
Received: 26 April 2023 - Revised: 31 July 2023 - Accepted: 16 October 2023 - IET OptoelectronicsDOI: 10.1049/ote2.12108

OR I G INAL RE SEARCH

Ensemble learning based defect detection of laser sintering

Junyi Xin1 | Muhammad Faheem2 | Qasim Umer3,4 | Muhammad Tausif 4 |
M. Waqar Ashraf 5

1School of Information Engineering, Hangzhou
Medical College, Hangzhou, Zhejiang, China

2School of Technology and Innovations, University
of Vaasa, Vaasa, Finland

3Department of Computer Science, Hanyang
University, Seoul, Korea

4Department of Computer Science, COMSATS
University Islamabad, Vehari, Pakistan

5Department of Computer Engineering, Bahauddin
Zakariya University, Multan, Pakistan

Correspondence

Muhammad Faheem.
Email: muhammad.faheem@uwasa.fi

Abstract
In rapid development, Selective Laser Sintering (SLS) creates prototypes by processing
industrial materials, for example, polymers. Such materials are usually in powder form and
fused by a laser beam. The manufacturing quality depends on the interaction between a
high‐energy laser beam and the powdered material. However, in‐homogeneous temper-
ature distribution, unstable laser powder, and inconsistent powder densities can cause
defects in the final product, for example, Powder Bed Defects. Such factors can lead to
irregularities, for example, warping, distortion, and inadequate powder bed fusion. These
irregularities may affect the profitable SLS production. Consequently, detecting powder
bed defects requires automation. An ensemble learning‐based approach is proposed for
detecting defects in SLS powder bed images from this perceptive. The proposed
approach first pre‐processes the images to reduce the computational complexity. Then,
the Convolutional Neural Network (CNN) based ensembled models (off‐the‐shelf CNN,
bagged CNN, and boosted CNN) are implemented and compared. The ensemble
learning CNN (bagged and boosted CNN) is good for powder bed detection. The
evaluation results indicate that the performance of bagged CNN is significant. It also
indicates that preprocessing of the images, mainly cropping to the region of interest,
improves the performance of the proposed approach. The training and testing accuracy
of the bagged CNN is 96.1% and 95.1%, respectively.
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1 | INTRODUCTION

Selective Laser Sintering (SLS) is a rapidly growing technique
for prototyping and additive manufacturing (also known as
‘Rapid Manufacturing’) [1, 2]. The main advantage of SLS is
that it can process most of the commonly used industrial
materials, for example, polymers [3]. However, the process of
SLS uses different polymers, that is, polyamides, polystyrene,
thermoplastic elastomers, and polypropylene with their vari-
ants [4]. Such material is provided in powdered form, which is
fused by a high‐energy source, for example, a laser beam. The
fusion creates complex three‐dimensional shapes guided by
Computer‐Aided Design (CAD). Moreover, SLS has a signif-
icant advantage over traditional manufacturing because of its
ability to create complex three‐dimensional objects [5].

The manufacturing quality depends on the interaction
between a high‐energy laser beam and the powdered material.
This process of fusion and solidification of powdered material
produces high‐quality parts. Good and reproducible quality
parts can be created by implementing a reliable and auto-
mated production process and quality control [6]. Moreover,
the quality of SLS production depends on the fusion of
powdered material, powder bed, and powder spreading [7, 8].
Many technical complexities can cause defects in the final
product, for example, Powder Bed Defects (PBDs), in‐
homogeneous temperature distribution, unstable laser pow-
der, and inconsistent powder densities [9]. These factors can
lead to many irregularities in powder beds, that is, spatter [10],
warping [11], distortion [12], and inadequate powder bed
fusion [13].
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Quality production is very critical to achieving profitable
SLS production. The above‐mentioned defects can lead to bad
quality products, material waste, and additional costs [9].
Consequently, detecting the powder bed defects in the SLS
process is critical for SLS production.

Machine/Deep Learning (M/DL) algorithms are
commonly implemented for the automatic detection and
monitoring of defects in SLS powder beds [9, 14, 15]. Such
algorithms acquire the pre‐processed high‐quality images of
powder beds. The conventional ML algorithms, that is, deci-
sion tree, linear regression, and support vector machine, are
limited to processing raw unstructured data (images) [16].
Consequently, DL algorithms, especially ensemble learning are
better in this scope and can provide the solution to the said
problem in an effective manner [17]. Ensemble learning al-
gorithms combine multiple DL models to reduce the error by
compensation. As a result, the overall prediction performance
could be increased [18].

From this perceptive, this paper proposes an ensemble
learning‐based approach for defect detection for SLS powder
bed images (called ‘ELA‐SLS’ as short in the remaining docu-
ment). The proposed approach first pre‐processes the images
to reduce the computational complexity. Then, the Convolu-
tional Neural Network (CNN) based ensemble models (off‐
the‐shelf CNN, bagged CNN, and boosted CNN) are imple-
mented and compared. The evaluation results indicate that the
performance of bagged CNN is significant. The training and
testing accuracy of the bagged CNN is 96.1% and 95.1%,
respectively. The main contributions made in this paper are: (1)
An automated ensemble learning‐based approach is proposed
to identify defects in SLS images. To our knowledge, it is the
first ensemble learning‐based approach for defect detection for
SLS powder beds, and (2) The evaluation results indicate that
the proposed ensemble learning‐based approach accurately
identifies defects in SLS images. The training and testing ac-
curacy of bagged CNN is 96.1% and 95.1%, respectively.

The organisation of the rest of the paper is as follows.
Section 2 discusses the research background. Section 3 de-
scribes the details of the proposed approach. Section 4 de-
scribes the evaluation methods for the proposed approach and
obtained results. Section 5 concludes the paper.

2 | RELATED WORK

ML algorithms commonly identify defects in various Additive
Manufacturing (AM) process stages. Much research has been
proposed for defect detection in powder beds. However, ma-
chine/deep learning based proposed solutions are discussed in
this section. Westphal et al. [14] proposed a CNN‐based defect
detection in powder beds during selective laser sintering. They
generated a dataset of 9426 images and exploited the CNN‐
based technique on the dataset for defect detection in pow-
der beds. They also implemented VGG‐16 models for the
classification of images to identify defects. The proposed
model's performance (accuracy precision, recall, and F1‐score)
was 0.958, 0.939, 0.980, and 0.959, respectively.

Xiao et al. [9] proposed a two‐stage CNN‐based approach
for detecting PBDs caused during the powder bed fusion
(PBF) process. The proposed technique detects three types of
PBDs in the SLS process, that is, warpage, part shifting, and
short feed. To this end, 460 images were collected by the digital
camera. They used 400 images to train the proposed model,
whereas 60 images were used for validation and testing. The
proposed approach showed that the accuracy of defect
detection was improved significantly. The accuracy of the
classifier was 94%, 96%, and 94% for warpage, part shifting,
and short feed defects, respectively.

Gobert et al. [19] proposed a Linear Support Vector Ma-
chine (SVM) based technique for fault detection during the
PBF process. They used a high‐resolution Digital Single‐Lens
Reflex (DSLR) camera to acquire layer‐by‐layer images of the
powder beds. The classifier was trained with the acquired im-
ages. The validation results showed that the accuracy of the
proposed ML technique was greater than 80%.

Qi et al. [20] proposed a neural network‐based approach to
identify the defects in AM by performing complex pattern
recognition. They analysed several aspects of the laser sintering
process, that is, model design, in−situ monitoring and quality
evaluation. in−situ monitoring gives insight into the product's
quality based on sensors' inputs. Consequently, it is very
important to detect defects during AM process. They used a
Spectral Convolutional Neural Network (SCNN) for in−situ
monitoring. The proposed approach achieved the accuracy of
89% for poor workpiece quality.

Scime et al. [21] introduced a computer vision‐trained al-
gorithm to detect and classify the anomalies in the Laser
Powder Bed Fusion (LBPF) process. They utilised convolu-
tional Neural Network (CNN) machine learning algorithm.
Moreover, CNN is applied on the laser sintering images in
layers (Segment‐wise). They suggested that M/DL algorithms
may provide better accuracy for detecting anomalies in the
LBPF process.

Baumgartl et al. [22] analysed the defects occurred during
LPBF process. For this purpose, they used off‐axis imaging as
a data source. They proposed a deep learning‐based neural
network approach for detecting defects during printing, for
example, de‐lamination and splatter. The proposed techniques
achieved an accuracy of 96.80% for de‐lamination and splatter,
respectively.

Yadav et al. [23] reviewed the ML techniques for in−situ
monitoring to detect and monitor defects during the LPBF
process. They considered the most prevalent defects during
LPBF, for example, lack of fusion, part distortions, and balling.
It was concluded in the review article that the in−situ moni-
toring is still in the early stages. The defect detection process
should be investigated further for SLS and LPBF processes.

Zhang et al. [24] proposed a neural learning‐based
approach to detect internal material flaws in metallic Addi-
tively Manufactured (AM) materials. They analysed the pulsed
thermography (PT) images generated by a high‐intensity flash
lamp and a high‐sensitivity infrared camera to capture tem-
perature variations. Furthermore, they utilised Neural Learning
based Blind Source Separation (NLBSS) algorithm to detect
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experimental thermal imaging data defects. This approach
showed promising results for detecting small material defects
with signal contrast levels approaching the sensitivity limit of
the IR camera. Moreover, merging artificial intelligence (AI)
with photo‐thermic for non‐destructive evaluation (NDE)
system detect internal calibrated defects of various sizes and
depths in AM nuclear‐grade metallic alloys.

Chen et al. [25] proposed a two‐stage Convolutional
Neural Network (CNN) based approach for defect detection in
metal laser melting manufacturing (MAM). In this detection
method, images are recorded by powder bed fusion equipment.
The proposed approach focuses on three powder‐spreading
defects, that is, powder‐unevenness, powder‐uncovered, and
re‐coater scratches. The proposed method, the Mask‐R‐CNN
network, achieved an accuracy of 0.9272 with a computa-
tional time of approximately 0.2197 s per image.

Okaro et al. [26] proposed a semi‐supervised machine
learning approach for automatically detecting defects in AM
images. The proposed semi‐supervised machine learning
approach utilised Gaussian Mixture Model (GMM). The pro-
posed approach focuses on Laser Powder‐Bed Fusion (L‐PBF)
builds and extracts key features from large sets of photodiode
data obtained during the building of 49 tensile test bars. The
proposed approach achieved a success rate of 77% for
defected AM images. However, in the semi‐supervised ma-
chine learning approach, the number of expensive certifica-
tions are considerably decreased.

In conclusion, although much research has been conducted
to detect defects in different domains, the defect detection of
the laser sintering process requires automation. Researchers
should address defect detection for laser sintering. From this
perspective, this research proposes an ensemble learning‐based
technique with Bagged CNN and boosted CNN approach to
detect defects in SLS powder beds.

3 | METHODOLOGY

3.1 | Overview

The outline of ELA‐SLS is depicted in Figure 1. The key steps
of the approach for defect prediction are as follows:

1. We exploit dataset SLS Powder bed defects1 created by
Westphal and Seitz [14].

2. Second, the collected images are pre‐processed to reduce
computational complexity.

3. Off‐the‐shelf CNN, bagged CNN, and boosted CNN
models are implemented and compared. Notably, Off‐the‐
shelf CNN refers to pre‐trained CNN that are readily
available and can be used for various tasks without the need
for extensive training from scratch.

4. The deep learning ensemble models are trained and tested
for defect prediction.

3.2 | Problem definition

A powder bed p from a set of powder beds P can be presented
as follows:

p¼ <i; s> ð1Þ

where, i and s represent an image of p and the status of p,
respectively.

The main objective of this paper is to design an ensemble
learning classification algorithm that can predict the defect in
powder beds during SLS process. The defect prediction of a
new powder bed p into a defined class c can be represented as a
function f as follows:

c ¼ f ðpÞ c ∈ fperf ect; def ectg; p ∈ P ð2Þ

where, c, f, p, and P represent the class: perfect or defect, the
classification function of powder bed defect prediction, a
powder bed which is an input of the function, and a set of
powder beds, respectively.

3.3 | Pre‐processing

The images obtained from the dataset are pre‐processed before
applying ensemble learning techniques. Pre‐processing allows
us to eliminate the irrelevant and impotent features from the
images of powder beds [15]. Pre‐proceeding removes the
irrelevant black border area by resizing the images, and extracts
the optimised centred square images. Moreover, resizing the
images result in higher efficiency, processing time and noise
reduction. The images before and after pre‐processing are
presented in Figure 2.

The pre‐processing of the powder bed images starts with
the images are converted into greyscale to reduce the
complexity of computations. Next, the images are resized from
640 � 480 px. to 300 � 300 px. Resizing is done to reduce
unnecessary information. After that, the images are normalised
by the re‐scaling factor of 1/255. Finally, shear rate, height
shift, and width shift are adjusted to 0.15, 0.20, and 0.20,
respectively.

After the pre‐processing of powder bed images, Equa-
tion (1) can be represented as follows:

p0 ¼ <i0; s> ð3Þ

where, p0 and i0 present pre‐processed powder bed and pre‐
processed image, respectively.

3.4 | Off‐the‐shelf Convolutional Neural
Network (CNN)

CNN is commonly used to solve complex computer vision‐
based problems [27]. The CNN approach is also proven very
effective in classifying during additive manufacturing [5]. It is a1

https://data.mendeley.com/datasets/2yzjmp52fw/1, accessed on 15 March 2023.
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multi‐layer technique in which the first layer is an input layer,
the last layer is an output layer, and at least one convolution
layer is used between them. In the convolution layer, multiple
filters are modelled to exploit patterns in the powder bed
images. Figure 3 shows the multiple‐layered model of off‐the‐
shelf CNN.

Three convolution layers are proposed in off‐the‐shelf
CNN. Convolution layer number one, two, and three are
defined by Equations (4), (5), and (6), respectively.

Jn ¼ f ðIn; σ1; σ2;…; σkÞ ð4Þ

Kn ¼ f ðJn; ω1;ω2;…;ωkÞ ð5Þ

Ln ¼ f ðKn; ϕ1;ϕ2;…;ϕkÞ ð6Þ

where, σ, ω, and ϕ are the filters at layer Jn, Kn, and L,
respectively.

Algorithm 1 Bagged CNN.

1: procedure BAGGED CNN
2: Input: X, y, Nm

3: Initialise: p ← 1
4: while p ≤ Nm do
5: (Xc, yc) ←

R
rep(X, y) // generate

subset (Xp, yp) of (X, y) for random
sampling with a replacement
function

R
rep

6: Xp �������!

R m

p
ðσ;Wm

p;b
m
pÞ
yp // Training

of the ‘pth’ model in an ensemble
using the (Xp, yp)

7: p ← p þ 1
8: end while
9: Output:

R m
1

�
σ;Wm

1;b
m
1

�
;…;
R m
N

�
σ;WNmm;bN

m
m

�

10: end procedure

F I GURE 1 Overview of ELA‐SLS.

F I GURE 2 Impact of image preprocessing.
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where, X, y, N, c, Xc, yc,
R
rep, σ, W, b, and

R m
1

�
σ;Wm

1;b
m
1

�
;…;
R m
N

�
σ;WNmm;bN

m
m

�
are input

features, an instance of the occurrence of a
SLS powder bed defects, number of the models
in bagging, current model, features subset X
for c model, yc is the instance of defects for
c model, replacement function, non-linear
activation function, weights, bias, and set
of models in bagging.

3.5 | Ensemble models

Ensemble learning methods are used in deep learning tasks
that combine multiple base‐learners [18]. Ensemble learning
methods are used in many advanced deep learning problems.
Moreover, ensemble learning methods improve the detective
performance of the classifier. Three basic steps are involved in
ensemble learning models. First, the Ensemble learner extracts
the set of features. Second, multiple deep learning algorithms
generate detection results based on the extracted features.
Third, the generated information extracted by various deep
learning algorithms is fused to achieve better detection results
[28]. Boosting and bagging are well‐known ensemble learning
methods [29]. Boosted CNN and Bagged CNN ensemble
learning models are proposed in this paper. Both models are
constructed to analyse the defects in powder beds during SLS

process, where bagging involves training multiple CNN in-
stances with slightly different datasets, adopting model
robustness, generalisation, and defence against overfitting.
Boosting involves iteratively training a sequence of feeble
classifiers to construct a potent ensemble classifier. This
ensemble methodology capitalises on diverse model strengths,
potentially yielding improved performance and deeper
comprehension of intrinsic features and patterns for good and
defective image classification. The proposed approach explores
the potential advantages and effectiveness of bagging and
boosting techniques in laser sintering image classification.

The proposed approach incorporates the Gradient‐
weighted Class Activation Mapping (Grad‐CAM) technique,
which is utilised to highlight significant regions and features
within images visually. These identified features play a crucial
role in classifying good and defective images. Grad‐CAM
generates informative heat maps that pinpoint the specific
areas in an image that have the greatest influence on the neural
network's decision‐making process.

To generate a class activation map, Grad‐CAM combines
the gradient information from the final convolutional layer of a
convolutional neural network (CNN) with global average
pooling. Thismap effectively emphasises the regions in the input
image that contribute most significantly to the predicted class.

3.5.1 | Bagged CNN

In the bagged CNN algorithm, multiple models are trained on a
subset of extracted features. Multiple off‐the‐shelf CNN algo-
rithms are applied to the subset, generating a single output from
each model. The individual outputs of off‐the‐shelf CNN re-
sults aggregate in the one output of the bagged CNN. Figure 4b
demonstrates the bagged CNN architecture. The mathemat-
ical expression of the output is given in Equation (7). Moreover,
the algorithm of bagged CNN is given in Algorithm 1.
Z m

1

�
δ;Wm

1 ; b
m
1

�
;

Z m

2

�
δ;Wm

2 ; b
m
2

�
;…;

Z m

N

�
δ;WN

m
m; bN

m
m
�

ð7Þ
F I GURE 3 Off‐the‐shelf Convolutional Neural Network (CNN)
architecture.

F I GURE 4 Architecture of off‐the‐shelf, bagged, and boosted Convolutional Neural Network (CNN).
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3.5.2 | Boosted CNN

In boosted CNN algorithm, multiple models are also trained
on a subset of extracted features. However, the output of each
CNN model is feedback as input to the preceding CNN
model. CNN learns hierarchically abstracted features from
images. However, CNN only learns features through a feed-
forward structure, and no feedback information from top to
bottom layers is in its structure to enable the networks to refine
themselves. Therefore, a feedback layer is added in boosted
CNN to boost the performance based on the previous pre-
diction recurrently. The same process is repeated until nth
CNN achieves a single output. Figure 4a demonstrates the
boosted CNN architecture. Moreover, the algorithm of boos-
ted CNN is given in Algorithm 2. The configuration of bagged
CNN and Boosted CNN are presented in Table 1.

Algorithm 2 Algorithm of boosted CNN.

1: procedure BOOSTED CNN
2: Input: X, y, Nb, αt

3: Initialise: p ← 2

4: X �������!

R b

1
ðσ;Wb

1;b
b
1Þ
y // Train

Initial model (X, y)
5: while p ≤ Nb do
6: ttemp ← y − αb

Pp¼1
q¼1

R b
q ð:Þ

7: X �������!

R b

p
ðσ;Wb

p;b
b
pÞ
ytemp // Train

Initial model (X, y)
8: p = p þ 1
9: end while
10: Output:

R b
1

�
σ;Wb

1;b
b
1

�
;…;
R b
N

�
σ;WNbbm;bN

b
bm

�

11: end procedure

where, X, y, N, c, σ, W, b,
R b
1

�
σ;Wb

1;b
b
1

�
, and

R b
1

�
σ;Wb

1;b
b
1

�
;…;
R b
N

�
σ;WNbbm;bN

b
bm

�
are input

features, an instance of the occurrence of a
SLS powder bed defects, number of the models
in bagging, current model, non-linear
activation function, weights, bias, cth
model, and set of models in boosting.

4 | EVALUATIONS

This section introduces the research questions, dataset, and
selected experiment metrics, provides the experiment results by
investigating the research questions, and explains the threats to
validity of ELA‐SLS.

4.1 | Research questions (RQs)

� RQ1: Does ELA‐SLS surpasses the baseline approaches? if
yes, to what extent?

� RQ2: Does pre‐processing of dataset images affect the
working of ELA‐SLS?

We compare off‐the‐shelf CNN, bagged CNN (the pro-
posed approach), and boosted CNN to check the performance
of ELA‐SLS as an investigation of RQ1.

We compare the performance results of bagged CNN by
enabling and disabling the pre‐processing step to check the
impact of pre‐processing on ELA‐SLS as an investigation of
RQ2.

4.2 | Metrics

We compute the accuracy and loss during the training and
testing of ELA‐SLS for its performance evaluation.

Accuracy is a measurement that gives insight into model
performance. The accuracy is measured by taking the ratio
of correct defects detection to the total defects detection.
The mathematical expression of accuracy is given by
Equation (8).

Accuracy¼
Correct Def ect Detections

Total Detections
ð8Þ

The computation of the performance loss is critical in
evaluating the performance of the ensemble learning algo-
rithms. Loss is measured by taking the difference between the
detected and actual values. The mathematical expression of
loss is expressed in Equation (9).

Loss¼ absðModel Predicted Value − Actual ValueÞ ð9Þ

This binary classification measures the loss in cross‐
entropy form (log loss). The mathematical expression of log
loss is expressed in Equation (10).

LogLoss¼
1
N

XN

i¼0
−
�
yi � log

�
pi
�
þ
�
1 − yi

�
� log

�
1 − pi

��
ð10Þ

TABLE 1 Configurations of bagged and boosted Convolutional
Neural Networks (CNNs).

Parameter Value

No hidden layers 2

Activation function (input layer) Relu

Activation function (output layer) Sigmoid

Optimiser Adam

No. of epochs 300

No. of nodes (input layer) 46

No. of nodes (hidden layer 1) 46

No. of nodes (hidden layer 2) 30

No. of nodes (output layer) 1
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where, pi is the probability of occurrence of defects in powder
beds, and (1 − pi) is the probability of occurrence of non‐
defects in powder beds.

4.3 | Dataset

We exploit dataset SLS Powder bed defects1 created by West-
phal and Seitz [14], to measure the performance of the pro-
posed defect prediction model. The samples images of good
powder bed and defected powder bed are shown in Figure 5a,
b, respectively. The images presented in Figure 5b illustrate the
irregularities and inconsistencies caused during the laser sin-
tering process. The dataset contains 8514 powder bed images
of 640 � 480 px resolution of both classes: defected and
uniform powder bed images. Note that the performance of
off‐the‐shelf CNN, bagged CNN, and boosted CNN is eval-
uated based on selected metrics. The 80% of the data is used
for training, and 20% of the data is used for testing for the
evaluation of ELA‐SLS. Although the common approach is
using a 0.8/0.1/0.1 split for training, testing, and validation, it
can be prone to data leakage and data overlapping is possible.
Therefore, the dataset is shuffled before the training and
testing categorisation (80%:20%) of images to avoid biasness.

4.4 | Evaluation results

4.4.1 | RQ1: Performance of ELA‐SLS

To answer the RQ, the accuracy is evaluated for three hundred
(300) epochs for the selected classifier. The evaluation results
of off‐the‐shelf CNN, bagged CNN, and boosted CNN are
demonstrated in Figure 6.

The following observations are made from Figure 6a–d.

� The training and testing accuracy of bagged CNN is 96.1%
and 95.1%, respectively. The accuracy of bagged CNN for
300 epochs is presented in Figure 6b. The bagged CNN
model is designed and trained to establish a balance among
different variables, the count of bags (distinct subsets of
training data), and the allocation of resources within the
network's architectural framework. It is evident from

Figure 6b that the bagged CNN is in a balanced shape.
Although the performance of the existing approach [14] is
close to the proposed approach, the proposed approach
introduces an ensemble learning CNN method of image
classification rather than using the Off‐the‐shelf CNN
approach exploited by Westphal and Seitz [14].

� The training and testing accuracy of boosted CNN is 94.8%
and 94%, respectively. The accuracy of bagged CNN for 300
epochs is presented in Figure 6c. It is evident from Figure 6c
that the boosted CNN is in a balanced shape. However, the
accuracy of bagged CNN is better than the boosted CNN.

� The training and testing accuracy of off‐the‐shelf CNN is
86.3% and 86.2%, respectively. The accuracy of off‐the‐
shelf CNN for 300 epochs is presented in Figure 6a. It is
evident from Figure 6a that the off‐the‐shelf CNN is also in
a balanced shape. However, the accuracy of off‐the‐shelf
CNN is worse than the bagged and boosted CNN.

� The training/testing accuracy performance of bagged CNN,
boosted CNN, and Off‐the‐Shelf CNN is compared to
analyse these results. The comparison of the accuracy of all
the models is presented in Figure 6d. The accuracy of
bagged and boosted CNN is better than off‐the‐shelf CNN.
Moreover, the accuracy of bagged CNN is better boosted
CNN. It is concluded that the accuracy of bagged CNN is
better for detecting defects in powder beds than boosted
CNN and off‐the‐shelf CNN.

Furthermore, we compute the loss of bagged CNN,
boosted CNN, and off‐the‐shelf CNN. The evaluation results
of these approaches are demonstrated in Figure 7 which are
evaluated for three hundred epochs.

The following observations are made from Figure 7a–d.

� The training and testing log losses of bagged CNN are
0.0273 and 0.031, respectively. The loss of bagged CNN for
300 epochs is presented in Figure 7b.

� The training and testing log losses of boosted CNN are
0.031 and 0.03247, respectively. The loss of bagged CNN
for 300 epochs is presented in Figure 7c. Compared to
bagged CNN, the values of log losses are higher in boosted
CNN.

� The training and testing log losses of off‐the‐shelf CNN are
0.042 and 0.043, respectively. The loss of bagged CNN for

F I GURE 5 Samples of defected powder beds from the exploited dataset.
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300 epochs is presented in Figure 7a. The values of log
losses of off‐the‐shelf CNN are higher than boosted CNN.

� To compare the log losses of bagged CNN, boosted CNN,
and off‐the‐shelf CNN, the losses are evaluated and
compared over 300 epochs, which is presented in Figure 7d.
It is evident from these log loss results that off‐the‐shelf
CNN is the least efficient. Moreover, bagged CNN has
the lowest value of losses, and it is the most efficient
technique to detect the defects in powder beds.

The preceding analysis indicates that the performance of
bagged CNN is significant is contrast to off‐the‐shelf and
boosted CNN in defect detection for SLS powder beds.

4.4.2 | RQ2: Influence of preprocessing on ELA‐
SLS

The evaluation results of ELA‐SLS are presented in Table 2.
The evaluation results of ELA‐SLS for different settings of

pre‐processing (enable/disable) based on their accuracy and
loss are (95.01% and 0.31) and (90.56% and 0.38), respectively.

From Table 2, it is observed that disabling pre‐processing
brings out the significant difference in accuracy from 95.01%
to 90.56% and loss from 0.31 to 0.38. It is concluded that pre‐
processing of images is critical for detecting defects, and
disabling it would significantly reduce the performance of
ELA‐SLS.

In conclusion, the proposed approach is significant for the
classification of powder bed images and important for the laser
science community. For example, powder bed images obtained
during the additive manufacturing process contain valuable
information about the quality and integrity of the printed parts.
The proposed approach can effectively detect and classify
various defects, that is, cracks, porosity, or incomplete fusion,
and could be helpful in real‐time monitoring of the powder
bed during the additive manufacturing process. By continu-
ously analysing the images, these models can detect anomalies
or deviations from expected patterns, allowing immediate
intervention if a defect or issue arises.

F I GURE 6 Performance (accuracy) of off‐the‐shelf, bagged, and boosted Convolutional Neural Network (CNN).
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4.5 | Threats to validity

The probability of incorrect classification of powder bed im-
ages is the first threat to construct validity. This research as-
sumes that the assigned labels by Westphal and Seitz [14] are
correct. However, incorrect labelling of data may cause the
productivity of ELA‐SLS.

The choice of assessment metrics of ELD‐SLS is another
threat to construct validity. The chosen metrics for detecting
news are the most accepted in the literature for the classifi-
cation task.

The coding of off‐the‐shelf CNN, bagged CNN, and
boosted CNN is a threat to internal validity. The coding and
the produced results of ELA‐SLS for all variants are verified to

mitigate the threat. However, unknown errors may cause the
productivity of ELA‐SLS.

5 | CONCLUSION

The paper proposes an ensemble learning‐based approach to
predicting defects in powder beds during SLS process. Off‐
the‐shelf CNN, boosted CNN, and bagged CNN tech-
niques are implemented and evaluated to achieve the objec-
tive. The proposed models are evaluated with an open‐source
dataset collected from Kaggle. It was evident from the
comparative results that both ensemble learning models, that
is, boosted CNN and bagged CNN performed better than
off‐the‐shelf CNN. Moreover, bagged CNN is the most
accurate for detecting defects in powder beds. The results
also indicate that pre‐processing of the images, mainly
cropping to the region of interest, improves the performance
of the proposed approach.

Our aim for the future is to enhance the comprehen-
sibility of detection algorithms. Currently, these algorithms

TABLE 2 Influence of preprocessing on bagged Convolutional
Neural Network (CNN).

Preprocessing Accuracy Loss

Enable 95.01% 0.31%

Disable 90.56% 0.38%

F I GURE 7 Losses of off‐the‐shelf, bagged, and boosted Convolutional Neural Network (CNN).
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frequently employ complex deep learning models that lack
transparency, resulting in a challenge to discern the
reasoning behind their decisions. To address this issue,
future research may concentrate on creating more tra-
nsparent models or instruments that facilitate users in
comprehending the decision‐making process of these
algorithms.
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