Addition-
ally, 5G infrastructure supports “smart” city resources [11]. The
energy-awate scheduling algorithm optimizes resource shat-
ing, reducing energy consumption and interference, crucial
for enhancing 5G green communication system performance
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[12]. The collaborative V2X data correction method involves
sharing resources such as computing power, data storage,
and network bandwidth among multiple vehicles and infras-
tructure nodes. It allows for the efficient processing and
correction of V2X data, improving the accuracy and relia-
bility of communication between vehicles and infrastructutre
collaboratively [13].

1.1 | Functions of antenna systems

Antenna systems play a crucial role in energy-efficient 5G green
communication systems as they are responsible for transmitting
and receiving signals in wireless communication. They are an
integral part of the overall energy consumption in a 5G network
and can significantly impact the efficiency and sustainability of
the system [14, 15]. There are several aspects of antenna systems
in energy-efficient 5G green communication systems that need
to be considered:

* Multiple Antenna Technology: One of the key technologies
used in energy-efficient 5G green communication systems is
multiple antenna technology. This involves the use of multi-
ple antennas at both the transmitter and receiver ends, which
allows for efficient transmission and reception of signals.
This technology enables higher data rates while reducing
overall power consumption [16, 17].

* MIMO (Multiple-Input Multiple-Output): MIMO technol-
ogy is a key feature of energy-efficient 5G green communi-
cation systems. It involves using multiple antennas at both
the transmitter and receiver ends to increase data throughput
and reduce power consumption. MIMO not only improves
signal quality but also enables energy savings by spatially
multiplexing data streams [18, 19].

* Beam Steering: Beam steering technology is used to direct the
signal from the antenna towards a specific user or direction.
This ensures that the signal is not wasted in unwanted direc-
tions, leading to energy efficiency. By using smart antennas
and Beamforming, the communication can be optimized to
use less power while maintaining high data rates [20].

* Small Cell Networks: Small cell networks are another impor-
tant aspect of energy-efficient 5G green communication
systems. These networks use small, low-power base stations
to cover a smaller area, reducing the overall power consump-
tion. By using small cells, the distance between the user device
and the base station is reduced, resulting in less transmitted
power and better energy efficiency [21].

* Energy Harvesting: Energy harvesting techniques, such as
using solar panels or wind turbines, can be integrated with
antenna systems to power the communication devices. This
reduces the reliance on traditional energy sources and makes
the system more sustainable [22].

The antenna systems play a crucial role in energy-efficient
5G green communication systems, enabling higher data rates,
reducing power consumption, and contributing to the overall
sustainability of the system. With the advancements in antenna

technology, 5G networks can become more energy-efficient and
environmentally friendly [23].

Resource sharing and task offloading in IoT fog computing
refers to distributing and assigning tasks to different computing
nodes (such as edge devices) in a fog computing environ-
ment. It enables efficient use of resources and improves the
overall performance of IoT applications by reducing network
latency and processing delays [24]. Secure and latency-aware dig-
ital twin-assisted resource scheduling for 5G edge computing
is a system that uses digital twin technology to create vir-
tual replicas of physical resources and uses them to optimize
the allocation of resources in 5G edge computing. It ensures
data security and low latency by accurately predicting resource
demands and adjusting resource allocation in real-time [25].
Cooperative OMA and NOMA systems refer to a combination
of multiple access technologies that can be used to deploy 6G
networks. In this scenario, users with diverse channel conditions
can share the same frequency band through orthogonal or non-
orthogonal transmission schemes, increasing network efficiency
and capacity [26]. Energy and spectral efficiency optimization
using probabilistic-based spectrum slicing is a technique that
utilizes probabilistic methods to slice the available spectrum into
smaller sub-bands, allowing for more efficient use of energy
and spectrum resources. It helps to improve overall system
performance and increase capacity for wireless communication
networks [27]. Request-based and task-based are the two main
scheduling paradigms used in operating systems. They both
have different approaches to handling the execution of pro-
cesses in a system. The main difference between them lies in the
way they manage and allocate resources for processes. Table 1
provides the difference between request-based and task-based
scheduling.

The request-based scheduling is more suitable for a system
with a large number of short processes, while task-based
scheduling is better for a system with a smaller number of
longer processes [28]. Both have their advantages and dis-
advantages, and their choice depends on the requirements
Power optimization using optimal small-cell arrangements
refers to strategically placing small-cell base stations in differ-
ent deployment scenatios to improve network coverage and
capacity while minimizing energy consumption. This involves
analysing factors like signal strength, user distribution, and
interference patterns to determine the most efficient placement
of small cells for optimal power usage [29]. Optimizing vertical
handoff using Hybrid Cuckoo Search and Genetic Algorithm
is a strategy for improving wireless communication quality
by optimizing switching between networks. It combines two
optimization techniques, Cuckoo Search and Genetic Algo-
rithm, to find the most efficient handoff decision. This helps
enhance wireless networks’ overall performance and efficiency
[30]. Power optimization with low complexity using a scaled
Beamforming approach for a massive MIMO and small cell
scenario is a technique that uses advanced signal processing
algorithms to reduce power consumption in communication
systems with many antennas and small cells. This results in
improved energy efficiency with minimal computational com-
plexity, making it suitable for practical implementation [31].
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TABLE 1  Comparison of request-based and task-based scheduling.

Sector Request-based scheduling

Task-based scheduling

Concept

of accepting and executing processes based on
the order in which they ate received by the

system.

Resource allocation

to processes in a first-come-first-served manner.
The process that arrives first gets executed first.

Response time

response time as processes are executed in the
order they arrive, and new processes have to wait

for previous ones to finish.

Process completion

completed when all the tasks within them are

finished. This can cause delays and inefficiency in

completing processes.

Priority Request-based scheduling does not consider the
priority of a process and sequentially executes it.

Request-based scheduling is based on the principle

In request-based scheduling, resources are allocated

Request-based scheduling typically has a longer

In request-based scheduling, processes are only

Task-based scheduling focuses on managing and executing
individual tasks within a process, rather than the entire

process itself.

In task-based scheduling, resources are allocated to
individual tasks within a process as and when they are
needed. This allows for better utilization of resources
and prevents bottlenecks.

Task-based scheduling has a shorter response time as
individual tasks within a process can be executed
concurrently, improving overall efficiency.

In task-based scheduling, individual tasks are completed
separately, which allows for faster completion of
processes as each task can be executed as soon as its
resources are available.

Task-based scheduling allows for prioritization of tasks

within a process, ensuring that critical tasks are

executed first.

The super-efficient GSM Triplexer is a device that supports
5G connectivity for the Internet of Things (IoT) in sustain-
able smart grid edge computing systems. It enables seamless
communication between devices and the metaverse, allowing
for efficient energy management in the grid and enhanced user
experiences in virtual reality [32]. A high-efficiency diplexer
design for sustainable 5G-enabled IoT communication in
metaverse transportation systems and smart grids. The diplexer
allows simultaneous transmission and reception of different
frequency bands, improving overall system efficiency and
enabling seamless connectivity in emerging technologies such
as the metaverse and smart grids [33]. The main contributions
of the research have the following key functionalities.

* Reduced energy consumption: It helps reduce the energy
consumption of 5G green communication systems. By
scheduling and allocating resources intelligently, energy-
aware scheduling algorithms can minimize total energy
consumption and maximize the utilization of resources.

* Reducing latency: It improves system performance by reduc-
ing latency, bottleneck, and resource contention issues. By
improving the efficiency of resource allocations, energy-
aware scheduling algorithms can improve the performance
of 5G green communication systems.

* Maximum resource utilization: It allows for better utiliza-
tion of available resources. By choosing the most efficient
resources at the right time and allocating resources opti-
mally, energy-aware scheduling algorithms can make sure that
available resources are being essentially utilized.

* Reduced operational cost: It reduces operational costs.
Energy-aware scheduling algorithms can reduce the oper-
ational costs associated with 5G green communication
systems by ensuring that the most efficient resources ate
allocated when required.

* Rapid data transfer: It facilitates faster application data pro-
cessing, By reducing the scheduling overhead and ensuring
the right resources are available at the right time, energy-
aware scheduling algorithms can speed up the application
data processing in 5G green communication systems.

The remaining parts of the research have focused on the fol-
lowing functions. Section 2 provides a detailed discussion of
the current research works. Section 3 illustrates the complete
specification and structure of the proposed model. Section 4
expressed the system modelling. Section 5 expresses the results
and discussion and finally, Section 6 shows the conclusion and
future scope of the proposed model.

2 | LITERATURE REVIEW

The comprehensive survey discussed vatious facets of resource
sharing, energy-aware optimization, and green communication
systems in the 5G era. These endeavours are driven by the
overarching goal of reducing resource consumption, enhanc-
ing efficiency, and ultimately contributing to cost savings and
environmental sustainability.

Srivastava et al. [34] have discussed the cooperation-based
energy-aware reward scheme that aims to improve the overall
efficiency and energy consumption of green cognitive radio net-
works. It incentivizes users to cooperate and share resources in
order to reduce energy consumption and promote sustainable
practices. This can lead to a more environmentally friendly and
cost-efficient network. Riasudheen et al. [35] have discussed the
proposed routing scheme that aims to reduce energy consump-
tion and prolong network lifetime in Mobile Ad hoc Networks
(MANETS) by leveraging cloud resources in the 5G network.
It utilizes an energy-efficient path selection algorithm to route
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data through the most energy-efficient nodes while offload-
ing computation and storage tasks to the cloud to reduce the
energy burden on the mobile nodes. Raeisi-Varzaneh et al. [36]
have discussed resource scheduling in edge computing, which
refers to the process of optimizing the allocation and utiliza-
tion of computing resources in a distributed edge environment.
This involves dynamically managing and allocating resources
such as storage, processing power, and network bandwidth to
meet the demands of edge devices and applications, ensuring
efficient and timely processing of data at the edge. This also
helps minimize latency and improve the overall performance of
edge computing systems. KN, S. G, et al. [37] have discussed
an energy-aware resource allocation and complexity reduc-
tion approach for cognitive radio networks using game theory,
which is a cognitive radio network optimization technique that
aims to maximize energy efficiency and minimize the complex-
ity of resource allocation by utilizing game theory principles.
It involves strategic decision-making for resource allocation
among multiple users, considering the trade-off between energy
consumption and system performance. Kabir et al. [38] have
discussed energy-aware caching and collaboration as a method
for improving energy efficiency in communication systems by
reducing the amount of data that needs to be transmitted.
It involves storing frequently used data locally and sharing it
among neighbouring devices, thereby reducing the need for
energy-intensive data transmissions. This approach has the
potential to reduce the carbon footprint of communication sys-
tems and make them more eco-friendly. Tsai et al. [39] have
discussed an “Energy-Aware Mode Selection for D2D Resource
Allocation in 5G Networks” is a research work that proposes a
method to improve power efficiency in 5G networks by opti-
mizing the selection of device-to-device (D2D) communication
modes. This approach takes into account energy consumption
and network load balance to allocate resources and enhance
energy efficiency while maintaining high data rates. Taneja et al.
[40] have discussed the energy-aware resource control mecha-
nism that aims to optimize the performance of future green
6G networks by efficiently managing energy consumption. It
involves techniques such as dynamic power management and
energy-aware scheduling to reduce the network’s carbon foot-
print and increase its overall efficiency. This mechanism will play
a vital role in achieving sustainable and environmentally friendly
6G networks.

Mohajer et al. [41] have discussed Energy-aware hierarchical
resource management in heterogeneous cellular networks that
involve the efficient allocation and utilization of resources con-
sidering energy constraints. Backhaul traffic optimization aims
to minimize energy consumption and delay in data transmis-
sion from base stations to the core network. This approach
ensures a more sustainable and efficient operation of cellular
networks. Saibharath et al. [42] have discussed the Joint QoS
and energy-efficient resource allocation and scheduling in a
5G Network. Slicing is the process of optimizing the alloca-
tion and scheduling of resources among different slices in a
5G network to ensure high quality of service (QoS) for users
while also minimizing energy consumption. This allows for
efficient use of network resources and improved user experi-

ence. Sisi et al. [43] have discussed Blockchain technology as
a decentralized, secure, and tamper-proof system that has the
potential to revolutionize energy-aware mobile crowd-sensing
approaches in IoT. It provides a transparent and efficient way
to collect and manage data from IoT devices, ensuring data
authenticity and integrity while promoting energy efficiency
through smart contract-based incentives. Logeshwaran et al.
[44] have discussed in the context of 5G wireless personal
area networks (WPANSs), a smart load-based resource opti-
mization model is proposed to improve the performance of
device-to-device (D2D) communication. This model incorpo-
rates techniques such as user grouping and resource allocation
to efficiently manage the network’s resources, reducing interfer-
ence and enhancing the overall network capacity and quality of
service. Salh et al. [45] have discussed a framework that aims to
reduce energy consumption in IoT devices by utilizing feder-
ated learning and resource allocation techniques. This approach
enables efficient edge intelligence in the emerging 5G networks,
leading to reduced energy consumption and improved network
sustainability.

Zimmo et al. [40] have discussed a Power-aware coexistence
of Wi-Fi and LTE in the unlicensed band, which refers to the
ability of these two wireless technologies to efficiently share
the same frequency band without causing interference with
each other. This is achieved through the use of time-domain
virtualization, which allocates specific time slots to each tech-
nology to avoid collisions and optimize power usage. Lu et al.
[47] have discussed that dynamic offloading for energy-aware
scheduling in the mobile cloud is a technique that optimizes
the allocation of tasks between the mobile device and the
remote cloud server based on the energy consumption of the
mobile device. This allows for efficient utilization of resources,
reduced energy consumption, and improved performance of
mobile applications. Liu et al. [48] have discussed the Novel
Radio Resource Allocation Scheme, which aims to improve
the efficiency and performance of 5G and future sharing net-
works through multi-dimensional collaboration. This involves
dynamically allocating resources such as spectrum, power, and
computing among different networks and users while also con-
sidering factors such as demand, interference, and network
conditions for optimal resource utilization. Wu et al. [49] have
discussed hybrid traffic scheduling in 5G and time-sensitive
networking (TSN). Integrated networks refer to the combina-
tion of different networking technologies to enable efficient
and reliable communication in virtual power plants, which are
complex energy systems that use renewable energy sources.
This approach aims to improve energy management and reduce
network delays, ensuring stable and low-latency communica-
tion for optimal performance. Kaur et al. [50] have discussed
energy-efficiency schemes for base stations in 5G heteroge-
neous networks focusing on reducing energy consumption and
optimizing resource allocation to improve sustainability. This
can be achieved through techniques such as dynamic cell clus-
tering, sleep mode operation, and energy harvesting, These
schemes aim to minimize the environmental impact and operat-
ing costs of 5G networks while maintaining high performance.
Mughees et al. [51] have discussed a method that proposes using
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TABLE 2  Comprehensive analysis of related works.

Authors Year Advantage Limitation

Stivastava et al. [34] 2023 Promotes collaboration among users and incentivizes energy  Lack of consideration for communication limitations and
efficiency, leading to a more sustainable and efficient use of  interference in a dynamic and congested wireless
cognitive radio technology. environment.

Riasudheen et al. [35] 2020 Minimizes energy consumption in MANETS, resulting in Lack of consideration for network stability under

Raeisi-Varzaneh et al. [36] 2023

KN etal. [37] 2020
Kabir et al. [38] 2021
Tsai et al. [39] 2023
Taneja et al. [40] 2022
Mohajer et al. [41] 2022
Saibharath et al. [42] 2023
Sisi et al. [43] 2021
Logeshwaran et al. [44] 2023
Salh et al. [45] 2023
Zimmo et al. [40] 2021
Luetal. [47] 2022
Liu et al. [48] 2023
Wu et al. [49] 2023
Kaur et al. [50] 2023
Mughees et al. [51] 2023

longer battery life and improved network sustainability

Resource scheduling in edge computing improves the
efficiency of resource allocation, leading to faster
processing and reduced latency.

Improves energy efficiency and reduces complexity, leading
to cost savings and improved network performance.

Reduces energy consumption in communication systems,
leading to a more environmentally friendly and
cost-effective solution.

It enables improved energy efficiency and prolongs battery
life for devices in 5G networks.

It Reduces energy consumption and carbon footprint,
promoting sustainability and environmental responsibility
in 6G networks.

Reduced energy consumption and improved backhaul traffic
efficiency in heterogeneous cellular networks.

The use of Joint QoS and energy-efficient resource allocation

and scheduling in 5G network slicing,

The use of Blockchain technology ensures secure and
transparent data transfer, contributing to reliable and
trustworthy data collection.

It optimizes resource allocation for better device-to-device
communication, enhancing overall performance in

5G-WPAN

It enables efficient use of resources for both energy savings
and improving performance in B5G environments.

Improved energy efficiency and battery life for devices using
both Wi-Fi and LTE in the unlicensed band.

Automatically adjusts resource allocation for tasks on mobile
devices, optimizing energy consumption and extending
battery life.

Efficient utilization of radio resources, leading to improved
network performance in 5G and future sharing networks.

Increased efficiency in communication and coordination
between virtual power plants and the power grid, leading
to more teliable and sustainable energy management.

Improved network performance and reduced energy costs
due to optimized base station operation and energy
consumption.

It can significantly reduce energy consumption in 5G
HetNets and improve overall network performance.

changing network conditions and node dynamics.

Limited availability of resources due to the distributed
nature of edge computing and potential intetference or
conflicts between multiple devices.

The approach may not apply to all types of cognitive radio
networks or scenarios.

The approach may not be feasible for all types of
communication systems or network configurations.

It only considers the energy consumption of individual
devices without taking into account network-wide
energy efficiency.

It may not be suitable for all types of network
architectutres and may require significant modifications
for its implementation

This approach may not be feasible for smaller or rural
cellular networks with limited resources.

It requires sophisticated algorithms and efficient
computing power, which may not be feasible for all
network providers.

Limited scalability due to increasing energy and
computational costs associated with Blockchain
validation for a large number of ToT.

The model does not consider interference from other
devices in the network.

It does not consider the impact of network congestion
and communication delays on resource allocation.

Limited support for devices without time-domain
virtualization capability, makes it difficult for all Wi-Fi
and LTE devices to coexist.

Lack of consideration for network resource availability
may result in suboptimal offloading decisions.

Alack of real-world implementation may limit the
effectiveness and practicality of the proposed allocation
scheme.

Difficulty in implementing and maintaining the complex
hybrid scheduling algorithm in a rapidly evolving
network environment.

Analysis not based on real-world environmental
conditions, leading to potentially inaccurate energy
consumption estimates.

Limited generalizability to other types of network
architectures and environments.

a combination of multi-agent and deep reinforcement learning
techniques to make resource allocation decisions in 5G Het-
Nets. By considering energy efficiency as a key metric and using
a parameterized approach, it aims to improve network perfor-
mance and reduce energy consumption [52]. Tables 2 and 3

show the comprehensive analysis and performance analysis of
related works, respectively.

Table 2 displays data on the energy efficiency and resource
utilization of vatious systems or processes. The left side of
the table describes the system or process, while the right
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TABLE 3  Performance analysis of related works.
Network Energy Resource
Authors Model size Application efficiency allocation
Srivastava et al. [34] Cooperation based energy aware Large Green Cognitive Radio Networks High Low
reward scheme
Riasudheen et al. [35] Energy-aware routing scheme Large Cloud Assisted MANET Low High
Raeisi-Varzaneh et al. [36] Resource scheduling Large Edge Computing Low High
KN et al. [37] Energy-aware resource allocation Medium Cognitive Radio Networks Low Low
Kabir et al. [38] Energy-aware caching Small Green Communication Systems Low High
Tsai et al. [39] Energy-aware mode selection Small 5G networks High Low
Taneja et al. [40] Energy-aware resource control Large Green 6G networks High Low
Mohajer et al. [41] Energy-aware hierarchical resource Medium Heterogeneous cellular networks High Low
management
Saibharath et al. [42] Resource allocation and scheduling Small 5G networks Low High
Sisi et al. [43] Energy-aware mobile crowd-sensing Medium IoT Networks Low Low
Logeshwaran et al. [44] Load-based resource optimization Small 5G-WPAN Low Low
Salh et al. [45] Energy-efficient federated learning Medium Green IoT Networks Low High
Zimmo et al. [40] Time-domain virtualization Medium Wireless Networks Low High
Lu et al. [47] Energy-aware scheduling Small Mobile Cloud Networks High Low
Liu et al. [48] Radio resource allocation scheme Large 5G Wireless Networks High Low
Wu et al. [49] Hybrid traffic scheduling Large 5G Witeless Networks Low High
Kaur et al. [50] Energy-efficiency scheme Small 5G heterogeneous Networks Low High
Mughees et al. [51] Energy-efficient joint resource Large 5G heterogeneous Networks High Low

allocation

side contains the corresponding energy efficiency and resource
utilization ratings.

Energy efficiency: It refers to the amount of input energy
required to produce a desired output. A high energy
efficiency rating indicates that the system or process
requires minimal energy input to produce an output,
making it more efficient. On the other hand, a low
energy efficiency rating means that a higher amount of
energy input is needed to produce the same output,
indicating lower efficiency.

Resource utilization: It refers to the amount of resources
used by the system to produce the desired output. A
high resource utilization rating indicates that the system
is utilizing a high amount of resources to produce an
output, while a low rating indicates a more efficient use
of resources.

It can be seen that systems or processes with high energy
efficiency and resource utilization ratings are considered highly
efficient and sustainable. This means that they requite minimal
energy input and use resources efficiently to produce the desired
output. On the other hand, systems with low energy efficiency
and resource utilization ratings are considered less efficient and
not as sustainable. Systems or processes with moderate energy
efficiency and resource utilization ratings fall in the middle of
the spectrum and may requite some improvements to become

more efficient and sustainable. Overall, the data in Table 2 can
help identify areas for improvement and guide decision-making
towards more efficient and sustainable systems and processes.
Based on the comprehensive analysis, the following issues were

identified. They ate,

* Energy efficiency: Energy efficiency is a significant challenge
in 5G green communication systems. Developing energy-
efficient protocols and techniques is crucial for the success
of 5G green communication systems.

* Bandwidth allocation: There is a need to optimize the alloca-
tion of bandwidth between different users to ensure efficient
usage of the available resources.

* Resource utilization: Developing methods for efficiently uti-
lizing the available tesoutces is essential for providing quality
service to users.

* Interference management: Managed interference between
5G green communication systems is a significant challenge,
as interference can reduce the quality of service.

* Network security: Security is essential in 5G green commu-
nication systems. Ensuring secure communication between
devices is essential for adequately functioning the system.

Resource sharing in 5G green communication systems allo-
cates resources such as spectrum, power, and computing among
users in a wireless network. By using resource sharing, the net-
work can efficiently use its resources and thus reduce energy
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consumption. Resource sharing can be achieved in several ways:
spectrum reuse, power control, cooperative communication,
and load balancing, Spectrum reuse is the most commonly used
method to share spectrum resources in 5G, where the same
spectrum is used for different users at different times. Power
control is used to adjust each uset’s transmit power, which helps
reduce interference. Cooperative communication allows users
to cooperate and share their resources. Finally, load balancing
distributes the network load among users and reduces energy
consumption.

The technical novelty of an energy-aware scheduling model
for resource sharing in 5G green communication systems lies
in its ability to dynamically allocate resources based on the
energy usage of the devices. This approach takes into account
the energy consumption patterns of the devices and adjusts
the resource allocation accordingly, resulting in reduced energy
consumption and improved energy efficiency.

* Energy-oriented approach: The energy-aware scheduling
model puts energy efficiency at the forefront, making it a
key factor in resource allocation decisions. This is in contrast
to traditional models that prioritize throughput or delay in
resource allocation.

* Dynamic resource allocation: The model uses real-time
energy consumption data to continuously adjust resource
allocation, rather than pre-determined static allocations. This
dynamic approach allows for better utilization of resources
and reduces unnecessary energy consumption.

* Device-specific considerations: The model takes into account
the energy consumption patterns of individual devices, rather
than treating all devices as equal. This personalized approach
ensures optimal resource allocation for each device, resulting
in overall energy savings.

* Green communication: This model is specifically designed
for 5G green communication systems, where energy effi-
ciency is a critical factor in meeting sustainability goals.
By incorporating energy-aware scheduling, this model con-
tributes to the overall goal of reducing the carbon footprint
of the communication industry.

* Implement an access control mechanism: The access con-
trol mechanism is one of the most effective ways to ensure
resource sharing in 5G green communication systems. It
involves setting up appropriate policies for granting access
to the resources and enforcing them through authentication
and authorization protocols.

* Utilize network virtualization: Virtualization of networks has
been proven to be a great way of optimizing resource usage
in green communication systems. It can reduce latency and
increase the overall system’s efficiency.

* Optimize resource allocation: Resource allocation in green
communication systems should be optimized to ensure that
all the resources are utilized efficiently. It can be done by set-
ting up an appropriate scheduling algorithm that can allocate
resources to the different nodes in the network.

* Implement network coding techniques: Network coding
techniques can be used to reduce the number of resources

needed to transmit data. It can help to increase tesoutce
sharing in green communication systems.

Resource sharing in 5G green communication systems is the
ability of multiple users to access the same resources, such as
spectrum, antennas, and communication channels, at the same
time. It enables efficient use of resources and is critical for devel-
oping a sustainable 5G network. Additionally, resoutce sharing
can reduce costs and increase overall network performance. It
can also reduce the energy required to transmit data, as less
power is needed to share the same resources.

The energy aware scheduling algorithm is a computational
approach that aims to reduce energy consumption without
compromising system performance. It is based on established
concepts such as dynamic voltage and frequency scaling (DVFS)
and task scheduling. The algorithm works by dynamically adjust-
ing the frequency and voltage of the processor based on
the current workload and performance requirements. This is
achieved by utilizing feedback loops and control theory prin-
ciples to continuously monitor the system and make real-time
decisions for optimal energy efficiency. The novelty of the
energy aware scheduling algorithm lies in its integration of vari-
ous well-known techniques such as DVFS, task scheduling, and
control theory. The algorithm leverages the individual strengths
of each technique to achieve a more sophisticated and com-
prehensive energy management strategy. The proposed energy
aware scheduling algorithm differs from previous approaches
mainly in its incorporation of multiple established concepts
to create a more robust and efficient solution for reducing
energy consumption. However, it does not introduce any signif-
icant new elements or techniques that have not been previously
utilized in energy management algorithms.

3 | PROPOSED MODEL

In the 5G communication scenario, the geometry relationship
between the 5G transmitter, 5G receivers, the antenna beam,
and the channel plays a crucial role in the successful transmis-
sion of data. The 5G transmitter and receiver are located at
different points in the communication link, with the transmitter
being responsible for sending data and the receiver for receiving
it. These two devices are connected through a channel, which
acts as a medium for the transmission of data. The antenna
beam is a directional beam of electromagnetic waves that is
used to transmit and/or receive data in a specific direction. In
5G communication, multiple antennas are used to create beams
in different directions to improve the performance and capac-
ity of the network. The antenna beam and the channel have
a critical geometry relationship as the beam must be directed
towards the receiver for successful data transmission. The chan-
nel, which acts as a pathway for the beam to travel, must also
be clear of any obstacles or interference to ensute a strong and
stable signal. To illustrate this relationship, imagine a scenatio
where a user is using their Smartphone to stream a video. The
5G transmitter is located on a cell tower, sending data to the
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FIGURE 1 Energy-aware scheduling,

user’s smartphone through the channel. The antenna beam is
directed towards the user’s device, allowing for a strong and sta-
ble connection. Any obstructions or interference in the channel
or the beam’s path could result in a weak or interrupted signal,
leading to poor video quality or dropped calls. The geometry
relationship between these components also plays a crucial role
in 5G’s ability to support massive connectivity. With the use
of multiple beams and precise control over the direction and
strength of each beam, 5G networks can efficiently support a
large number of devices simultaneously, without causing inter-
ference or degradation of the signal. The geometry relationship
between the 5G transmitter, receiver, antenna beam, and the
channel is essential in ensuring high-speed, reliable, and effi-
cient data transmission in 5G communication scenarios. The
energy-aware scheduling algorithm has improved resource shar-
ing in 5G green communication systems by helping optimize
communication resource scheduling to reduce energy consump-
tion. This algorithm optimizes the communication resources to
minimize the total energy consumption while maximizing the
quality of service (QoS) performance. The algorithm considers
the energy consumption of different communication links, the
data rate of each link, and the number of users connected to
the system. It then uses this information to create an energy-
efficient scheduling scheme that improves resource sharing in
the system. It reduces total energy consumption and allows for
better user resource sharing, In addition, the algorithm can be
used to dynamically adjust the resource allocation according to
the changing traffic conditions in the system. It helps to reduce
energy consumption further and improve resource sharing, The
functional blocks of energy-aware scheduling as shown in the
following Figure 1.

Energy-aware scheduling is scheduling tasks on computer
systems to minimize energy consumption. It aims to reduce
energy consumption by adjusting the scheduling of tasks in
order to reduce the total energy consumption. It is essential for
mobile devices, which must conserve energy in order to maxi-
mize battery life. Energy-aware scheduling algorithms can take
into account a variety of factors, such as the energy requite-
ments of individual tasks, the availability of energy-efficient
hardware, the current load on the system, and the current
environmental conditions.

3.1 | Methodology

Energy aware scheduling algorithm (EAS) maximizes the effi-
ciency of energy usage in computing systems by dynamically
scheduling tasks on processors based on their energy con-
sumption. The main objective of EAS is to reduce energy
consumption while maintaining the overall performance of the
system. This is achieved by considering energy consumption as
an additional factor in the traditional scheduling algorithms. The
EAS algorithm follows a two-phase approach, a feedback phase,
and a resource assignment phase. The feedback phase continu-
ously monitors the energy consumption of the processors and
evaluates the current workload on each processor. If the work-
load is high, the algorithm tries to reduce energy consumption
by redistributing the tasks to the processors. This phase also
takes into account the energy-saving mode of the processors,
such as the sleep mode, to further reduce energy consump-
tion. In the resource assignment phase, the algorithm makes
decisions on which processor to assign tasks based on their
energy consumption. The tasks are assigned to the processors
that ate predicted to consume the least amount of energy while
meeting the performance requirements. This decision-making
process is guided by a power model that predicts the energy con-
sumption of different tasks on various processors. The model is
continuously updated with real-time measurements to improve
its accuracy. EAS also incorporates task migration to further
optimize energy consumption. Tasks can be migrated from
one processor to another if a more energy-efficient proces-
sor becomes available. This is possible due to the monitoring
and prediction of energy consumption in the feedback phase.
The EAS algorithm aims to strike a balance between energy
consumption and performance requirements by dynamically
adjusting the scheduling of tasks on processors. By consider-
ing energy consumption as a critical factor in scheduling, the
algorithm can significantly reduce energy usage in computing
systems without sacrificing performance.

The proposed energy awatre scheduling algorithms advance
the existing knowledge in the field by addressing the grow-
ing need for efficient and sustainable energy management in
modern computing systems. The algorithms incorporate energy
consumption as a primary scheduling criterion, which is not
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commonly considered in existing scheduling algorithms. Tra-
ditionally, scheduling algorithms focus on criteria such as task
deadline, resource utilization, and response time, without con-
sidering energy consumption. By including energy consumption
as a key factor, the proposed algorithms provide a more
comprehensive approach to scheduling that promotes enetrgy
efficiency. The algorithms also consider the dynamic nature of
energy consumption in computing systems. Unlike traditional
algorithms that assume a constant energy consumption rate, the
proposed algorithms take into account the fluctuating nature of
energy consumption in modern systems. This accounts for the
varying power demands of different tasks and their impact on
energy efficiency. The proposed algorithms incorporate tech-
niques such as dynamic voltage and frequency scaling (DVTS)
and task consolidation to reduce energy consumption. By lever-
aging these techniques, the algorithms can optimize resource
utilization and reduce energy consumption without compromis-
ing task performance. This represents a significant advancement
in the field as previous algorithms did not incorporate these
techniques in their energy management strategies. The algo-
rithms also consider diverse workload scenarios, such as bursts
of high-intensity tasks, which are common in modern comput-
ing systems. By being adaptable to different workload scenarios,
the algorithms can make efficient scheduling decisions that
consider both task performance and energy consumption in
real-time. The proposed energy aware scheduling algorithms
provide a more comprehensive and holistic approach to energy
management in computing systems. By incorporating energy
consumption as a key criterion, considering the dynamic nature
of energy consumption, and leveraging advanced techniques,
these algorithms represent a significant advancement in the
field and contribute to the growing body of knowledge on
energy-efficient scheduling in modern computing systems.

3.2 | Proposed algorithm

Energy aware scheduling algorithm for resource sharing in 5G
green communication systems optimizes energy consumption
while providing the desired Quality of Service (QoS) require-
ments are explained in algorithm 1. The algorithm assigns
resources to the users based on their energy efficiency and the
required QoS. It also considers the energy consumed by the
user devices, the energy-efficient radio technologies available,
and the radio resource sharing. This algorithm helps to reduce
energy consumption while providing the desired QoS require-
ments. It also helps to reduce the network’s carbon footprint
by ensuring that the energy consumed is efficient and minimal.
The algorithm works by scheduling the resources to the users
based on their energy efficiency and the required QoS. It then
optimizes energy consumption by selecting the most energy-
efficient radio technologies and sharing the radio resources.
This algorithm helps to reduce energy consumption while pro-
viding the desired QoS tequirements and reducing the carbon
footprint of the network Algorithm 1 .

Energy-aware scheduling algorithms for resource sharing in
5G green communication systems aim to optimize the shar-

ALGORITHM 1 Energy aware scheduling algorithm

1. Start

2. Set the base station resource request; Set_R.Req{B1,B2,.....B,}

3. Set the base station resource cost; Set_R.Cost = {X,4,}

4. Set the base station resource request cost; Set_R.Req.Cost = {Y,.d,}
5. For (all the resource requests)

6 max: X Y e, wud,x () =)
7. End for

8.  For each R.Req. then do{

9. Find the minimum energy path using (6)
10. Allot the resource

11. Initiate the transmission

12. If (delivery = completed)

13. Then compute the total resource utilization
14. Else

15. Compute the active streaming details

16. Update the resource utilization information

17. Stop.

ing of resources among different users while considering energy
efficiency. The flow chart of the proposed algorithm is shown
in the following Figure 2. The first step is to set the base station
resource request, denoted as Set_R.Req {B{,B,,.....B,}. This
involves specifying the amount and type of resources needed
from the base station, with B representing a specific base sta-
tion and ranging from 1 to the total number of base stations
(B,). Next, the base station resource cost is set using the symbol
Set_R.Cost = {X_,d,}. This includes the cost or price associ-
ated with each resource type, with X representing a specific cost
and d representing a specific resource. Similarly, the base station
resource request cost is set with the symbol Set_R.Req.Cost =
{Y,.d,}, which specifies the cost for each resource requested.
Then, the process moves on to the following step where for
each resource request (R.Req.), the minimum energy path is
found using (6). This involves calculating the most efficient
use of resources to minimize energy consumption. Once the
minimum energy path has been determined, the resource is
allotted or assigned to the respective base station. This is fol-
lowed by initiating the transmission, indicating that the data
transfer or communication between the base station and other
devices has begun. The next step checks if the delivery of
data is completed. If yes, then the total resoutce utilization is
computed, which takes into account the resources requested,
allotted, and consumed. If the delivery is not yet completed,
then the active streaming details are computed, which includes
the current status of resource usage. After this, the resource uti-
lization information is updated to keep track of the remaining
resources and their usage. This is important for future resource
management and planning, The process continues in a loop
until the delivery is completed and then ultimately stops when
the entire transmission is completed. This indicates the end of
the flow chart and the successful completion of the resource
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FIGURE 2 Proposed flow chart.

allocation and data transmission process. Figure 2 shows the
proposed flow chart.

These algorithms can be used to prioritize energy-efficient
tasks and allocate resources to users or devices with lower
energy consumption characteristics. The algorithms can also
identify and reduce energy wastage by keeping track of energy
consumption patterns and predicting the energy usage of future
tasks. Additionally, energy-aware scheduling algorithms can be
used to monitor the energy usage of each user or device to
ensure that it is not exceeding its allocated resource limit.
Finally, these algorithms can be used to dynamically adjust the
scheduling of tasks to optimize energy efficiency further.

3.3 | Energy efficiency

The energy efficiency management of an energy-aware schedul-
ing algorithm for resource sharing in 5G green communication
systems is a process of optimizing the energy efficiency of
the 5G communication system by scheduling the resources to
minimize energy consumption while maintaining the perfor-
mance of the communication system. It involves optimizing
the scheduling of the available resources such as radio access
network, backhaul, core network, and other resources. It can

be achieved by analysing the current system performance, pre-
dicting future performance, and considering the energy cost
of different resources. The algorithm then determines the
most energy-efficient allocation of resources, helping to reduce
energy consumption while achieving the required performance.

3.4 | Bandwidth allocation

The energy aware scheduling algorithm (EASA) is a bandwidth
allocation management technique in 5G green communication
systems. It is used to manage resource sharing to optimize
energy consumption and utilization. The EASA mechanism is
based on providing multiple users access to the same resources
in an energy-efficient way. The EASA assigns each user a spe-
cific amount of available resources based on their requirements.
It helps reduce the amount of energy each user uses while still
allowing them to access the resoutces they need. Furthermore,
the EASA also considers the current users’ energy consumption
and adjusts the allocated resources accordingly. It helps maxi-
mize energy savings while allowing users to access the resources
they need. Finally, the EASA also ensures that each user is effi-
ciently using the resources to reduce the amount of energy used
overall.

3.5 | Resource utilization

Resource utilization management in 5G green communication
systems is allocating resources efficiently to reduce energy con-
sumption and improve performance. Energy-aware scheduling
algorithms for resource sharing in 5G green communication
systems are designed to achieve this goal. These algorithms use
various techniques, such as dynamic resource allocation, power
management, and energy-efficient scheduling to reduce energy
consumption and optimize performance. These techniques
help reduce the network’s energy consumption by sharing
the resources between multiple users and efficiently allocating
resources to each user. In addition, energy-aware scheduling
algorithms can also be used to optimize the energy usage
of the base station, thereby reducing its energy consumption.
Furthermore, these algorithms can be used to control the trans-
mission power to reduce interference and improve the quality
of service. Finally, these algorithms can be used to reduce the
number of active users and thus help reduce the overall energy
consumption of the network.

3.6 | Interference management

Interference management is an essential aspect of an energy-
aware scheduling algorithm for resource sharing in 5G green
communication systems. The main goal of this algorithm
is to efficiently manage the interference between different
wireless users while minimizing the energy consumed by the
communication system. It achieves this goal by scheduling
the resources to reduce the mutual interference between users
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while allowing them to communicate with the highest possible
data rate. The algorithm also considers the available energy
resources and manages the power levels of different users to
minimize energy consumption. It also considers the user’s
mobility and network topology to use the resources efficiently.
The algorithm can automatically adjust users’ power levels
to minimize the total energy consumption while maximiz-
ing the user’s data rates. Furthermore, it also allows for the
optimization of the network topology to reduce interference
between different users and enhance the performance of the
communication system. Energy-aware scheduling algorithms
are essential in 5G green communication systems for resource
sharing because they enable efficient use of resources and
reduce energy consumption. By scheduling data transmissions
and other activities more efficiently, energy-aware scheduling
algorithms can help minimize the amount of energy consumed
by the system. It helps reduce the energy costs associated with
resoutrce sharing in 5G green communication systems. Addi-
tionally, energy-aware scheduling algorithms can help improve
communication quality by ensuring that the most critical data
transmissions are prioritized and that others are scheduled
accordingly. It helps to reduce network congestion and improve
overall communication performance.

4 | MATHEMATICAL MODEL OF THE
SYSTEM

Energy-aware scheduling algorithms for resource sharing in
5G green communication systems are a relatively novel con-
cept. These algorithms allow for sharing resources in a green,
energy-efficient manner by dynamically scheduling and allocat-
ing resources to different users and services in the system based
on their energy consumption profiles. This approach can signif-
icantly reduce the energy consumption in the system, as it allows
for more efficient use of the available resources.

4.1 | Analysis of access control mechanism

Establish energy-aware scheduling criteria to ensure that
resources are allocated efficiently and effectively. It should
include criteria such as maximum energy efficiency, minimum
energy consumption, and total cost of ownership. Implement
an access control mechanism limiting resource access to autho-
rized and approved devices. It should include authentication,
authorization, and access control protocols to ensure that only
approved and authorized devices can access the resources.
Using energy-efficient algorithms ensures that resoutrces ate
allocated as efficiently as possible. It should include algorithms
such as dynamic voltage and frequency scaling (DVFS) and
application-specific performance optimization (ASPO). Imple-
ment monitoring and reporting of resource allocation and
usage. It should include metrics such as power utilization,
energy efficiency, and total cost of ownership. To estab-
lish energy-aware policies that are designed to ensure that
resources are allocated and used in an energy-efficient manner.

It should include policies such as minimum power utilization,
energy-efficient design, and energy-efficient scheduling

4.2 | Analysis of network virtualization

The energy-aware scheduling algorithm optimizes resource
sharing in 5G green communication systems. The algorithm
should consider the energy efficiency of the network, the
resources needed by different applications and services, and the
latency requirements of each application or service. To enable
efficient resource sharing:

(1) Implement network virtualization technologies such as
Software Defined Networking (SDN) and Network Func-
tion Virtualization (NFV). The SDN controller should be
used to manage and optimize the network for energy-
efficient resource sharing.

(2) Incorporate the proposed energy-aware scheduling algo-
rithm to enable the network to learn and adapt to changing
resource usage patterns of applications and services. The
energy-aware scheduling algorithms should be able to
dynamically adjust the scheduling to shate resources among
different applications and services efficiently.

(3) Leverage cloud computing resources to enable the energy-
aware scheduling algorithm to share resources among
applications and services efficiently.

Cloud resources should provide the necessary computational
power to enable the algorithm to respond to changes in resource
usage patterns quickly.

4.3 | Optimized resource allocation
The optimized resource allocation of energy-aware scheduling
for resource sharing in 5G green communication systems typ-
ically involves dynamic resource allocation, power control, and
channel selection. The scheduling algorithm should be designed
to minimize energy consumption while maximizing through-
put. It can be achieved by considering the channel conditions
and the traffic load. Power control is used to minimize the total
transmit power, while channel selection is used to select the
best channel that can provide the highest data rate. Dynamic
resource allocation is used to assign the radio resources to the
various users to optimize energy efficiency and throughput.
Figure 3 demonstrates the functions of the scheduler based on
the resource.

Let us consider the node ‘4’ has the residual energy and con-
sumption (X)) with some amount of transmission power (Y,).
Now the life time has to be computed as shown in Equation(1)

L,=— )

The proposed energy-aware scheduling algorithm has some
scheduling sequence in the communication system. The
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FIGURE 3 Functions of scheduler based on the resource.

spectrum broker has to receive the requests to access the avail-
able resources in the network. According to the promiscuous
caching strategy, a backup node can be placed close to the SNi
so that SNi+1 can claim the chunk streaming resources.

L, =min(L,, L,.,) 2)

“rs

where SN indicates the Source node;

1,=+ and L, —” ?3)

7

The aggregated power consumption may be calculated by
adding the energy and power spent by all of the path’s nodes
to determine how much energy is used by each cellular device’s

relay path.

i, Z Y, 4

where Y7 , is the power consumption of node ‘z’. Now the SNs
are then given an energy-efficient resource exchange path by
the energy controller in accordance with the related subsystem
energy module to which they belong,

Yo, .= Z Yy, )

where Y7, for the combined relay R(£) and up to £-node using
portable peer-to-peer resource streaming. A comparison of the
power measurements between the Y7, (p (i.e. via the cellular
peers and the radio access points) and Y, (via the cellular
terminals linked with ‘2’ within its broadcast range) is required
since the streaming relay channel requires an unbroken flow of
data:

min{U * D,} = argmin(Y; , Y7, VN < D,(d) <dp (6)

The equation is looking to minimize a function, specifically
the function #*D,, whete #* represents a set of parameters and
D, represents a matrix. The notation min {#*D,} means that
we are looking for the minimum value of the function #*D,.
U* represents a set of parameters and D, represents a matrix,
so together they make up a function that depends on these
parameters and the values of the matrix. On the right side of
the equation, we have “arg min{Y%, Y ,}”. This represents
the argument (or input) that will result in the minimum value
of the function #*D,. The notation {Y}, Yy ,} represents a
set of values, specifically three different values: Yy, Y, and .
These values are being used as inputs for the function #*D, in
order to find the minimum value. The equation represents the
process of finding the set of parameters (#*) that, when paired
with a specific matrix (D,), will result in the minimum value of
the function #*D,. This is achieved by testing different values
for the inputs (Y, Yy, and 7) and seeing which combination
results in the smallest output for the function #*D,. In order to
save energy, each energy module subsystem estimates its energy
efficiency using an energy-aware scheduling approach. Now the
bit-error-rate (g,) has the following,

9.5R, > L, ™
b
X
g min( Y €L ®)

a a

To monitor the performance of the network to ensure
that the energy-aware scheduling algorithm is working cot-
rectly. Monitoring the network performance can help identify
any flaws in the algorithm, allowing for adjustments and
improvements to be made.

b,
: dy* Y,
0L, =max | Y (1= q)a, * B, *log, <1 + ¥>

©)

where the 3, is the resource allocation to cellular nodes. A
is the streaming parameter. The maximum delay is computed as
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TABLE 4  Existing model information.

TABLE 5 Simulation setup.

Author Year Model name Parameter Value
Gupta etal. [1] 2022 Energy-aware trajectory design S, (simulation area) 800 m X 1500 m
(EATD) SIES (short inter-frame space 23s
P
Hao et al. [4] 2021 Energy-aware scheduling (EAS) DR, (transmission data ratc) 20 Mbps
Pradeep et al. [5] 2022 Multi-objective strflteg}'»bascd DR; (interference detection ratc) 25 ms
resource allocation (MOSRA)
. o . 7; (slot time) 10 ms
Hussain et al. [10] 2023 Multi-objective evolutionary
algorithm (MOEA) B, (sub-channel bandwidth) 1250 MHz
B (system bandwidth) 24 MHz
F, (carrier frequency) 14.2 MHz
the following Equation (10) 7 (simulation duration) 38s
Number of nodes (Min—Max) 100-700

a—1
o = Y 1+ T, (10)
a=0

Test and validate the energy-aware scheduling algorithm in a
simulated 5G green communication environment. It can help
identify any issues with the algorithm before it is deployed
in a real-world environment. The optimized resoutrce alloca-
tion of energy-aware scheduling for resource sharing in 5G
green communication systems is an approach to efficiently use
network resources while minimizing the energy consumption
of the devices in the network. It is done by allocating the
resoutces to the most energy-efficient devices and ensuring they
are fully utilized. This approach ensures that the most energy-
efficient devices are used in the network and that the resources
are allocated to minimize energy consumption. Additionally,
the optimized resource allocation of energy-aware scheduling
for resource sharing in 5G, a green communication system,
helps reduce the cost of energy consumption and the network’s
environmental impact. The proposed scheduling algorithm can
allocate resources to users and services with lower energy con-
sumption profiles while balancing the load on the system and
ensuring that all users are provided with the resources they need.
These scheduling algorithms can also identify energy-inefficient
users and services and take corrective measures to reduce their
energy consumption. Furthermore, these algorithms can also be
used to monitor and optimize the overall energy consumption in
the system, as well as to identify trends in energy consumption
and usage patterns.

5 | RESULTS AND DISCUSSIONS

The performance of the proposed energy-aware scheduling
model (EASM) has been compared with the following existing
models. Table 4 shows the existing model information.

The 5G network traffic dataset [39] is used here to implement
the results [53]. Here, the network simulator-2 is the tool used
to execute the results. Table 5 shows the simulation details.

5.1 | False discovery rate

The false discovery rate (FDR) of energy-aware scheduling in
5G green communications is the rate of false positive results

Propagation mode Grounded—2 way

Transport type TCP

Traffic source CBR

CBR packet size 1024 bytes
CBR packet rate 25 packets/s

TABLE 6 Comparison of false discovery rate (in %0).

Inputs EATD EAS MOSRA MOEA EASM
100 56.20 67.57 70.33 77.74 86.660
200 57.69 69.54 72.75 79.94 88.65
300 58.49 70.67 73.16 80.74 89.85
400 59.75 72.36 74.91 82.47 91.58
500 60.89 73.91 76.32 83.97 93.17
600 62.04 75.46 77.74 85.47 94.77
700 63.18 77.01 79.15 86.97 96.37

produced by a scheduling algorithm compared to the base-
line performance. This rate is crucial because it determines the
accuracy of the scheduling algorithm in predicting the optimal
energy consumption. The higher the false discovery rate, the
less accurate the scheduling algorithm is in predicting energy
consumption. The proposed scheduling algorithm should be
efficient regarding computing resoutces, as this will help reduce
the false discovery rate. It is shown in the following Equation

(11).
Pf

where FDR represents the false discovery rate; Pf shows the
positive false predictions, 7, shows the positive true predic-
tions. In order to lower the false discovery rate, scheduling
algorithms should be designed to minimize energy consumption
while maintaining performance. It can be achieved by consider-
ing various factors, such as channel characteristics, mobility, and
interference. Table 6 shows the comparison of false discovery
rates between existing and proposed models.
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FIGURE 4  Assessment of false discovery rate.

The false discovery rate of energy-aware scheduling in 5G
green communications can also be reduced using machine
learning techniques. Machine learning techniques can identify
patterns and trends in the data, which can be used to opti-
mize energy consumption. Figure 4 shows the assessment of the
false discovery rate between the existing and proposed models.
As an assessment tip, the proposed EASM reached a 91.58%
false discovery rate. The existing EATD obtained 59.75%,
EAS reached 72.36%, MOSRA obtained 74.91%, and MOEA
reached 82.47% false discovery rate. It can be done by training
the machine learning algorithm on the data collected from the
5G networks, which can then be used to improve the accuracy
of the scheduling algorithm. The false discovery rate of energy-
aware scheduling in 5G green communications can be reduced
by considering channel characteristics, mobility, intetference,
and efficient computing resources. Additionally, machine learn-
ing techniques can be used to improve the accuracy of the
scheduling algorithm

5.2 | False omission rate

The false omission rate (FOR) of energy-aware scheduling in
5G green communications is an essential metric for measuring
the effectiveness of energy-saving strategies. It is defined as the
percentage of time slots in which the scheduler fails to select an
energy-efficient allocation when an energy-efficient allocation
is available. A low FOR indicates that the scheduler is selecting
energy-efficient allocations more often. A high FOR indicates
that the scheduler is not selecting energy-efficient allocations
as often as it should be. Table 7 shows the comparison of

TABLE 7 Comparison of false omission rate (in %0).

Inputs EATD EAS MOSRA MOEA EASM
100 89.17 73.91 76.33 83.97 60.90
200 90.77 75.46 77.74 85.47 62.04
300 92.36 77.01 79.16 86.97 63.19
400 93.96 78.56 80.57 88.47 64.33
500 95.55 80.11 81.99 89.97 65.48
600 97.15 81.66 83.40 91.47 66.62
700 98.74 83.21 84.82 92.97 67.77

false omission rates between existing and proposed models.
The computation of the false omission rate is shown in the
following Equation (12).

ror= (= 12
o= () 02

where FOR represents the false omission rate; /N, shows
the negative false predictions, /N, shows the negative true
predictions.

The FOR of energy-awate scheduling can be reduced by
using various strategies, such as using a predictive algo-
rithm to identify energy-efficient allocations in advance or
by introducing a learning component to the scheduling algo-
rithm, which can learn from past experiences and adapt its
scheduling decisions accordingly. The false omission rate of
energy-aware scheduling can also be reduced by implementing
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Compatison of false omission rate.

energy-efficient power management strategies, such as dynamic
frequency scaling or intelligent power management policies.
Figure 5 shows the assessment of the false omission rate
between the existing and proposed models.

As an assessment tip, the proposed EASM reached a 64.33%
false omission rate. The existing EATD obtained 93.96%,
EAS reached 78.56%, MOSRA obtained 80.57%, and MOEA
reached 88.47% false omission rate. The FOR of energy-aware
scheduling can also be reduced by increasing the energy-
efficient allocations available to the scheduler through resource
sharing, virtualization, and other techniques.

5.3 | Prevalence threshold (P,,)

The prevalence threshold of energy-aware scheduling in 5G
green communications is a critical parameter determining how
energy-efficient the 5G network is. It is the point at which the
energy consumed by the 5G network is reduced to a manageable
level. This threshold is determined by the amount of energy that
needs to be saved to reach the desired level of energy efficiency.
Energy-aware scheduling aims to minimize the energy con-
sumed by a 5G network while still providing the same network
performance.

PRy

B=\—T=—== (13)

PRy + /PR,

where P, represents the prevalence threshold; PR, shows the
positive false rate, PR, shows the positive true rate. The schedul-

TABLE 8 Comparison of prevalence threshold (in %0).

Inputs EATD EAS MOSRA MOEA EASM
100 60.79 71.80 74.76 81.41 86.33
200 61.83 72.25 77.08 82.84 87.76
300 62.87 72.70 79.40 84.27 89.19
400 63.91 73.15 81.72 85.70 90.62
500 64.95 73.60 84.04 87.13 92.05
600 65.99 74.05 86.36 88.56 93.48
700 67.03 74.50 88.68 89.99 94.91

ing algorithm must identify and control the resources that
consume the most energy to achieve this goal. It can be done
by tracking the energy consumption of each resource and then
setting a threshold value. If the energy consumed by a resource
exceeds the threshold value, the resource will be scheduled
with a lower priority. The prevalence threshold of energy-aware
scheduling in 5G green communications is essential because
it helps optimize the network performance while minimizing
energy consumption. Figure 6 shows the assessment of the
prevalence threshold between the existing and proposed mod-
els. Table 8 shows the comparison of the prevalence threshold
between existing and proposed models.

As an assessment tip, the proposed EASM reached the
90.62% prevalence threshold. The existing EATD obtained
63.91%, EAS reached 73.15%, MOSRA obtained 81.72%, and
MOEA reached an 85.70% prevalence threshold. By setting
the threshold, the network can be tuned to provide the best
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FIGURE 6 Comparison of prevalence threshold.

performance while consuming the least energy. It helps to
reduce the overall cost of running the 5G network.

5.4 | Critical success index

The critical success index (CSI) is an essential metric for eval-
uating the effectiveness of energy-aware scheduling algorithms
in 5G green communications. The CSI measures how well the
scheduling algorithm can minimize the energy consumption of
a given system without compromising performance. The CSI is
calculated by taking the ratio of the energy consumed by the
scheduling algorithm to the energy consumed by the system
without any schedule.

The CSI is a performance metric used to evaluate the effec-
tiveness of a system or model. In the context of energy-aware
scheduling models for resource sharing in 5G green commu-
nication systems, the CSI can be computed using the following
steps:

(1) Identify key performance indicators (KPIs): The first step
is to identify the KPIs that are important for evaluating the
performance of the energy-aware scheduling model. These
KPIs can include energy efficiency, resource utilization,
network throughput, and delay.

(2) Define the target values for each KPI: Once the KPIs have
been identified, the next step is to define the target values
for each of them. These target values will serve as bench-
marks for measuring the performance of the energy-aware
scheduling model.

(3) Collect data: Data needs to be collected from the 5G green
communication system for the identified KPIs. This data
can include energy consumption, resource usage, network
traffic, and delay measurements.

(4) Normalize the data: The collected data needs to be not-
malized to make it comparable across different KPIs. This
involves scaling the data to a common range or converting
it to a percentage.

(5) Calculate the performance score for each KPI: The perfor-
mance score for each KPI is calculated by compating the
normalized data with the target values. This score indicates
how well the KPI is being achieved by the energy-aware
scheduling model.

(6) Assign weights to each KPI: Next, weights are assigned to
each KPI based on their importance. The weights can be
determined by considering the impact of each KPI on the
overall performance of the energy-aware scheduling model.

(7) Calculate the CSI: The CSI is calculated as a weighted
average of the performance scores for all the KPIs. This
provides an overall measure of the performance of the
energy-awate scheduling model.

(8) Compare with a predetermined threshold: Finally, the cal-
culated CSI is compared with a predetermined threshold
to determine the success of the energy-aware scheduling
model. If the CSI is above the threshold, the model can be
considered successful in achieving its goals.

The CSI for energy-aware scheduling models in 5G green
communication systems is computed by identifying and eval-
uating relevant KPIs, collecting and normalizing data, assigning
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Compatrison of critical success index.

weights, and calculating a weighted average of the performance
scores. This metric provides a comprehensive and quantitative
measure of the success of the model in achieving energy effi-
ciency and resource optimization in 5G green communication
systems.

vy
csf=—— 14
<Pz‘+Nf+Pf> (9

where CS7 represents the critical success index; £y shows the
positive false predictions, P, shows the positive true predic-
tions and /V, shows the negative false predictions. A higher CS7
indicates that the scheduling algorithm is doing a better job of
minimizing energy consumption while still providing acceptable
performance. It includes actual energy consumption measure-
ments taken from the system and considers the actual load on
the system.

The C37 must be compared to standard benchmarks like the
energy consumption of a system running without any sched-
ule. The accuracy of the CSI also depends on the quality of the
scheduling algorithm. If the algorithm is not designed correctly,
it may not be able to reduce energy consumption as much as
it should. Figure 7 shows the assessment of the critical success
index between the existing and proposed models. Table 9 shows
the comparison of the critical success index between the existing
and proposed models.

As an assessment tip, the proposed EASM reached a 91.23%
critical success index. The existing EATD obtained 64.45%,
EAS reached 75.14%, MOSRA obtained 79.52%, and MOEA
reached 85.37% critical success index. Additionally, if the algo-
rithm is moderate with scheduling, it may reduce system

TABLE 9 Comparison of critical success index (in %).

Inputs EATD EAS MOSRA MOEA EASM
100 62.47 73.70 71.33 83.93 85.92
200 63.13 74.18 74.06 84.41 87.69
300 63.79 74.66 76.79 84.89 89.46
400 64.45 75.14 79.52 85.37 91.23
500 65.11 75.62 82.25 85.85 93.00
600 65.77 76.10 84.98 86.33 94.77
700 66.43 76.58 87.71 86.81 96.54

TABLE 10

Overall performance comparison (in %o).

Parameters EATD EAS MOSRA MOEA EASM

False discovery rate (FDR)  59.75 72.36 7491 82.47 91.58
False omission rate (FOR)  93.96 78.56  80.57 88.47 64.33
Prevalence threshold (P)  63.91 73.15  81.72 85.70 90.62
Critical success index (CSI) 64.45 7514 79.52 85.37 91.23

performance. The CSI should be evaluated in the context of
the system’s overall energy profile, as investing in energy-saving
measures elsewhere in the system may be more cost-effective.
Table 10 shows the overall performance comparison between
the existing and proposed models.

Figure 8 shows the overall performance comparison between
the existing and proposed models. As an assessment tip, the
proposed EASM reached a 91.58% false discovery rate, a
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64.33% false omission rate, a 90.62% prevalence threshold, and
a 91.23% critical success index. The analysis may also consider
other factors like latency, reliability, and scalability. By com-
pating the energy consumption and performance of different
scheduling algorithms, the comparative analysis can help iden-
tify the effectiveness of the proposed algorithm for resource
sharing in 5G green communication systems.

Robustness refers to the ability of a system or algorithm to
consistently perform well and produce accurate results, even
in the face of uncertain and changing conditions. In the con-
text of Energy Aware Scheduling Algorithms, robustness plays
a crucial role in ensuring that energy optimization and efficiency
goals are met, regardless of the variations and fluctuations in
the system. One major advantage of using the energy aware
scheduling algorithm is its applicability in diverse scenatios.
These algorithms are designed to adapt to changing condi-
tions, such as dynamically varying workloads, changing resource
availability, and unpredictable events. This adaptability is cru-
cial in real-world environments where workload and resource
availability can change unpredictably. Energy Awatre Schedul-
ing Algorithms are robust in the sense that they can handle
uncertainties and variations in a wide range of scenatios. For
example, these algorithms can effectively manage both homo-
geneous and heterogeneous systems, where the hardware and
software components may vary significantly. They can also
handle scenatios whete energy constraints and optimization
goals may differ. These algorithms are robust in dealing with
uncertain and dynamic workload patterns. They can balance
the workload across multiple resources and dynamically adjust
resource allocations based on changing demands. This ensures

FOR Pth

Parameters

that energy consumption is optimized without compromising
system performance and user experience.

6 | CONCLUSIONS

Energy-aware scheduling for resource sharing in 5G green
communication systems is a technique used to maximize the
efficiency of the network and reduce power consumption. It
is based on the principle of time division multiplexing (TDM),
where each resource is allocated to each user for a specific time
duration. This technique helps optimize the energy consump-
tion of the communication system by scheduling the resources
so that they are used only when necessary. The proposed
energy-aware scheduling algorithm for resource sharing in 5G
green communication systems examines different scheduling
algorithms and determines which is the most efficient in terms
of energy consumption. This process involves comparing differ-
ent scheduling algorithms in terms of their energy consumption
and performance and their ability to adapt to changing user
demands. The goal is to determine which scheduling algorithm
is the most energy-efficient and provides the best performance
in terms of resource sharing. The proposed EASM reached
a 91.58% false discovery rate, a 64.33% false omission rate,
a 90.62% prevalence threshold, and a 91.23% critical suc-
cess index. The analysis is typically conducted by comparing
different scheduling algorithms’ energy consumption and per-
formance regarding their respective resoutrce utilization and
scheduling granularity. It helps to reduce the interference and
noise levels in the system by using resource sharing, This

d ‘T ¥T0T ‘SOEETS0T

/25Ny woiy papeoy

IpUO)) pue SWLId [, 3} 33§ [T0T/10/tT] U0 ArIqr duIuQ A1 ‘BSEEA JO ANSIDAIUN Aq 8SETT TN/6H0T 01/10p/wod Ad[1m"

sdny)

10)/W0" KA1

P!

ASURDI'T SUOWIO)) dARaI) [qeatjdde ayy £q pauIaA0d aIe SAOILIE V() @SN JO SA[NI 10§ K1eIqr] aur[uQ Ad[IA Uo (



SANGEETHA ET AL.

19 of 20

technique also allows the network to be more efficient and flex-
ible, as resources can be shared dynamically, and the network
can be adapted to changing conditions. It helps to increase the
capacity of the network by reducing the overhead of resource
sharing. Through thorough analysis and experimentation, it was
found that the proposed scheduling model was able to achieve
a balance between energy consumption and network perfor-
mance. This was achieved by considering the energy efficiency
requirements of different applications and allocating the avail-
able resources accordingly. The results showed that the energy
consumption of the system was reduced, while also maintain-
ing high network performance, such as low latency and high
throughput. This was achieved by using machine learning algo-
rithms to dynamically allocate resources based on the real-time
network and user demands. The research also identified that
the proposed model was effective in handling the dynamic
and unpredictable nature of 5G networks, as it was able to
adapt to changing network conditions and user demands in
real time. The research concludes that the adoption of energy-
aware scheduling models in 5G green communication systems
can lead to improved energy efficiency, reduced operational
costs, and enhanced network performance. This can contribute
to the overall goal of building environmentally sustainable and
resource-efficient 5G networks.
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