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A B S T R A C T

We consider a Gaussian Volterra process with compound Poisson jumps and derive its prediction
law.

1. Introduction

We are interested in a mixed process 𝑋 = 𝐺 + 𝐽 , where the continuous part 𝐺 is a so-called Gaussian Volterra process. In
older terminology these are processes that admit canonical representation of multiplicity one. A typical Gaussian Volterra process
is the fractional Brownian motion as shown in Norros et al. (1999). See Section 4 for the definition of fractional Brownian motion
and for other examples. Intuitively, a Gaussian process 𝐺 is a Gaussian Volterra process if one can construct a martingale 𝑀 from
by using a non-anticipative linear transformation and then represent the original process 𝐺 in a non-anticipative way as a linear
transformation of the martingale 𝑀 . The motivation to use Gaussian Volterra processes is that for them one can calculate their
prediction law in terms of the kernels that transfer the Gaussian Volterra process into its driving martingale 𝑀 and vice versa. In
the mixture 𝑋 = 𝐺+𝐽 the jump part 𝐽 will be an independent compound Poisson process with square-integrable jump distribution.

One motivation to study processes of the type 𝑋 = 𝐺 + 𝐽 comes from mathematical finance. Indeed, it is well-known that
the returns of financial assets do not follow Gaussian distribution (Blattberg and Gonedes, 2010; Fama, 1965; Mandelbrot and
Mandelbrot, 1997) and the returns also exhibit jumps, or shocks (Akgiray and Booth, 1986, 1987; Ball and Torous, 1985; Jarrow
nd Rosenfeld, 1984; Press, 1967). Also, there is evidence of long-range dependence in the returns also explain the presence of long-
emory (Baillie, 1996; Chan and Hameed, 2006; Harvey, 1995; Kim and Wu, 2008; Rajan and Zingales, 2003). Thus models where

he returns are Gaussian with jumps seem more reasonable: The Gaussian part could take care of the long-range dependence with
ractional Brownian motion (fBm) as the Gaussian Volterra process, and the shocks would come from the compound Poisson part.
hen one can use the result of this paper to calculate imperfect hedges in the mixed model in the similar way as done in Shokrollahi
nd Sottinen (2017) and Sottinen and Viitasaari (2018). Indeed, this is work in progress by the authors.

In this paper we derive the prediction law of the mixed process 𝑋 = 𝐺 + 𝐽 .
The rest of the paper is organized as follows. In Section 2 we define Gaussian Volterra processes and derive their prediction

aws. Section 3 is the main section of the paper where we introduce the Gaussian Volterra processes with compound Poisson jumps
nd derive their prediction laws. Finally, in Section 4 we provide examples of Gaussian Volterra processes.
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2. Gaussian Volterra processes

A Gaussian Volterra process is a Gaussian process that has a canonical representation of multiplicity one with respect to a
aussian martingale. The Gaussian Volterra process is defined in Definition 2.1 below in terms of covariance functions. The Gaussian

Volterra representations follow from Definition 2.1 and are stated in Proposition 2.1.
For convenience we consider processes over the compact time-interval [0, 𝑇 ] with an arbitrary but fixed time horizon 𝑇 > 0 .
Let 𝐺 = (𝐺𝑡)𝑡∈[0,𝑇 ] be a centered Gaussian process with 𝐺0 = 0 and covariance function 𝑅∶ [0, 𝑇 ]2 → R defined on a complete

probability space (𝛺, ,P) .
A kernel 𝐾 ∶ [0, 𝑇 ]2 → R is a Volterra kernel if 𝐾(𝑡, 𝑠) = 0 whenever 𝑡 < 𝑠 . For a Volterra kernel 𝐾 we define its associated

operator K as.

K[𝑓 ](𝑡) = ∫

𝑡

0
𝑓 (𝑠)𝐾(𝑡, 𝑠) d𝑠.

Denote

𝟏𝑡(𝑠) = 𝟏[0,𝑡)(𝑠) =
{

1, if 𝑠 ∈ [0, 𝑡),
0, otherwise .

The adjoint associated operator K∗ of the Volterra kernel 𝐾 is given by extending linearly the relation

K∗[𝟏𝑡](𝑠) = 𝐾(𝑡, 𝑠).

It turns out that K∗ for a Gaussian Volterra process with covariance

𝑅(𝑡, 𝑠) = ∫

𝑡∧𝑠

0
𝐾(𝑡, 𝑢)𝐾(𝑠, 𝑢) d𝑣(𝑢)

extends to an isometry from 𝛬 to 𝐿2([0, 𝑇 ], d𝑣) where 𝑣 is given in Definition 2.1(i) and 𝛬 , the space of Wiener integrands, is the
closure of the indicator functions 𝟏𝑡 , 𝑡 ∈ [0, 𝑇 ] , in the inner product

⟨𝟏𝑡, 𝟏𝑠⟩𝛬 = 𝑅(𝑡, 𝑠).

Remark 2.1. By Alòs et al. (2001), if 𝐾 is of bounded variation in its first argument, we can write for any simple function 𝑓

K∗[𝑓 ](𝑡) = 𝑓 (𝑡)𝐾(𝑇 , 𝑡) + ∫

𝑇

𝑡
[𝑓 (𝑢) − 𝑓 (𝑡)]𝐾(d𝑢, 𝑡).

Moreover, as in Alòs et al. (2001) Lemma 1, we have for simple functions 𝑓 and 𝑔 that

∫

𝑇

0
K∗[𝑓 ](𝑡)𝑔(𝑡) d𝑡 = ∫

𝑇

0
𝑓 (𝑡)K[𝑔](d𝑡)

justifying the name ‘‘adjoint’’ associated operator.

For Gaussian Volterra representations we recall what is the co-called abstract Wiener integral (for more information on abstract
Wiener integrals and their relation to conditioning we refer to Sottinen and Yazigi (2014)). The linear space  is the closure of the
random variables 𝐺𝑡 , 𝑡 ∈ [0, 𝑇 ] , in 𝐿2(𝛺, ,P) . The spaces 𝛬 and  are isometric. Indeed, the mapping

𝟏𝑡 ↦ 𝐺𝑡

extends to an isometry. This isometry is called the abstract Wiener integral and we denote it

∫

𝑇

0
𝑓 (𝑡) d𝐺𝑡

for a 𝑓 ∈ 𝛬 .

Definition 2.1 (Gaussian Volterra Process). Let 𝐺 = (𝐺𝑡)𝑡∈[0,𝑇 ] be a centered Gaussian process with covariance function 𝑅∶ [0,∞)2 →
R . Assume that

(1) there exists an increasing function 𝑣∶ [0, 𝑇 ] → R and a Volterra kernel 𝐾 ∶ [0, 𝑇 ]2 → R such that ∫ 𝑡
0 𝐾(𝑡, 𝑠)2 d𝑣(𝑠) < ∞ for all

𝑡 ∈ [0, 𝑇 ] and

𝑅(𝑡, 𝑠) = ∫

𝑡∧𝑠

0
𝐾(𝑡, 𝑢)𝐾(𝑠, 𝑢) d𝑣(𝑢),

(2) for each 𝑡 ∈ [0, 𝑇 ] the equation

K∗[𝐾−1(𝑡, ⋅)](𝑠) = 𝟏𝑡(𝑠)

admits a solution 𝐾−1(𝑡, ⋅) .
2
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Note that by Definition 2.1(ii) the operator K∗ is invertible and we have

(K∗)−1[𝟏𝑡](𝑠) = 𝐾−1(𝑡, 𝑠).

We note that due to Definition 2.1(i) for a Gaussian Volterra process the space 𝛬 is isometric to 𝐿2([0, 𝑇 ], d𝑣) . Indeed, we have

⟨𝑓, 𝑔⟩𝛬 = ⟨K∗[𝑓 ],K∗[𝑔]⟩𝐿2([0,𝑇 ],d𝑣).

n particular, this means that the mapping K∗ in Definition 2.1(ii) is an isometry between 𝛬 and 𝐿2([0, 𝑡], d𝑣) .
The following representation proposition is a direct consequence of Definition 2.1. Indeed, Proposition 2.1 could have been taken

as the definition of Gaussian Volterra process.

Proposition 2.1 (Volterra Representation). Let 𝐺 be a Gaussian Volterra process. Let 𝐾−1 be the kernel in Definition 2.1(ii). Then the
process

𝑀𝑡 = ∫

𝑡

0
𝐾−1(𝑡, 𝑠) d𝐺𝑠

is a Gaussian martingale with bracket ⟨𝑀⟩𝑡 = 𝑣(𝑡) . Moreover,

𝐺𝑡 = ∫

𝑡

0
𝐾(𝑡, 𝑠) d𝑀𝑠,

where 𝑣 and 𝐾 are as in Definition 2.1(i).

Note that form Proposition 2.1 we immediately see that the filtrations F𝐺 and F𝑀 coincide.
The Volterra representations of Proposition 2.1 extend immediately to the following transfer principle for Wiener integrals.

Proposition 2.2 (Transfer Principle). Let 𝑓 ∈ 𝛬 and 𝑔 ∈ 𝐿2([0, 𝑇 ], d𝑣) . Then

∫

𝑇

0
𝑓 (𝑡) d𝐺𝑡 = ∫

𝑇

0
K∗[𝑓 ](𝑡) d𝑀𝑡,

∫

𝑇

0
𝑔(𝑡) d𝑀𝑡 = ∫

𝑇

0
(K∗)−1[𝑔](𝑡) d𝐺𝑡.

In what follows we will use the following notation for the conditional mean, the conditional covariance and the conditional law
of a stochastic process 𝑌 :

�̂�𝑌
𝑡 (𝑢) = E

[

𝑌𝑡
|

|

|

𝑌
𝑢

]

,

�̂�𝑌 (𝑡, 𝑠|𝑢) = Cov[𝑌𝑡, 𝑌𝑠
|

|

|

𝑌
𝑢 ],

𝑃 𝑌
𝑡 (d𝑦|𝑢) = P

[

𝑌𝑡 ∈ d𝑦||
|

𝑌
𝑢

]

We end this section by stating the prediction formula for Gaussian Volterra processes. The formula and its proof is similar to
that given in Sottinen and Viitasaari (2017). We give here the proof in detail for the convenience of the readers.

Proposition 2.3 (Volterra Prediction). Let 𝐺 be a Gaussian Volterra process as in Definition 2.1. Let 𝑢 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 . Denote

𝛹 (𝑡, 𝑠|𝑢) = (K∗)−1[𝐾(𝑡, ⋅) −𝐾(𝑢, ⋅)](𝑠)

and

𝛷(d𝑥;𝜇, 𝜎2) = 1
√

2𝜋𝜎2
e−

1
2
(𝑥−𝜇)2

𝜎2 d𝑥.

Then

�̂�𝐺
𝑡 (𝑢) = 𝐺𝑢 − ∫

𝑢

0
𝛹 (𝑡, 𝑠|𝑢) d𝐺𝑢,

�̂�𝐺(𝑡, 𝑠|𝑢) = 𝑅(𝑡, 𝑠) − ∫

𝑢

0
𝐾(𝑡, 𝑥)𝐾(𝑠, 𝑥) d𝑣(𝑥),

𝑃𝐺
𝑡 (d𝑥|𝑢) = 𝛷(d𝑥; �̂�𝐺

𝑡 (𝑢), �̂�(𝑡, 𝑡|𝑢)).

Proof. It is well-known that conditional Gaussian processes are Gaussian. Therefore it is enough to identify the conditional mean
and conditional covariance.

We consider first the conditional mean. Now

�̂�𝐺
𝑡 (𝑢) = E

[

𝐺𝑡
|

|

|

𝐺
𝑢

]

= E
[ 𝑡

𝐾(𝑡, 𝑠) d𝑀𝑠
|

|𝑀
𝑢

]

3
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= ∫

𝑢

0
𝐾(𝑡, 𝑠) d𝑀𝑠

= ∫

𝑢

0
𝐾(𝑢, 𝑠) d𝑀𝑠 + ∫

𝑢

0
[𝐾(𝑡, 𝑠) −𝐾(𝑢, 𝑠)] d𝑀𝑠

= 𝐺𝑢 − ∫

𝑢

0
(K∗)−1 [𝐾(𝑡, ⋅) −𝐾(𝑢, ⋅)] (𝑠) d𝐺𝑠.

Let us then consider the conditional covariance. Now

�̂�𝐺(𝑡, 𝑠|𝑢) = E
[

(

𝐺𝑡 − �̂�𝐺
𝑡 (𝑢)

) (

𝐺𝑠 − �̂�𝐺
𝑠 (𝑢)

)

|

|

|

𝐺
𝑢

]

= E
[(

∫

𝑡

0
𝐾(𝑡, 𝑥) d𝑀𝑥 − �̂�𝐺

𝑡 (𝑢)
)(

∫

𝑠

0
𝐾(𝑠, 𝑥) d𝑀𝑥 − �̂�𝐺

𝑠 (𝑢)
)

|

|

|

|

𝑀
𝑢

]

= E
[

∫

𝑡

𝑢
𝐾(𝑡, 𝑥) d𝑀𝑥 ∫

𝑠

𝑢
𝐾(𝑠, 𝑥) d𝑀𝑥

|

|

|

|

𝑀
𝑢

]

= E
[

∫

𝑡

𝑢
𝐾(𝑡, 𝑥) d𝑀𝑥 ∫

𝑠

𝑢
𝐾(𝑠, 𝑥) d𝑀𝑥

]

= ∫

𝑡∧𝑠

𝑢
𝐾(𝑡, 𝑥)𝐾(𝑠, 𝑥) d𝑣(𝑥)

= ∫

𝑡∧𝑠

0
𝐾(𝑡, 𝑥)𝐾(𝑠, 𝑥) d𝑣(𝑥) − ∫

𝑢

0
𝐾(𝑡, 𝑥)𝐾(𝑠, 𝑥) d𝑣(𝑥)

= 𝑅(𝑡, 𝑠) − ∫

𝑢

0
𝐾(𝑡, 𝑥)𝐾(𝑠, 𝑥) d𝑣(𝑥). □

3. Gaussian Volterra process with jumps

In this section we prove our main result, the prediction formula for Gaussian Volterra processes with compound Poisson jumps.
Indeed, we consider the process 𝑋 = (𝑋𝑡)𝑡∈[0,𝑇 ] given by

𝑋 = 𝐺 + 𝐽 , (3.1)

where 𝐺 is a continuous Gaussian Volterra process and 𝐽 is an independent compound Poisson process with intensity 𝜆 and jump
distribution 𝐹 . In other words

𝐽𝑡 =
𝑁𝑡
∑

𝑘=1
𝜉𝑘,

where 𝑁 = (𝑁𝑡)𝑡∈[0,𝑇 ] is a Poisson process with intensity 𝜆 and the jumps 𝜉𝑘 , 𝑘 ∈ N , are i.i.d. with common distribution 𝐹 , and
they are independent of the Poisson process 𝑁 and the Gaussian Volterra process 𝐺 . We denote

𝜇1 = E[𝜉𝑘],
𝜇2 = E[𝜉2𝑘].

We note that it is crucial that the Gaussian Volterra part is continuous since it implies that F𝑋 = F𝐺,𝐽 , i.e. the signals 𝐺 and
𝐽 can be separated from the signal 𝑋 . We refer to Azmoodeh et al. (2014) and references therein on the continuity of Gaussian
processes.

Our main theorem is the following.

Theorem 3.1 (Mixed Prediction). Let 𝑋 be given by (3.1). Then

�̂�𝑋
𝑡 (𝑢) = 𝑋𝑢 − ∫

𝑢

0
𝛹 (𝑡, 𝑠|𝑢) d𝐺𝑠 + 𝜆(𝑡 − 𝑢)𝜇1,

�̂�𝑋 (𝑡, 𝑠|𝑢) = 𝑅(𝑡, 𝑠) − ∫

𝑢

0
𝐾(𝑡, 𝑥)𝐾(𝑠, 𝑥) d𝑣(𝑥) + 𝜆(𝑡 ∧ 𝑠 − 𝑢)𝜇2,

𝑃𝑋
𝑡 (d𝑥|𝑢) = ∫𝑦∈R

𝛷
(

d𝑥 − 𝑦; �̂�𝐺
𝑡 (𝑢), �̂�𝐺(𝑡, 𝑡|𝑢)

)

∞
∑

𝑛=0

e−𝜆(𝑡−𝑢)(𝜆(𝑡 − 𝑢))𝑛

𝑛!
𝐹 ∗𝑛 (d𝑦 − 𝐽𝑢

)

.

Here 𝐹 ∗𝑛 is the 𝑛 -fold convolution of the distribution 𝐹 :

𝐹 ∗1(d𝑥) = 𝐹 (d𝑥),

𝐹 ∗𝑛(d𝑥) = ∫𝑦∈R
𝐹 (d𝑥 − 𝑦)𝐹 ∗(𝑛−1)(d𝑦).

Proof. Let us begin with the mean �̂�𝑋
𝑡 (𝑢) . The conditional mean of 𝐺 is already known. As for the conditional mean of 𝐽 , we

have, by independence, that

�̂�𝐽 (𝑢) = E
[

𝐽 |

|𝐽
]

4

𝑡 𝑡
|

𝑢
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w

= 𝐽𝑢 + E
[

𝐽𝑡 − 𝐽𝑢
|

|

|

𝐽
𝑢

]

= 𝐽𝑢 + E
[

𝐽𝑡−𝑢
]

= 𝐽𝑢 + 𝜆(𝑡 − 𝑢)𝜇1.

The formula for the conditional mean follows from this.
Let us then consider the conditional variance �̂�𝑋 (𝑡, 𝑠|𝑢) . By independence we have

�̂�𝑋 (𝑡, 𝑠|𝑢) = �̂�𝐺(𝑡, 𝑠|𝑢) + �̂�𝐽 (𝑡, 𝑠|𝑢).

Now �̂�𝐺(𝑡, 𝑠|𝑢) is known and for �̂�𝐽 (𝑡, 𝑠|𝑢) we have

�̂�𝐽 (𝑡, 𝑠|𝑢) = Cov
[

𝐽𝑡, 𝐽𝑠
|

|

|

𝐽
𝑢

]

= Cov
[

𝐽𝑡 − 𝐽𝑢, 𝐽𝑠 − 𝐽𝑢
|

|

|

𝐽
𝑢

]

= Cov
[

𝐽𝑡−𝑢, 𝐽𝑠−𝑢
]

= 𝜆(𝑡 ∧ 𝑠 − 𝑢)𝜇2.

Finally, let us consider the conditional law 𝑃𝑋
𝑡 (d𝑥|𝑢) . By the law of total probability and independence we have

𝑃𝑡(d𝑥|𝑢) = ∫𝑦∈R
P
[

𝐺𝑡 ∈ d𝑥 − 𝑦||
|

𝐽𝑡 = 𝑦,𝑋
𝑢

]

P
[

𝐽𝑡 ∈ d𝑦||
|

𝑋
𝑢

]

= ∫𝑦∈R
P
[

𝐺𝑡 ∈ d𝑥 − 𝑦||
|

𝐺
𝑢

]

P
[

𝐽𝑡 ∈ d𝑦||
|

𝐽
𝑢

]

= ∫𝑦∈R
𝑃𝐺
𝑡 (d𝑥 − 𝑦|𝑢)P

[

𝐽𝑡 − 𝐽𝑢 ∈ d𝑦 − 𝐽𝑢
|

|

|

𝐽𝑢
]

and

P
[

𝐽𝑡 − 𝐽𝑢 ∈ d𝑦 − 𝐽𝑢
|

|

|

𝐽𝑢
]

=
∞
∑

𝑛=0
P
[

𝐽𝑡 − 𝐽𝑢 ∈ d𝑦 − 𝐽𝑢
|

|

|

𝑁𝑡 −𝑁𝑢 = 𝑛, 𝐽𝑢
]

P
[

𝑁𝑡 −𝑁𝑢 = 𝑛||
|

𝐽𝑢
]

=
∞
∑

𝑛=0
P

[ 𝑛
∑

𝑘=1
𝜉𝑘 ∈ d𝑦 − 𝐽𝑢

|

|

|

|

𝐽𝑢

]

P[𝑁𝑡−𝑢 = 𝑛]

=
∞
∑

𝑛=0
𝐹 ∗𝑛 (d𝑦 − 𝐽𝑢

)

P[𝑁𝑡−𝑢 = 𝑛]

The formula for the conditional law follows from this by plugging in 𝑃𝐺
𝑡 (d𝑥|𝑢) and the Poisson probabilities. □

Remark 3.1. It is interesting to note that just like in the Gaussian case, also in the mixed case, the conditional covariance is
deterministic.

4. Examples

In this section we give examples for different Gaussian Volterra processes 𝐺 for the prediction formula of Theorem 3.1. This
means that we give the kernel 𝐾 , the function 𝑣 , and the kernel 𝛹 .

Example 4.1 (fBm). The fractional Brownian motion 𝐵𝐻 with Hurst index 𝐻 ∈ (0, 1) is a centered Gaussian process with covariance

𝑅𝐻 (𝑡, 𝑠) = 1
2
(

𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠|2𝐻
)

.

By Norros et al. (1999) (see also (Sottinen and Viitasaari, 2017))) 𝐵𝐻 is a Gaussian Volterra process with 𝑣(𝑡) = 𝑡 and the Volterra
ernel

𝐾𝐻 (𝑡, 𝑠) = 𝑐𝐻

{

( 𝑡
𝑠

)𝐻− 1
2 (𝑡 − 𝑠)𝐻− 1

2 − (𝐻 − 1
2
)𝑠

1
2−𝐻

∫

𝑡

𝑠
𝑢𝐻− 3

2 (𝑢 − 𝑠)𝐻− 1
2 d𝑢

}

, (4.1)

ith a normalizing constant

𝑐𝐻 =

√

√

√

√

√

2𝐻𝛤 ( 32 −𝐻)

𝛤 ( 12 +𝐻)𝛤 (2 − 2𝐻)
,

and we have

𝛹𝐻 (𝑡, 𝑠|𝑢) =
sin(𝜋(𝐻 − 1

2 )) 𝑠
1
2−𝐻 (𝑢 − 𝑠)

1
2−𝐻

𝑡 𝑧𝐻− 1
2 (𝑧 − 𝑢)𝐻− 1

2
d𝑧. (4.2)
5
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E

w
(

Example 4.2 (ccmfBm). The long-range dependent completely correlated mixed fractional Brownian motion (ccmfBm) was
introduced in Dufitinema et al. (2021). It is a Gaussian process

𝑀 = 𝑎𝑊 + 𝑏𝐵𝐻

where 𝐵𝐻 is a fractional Brownian motion with 𝐻 > 1∕2 , and it is constructed from the Brownian motion 𝑊 by using the Volterra
representation

𝐵𝐻
𝑡 = ∫

𝑡

0
𝐾𝐻 (𝑡, 𝑠) d𝑊𝑠

(see Example 4.1 above). The ccfBm, 𝑀 is also a Gaussian Volterra process with 𝑣(𝑡) = 𝑡 and the Volterra kernel

𝐾𝑎,𝑏,𝐻 (𝑡, 𝑠) = 𝑎 𝟏𝑡(𝑠) + 𝑏𝐾𝐻 (𝑡, 𝑠).

In other word, it has the following Volterra representation

𝑀𝑡 = ∫

𝑡

0
𝐾𝑎,𝑏,𝐻 (𝑡, 𝑠) d𝑊𝑠,

and so

𝛹𝑎,𝑏,𝐻 (𝑡, 𝑠|𝑢) = (K∗
𝑎,𝑏,𝐻 )−1

[

𝐾𝑎,𝑏,𝐻 (𝑡, ⋅) −𝐾𝑎,𝑏,𝐻 (𝑢, ⋅)
]

(𝑠).

Here

K∗
𝑎,𝑏,𝐻 [𝑓 ](𝑡) = 𝑎𝑓 (𝑡) +

𝑏 𝑐(𝐻)(𝐻 − 1
2 )

𝑡𝐻− 1
2

∫

𝑇

𝑡
𝑓 (𝑢) 𝑢𝐻− 1

2

(𝑢 − 𝑡)
3
2−𝐻

d𝑢,

for all 𝑓 ∈ 𝛬𝑎,𝑏,𝐻 , the space of all integrands from 𝑀 , which is simply 𝐿2[0, 𝑇 ] in this case. The (K∗
𝑎,𝑏,𝐻 )−1 is the inverse operator

of K∗
𝑎,𝑏,𝐻 , where from Dufitinema et al. (2021)

(K∗
𝑎,𝑏,𝐻 )−1[𝑓 ](𝑡) = 𝑓 (𝑇 )𝐾−1

𝑎,𝑏,𝐻 (𝑡, 𝑇 ) − ∫

𝑇

𝑡
𝑓 (𝑠)𝐾−1

𝑎,𝑏,𝐻 (d𝑠, 𝑡),

𝐾−1
𝑎,𝑏,𝐻 (𝑡, 𝑠) = 1

𝑎
𝟏𝑡(𝑠) +

1
𝑎

∞
∑

𝑘=1
(−1)𝑘

( 𝑏
𝑎

)𝑘
𝛾𝑘(𝑡, 𝑠),

𝛾𝑘(𝑡, 𝑠) =
𝑐(𝐻)𝑘𝛤 (𝐻 + 1

2 )
𝑘

𝛤 (𝑘(𝐻 − 1
2 ))

1

𝑠𝐻− 1
2
∫

𝑡

𝑠
𝑢𝐻− 1

2 (𝑢 − 𝑠)𝑘(𝐻− 1
2 )−1d𝑢.

xample 4.3 (mfBm). The mixed fractional Brownian motion (mfBm) is the process

�̃� = 𝑊 + 𝐵𝐻

here the Brownian motion 𝑊 and the fractional Brownian motion 𝐵𝐻 are independent. The mfBm was introduced by Cheridito
2001). In Cai et al. (2016) it was shown that the mfBm is a Gaussian Volterra process with 𝑣(𝑡) = 𝑡 and a certain kernel �̃�𝐻 .

Indeed, let 𝐻 > 1∕2 and let 𝐿(𝑡, 𝑠) be the solution of the equation

𝐿(𝑡, 𝑠) +𝐻(2𝐻 − 1)∫

𝑡

0
𝐿(𝑡, 𝑥)|𝑠 − 𝑥|2𝐻−2 d𝑥 = −𝐻(2𝐻 − 1)|𝑡 − 𝑠|2𝐻−2, 0 ≤ 𝑠, 𝑡

Then by Theorem 2.2 of Cai et al. (2016) we have the following: denote

𝜙(𝑡) = 1 − ∫

𝑡

0
𝐿(𝑡, 𝑥) d𝑥.

Then

�̃�𝑡 = E
[

∫

𝑡

0
𝜙(𝑠) d𝑊𝑠

|

|

|

|

�̃�
𝑡

]

= ∫

𝑡

0
𝑞(𝑡, 𝑠) d�̃�𝑠,

is a Brownian motion, where 𝑞(𝑡, 𝑠) is the unique solution of the Wiener–Hopf equation:

𝑞(𝑡, 𝑠) +𝐻(2𝐻 − 1)∫

𝑡

0
𝑞(𝑡, 𝑥)|𝑠 − 𝑥|2𝐻−2 d𝑥 = 𝜙(𝑠), 0 ≤ 𝑠, 𝑡

and

�̃�𝑡 = ∫

𝑡

0
�̃�𝐻 (𝑡, 𝑠) d�̃�𝑠,

where

�̃�𝐻 (𝑡, 𝑠) = − 𝜕 𝑡
𝑞(𝑡, 𝑥)d𝑥.
6
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Fig. 1. Real value path, conditional mean, continuous noise path, and the jump part of the process 𝑋 = 𝐵𝐻 −𝑁 .

and here we have

�̃� (𝑡, 𝑠|𝑢) = (K̃∗
𝐻 )−1

[

�̃�𝐻 (𝑡, ⋅) − �̃�𝐻 (𝑢, ⋅)
]

(𝑠),

where

K̃∗
𝐻 [𝑓 ](𝑡) = 𝑓 (𝑡)�̃�𝐻 (𝑇 , 𝑡) + ∫

𝑇

𝑡
[𝑓 (𝑢) − 𝑓 (𝑡)] �̃�𝐻 (d𝑢, 𝑡),

for all 𝑓 ∈ �̃� , the space of all integrands from �̃� , and (K̃∗
𝐻 )−1 is the inverse operator of K̃∗

𝐻 .

5. Simulation

We consider the case 𝑋 = 𝐵𝐻 −𝑁 where 𝐵𝐻 is a fractional Brownian motion (fBm) with Hurst index 𝐻 and 𝑁 is a Poisson
process with parameter 𝜆 . The paths of this process 𝑋𝑡 and its conditional mean �̂�𝑋

1 (𝑡) for time 𝑡 , are given in Fig. 1 below. Plots
of Fig. 1 for different 𝜆 and 𝐻 are simulated for 𝑁 = 1000 time points in a period of [0, 1] . As one can see, the closer to the
maturity time 𝑡 = 1 , the more accurate the conditional mean is.

Data availability

No data was used for the research described in the article.
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