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ABSTRACT : 
Object detection is one of the main tasks in computer vision, which includes image classification 
and localization. The application of object detection is now widespread as it powers various ap-
plications such self-driving cars, robotics, biometrics, surveillance, satellite image analysis, and 
in healthcare, to mention just a few. Deep learning has taken computer vision to a different 
horizon. One of the areas that will benefit immensely from deep learning computer vision is the 
detection of killer starfish, the crown-of-thorns starfish (COTS). For decades, this killer starfish 
has dealt a big blow to the Great Barrier Reef in Australia, the world’s largest system of reefs 
and in other places too. In addition to impacting negatively environmentally, it affects revenue 
generation from reef tourism. Hence, reef managers and authorities want to control the popu-
lations of crown-of-thorns starfish, which has been observed to be the culprits. Deep learning 
technique offers a real-time and robust detection of this creature more than earlier traditional 
methods that were used to detect these creatures. 
 
This thesis work, which is part of a competition for a deep learning approach to detect COTS in 
real-time by building an object detector trained using underwater images. This offers a solution 
to control the outbreaks in the population of these animals. Deep learning methods of Artificial 
Intelligence (AI) have gained popularity today because of their speed and high accuracy in de-
tection and have performed better than the earlier traditional methods. They can be used in 
real-time object detection, and they owe their speed to convolutional neural networks (CNN). 
The thesis gives a comprehensive literature review of the journey so far in the field of computer 
vision and how the deep learning methods can be applied to detect COTS. It also outlines the 
steps involved in the implementation of the model using the state-of-the-art computer vision 
algorithm known for its speed and accuracy – YOLOv8. The COTS detection model was trained 
using the custom dataset provided by the organizers of the competition, harnessing the powers 
of the deep learning methods such as transfer learning, data augmentation, and preprocessing 
of underwater images to achieve high accuracy.  
 
Evaluation of the results obtained from the training showed a mean average precision of 
0.803mAP at IoU of 0.5-0.95, acknowledging the detector model’s versatility in making accurate 
detection at different confidence levels. This supports the hypotheses that when we use pre-
trained model, this enhances the performance of our model for better object detection tasks. 
Certainly, better detection accuracy is one way to detect killer starfish, the crown-of-thorns star-
fish (COTS) and help protect the oceans.   
 
 

KEYWORDS: (Crown-of-thorns Starfish, Computer Vision, Object Detection, Deep Learning, 
Convolutional Neural Network (CNN), YOLOv8, Mean Average Precision). 
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1 Introduction 

Deep learning computer vision has been gaining popularity in recent years and has found 

application in many fields such as surveillance, medical imaging, robotics, self-driving 

cars, and a lot of other areas. One of such is in the protection of the oceans. The oceans 

are a home to many species of plants and animals and play a vital role in the sustenance 

of life on the planet earth. However, they face constant threat from various human ac-

tivities and other natural factors. For instance, in the Great Barrier Reef, in Australia and 

in other parts of the world, the health of coral reefs, vital marine ecosystems that sup-

port diverse marine life, is in jeopardy because of the devastation by the crown-of-thorns 

starfish (COTS). Can deep learning methods help to reverse this negative trend by accu-

rately detecting COTS in real-time? Doing so will result in furnishing the managers with 

the information they need to make an informed decision to save the oceans. 

 

This research endeavors to focus on the critical need for fast and accurate COTS detec-

tion methods by harnessing the powers of deep learning and computer vision techniques 

for object detection. This thesis is part of a competition aimed at using deep learning 

methods in COTS detection as a sustainable and efficient way to protect the ocean and 

the ecology. By way of its contributions, this will provide yet another method of tools for 

marine biologists and conservationists for improved and accurate COTS detection.  

 

1.1 Statement of problem 

The Great Barrier Reef, located in Australia, is the world’s largest coral reef ecosystem 

with about 3000 coral reefs, 600 continental islands, 300 coral cays and 150 inshore man-

grove islands. It is a home to species of jellyfish, mollusks, worms, fish, sharks, whales, 

and dolphins (Foxwell-Norton, 2017). However, this ecological beauty is under attack. 

One of the threats to this interdependence and ecosystem is the devastation of the coral 

reefs by a type of starfish called the crown-of-thorns starfish. When there is an upsurge 

in the population of COTS, they feed on the corals, causing substantial damage to the 
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reef and the entire ecosystem, and as a result this has a knock-on effect on the environ-

ment.  

 

Biologists and conservationists have long used various methods to detect this predator 

starfish, in the bid to control their population, but these have their limitations. In their 

quest for more reliable and accurate methods to detect COTS, they joined efforts with 

Google in a competition for deep learning solutions to detect in real-time the crown-of-

thorns starfish. This exercise provides them with useful information needed to monitor 

their population growth and to control their population, such as getting them killed. Can 

deep learning methods help in any way to reverse this trend? Sure. Deep learning com-

puter vision methods can more reliably and accurately help to detect the killer COTS, 

helping reef managers, biologists, and nature conservationists to save the oceans and 

other life-forms dependent on them. 

 

There are various reasons why COTS detection is a challenging task. The varying size, 

color, and texture and camouflaging nature is sometimes difficult to detect. This is be-

cause some COTS are too small to be picked up by cameras. They can camouflage to 

blend in with their surrounding or environment and elude detection.   In addition, the 

underwater environment can contribute to the difficulty in detection. As the depth in-

creases, lighting decreases, which causes visibility problems. So, marine environment 

can be challenging due to water turbidity, varying lighting conditions, and distortions 

caused by waves or current. This makes it difficult to get high-resolution images needed 

for accurate detection. Then also the challenge of background variability. The reef’s di-

verse and complex background can pose another challenge to COTS detection, distin-

guishing COTS from the surrounding environment and other underwater animals and 

objects. This work will consider the methods to improve the quality of the underwater 

images for improved detection given these challenging factors. 

 

Interestingly, this thesis work offers a solution by using the state-of-the-art deep learning 

computer vision to detect the killer COTS. Deep learning techniques have shown 
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themselves to be more reliable, accurate and even outperformed current traditional 

methods of COTS detection. This research will look at the challenges standing in the way 

of accurate COTS detection of the traditional methods and how these can be overcome 

using computer vision deep learning methods. This research will consider the strengths 

of the deep learning methods with regards to improving the image quality of the chal-

lenging underwater environments the images were taken from. Improvement in image 

quality results in improved detection accuracy and reliability. This work will also justify 

the choice of YOLOv8 as a state-of-the-art deep learning object detection algorithm to 

perform the detection.  

 

Since there is no benchmark to measure the performance of the detector in this field so 

far, this research will apply various advanced deep learning computer vision methods to 

improve the model and the quality of the underwater images to ensure improved detec-

tion. This will be done by fine-tuning the hyperparameters until better results are 

achieved. Better results are measured in terms of the value of IoU, precision and recall 

of the models. This tells us that the model can generalize well when deployed and used 

to perform COTS detection.   

 

The COTS detector was trained using a secondary dataset, the CSIRO COTS detection 

dataset, made available by CSIRO and released for educational purposes. This is a dataset 

of underwater images, taken as video data and converted to images. This dataset was 

fully annotated by the publishers making it easier to be used for training and evaluation 

of the COTS detector model. The dataset contains data images taken under different un-

derwater conditions to help capture the real-world conditions for the COTS detector 

model to generalize well.   

 

1.2 Motivation for the study 

The motivation for this thesis topic came from the courses - Applied Machine Learning 

and Artificial Intelligence: Concepts, challenges, and opportunities. These courses were 

like a steppingstone for me. They presented various machine learning and deep learning 
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techniques that could detect patterns from image data. The teacher presented concepts 

from computer vision, especially when he presented a situation where machine learning 

was used to read patterns from satellite images to make decisions. Our group project 

was to use TensorFlow deep learning methods to detect whether face masks were worn 

correctly or not. It was a hands-on project that stimulated my interest.  

 

I started to think about other areas to apply what I had learned. I was contemplating, if 

image data could be read by machine learning methods, it would be good to do so in 

real-time using video data. The Great Barrier Reef COTS detection Google competition 

came as a stimulant. I felt I could learn a lot by working on this project (Kaggle, 2022). 

Besides, it involves real-time detections on video data using computer vision deep learn-

ing methods. After discussing with my Artificial Intelligence teacher, I saw where to go 

as far as this topic was concerned.   

 

1.3 Research questions and limitations of the study 

With the overall picture of this research work in mind, this work will address the follow-

ing research questions: 

- Can transfer learning from pretrained models effectively improve the generalization 

of COTS detection models across varied and underwater environments? 

- Can data augmentation and preprocessing methods improve the visibility and distin-

guishability of COTS from the reef background in underwater images and compen-

sate for the class imbalance? 

These questions will be addressed while developing this research work; other pertinent 

questions will be answered too. 

 

The study will focus on using deep learning techniques to detect the crown-of-thorns 

starfish in real-time. From the research onion model, this study follows the deductive 

approach of research. Based on the two research questions above, the study will test 

firstly, whether transfer learning from pretrained models effectively improves the gen-

eralization of COTS detection models across varied and underwater environments and 
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secondly, whether data augmentation and preprocessing methods improve the visibility 

of COTS from the reef background in underwater images and compensate for the class 

imbalance.  The study will use secondary data, the underwater image dataset provided 

for the Google COTS detection competition. This dataset is made public for educational 

purposes. The dataset will be used to train the COTS detector to recognize and localize 

COTS from the images. It is cross-sectional data because it was collected once. 

 

As part of the data limitations, there is class imbalance in the dataset images. The images 

in the three folders representing different environments of the reefs are not equal. So, 

this unequal distribution between COTS and non-COTS images can lead to biasness in 

the models and impact detection accuracy. It is a challenge to ensure that the COTS de-

tector model generalizes when testing with the new and unseen data. Another limitation 

is seen during training of the models on different computer systems with different com-

putational powers and resources. This same is true of deploying models on different reef 

monitoring devices. They perform differently on different platforms and devices, and this 

can affect the accuracy and speed of the detection. Notwithstanding these, this work 

will add to the available on COTS detection and will provide biologists, nature conserva-

tionists, and reef managers with the information needed to control the population of 

the predator COTS, a step towards sustainable oceans. 

 

1.4 Structure of the study 

This is the structure that this study will take. The following will be covered in the various 

chapters: 

Chapter one presents the motivation for this thesis topic, the overview of the Great Bar-

rier Reef and the ecological impact of the devastation by the crown-of-thorns starfish. 

The Google COTS detection competition is introduced, the dataset, the limitations, and 

the objective of the study for an improved COTS detection. 

  

Chapter two will be on the review of the methods for existing literature for COTS detec-

tion. It will explore the limitations of the current methodologies and the methods of the 
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deep learning computer vision to overcome these. It will consider what makes deep 

learning methods so powerful for object detection and the various methods of deep 

learning to improve both the model and image quality for better COTS detection. This is 

the gap that will be explored.  

 

Chapter three, methodology, will discuss more about the dataset for the competition, 

the characteristics, and the annotations on the data. Consideration of methods to im-

prove the visibility of images for accurate detection such as data augmentation and 

dehazing. This chapter will explain about the data preprocessing steps to prepare the 

dataset for deep learning model for the study, YOLOv8. Discussion of methods for feature 

extraction by the deep learning algorithm for the implementation of COTS detector 

model to ensure accurate detection. There is also an introduction to the metrics for COTS 

detection model’s evaluation. 

 

Chapter four focuses on the deep learning model architecture. It discusses the actual 

implementation of the COTS detector model using a powerful CNN-based object detec-

tion one-stage algorithm, YOLO. YOLOv8 is the latest version of YOLO. It is a deep learning 

model that can be pretrained with large datasets such as COCO and ImageNet. It justifies 

the choice of this architecture. It will provide us with the model object and other meth-

ods to train, evaluate and test the model to measure its performance. It presents hy-

perparameter fine-tuning to improve COTS detection.  

 

Chapter five will evaluate the results from the model implementation. Analyzing the ex-

periment results will help us to see how accurate and reliable the model is.  

 

Lastly, chapter six of the thesis will conclude with the final remarks for the thesis and 

what will be the likely way to further the project. This will outline what has been learned 

from the thesis and possible future research. 
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2 Literature Review 

This chapter examines the related literature in marine life or species detection which 

COTS detection is a part of. Firstly, I present some information about the biology of COTS 

and its impact on the ecology. A clearer understanding of this creature and what ac-

counts for the outbreak in population will help in the design of right solutions to detect 

it. Secondly, we will talk about the challenges and limitations of detecting COTS. There 

are challenges facing marine species detection generally. We explore what these chal-

lenges are and how they affect COTS detection too. Thirdly, we will explore the tech-

niques that have been in use for the detection of both COTS and other marine life. These 

techniques include both manual and automated methods. Lastly, because of the short-

comings of the traditional computer vision methods for COTS detection, this research 

offers a better alternative in the state-of-the-art deep learning. The last section of this 

thesis will be spent on looking at the various methodologies of deep learning that will 

help to improve the quality of the images for deep learning algorithms for better detec-

tion of COTS.  

 

2.1 COTS biology and ecology 

As mentioned earlier, Australia prides in their Great Barrier Reef because it is a home to 

a variety of species of living things, plants, and animals. Nabeelah Pooloo et al., (2021) 

mentioned three areas that corals reefs are amazing; first, the small fish and other exotic 

organisms find their food and shelter there; second, the reef controls the levels of carbon 

dioxide in the ocean; and third, the reef protects the coastal areas from natural threats. 

These are indeed meaningful benefits to other forms of life on earth. Life on earth will 

be adversely impacted if these benefits are taken away. Figure 1 shows the beauty and 

the support for ecosystem in the reefs. Besides the beauty and support for other forms 

of life on earth, the multi-billion dollars generated as revenue from tourism for Australia, 

for example, each year add a strong impetus to why Australia should protect this heritage. 

They contribute to economic growth, development, and job creation. These are the 

backbones for a healthy economy. Unfortunately, this beauty is under attack by coral 
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bleaching caused by increase in temperature (global warming) and devastation by the 

crown-of-thorns starfish (COTS) caused by overpopulation of this type of starfish, the 

crown-of-thorns starfish.  

 

 

Figure 1. Coral reefs contribute to ecology (University of Southern California, 2023). 

 

They are reported as a major threat to the corals on the Great Barrier Reef and across 

the Indo-Pacific. The devastation comes with the population outbreak of these predators. 

The COTS can devastate the coral reef at an alarming rate.  (Cameron S. Fletcher et al., 

2021). The population outbreak of the COTS has occurred three times since 1960, and it 

is believed to come every 15-year interval. The present outbreak is termed the fourth 

population outbreak, and has been around since 2010 (Babcock et al., 2016). COTS are 

observed to populate very fast at 106 in 1-2 years and in such a situation can strip the 

reefs of 90% of living coral tissue (Pratchett et al., 2014). That is a large number. Figure 

2 shows the crown-of-thorns starfish feeding on corals which eventually turn white. 

However, since COTS has always been a native of the Great Barrier Reef (not a new crea-

ture), the question is, what causes the population outbreak of these predators?   

 

Several hypotheses have been put forward to explain the population outbreaks of COTS. 

These factors have been observed to occur in combination or simultaneously with other 
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factors. Babcock et al., (2016) is of the view that many biologists and theoretical ecol-

ogists agree that ‘no one single factor’ is responsible for the outbreaks of COTS. However, 

the identified factors include among others: 

• Biological traits of COTS: These creatures have the natural capacity to reproduce 

very fast as stated earlier. This reproductive ability by the COTS is described by 

others as phenomenal. Given the right environmental conditions, COTS multiply 

rapidly and feed voraciously on the reef (Babcock et al., 2016). 

•  Run-off nutrients: The run-off nutrients into the Great Barrier Reef have en-

hanced the high survival of COTS larvae because these nutrients aid the growth 

of phytoplankton that the larvae of COTS feed on, leading to population out-

breaks (Kroon, F. et al., 2021; F. Dayoub et al., 2015). When phytoplankton 

blooms, COTS multiplies, and more devastation to the reef occurs. 

• Overfishing of predatory fish: Some fish in the Great Barrier Reef feed on the 

larvae and COTS, thereby helping to regulate their population to a minimum for 

them to have such a negative impact on the coral reef. But when these fish pred-

ators are removed by fishing and overfishing, COTS have been found to multiply 

astronomically, leading to population outbreaks (Kroon, F. et al., 2021).  

 

 

Figure 2. COTS feeding on corals while corals turn white (Clement, R. et al., 2005). 
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2.2 Challenges and limitations of COTS detection  

There are lots of challenges for accurate and efficient COTS detection. The current meth-

odologies have shown certain gaps as limitations to COTS detection. This section looks 

at these factors. They include but not limited to: 

• Species differentiation and camouflaging nature: Crown-of-thorns starfish have 

unique and difficult characteristics, such variability in size, appearance, and colors. 

In as much as bigger COTS can be detected with ease, smaller ones might be difficult. 

Besides, they are camouflaging in nature, as they can easily blend with the surround-

ing environment or that of the corals they feed on. So, this underscores one fact, that 

color segmentation for identification is not reliable. Instead, the texture of the thorns 

is a potential and reliable feature for COTS recognition and should be used as a fea-

ture for identification (Ryan Clement, et al., 2005). These unique characteristics of 

COTS present a challenge for efficient detection.  

•  Another main challenge to COTS detection is the problem of environmental variabil-

ity. Underwater environments are complex and difficult such as varying light condi-

tions, water turbidity, and image distortions often result in poor underwater images. 

Poor quality images in turn affect the quality of detection. The turbidity can be 

caused by suspended particles, which can include sediment, silt, clay, organic matter, 

plankton, and other microscopic materials. These contribute to light scattering in the 

water, and as a result affect the quality of the underwater images. Enhancing the 

picture quality can enhance the quality of the detection (Han, F. et al., 2020). Closely 

following this is the reef’s diverse and complex background which makes it difficult 

to separate COTS and background environment. 

• Data annotation and availability can exert pressure on COTS detectability. Annotated 

data is simply limited, and annotating images accurately is another. Object detection 

requires annotated data with accurate coordinates for bounding boxes and labeling 

for COTS. Even when such dataset is available, there is the problem that it is not 

enough and there is an imbalance in the distribution of COTS and the not COTS (Saleh, 

A. et al., 2022). This will likely create bias in the model leading to inaccurate detection. 

Many of the people doing COTS detection use CSIRO dataset which is made available 
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to the public for educational purposes. Although this is annotated using powerful 

hardware and software, the images are imbalanced, hence, do not represent the 

reefs and backgrounds equally (Saleh, A. et al., 2022). This can impact the model’s 

accuracy. 

• There is another challenge of limited generalizability. Since we do not have data of 

all the different areas of the reefs, the model trained with the data that are not rep-

resentative enough of the environments, might not generalize well when used in real 

environment conditions.  

• In addition to the difficult underwater conditions mentioned earlier, the presence of 

particles and other aquatic organisms can add noise and interference to the detec-

tion of COTS. 

• Models behave differently on different devices when deployed in real-time. The dif-

ferences in running on different devices and platforms can affect the accuracy of the 

detection. 

• Blowers, S. et al., (2020) mentioned another challenge which could affect COTS de-

tection. They called it biofouling on lens in installed cameras. This is because of grad-

ual and continuous deposition of biomaterials on the lens of cameras mounted to 

get the video or images of COTS or other marine animals. This bio growth can accu-

mulate and impact negatively on images and video. Later in this chapter we will look 

at various methods to enhance the image quality for better detection by the detector 

algorithm. This is one of the research questions whether preprocessing methods can 

improve the visibility and distinguishability of COTS images? In other words, does 

image preprocessing improve image quality and help us get better detections of 

COTS from the underwater images?   

 

We have considered the factors that have likely contributed to the population explosion 

of the predator - crown-of-thorns starfish and the peculiarities of the COTS as complex 

creatures. In the next section we will discuss the different techniques that have been 

employed over the years for COTS detection. These methods have been used too for 

detection of other marine life. 
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2.3 COTS and marine species detection techniques 

Over the decades, various methods have been proposed and deployed to detect these 

killer predators. They (COTS) pose no threats to the reef when their population is main-

tained to reasonable levels, because they have co-habited with other life forms in these 

reefs for millenniums, including the corals. There is limited literature for image pro-

cessing for accurate COT detection. But there is enough literature on marine or under-

water image improvement. Since this is related, this work reviews them and so garners 

some techniques that can be applied to COTS detection image enhancements.  But let 

us consider the earliest methods for COTS detection. 

 

2.3.1 Natural predators and manual methods 

At the very beginning, the reef managers and handlers used various methods to detect 

and beat down the tide of population outbreaks of COTS. The earliest was the natural 

methods of using other aquatic animals such as predator snails and fish, and human 

divers. For example, some snail species have been used to reduce the population of the 

killer starfish, the crown-of-thorns starfish (Hall, M. et al., 2017). This employed the use 

of a giant marine snail called the giant triton. This can grow up to 0.5 m in length. This 

giant snail is known to hunt for the crown-of-thorns starfish (COTS) by scent alone. It can 

smell the presence of COTS. Even though the COTS has a defense mechanism of hun-

dreds of sharp spines and a toxic coating, the triton beats against this defense system by 

catching the COTS and secreting a chemical that will kill it and eat it up eventually. The 

COTS runs away when it perceives the giant triton coming closer. This mechanism was 

also a control mechanism but was not that effective because these giant snails could 

only eat a few COTS per week. However, research is still on-going on how to use the smell 

of the giant snail, the triton, to drive away the predator starfish, the COTS, and possibly 

reduce their numbers (Hall, M. et al., 2017). Additionally, some predator fish have been 

used to detect COTS. This was also used to reduce their number to a manageable and 

non-disturbing level.   
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Next, there came another method that involved the physical removal of the crown-of-

thorns starfish by human divers who were trained to look for them and collect them for 

removal from the water. They were either burned or buried afterwards. This method 

involved a lot of work and trial-and-error identifying of the COTS by these trained divers 

equipped with chemical toxins such as vinegar solution, bleach, copper sulphate. These 

went deep down in the waters in search of COTS and to inject them with poisonous 

chemicals or solutions and to leave them to die within few days (F. Dayoub et al., 2015). 

Like the previously mentioned methods, this was equally ineffective. It was based on the 

discretion or judgment of the human divers who might not be accurate in identifying 

COTS because of some reasons. There was the human error factor too based on trial and 

error. This process was slow and not efficient given the vast areas involved. In the words 

of F. Dayoub et al., this method is expensive because it uses human divers, and it intro-

duces significant safety concerns limiting dive time and restricting work to daylight hours 

and calm sea conditions. Sometimes at this depth, human divers find it difficult to see 

clearly because of light not penetrating well. 

 

2.3.2 Machine learning and image processing techniques 

Computer vision techniques were employed to detect COTS as better alternatives to the 

earliest methods – the natural and human methods of detection. These methods were 

mainly based on machine learning techniques. They are referred to as traditional com-

puter vision methods. This section discusses the various traditional computer vision ap-

proaches applied to COTS detection. The following figure, figure 3, sheds light on the 

period in the computer vision object detection that these methods dominated the com-

puter vision space.  
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Figure 3. A road map of computer vision object detection (Zou, Z. et al., 2019). 

 

Figure 3 shows that the computer vision techniques used prior to 2014 were mainly the 

traditional methods. These methods include Viola-Jones Detector, HOG Detector, SIFT, 

and part-based methods. These were actively used at the beginning of the evolution of 

computer vision. Efforts were made to use technologies that would increase the accu-

racy of the detection models and introduce high efficiency into the process. This would 

have a better impact on the detection of the crown-of-thorns starfish. Since computer 

vision technology was gaining traction because of its success in various areas of applica-

tions, researchers turned their attention to applying computer vision in COTS detection. 

Let us discuss these methods and what contributions they brought to the table as far as 

object detection is concerned, and by extension COTS detection. 

 

Scale-Invariant Feature Transform (SIFT) as a feature detector was considered the best 

computer vision algorithm in the early 2000s (Blowers, S. et al., 2020). It solved the prob-

lem that results from scaling images. It overcame the problem of scaling images common 

with its predecessors, meaning that it works regardless of scale of the image. It does this 

by detecting the features (a feature transform) and computing the feature vector which 

describes the region surrounding the features. This is necessary so that the result is not 

based on the scale of the image. Image content is transformed into local feature coordi-

nates that are invariant to translation, rotation, scale, and shear (Joseph Howse et al., 

2020). However, this algorithm is patented in the United States (Blowers, S. et al., 2020). 
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Viola and Jones algorithm or detection framework (VJ) is a powerful machine learning 

technique for object detection proposed by Paul Viola and Michael Jones in 2001 in their 

paper entitled Rapid Object Detection Using a Boosted Cascade of Simple Features (Asad, 

H. et al., 2020). Although primarily proposed for face detection problems, it since has 

been adapted in the detection of other object classes, including COTS. The algorithm 

extracts relevant features from images. These features make the decision whether an 

object is in the image or not by sliding a window through all the possible locations and 

scales in an image. One positive side of Viola-Jones algorithm is its detection speed, the 

reason why it was used in real-time detection (Blowers, S. et al., 2020). It can achieve 

detection speed because of three important techniques, namely integral image, feature 

selection and detection cascades.  

 

Speeded Up Robust Features (SURF) is an alternative to SIFT because it is faster. It uses 

a different set of feature descriptors based on the sum of the Haar wavelet responses 

around a specific blob detection (a region of varying contrast or color), according to 

Blowers, S. et al., (2020). It owes its speed because of utilising the precomputed integral 

image in the detection. However, like SIFT, it is patented in the United States. 

Histogram of Oriented Gradients (HOG) is a powerful feature extractor proposed in 

2005 by Navneet Dalal and Bill Triggs which was published in their paper Histograms of 

Oriented Gradients for Human Detection (Zou, Z. et al., 2019; Rahmad, C. et al., 2020). It 

has the advantage of comparing color and contrast gradient slopes and angles over an 

image (Blowers, S. et al., 2020). These features are generated from histogram of gradi-

ents which are compared to expected histograms of known objects. Originally proposed 

for object and pedestrian detection, HOG represented an object as a single value vector 

as opposed to a set of feature vectors where each represents a region of the image, 

computed by sliding window detector over an image. The HOG descriptor is computed 

for each position, while the scale of image adjusted to get a HOG’s feature (Rahmad, C. 

et al., 2020). 
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Local Binary Pattern (LBP) is an image feature detector, primarily introduced for face 

detection. It was later applied to COTS detection because of its performance on images. 

It was supposed to overcome the problem of illumination in images. It is obvious that 

illumination changes affect the image quality because they create incoherence in images 

and consequently, the performance of the face recognizer reduces (Asad H. et al., 2020). 

The LBP methods worked well in detecting textures in COTS. When it was used in COTS 

detection and counting, it achieved 65% and 48% accuracy respectively (Clement, R. et 

al., 2005). Dayoub, F. et al (2015) reported on a proposal that used LBP in detection and 

monitoring of COTS from underwater imagery. Since it used the template-based ap-

proach (texture), the LBP proved to be a powerful technique in the detection of COTS 

because of its textural surface. When describing the LBP methods, Asad, H. et al., (2020) 

highlighted why LBP was successful, pointing out that LBP calculates the LBP values for 

each pixel by considering the neighboring pixels. After which it converts those values 

into a histogram. Eventually, there will be a histogram for each image in the dataset. So, 

LBP and the histogram represent the feature vectors for an image. This provides local 

features-based robustness against illumination changes and other negative factors. 

Hence, LBP methods can extract the features from an image. 

 

Gabor Filters search for patterns in an image by passing 2-Dimensional Gaussian filters 

and observing regions that have similar frequency responses to known patterns (Blowers, 

S. et al., 2020). The Gabor Filters methods were used for texture analysis and pattern 

recognition for object classification. These methods were used to recognize and classify 

marine animals such as fish and other aquatic life in videos.  

 

Oriented FAST and Rotated BRIEF (ORB) is a method for feature extraction developed 

by OpenCV (Open Computer Vision) library as an open-source alternative for SIFT and 

SURF which were patented. It uses the FAST (Features from Accelerated Segment Test) 

algorithm to determine key points and then uses BRIEF (Binary Robust Independent Ele-

mentary Features) algorithm to create the feature descriptors (Blowers, S. et al., 2020). 

This method performs well in rotated objects to improve accuracy. 



25 

 

 

Integral Image is a technique for speeding up computations related to feature extraction 

in images (Asad, H. et al., 2020). In other words, Integral Image speeds up the computa-

tions related to convolution process. This is necessary because feature extraction was 

done by considering large rectangular regions of different scales, which then moved over 

the image. Of course, this generated a lot features, some relevant, some irrelevant. An-

other technique is also applied, which is called feature selection that uses AdaBoost. 

This process reduces the number of features to a reasonable level, discarding the irrele-

vant features while keeping the relevant ones. The last technique, detection cascades, 

reduces the computational overhead by spending less computations on background win-

dows (Zou, Z. et al., 2019). 

 

Random Forests Classifier (RFC). This is a supervised machine learning algorithm that is 

an ensemble of decision trees, created by bootstrap of samples of the training data (Day-

oub, F. et al., 2015). In other words, at the time of training the data, random forests 

classifier constructs a multitude of decision trees and outputs the class selected by most 

trees. Random forests classifier, also known as decision forests, is used for making pre-

diction for classification and regression problem. Additionally, it can be applied to com-

puter vision problems, such as image classification, image labeling, action recognition 

and object detection. The output class of the classifier is the mean probabilities of the 

trees making up the forest. What is the positive side of this algorithm? Separate decision 

trees are trained separately on a random subset of the training set and participate in the 

final prediction by the aggregation of the individual decision trees. Another advantage 

of these methods is that as an ensemble of algorithms, it performs better than one single 

algorithm (Benjamin Johnston et al., 2019).  

 

In 2015, Dayoub, F. et al. proposed an automated COTS detection and classification ro-

botic system equipped with computer-vision that would be capable of COTS detection 

based on color and texture of COTS. Their proposal to use a robot was not new, but what 

was new was the computer-vision techniques used by these robots to detect and classify 
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objects. Their COTS’ tracking system was a machine learning technique based on Ran-

dom Forest Classifier (RFC) trained on images from underwater footage. The classifier 

was able to extract the color and texture of COTS from the training images. To track COTS 

using a moving camera, they embedded the RFC in a particle filter detector and tracker 

where the predicted class probability of the RFC was used as an observation probability 

to weight the particles. The robotic arm on which the camera was attached moved at 

different speeds and heights over real-size images of COTS to mimic reef environment 

(Dayoub, F. et al., 2015).  

 

The objective was to attach a monitoring system to an Autonomous Underwater Vehicle 

(AUV) in the reef environment. The monitoring system on detecting COTS would send 

information to the robot’s arm to inject poison into the COTS to kill it. This classifier 

showed high precision in detecting COTS. They go further to state the advantages of such 

a robotic system; it eliminates the costs and risks associated with using human divers; a 

robot could operate tirelessly day and night and even at a depth unimaginable and is 

immune to sea surface conditions. A robot could use a position system and localize itself 

no matter the underwater conditions and share useful information about COTS, depth, 

water temperature, light levels, and terrain complexity with other robots (Dayoub, F. et 

al., 2015). They suggested this could lead to efficient coverage of the reefs. 

 

Support Vector Machine (SVM). This is a powerful supervised machine learning algo-

rithm that can be used for regression and classification tasks. In his work on the applica-

tion SVM machine learning in oceanography and earth science, Ahmed, H. (2020) listed 

various fine tasks accomplished using this machine learning method to analyze ocean 

data, to recognize patterns in oceanographic phenomena with high accuracy and effi-

ciency. He stated that SVM in some cases performed better than other machine learning 

models in marine management. For example, SVM was applied to face and speech recog-

nition, face detection, and image recognition tasks and turned out to be successful (Ah-

med, H., 2020). A team of researchers used it to make successful predictions for sea-

level rise in Brazil (Moura, M. et al., 2010). In their work, Ogunlana, S. et al., 2015 referred 
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to the application of SVM in marine species recognition and classification. The SVM iden-

tified fish based on shape feature, body length, anal fin length, caudal fin length, dorsal 

fin length, pelvic fin length, and pectoral fin length. Ahmed, H. (2020) mentioned also of 

the use of SVM in monitoring marine and coastal water quality with a high accuracy. 

 

K-means clustering. This is an unsupervised machine learning algorithm that partitions 

a dataset into a predefined number of clusters. This algorithm has been used in tasks 

involving pattern recognition or grouping of similar data points, such in marine life. Data 

collected through various sources, such as underwater cameras, sensors, or satellite im-

agery is passed to this algorithm to extract patterns for the recognition and classification 

of different marine species, habitats, or behavior patterns. Some of the advantages of 

using K-means clustering are:  

• The simplicity and ease of implementation because it is straightforward and compu-

tationally efficient to implement on a large dataset. 

• It does not require labels for the training data but partitions the data based on simi-

larities in features, as unsupervised learning does not need to be labeled. 

• The clustering of similar data points together promotes dimensionality reduction of 

the features.  

• It serves as feature enhancements of the original dataset. Other algorithms use k-

means-enhanced features as their data preprocessing step for an improved perfor-

mance. 

Some of the machine learning methods for computer vision object detection and classi-

fication have been discussed in this section. Yet, there are still more not mentioned, such 

as Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) (Mon-

iruzzaman, M. et al. (2017).  They are both dimensionality reduction techniques used to 

model the features for marine life training set. PCA is an unsupervised technique for 

feature extraction which captures the variance and reduces redundancy in the data, 

whereas LDA is a supervised feature extraction technique that emphasizes class separa-

bility.  LDA is widely used in classification as it enhances the data for classification algo-

rithms. Thomas, T., et al., (2021) mentioned Light Gradient Boosting Machine (LGBM) 
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machine learning algorithm being trained on images of corals to enable the detection, 

classification, or even performance of segmentation of the different species of coral. 

LGBM has gained popularity in machine learning for its speed, efficiency, and strong pre-

dictive capabilities. It handles large and high-dimensional feature datasets efficiently. In 

this section, we have considered the strengths of some image processing techniques 

used to improve the performance of image detectability of marine animals such as COTS.  

 

2.3.3 Shortcomings of traditional methods 

Traditional computer vision methods, we have looked at many of them, have several 

limitations that impact on object detection generally, and especially COTS and other ma-

rine species detection because of their peculiarities. This section will consider some of 

these shortcomings.  

• Limited robustness to variations: We have discussed the challenges of underwater 

images such variations in lighting conditions, water turbidity and image quality. Tra-

ditional methods find it difficult to adjust to these variations and other problems 

such as occlusions, image distortions and viewpoints. This is a big problem for marine 

object detection (Wang, N. et al., 2022). 

• Manual feature engineering: The traditional methods of computer vision use tech-

niques that depend on handcrafted methods for feature extraction which is domain-

based. These methods do not capture all the relevant information in the data. This is 

not easy to design and has the problem of generalization on a different domain da-

taset (Wang, N. et al., 2022). 

• Scalability: Scalability issues arise when a large amount of training dataset is involved 

because of computational limitations which make them unscalable (Qin, H. et al., 

2020). 

• Performance in complex environments: In images with cluttered backgrounds and 

multiple objects, traditional methods struggle to detect and recognize objects. 

• Fixed architecture: Their fixed architectures and rigid designs male them lack the 

ability to generalize on different domains. 

 



29 

 

To overcome these shortcomings or limitations of the traditional methods, computer vi-

sion experts have developed newer techniques. These are deep learning techniques 

based on Convolutional Neural Networks (CNN). The next section addresses this. 

 

2.4 Deep learning techniques 

Mahony, N. et al., (2019) defined deep learning as a subset of artificial intelligence that 

is based largely on Artificial Neural Networks (ANNs), a computing paradigm inspired by 

the functioning of the human brain.  They continued by stating that like the human brain, 

it is composed of many computing cells or ‘neurons’ that perform a simple operation 

and interact with each other to make decisions. This definition gives a good picture of 

deep learning. Saleh, A. et al., (2022) in their work added that these several layers of 

neural network enable it to “learn” from huge quantities of data. The neural network 

learns by extracting higher-level features from input training data. Because this involves 

several layers, it is referred to as “deep” networks. The network can even go ‘deeper’. 

The lower layers could detect the edges, whereas the higher layers could identify parts 

of an object (Saleh, A. et al., 2022). However, an important question to ask is, why do we 

need to use deep learning techniques as a better way to detect COTS?  

 

Well, deep learning has pushed the limits of what was possible in the domain of digital 

image processing; in the recent years deep learning approaches have outperformed pre-

vious state-of-the-art machine learning techniques in many areas, including computer 

vision (Mahony, N. et al., 2019; Kaur, R. et al., 2022). It will be good to look at the various 

advantages for favoring using deep learning in the case of object detection, in our case 

– the detection of COTS. One of the major advantages of deep learning is that deep 

learning models can learn automatically from our raw input data without the need for 

manual feature engineering done by the computer vision engineer, as in the case of using 

traditional computer vision techniques (Mahony, N. et al., 2019; Zou, Z. et al., 2019). 

From figure 4a, it is obvious that traditional means require the manual feature extraction 

and selection of features. It is the computer vision expert or engineer that crafts or de-

signs such techniques that will choose the important features. Domain-specific 
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knowledge is important and required here. But in deep learning, it is not required be-

cause the models take care of the feature extraction, the important features, from the 

raw data (figure 4b). This is particularly helpful when the number of classes to train the 

model increases, it becomes more and more difficult for the computer vision engineer 

to handcraft the feature extractors. Diversity in appearances, illumination conditions and 

backgrounds, all make it extremely difficult to manually design or handcraft a robust 

feature descriptor to perfectly describe all objects (Zhao, Z. et al., 2019). 

 

Unlike the traditional computer vision techniques, deep learning achieves higher accu-

racy in performance. In other words, they are more accurate than the traditional meth-

ods in many tasks. This is because deep learning models can learn complex non-linear 

relationships between input and output variables, which allows them to make more ac-

curate predictions (Mahony, N. et al., 2019; Muller et al., 2019; Saleh, A. et al., 2022). 

For example, a deep learning method for fish classification achieved a performance ac-

curacy of 87%. It took 6 seconds to identify 115 images (Saleh, A. et al., 2022). Another 

advantage of using deep learning computer vision is that it can handle large amounts of 

data more efficiently than the earlier counterpart (the traditional computer vision tech-

niques) (Pathak, A. et al., 2018). This is made possible because of parallel computing 

techniques (not available in the past) which allows deep learning models to learn com-

plex patterns from large amounts of unstructured data – image, audio, and text data. 

The learning capacity of deep learning models improves when more data is made avail-

able, unlike the learning capacity of traditional models which is fixed, even with more 

data made available. This is good news in today’s world because of the abundance of 

devices that generate lots of data. Personal phones are good examples. 

 

Deep learning is also flexible because the models are trained rather than programmed. 

This has the advantage of making it easier for the models to learn some important fea-

tures which would be impossible to achieve by programming. For instance, it is difficult 

to handcraft a technique to detect emotions in an image.   It is flexible also in that models 

and frameworks can be re-trained using custom dataset for any use case, contrary to 



31 

 

traditional methods which are more domain specific. Deep learning techniques can be 

supervised, semi-supervised, or unsupervised. Also, deep learning architectures include 

convolutional neural networks (CNNs), recurrent neural networks (RNNs) and long short-

term memory networks (LSTMs). These have been applied to fields such as computer 

vision, speech recognition, natural language processing, and medical image analysis. 

CNN has been a powerful engine behind the revolution we see in the deep learning com-

puter vision. I will spend some time talking more about this architecture and develop-

ment. 

 

 

Figure 4. (a) Traditional Computer Vision workflow vs. (b) Deep Learning workflow (Mahony, N. 
et al., 2019). 
 

 
2.4.1 Convolutional neural networks (CNN) 

Convolutional Neural Networks (CNN, for short), also called ConvNets, are developments 

that are responsible for a big jump in the ability to recognize objects by deep learning 

methods. Figure 5 shows a vivid illustration of the basic architecture of convolutional 

neural network (CNN).  There are two main parts to a CNN architecture, namely the fea-

ture extraction part and the classification part, also present in the traditional detectors. 

The feature extraction part has the input layer, the convolution layers, and the pooling 

layers, while the classification part includes the fully connected layers and the output 

layer. The input layer takes the input image in the form of pixels and passes it to the 

convolution layers for processing. Here, filters called kernels are used on a small region 

of the image to produce feature maps, highlighting specific patterns or features like 
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edges, textures, or shapes. of the images. As the layers get deeper, the network learns 

different levels of image features.  

 

The network uses activation functions to add non-linearity to the network allowing it to 

learn complex relationships between features. The next layer, the pooling layer, is used 

to reduce redundancy in the feature maps. The fully connected layers process these fea-

tures and connect them together in layers for the network to learn complex relationships 

between high-level features. The last layer, the output layer, makes the final prediction 

or classification based on the learned features using the necessary activation function 

depending on the task.  

 

 

 

Figure 5. Basic architecture of CNN (Researchgate net, 2019). 

 

What makes CNN powerful is its architecture which can vary in depth, number of layers, 

filter sizes, and configurations. This makes it possible for it to be used for different com-

puter vision tasks such as object detection, image classification, and segmentation. By 

having different architectural configurations, the networks can learn patterns from im-

ages and perform various tasks. Popular CNN architectures include VGG, ResNet, AlexNet, 

and Inception. These have their different strengths and have been used as backbone 
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algorithms when implementing COTS detectors. Let us talk about the recent, state-of-

the-art techniques of CNN that have championed real-time COTS detection? 

 

2.4.2 State-of-the-art real-time detection techniques 

Why is it necessary to consider real-time object detection using CNN methods? This is 

because the problem that this project work is set out to solve will involve the detection 

of COTS in real-time image (or video) data. An efficient real-time underwater target de-

tection algorithm is very important. Does CNN provide algorithms that support real-time 

object detection? Yes. Over the years, many algorithms or techniques based on CNN 

have been developed and used, with the proceeding ones offering some improvements 

over the preceding methods and technologies. In the section convolutional neural net-

works methods, explanation was given on the CNN-based method detectors, two-stage 

and one stage detectors. They have contributed to real-time object detection because 

they promote speed and accuracy of detection. 

 

Two-Stage Detectors 

The earliest two-stage detector was Region-Based Convolutional Neural Network (R-

CNN). This detector was based on a two-stage technique. In stage 1, the selective search 

algorithm generates the region proposals from the input images. In stage 2, the region 

proposals generated are passed to the CNN network to extract the features from the 

input image and to pass these to a support vector machine (SVM) to perform classifica-

tion and bounding box regression. This is a major drawback for R-CNN, making it to be 

slow in speed, though more accurate, 66.0% of Mean Average Precision (mAP) (Patel, S. 

et al., 2021). The Fast R-CNN was released to overcome this shortcoming of R-CNN and 

improve on the speed and accuracy. It does this by using the concepts of region of inter-

est (ROI) that reduced the time consumption, unlike the R-CNN. It uses CNN to process 

the input image and then max pool the features for each region proposal. This reduces 

computation cost and time because it reduces the redundant region proposals that add 

computation cost and time. Again, instead of using the support vector machine (SVM) to 

classify each region proposal as in R-CNN, Fast R-CNN uses softmax layer that is trained 
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jointly with the CNN. This adds improvement in classification accuracy and removes the 

need for a separate SVM. Fast R-CNN achieved a mAP of 66.9% A stretch toward real-

time detection. 

 

Faster R-CNN was later introduced and used the concept of a region proposal network 

(RPN) to replace selective search algorithm. It integrates the RPN and the Fast R-CNN 

into a single network to handle the region proposals. In other words, it is composed of 

two modules. The first module is a deep CNN fully connected that generates the regions, 

and the second module is the Fast R-CNN that handles that processes the proposed re-

gions. This improvement achieved a 69.9% mAP for the Faster R-CNN.  

 

One-Stage Detectors 

You Only Look Once (YOLO) falls under a group of detectors referred to as one-stage 

detectors widely used for real-time object detection tasks. It is known for its speed and 

accuracy in detecting and localizing multiple objects in an image or video. Unlike in the 

two-stage detectors where there are two stages to detection, YOLO is a one-stage net-

work whereby the generation of the bounding boxes and class prediction are handled in 

one single evaluation or in a single pass. This accounts for its speed, which is faster than 

the two-stage detectors based on region proposals. It can process up to 45 frames per 

second (FPS). This is a good candidate for real-time object detection. Another advantage 

is that since it uses fully connected CNN, it learns features from input images and detect 

objects of various shapes and sizes without relying on predefined classes (Toan, N., 2022). 

In addition, it solves the object detection problem as a regression by handling the bound-

ing boxes and class probabilities at the same time. This simplifies the network architec-

ture and reduces the number of parameters and as a result improves the speed of the 

networks. This will be good for our COTS detector because we need a detector that can 

detect (identify and localize COTS) in real-time. 

 

Single-Shot Detector (SSD) is one of the detectors categorized as one-stage. It is a state-

of-the-art real-time object detection algorithm that provides better speeds compared to 
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Faster R-CNN. It takes only one single shot to generate regions of interests (ROIs) or re-

gion proposals, and at the same time use CNNs to classify the regions; unlike the two-

stage detectors that handle these in two separate stages (Asad, H. et al., 2020). SSD uses 

the VGG-16 model pre-trained on ImageNet dataset as the base model (Patel, S. et al., 

2021). Additionally, at the end of the base model are additional convolutional layers used 

for object detection.   

 

Zero-Shot Object Detection 

Zero-shot object detection has to with the ability of a model to detect objects that it has 

not been explicitly trained on. In the object detection methods thus discussed, the mod-

els are trained on specific classes of the dataset, and their performance is limited to rec-

ognizing those classes. However, in the case of zero-shot object detection, models ex-

tend their capability by recognizing classes in images based on free-text queries.  The 

methods used in this category include OWL-ViT, which is an open-vocabulary object de-

tector that can detect objects images based on free-texts; GLIP, adds word-level under-

standing to find objects by the semantics; and Segment Anything, to add masks to see 

the pixel-level location of the objects. These methods help to enable us to detect objects 

in images without training the neural network extensively. This opens new possibilities 

in computer vision field. 

 

2.4.3 Enhancing COTS detection in underwater environments 

There is no algorithm that will mitigate all the challenges affecting the detection of COTS 

in underwater environments. However, there are many techniques that have been de-

veloped by computer vision experts which can help to address COTS detection chal-

lenges. These techniques can be integrated for better detection. This section looks at 

some of these techniques, with particular emphasis on techniques like transfer learning, 

data augmentation, and enhancing image preprocessing techniques. Why these three 

techniques are vital is because they will help us answer our research questions. Firstly, 

whether transfer learning can effectively improve the model, and secondly, whether data 

augmentation and image preprocessing of underwater images can improve the visibility 
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and distinguishability of COTS from the background environment?  Later, when we de-

sign and implement our COTS detector model, we will see if these have effects on the 

detection of COTS.   

 

Image enhancement and preprocessing 

Underwater images are often affected by varying lighting conditions, water turbidity, 

haze, blur, and color deterioration that are obstacles to COTS detection. There are vari-

ous image enhancement or preprocessing techniques that can improve the quality of 

images for better detection (Saleh, A. et al., 2022). These algorithms include contrast 

enhancements, dehazing, and other algorithms that can perform image enhancements 

and recover some information from the poor-quality images. For example, contrast en-

hancement algorithms such as histogram equalization, adaptive histogram equalization, 

or contrast stretching can improve the visibility of COTS images when the images have 

lighting issues; dehazing algorithms restore contrast to underwater images affected by 

water turbidity and haze issues. Saleh, A. et al. (2016) pointed out that even using the 

basic image enhancement techniques has improved image quality and continued that 

some recent studies have improved the image quality by just using low-quality images 

and deep learning methods.  

 

Sahu, P. et al. (2014) wrote about improving image quality by using Gabor filter. The im-

proved images were then fed to an edge detector to extract features from underwater 

images, and another that used a color enhancement method to improve the color con-

trasts of underwater images. Another study was conducted where a de-hazing algorithm 

was used to improve hazed underwater images, restoring the attenuated data. Jian, M. 

et al., (2020), in their paper wrote about studies in which various methods were used to 

enhance underwater images, to reduce noise, to remove fog from images, to correct 

colors and for image recovery. Certainly, this thesis work will employ some image en-

hancing algorithms to improve image quality for better COTS detection. 
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Data augmentation and synthesis 

Data augmentation mitigates the effects of having a small dataset and replicate external 

environmental conditions such as variable illumination, fluctuating contrast, and blurring 

(Samantaray, A. et al., 2018). Data augmentation applies transformations such as chang-

ing the brightness, contrast, hue, colour, saturation, flipping, rotation, mirror, scale, crop, 

and warp to the dataset Samantaray, A. et al., 2018; Wang, N. et al., 2022). Data aug-

mentation mitigates against overfitting by synthetically producing new data samples. 

Deep learning thrives on large dataset. So, by synthetically making more data available, 

data augmentation makes deep learning model effective by preventing overfitting. This 

technique is used to improve the detectability of COTS by the detector (Mees, O. et al., 

2019). Later, when we implement the COTS detector, we will see if the result supports 

this. In YOLOv8, mosaic augmentation on the training data is used. Mosaic augmentation 

is a type of data augmentation technique that accepts four random images from the 

training set and combines them into a single mosaic image (Reis, D., 2023). The resultant 

image, which contains a random crop from one of the four input images, is then used as 

an input image for the model. 

 

Utilizing deep learning architectures 

Deep learning architectures based on CNN have shown remarkable success in computer 

vision tasks. These architectures can learn from COTS complex features from underwater 

images, and this helps to improve the detection accuracy of COTS. As deeper they get, 

they are better at learning complex features from data, including underwater data (Wang, 

N. et al., 2022). Deep learning models such as Faster R-CNN, Single Shot Detector (SSD), 

and Region-based Fully Convolutional Networks (R-FCN) have shown near real-time ob-

ject detection and high accuracy (Samantaray, A. et al., 2018). In addition to CNN-based 

networks, other networks like Siamese Networks learn to differentiate between similar 

and dissimilar images. This can be used for detecting subtle differences between COTS 

and the reefs, and between COTS and the background environments. Also, integrating 

attention mechanisms like transformer-based architectures or spatial attention has the 
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advantage of focusing the model on regions of interest in underwater images containing 

COTS (Khan, M. et al., 2023; Wu, T. & Dong, Y. 2023). 

 

Transfer learning 

Transfer learning is another great method in computer vision object detection that en-

hances performance. It involves using a pre-trained model as a starting point and subse-

quently fine-tune it for a specific object detection task. Transfer learning is desirable be-

cause it speeds up the training and improves the performance of a model, particularly 

when the data is limited or small. Pre-trained datasets such as MS-COCO, Darknets, 

ImageNet, and VGG have thousands of images, and during training the weights and bi-

ases learned from these datasets are transferred to the trained model. These are low-

level weights and features that are common and transferrable from the pre-training da-

taset (Reis, D. et al., 2023; Gupta, A. et al., 2021). Ahmed, M. et al. (2023) described a 

study that used transfer learning in the detection of objects under low illumination 

(Sadagawa, Y. & Nagahara, H., 2020). Transfer learning has remarkably improved the per-

formance of models. In this thesis work, we will find out if transfer learning will improve 

the visibility of COTS for better detectability. 

 

Collaboration with data sharing 

Right now, the CSIRO COTS detection dataset is the most popular dataset for COTS made 

public for educational purposes. It will be good if researchers and organizations cooper-

ate and collaborate in creating larger, more diverse, and fully annotated COTS datasets. 

This dataset can be captured from different sources, such as remote sensing devices. 

These datasets that will be representative of the variations in underwater environments 

can be shared to promote education and research in COTS detection. By having COTS 

data available from different sources and representative of real-life situations, COTS de-

tection can be improved (Samantaray, A. et al. 2018).  
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3 Methodology 

We looked at various methods that have been used to detect the crown-of-thorns star-

fish and other marine life at large over the years in the previous chapter, and how the 

application of the cutting-edge deep learning techniques in object detection can provide 

a real-time and a more accurate detection alternative than the traditional or current 

methodologies. This chapter focuses on the research design or the design methodology 

for the study, preparing the way for the next chapter, the actual implementation of a 

deep learning model to detect COTS. The study will take the quantitative deductive ap-

proach as illustrated in the research onion model.  The methods will be quantitative and 

experimental because this will be suitable for our research questions where we test our 

two hypotheses by performing experiments: 

- H0: Does transfer learning from pretrained models effectively improve the generali-

zation of COTS detection models across varied and underwater environments? 

- H1: Do data augmentation and preprocessing methods improve the visibility and dis-

tinguishability of COTS from the reef background in underwater images and compen-

sate for the class imbalance? 

  

We have seen the reasons in favor of the argument for deep learning object detection 

techniques over the traditional or the current methodologies. By testing our hypotheses 

by means of experiments, we can be confident whether there are relationships between 

transfer learning, data augmentation, and data preprocessing and a better and accurate 

COTS detection. The first to discuss will be the data and collection methods. This is an 

important factor because a good understanding of our data will impact on the design of 

the methodology. Next, the discussion of the deep learning framework and architecture 

for this work and the justification for this architecture. Then, the metrics employed to 

assess the performance of the model - COTS detector.  
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3.1 The CSIRO dataset 

This study uses secondary data. Our underwater dataset is called CSIRO dataset, released 

to the public for educational purposes. The dataset is for starfish detection, a large-scale 

annotated underwater image dataset from the Great Barrier Reef (GBR) to encourage 

research work on Machine Learning and AI-driven technologies to help find a solution to 

the crown-of-thorn starfish population outbreaks. The dataset is hosted also for a Kaggle 

competition in Machine Learning which is challenging the machine Learning community 

for a deep learning computer-based detection. CSIRO (Commonwealth Scientific and In-

dustrial Research Organization) is an Australian Government agency that is responsible 

for scientific research. It teamed up with the Great Barrier Reef Foundation (GBRF) to 

sponsor the work for the dataset collection by a group of researchers, as mentioned in 

their paper (Liu, J. et al., 2021). CSIRO is working with industry, government, universities, 

and research organizations in many projects to bring solutions for food security and qual-

ity, clean energy and resources, health and wellbeing, resilient valuable environments, 

and innovative industries for Australia and its regions.  

 

3.1.1 Data collection method 

The dataset was collected using the GoPro Hero9 cameras attached to the bottom of 

Manta Tow board used by a trained observer or snorkeler-diver. The camera provides a 

wide range of views below the board and the reef under. The distance between the 

board and the reef can vary, but the speed is maintained constant. This makes it possible 

to cover 200 meters in two minutes, after which the diver stops and records data ob-

served during the transect on a sheet of paper. The camera has a resolution of 

3840x2160 and records videos at the rate of 24 frames per second. The data is further 

manipulated for AI-assisted annotations and quality assurance by annotation experts. 

With pre-trained COTS detection models, the COTS in the images are identified and 

marked by bounding boxes using annotation software. The data was collected in a single 

day October 2021. It must be noted that the images show variations in the lighting, visi-

bility, coral habitat, depth, distance from the bottom of the manta tow board and 
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viewpoint (Liu, J. et al., 2021). Over 34k of these images were released for educational 

purposes, and this would be the dataset for this project. 

 

In what ways is CSIRO dataset different from other popular conventional object detec-

tion datasets, such is MS-COCO, IMAGENET, PASCAL VOC, and others? Liu, J. et al., (2021) 

gave four reasons. First, there is only one class (the COTS class), for the CSIRO dataset, 

whereas other datasets contain many classes. For example, IMAGENET has almost 

twenty-two thousand (22k) classes, and MS-COCO has up to 80 classes. Second, the da-

taset naturally exhibits sequence-based annotations as multiple images are taken of the 

sane COTS as the boat moves past it. Third, a picture could continue one or many images 

of the COTS, and these could possibly overlap with each other. Fourth, the object of this 

dataset is to give the images of the COTS in a defined transect (Liu, J. et al., 2021). 

 

3.1.2 Exploratory data analysis (EDA) of the dataset 

The dataset images, when downloaded, were organized in a folder called [train images] 

that contained three folders labelled video_0, video_1, and video_2. These sub-folders 

contained underwater data images of the reef. These images were parts of videos taken 

by the manta row diver but were cut into frames of images as jpg files. There was a total 

of 23,501 files in the three folders. The image in figure 6 shows the distributions of these 

images in three folders. The folders have an unequal number of images. These folders 

represent different sections or regions of the reefs. It is good to have images from differ-

ent sections for generalization. The train.csv and test.csv files provided some explana-

tions for the training and test sets respectively. The train csv file also contained important 

information about annotations of COTS in the image files. The annotations showed the 

locations of COTS in the images.  

 

Out of 23,501 images in the dataset, 4,919 had annotations while 18,582 did not. Well, 

since deep learning model needed a lot of data to train, we would use data augmenta-

tion to augment this dataset. Certainly, the number of images to train our model would 

increase by the time we perform data augmentation, as we will see later. We focused on 
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the images with annotations to train our model because they contained COTS images 

that would be used to train the model, to show the model what the COTS looked like, 

even though we would add some percentage of the images without annotations as back-

ground images. The reason will be explained later. An image can have one or multiple 

annotations. There was a total of 11,898 annotations in these 4,919 images. The com-

puter vision model that would be used for the project will be a supervised learning algo-

rithm and will need the labeling of the images. Happily, the labeling has been done al-

ready (annotations column in the train.csv file) and provided with the dataset. A close 

look at the annotation column shows that some images have one COTS image, while 

some others have multiple COTS images. 

 

 

Figure 6. The distribution of images in three folders. 
 

 

3.1.3 Data annotation and normalization 

Now that we have the images from the dataset, the next step is to annotate these images. 

Annotation is the coordinates of bounding boxes to locate identified objects of a class in 

an image. The model uses the annotations to locate and draw bounding boxes on each 
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COTS object in an image. Object detection is a supervised learning because the objects 

in the images are supposed labelled for the model. All the objects we want the model to 

detect need to be annotated for the model. Annotating images is a tedious work, even 

the most tedious in modelling a deep learning computer vision detector. Gratefully, the 

CSIRO dataset came annotated by the publishers of the CSIRO dataset before releasing 

it to the public. This takes a lot of loads off the users of this dataset since they do not 

have to worry about using annotation software to perform own annotations. Besides, 

these annotations were done using AI-assisted and quality assurance process by expert 

annotators with the help of pre-trained COTS detection models (Liu, J. et al., 2021). This 

helped in the identification and location of COTS in the images. This information is con-

tained in the train.csv file. The following image in figure 7 shows what it looks like: 

 

 

Figure 7. Sample of train.csv data frame showing annotations. 

 

From the image in figure 7, we have ‘x’, ‘y’, ‘width’ and ‘height’. These are the x and y 

coordinates of the annotations for the bounding boxes for the starfish in the image, and 

the width and height of the bounding boxes. In other words, these are the (x_min, y_min) 

of the upper left corner of the bounding box within the image together with its width 

and height in pixels. We are thankful that the images were annotated for us by the pub-

lishers of the dataset. The figure shows additional information such as the number of 

annotations per image, image id and the sequence of each image in the video. However, 

to pass this annotation information for each image to our model, we must convert it 

from the following format:  

[center_x, center_y, width, height]  

Starfish    0.45625   0.31805555555555554   0.0390625   0.044444444444444446 
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This is called normalization, and we use the following formulas to do that. 

our model does not understand this annotated format. The annotations must be nor-

malized with respect to the width and height of the images instead of the bounding 

boxes.  

 

𝑥_𝑚𝑎𝑥 = 𝑥_ min + 𝑤𝑖𝑑𝑡ℎ                                                                                                          (1) 

 

𝑦_𝑚𝑎𝑥 = 𝑦_ min + ℎ𝑒𝑖𝑔ℎ𝑡                                                                                                          (2) 

 

𝑐𝑒𝑛𝑡𝑒𝑟_𝑥 =
𝑥_ min + 𝑥_𝑚𝑎𝑥

2

width of the image
                                                                                       (3) 

 

𝑐𝑒𝑛𝑡𝑒𝑟_𝑦 =
𝑦_ min + 𝑦_𝑚𝑎𝑥

2

height of the image
                                                                                    (4) 

 

𝑤𝑖𝑑𝑡ℎ =
𝑥_ max − 𝑥_𝑚𝑖𝑛

width of the image
                                                                                       (5) 

 

ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑦_ max − 𝑦_𝑚𝑖𝑛

height of the image
                                                                                     (6) 

 

Using Python script and the above formulas, the annotations from the dataset could be 

converted into text files, with the corresponding image filename as the name of the text 

files and the annotation coordinates into model’s annotation formats. The following 

sample data below shows the coordinates for image 0-16.jpg stored in 0-16.txt file. 

 

Starfish    0.45625   0.31805555555555554   0.0390625   0.044444444444444446 

 

The labeling information above can be used to draw bounding boxes on the correspond-

ing image. The following images of figures 8, 9, and 10 show samples printed from the 
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coordinates from their corresponding text files, which contain information about the 

bounding boxes for the COTS. The publishers of this dataset performed annotations on the 

images and included these annotations. 

 

 

Figure 8. COTS marked in red bounding boxes using the coordinates for image 0-45.jpg. 

 

 

 

Figure 9. COTS marked in red bounding boxes using the coordinates for image 0-4538.jpg. 
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Figure 10. COTS marked in red bounding boxes using the coordinates for image 1-99.jpg.  

 

 

3.1.4 Data splitting 

The three image folders were all combined and the images separated into two classes: 

annotated and non-annotated image files. There were 4,919 images with annotations, 

and 18,582 without annotations. The annotated images were split into training 87%, val-

idation 8%, and test 5% into their respective folders. The annotated images were shuf-

fled properly before splitting. This made it possible to have well shuffled and well repre-

sentative images from the previous three folders representing different underwater con-

ditions where the images were taken. In addition, 10% of non-annotated images were 

chosen and added to the training set to serve as background images. But suffice it to 

mention that background images are images without COTS objects. They are added to 

the training set to improve performance during training. It will be good for the model to 

learn to distinguish the COTS from the background reef environments. More on back-

ground images in the next chapter on implementation. 
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It is a good practice in machine learning to split the dataset into train, validation, and 

test sets. The training set is used for training the model, validation set is used to evaluate 

the model after training with a new set of data, and the test set is used for actual testing 

of the model to see how it has performed on new and unseen data. The reason for doing 

this is to ensure that there is no overfitting. Overfitting is a situation that the model 

learns the train set so well but does not generalize well on the unseen data (test set). So, 

the practice demands that after training, validation and testing are performed using new 

data, that is the unseen data, that reflects the real-world data. That gives an idea of how 

well the model has learned by evaluating on new data. 

 

3.1.5 Data preprocessing and augmentation 

Image preprocessing involves resizing and normalizing of images (data) used for training, 

validating, and testing. In addition to image normalization discussed in the last two sec-

tions, resizing images to a uniform size ensures consistency and facilitates model training 

(Bahhar, C. et al., 2023; Ang, G. et al. 2023). The images used for modelling will be resized 

to 640 x 640 dimensions. To encourage efficient model performance, the images used in 

this work were all resized to 640x640 pixels and normalized as explained earlier (Pratama, 

Y. et al., 2021). During implementation, the data preprocessing pipeline will take care of 

resizing the images to the chosen sizes. The resized image data is normalized to a specific 

range, often [0, 1] or [-1, 1]. We have seen the formula used for normalizing the images 

in the last two sections, converting the images to the YOLO-required format. Then, the 

normalized image data is converted to a tensor as input to the model. This step is vital 

because it ensures that the model converges more efficiently during training.  

 

The data processing pipeline will also include the preprocessing of the image images. 

These images are underwater images and are affected by certain underwater conditions 

such turbidity, lighting, and noise. They need to be processed for better image quality, 

which will in turn impact on the performance of the model. For this work, a python script 

was developed that used OpenCV to apply image enhancement and dehazing function-

alities to the underwater images. It handles one image at a time. These functionalities 
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first convert images to grayscale and apply Dark Channel Prior (DCP) and Contrast Lim-

ited Adaptive Histogram Equalization (CLAHE) functions to the images. DCP is mainly 

used for image dehazing and CLAHE is used to enhance image contrasts while removing 

noise from low contrast portions. These methods are applicable to enhance underwater 

images and improving the quality. The enhanced images are then used for training the 

COT-detection model (Mousa, A., 2023; Wang, X. et al., 2022; Kaushik, S. & Vigneshwaran, 

P., 2022).  

 

3.2 Deep learning framework 

We have looked at object detection using deep learning methods. Convolutional neural 

network (CNN) has revolutionized the field of computer vision and has achieved impres-

sive results for detection of objects in digital images (Patel, S. & Patel, A., 2021). A family 

of CNN-based models is YOLO. I have chosen as the base model for this thesis work. YOLO 

(You Only Look Once) is an object detection algorithm that uses a single neural network 

to predict bounding boxes along with class probabilities for each of the object in an im-

age at the same time. The latest version is version 8 (YOLOv8). It performs image seg-

mentation in addition to object detection with speed and accuracy (Viswanatha, V. et al., 

2022). This makes YOLOv8 a good choice for real-time object detection.  

 

 

Figure 11. YOLOv8n (nano) architecture (Ju, R. & Cai, W., 2023).  
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Figure 11 shows the architecture of YOLOv8 model. Yolov8 architecture is divided into 

three components. The first component, the backbone network, uses the modified ver-

sion of CSPDarknet53 or ResNet-50 deep convolutional neural network (CNN) to extract 

features from the input image (Ang, G. et al., 2023). This CNN is trained on a large dataset 

such as COCO and ImageNet to recognize high-level features in input images. The second 

component, the neck network, connects the backbone and the third, the head, and 

works to balance accuracy and speed. This accounts for its speed and efficiency. The third 

component, the head network, predicts the class and bounding boxes of objects in the 

image. It optimizes the Intersect over Union (IoU) and the non-maximum suppression 

(NMS) algorithm. 

There are many reasons why YOLOv8 is a choice for this thesis work. They include ac-

cording to these authors (Wu, T. and Dong, Y., 2023; Ma, M & Pang, H., 2023): 

• Improved Accuracy: YOLOv8 is the latest version of the YOLO family. This latest ver-

sion has built on the strengths of the previous versions. So, the latest version, YOLOv8, 

has the most improved accuracy because of new techniques and optimizations. 

• Enhanced Speed: YOLOv8 has the best inference speed with high accuracy compared 

to other object detection models. 

• Multiple Backbones: YOLOv8 has support for various backbones, such EfficientNet, 

ResNet, and CSPDarknet. Depending on the use case, one has the flexibility to choose 

from these to achieve the best result. 

• Advanced-Data Augmentation: With YOLOv8 comes with advanced data augmenta-

tion methods such as MixUp and CutMix to improve the robustness and generaliza-

tion of the model. There is the flexibility to include external data augmentation like 

Albumentations to improve the model. 

• Customizable Architecture: YOLOv8 has a customizable architecture that allows us-

ers to modify the structure and parameters of the model to have a custom-made or 

tailor-made model. 

• Pre-trained Model: Transfer learning is possible with YOLOv8, enabling users to use 

pre-trained models which improve the generalization of the mode. For example, 
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YOLOv8 can be pre-trained on COCO dataset which improves the model by transfer-

ring learned weights. 

• Adaptive Training: By means of the adaptive training, the learning rate and balance 

of the loss function can be optimized which leads to improved model performance. 

This is particularly helpful since our data is underwater images (Liu, W. et al., 2022).  

 

YOLOv8 comes in five different flavour models. They are as follow: 

YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x 

(extra-large). Their speeds and accuracies vary, and the platform usage can determine 

which to choose from. YOLOv8n is the fastest but the least accurate, while YOLOv8x is 

the slowest but the most accurate. I have chosen YOLOv8m and YOLOv8l as the base 

models for training. One reason for this choice is the computation power of the com-

puter to be used.  

  

3.3 Evaluation metrics 

The performance of an object detection model can be measured using some metrics, 

and these metrics are also used in other fields to evaluate performance. These include 

Accuracy, Precision, IoU, Recall, PR curve, Average Precision, and others (Kaur, R. et al., 

2022).  For our dataset, the metrics that are used include Precision, Recall, F1-Score 

(based on confusion matrix) and Intersect over Union (IoU). A confusion matrix is a ma-

trix that gives the summary of the performance of a machine learning model based on a 

set of test data. Table 1 illustrates the point. We can see that it is based purely on True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). True 

Positive is when the model predicts that it is a COTS, and it is. True Negative is when the 

model predicts that the object is not COTS, and it is correct. In False Positive, the model 

predicts that there is COTS image when there is not. The same goes with False Negative, 

when the model says it is not a COTS image when there is, the model gets it wrong. In 

fact, there is a COTS starfish image. By taking into consideration the positives and the 

negatives, it gives a more representative view of the accuracy of the performance than 
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just only the simple accuracy. Now, we will talk about the different metrics for a com-

puter object detection model or algorithm. 

 

 

 

 

 

 

           Table 1 The confusion matrix. 
 

They are as follows:  

• Precision: This is a measure of correctness that specifies the number of true pos-

itives over the total positive predictions (both true positives and false positives). 

This gives a good idea of correctness because unlike accuracy which tells the 

number of total positive predictions, precision gives an idea of the number of 

correct predictions and the number of incorrect predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP+FP
                                                                                          (7) 

 

• Recall: Recall is another powerful measure of correctness that gives the idea of 

the number of true positives over the total number of true positive and false 

negative. Many call it sensitivity. It captures as many positives as possible.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP+FN
                                                                                          (8) 

 

• F-measure/F1-Score: The value for F1 falls between 0 and 1 and it is the harmonic 

mean of precision and recall. Unlike averages that are sensitive to extremely large 

values, F1-Score is not.  

 

 

 

True Class 

Predicted Class 

 N P 

N TN FP 

p FN TP 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(Recall + Precision)
                                                       (9) 

 

 

• Intersection over Union (IoU): Object detection is a prediction of the presence 

of an object and the location of the object in the image. This is accomplished by 

drawing a bounding box around the object. A good measure of the correctness 

of a model is the area of intersection of the bounding boxes of the real and pre-

dicted over the area of the union of the two boxes. The higher the IoU the better 

the performance of the object detection model. The value is 1 if the area of the 

predicted bounding box and the ground truth overlap perfectly, and 0 if they do 

not intersect each other at all. When IoU value exceeds the predefined threshold, 

it means that the object is properly recognized.  

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠

Area of Union of two boxes
                                                                 (10) 

 

 

 

Figure 12. Pictorial representation of IoU. 

 

• Mean Average Precision (mAP): This is an object detection performance metric 

that measures or assesses the quality of an object detection model by 
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considering both precision and recall at various confidence thresholds. It is useful 

when dealing with tasks that require ranking and localizing objects in images. A 

value of close to 1 means that the model is good at accurately detecting and 

ranking objects across different classes and confidence thresholds. Conversely, a 

value close to 0 means that the model is not accurate in identifying and localizing 

objects in various categories and different confidence levels. In this COTS detec-

tor, we are aiming at a high value of mean average precision which shows that 

the model is reliable in detecting and localizing COTS. 

 

3.4 Efficiency improvement methods 

Some of these methods reduce the losses in the model during training. Others transfer 

weights and biases learned from pre-trained model to the new model. While others aug-

ment the training set. These are discussed in the following sub-sections. 

 

3.4.1 Loss function 

The loss functions are functions that try to minimize losses in a model between the 

ground truth and the predicted. The aim is to continuously reduce the following losses. 

The graphs will display these losses after training. 

 

• Objectness Loss (Confidence loss): This loss is a measure of how well the model 

predicts or estimates the confidence score of the object’s presence in a grid cell. 

The model uses binary cross-entropy (logistic regression) to calculate this loss. 

The value of this loss is between 0 and 1. 

• Classification Loss: Classification loss measures the error in predicting the correct 

class labels for the detected object. It uses categorical cross-entropy (SoftMax) 

to calculate this loss. 

• Bounding box Location: Bounding box location loss measures the error in predict-

ing the coordinates accurately. It uses mean squared error (MSE). Reducing this 

error means that the model correctly predicts the bounding boxes coordinates.  
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3.4.2 Non-maximum suppression (NMS) 

This is a powerful technique used in object detection tasks to optimize bounding boxes. 

It removes duplicates or highly overlapping bounding boxes, making sure that only the 

most confident and accurate predictions are retained. When a model makes predictions, 

there are a lot of bounding boxes predicted; some overlap each other, and others have 

low confidence value. Non-maximum suppression comes to the aid by smoothening out 

the overlaps and reducing the number of redundancies and improving the precision of 

the object detection results. Reis, D., (2023) describes it as a ‘filter’ that filters out over-

lapping bounding boxes. This technique can be integrated into YOLO. Non-maximum 

suppression accomplishes this using a few techniques, such as confidence thresholding 

and iterative suppression. 

 

In this chapter, I looked at some of the methodologies used in the design of the COTS 

detection model. Our design methodologies have a bearing to help us answer our re-

search questions. We include methodologies such as transfer learning, data augmenta-

tions, and preprocessing our image data to improve the picture quality so that we can 

improve the COTS detection accuracy. In the next chapter, we look at the actual imple-

mentation or training of the model to test the hypotheses. 
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4 Experiments and results 

This chapter focuses on the actual implementation of the computer vision COTS-detector 

using the state-of-the-art algorithm, YOLOv8. YOLO has lately been gaining momentum 

in real-time object detection, classification, and segmentation, for its speed and accuracy. 

It has also outperformed other earlier computer vision algorithms. In the last chapter, 

we designed the methodologies that will be used in this chapter for the actual imple-

mentation. First, the training of the COTS detector to learn patterns from the dataset 

and be able to detect COTS. The implementation will explain the necessary procedures, 

the pipeline, the hardware, and the software required for successful training of the 

model. And second, the results from the training are important because they will help 

us answer the research questions. We want to see if there is a connection between the 

transfer learning of the pre-trained models and the model’s generalization. Also, we 

want to find out if data augmentation and image preprocessing can improve the COTS’ 

detection accuracy by the model. First, we start with the setup for the experiment, both 

software and hardware. Then, we discuss the training of the model; first, the base model 

and subsequent models training with transfer learning, data augmentation, and data 

processing.  

 

4.1 Experimental setup 

YOLOv8 makes it easy to train our model on either a CPU or a GPU (Graphical Processing 

Unit), but preferably on a GPU. It will take ages to train on a CPU because it is computa-

tion-intensive, and faster on a GPU. The GPU takes over the huge image processing and 

computation involved as lots of images (thousands) are involved. My system (local ma-

chine) met the minimum hardware requirements for this, although it was not the best 

GPU available. It was an MSI Intel(R) Core(TM) i7-11800H @ 2.30GHz, 16.0 GB RAM, 

134.8/931.5 GB disk, Windows 11, NVIDIA GeForce RTX 3060 GPU, 6144MiB system. To 

install and run YOLOv8, this was the list of software requirements that should be installed 

in addition to torch-2.0.1+cu117 CUDA driver. Appendix 1 shows the software and librar-

ies. 
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I cloned YOLOv8 from Ultralytics GitHub repository to my local machine and installed all 

the libraries and dependencies for YOLv8 (Ultralytics is the organization that developed 

YOLOv8). I also installed Python and Python libraries such as Matplotlib, NumPy, Pandas, 

OpenCV, PyTorch and TensorFlow libraries. These libraries are image manipulation librar-

ies and were vital to preprocess the image data. The training, validation and test images 

and annotation files were all organized strictly for YOLOv8, and all the information is 

specified for YOLO in a configuration file, ‘.yaml’ extension. YOLO uses this configuration 

file to load the folders housing the train, validation, and test sets. The path to the con-

figuration file is assigned to the data parameter of the train method for YOLO object. 

 

4.2 Model training 

To see the effects of using a pretrained model, data augmentation, and data prepro-

cessing on our YOLOv8 model, I used YOLOv8m (medium) as a base model. I performed 

a series of training experiments. The first experiment was training the YOLOv8 model 

from scratch without any pretraining. This allowed the model to learn from scratch with-

out transferring any weights and biases learned from any dataset. This was trained for 

100 epochs (epoch is one round through the training set). Next, a pretrained YOLOv8m 

model based on COCO dataset was used this time, which means that the weights and 

biases learned from COCO dataset was transferred to this model. In addition, there was 

no data augmentation nor preprocessed training set used. This training was performed 

for 100 epochs. The third was a training using COCO-based dataset of YOLOv8m model 

and data augmentation for 100 epochs. The data augmentations applied included geo-

metric parameters such as rotation, scaling, translation, flipping, and shearing. Included 

also were the color-space augmentation parameters, such hue and saturation. The next 

two trainings utilized pretraining, no data augmentation but instead, preprocessed train-

ing set was used for 100 epochs, and training set comprising of both original and pre-

trained sets for 100 epochs. 
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In the second round, the training was conducted using YOLOv8l model. The training was 

performed using the same steps outlined in the previous round. The only difference was 

that YOLOv8l was used in place of YOLOv8m and for 150 epochs. The results were rec-

orded and displayed in the following sections, and in the next chapter, the analysis in the 

results. The best performing model was trained later for an epoch of 200 to obtain better 

performance and model convergence. 

 

4.3 Results of the experiments 

The experiments of this thesis were done not all at once but incrementally to see the 

effects of some concepts and parameters on the model training and, hence, their effects 

on the performance of the model were recorded. Here, it is good to highlight the results 

obtained from our experiments and see how the training fared. If the results are good, 

then we see the reasons to deploy it. If not so good, it will be tweaked a little for better 

performance. First, let us talk about the loss and the precision of the model.  

  

 

Figure 13. Training losses, training precisions and recalls for 200 epochs. 
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Figure 13 shows the losses, the precisions, and the recalls for the model training. The 

training losses are going down as expected, and the precisions and the recalls are going 

up. This shows that the model was really learning from the training set during training 

that stopped at 200 epochs. This is an indication that the model’s overall performance 

was good, and it can be further trained. Next, the F1-Confidence curve. This is shown in 

the next figure, figure 14. 

 

 

Figure 14. F1-Confidence graph. 

 

From figure 14, we can see the value of F1-Score as 0.736. We know that there is always 

a trade-off between Precision and Recall as they go in the opposite direction. F1-Score 

(harmonic mean) tells us about the balance between both metrics for the model to per-

form well. It tells us that for this model, any precision from 0.736 and above is good. The 

model achieved a mean average precision of (0.79 mAP), meaning that it is a good model.   

 

Every object detected as associated confidence score. The model uses probability to de-

termine how certain it is to detect an object. It uses regression to determine the bound-

ing boxes around the detected objects. As mentioned earlier, object detection deals with 

identifying an object (classification) and as well as localization (drawing bounding box 

around the object). It is interesting that the detector can handle these aspects very well. 



59 

 

As was said earlier, there is a trade-off between the precision and the recall. This is seen 

in the following figure. 

 

 

Figure 15. Precision-Recall curve. 

 

Figure 15 shows the values of precision and recall various thresholds. Even though we 

want the precision to be high, we do not want to sacrifice the recall. The area under the 

precision-recall curve is a metric to show the overall performance of the detector. It tells 

us to detect most of the COTS, we need to set the threshold to 0.5. There is no problem 

if we miss a few COTS, in that case we want to maintain high precision over recall. We 

would have tried to maintain high recall and lower precision if missing COTS is critical. 

We can see the result of the model after training in figure 16. The model detected so 

many COTS on the training set and identified them with 0.  However, figures 17 and 18 

are of interest to us.  
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Figure 16. Sample images after training. 

 

The training prediction was able to detect so many COTS objects, as we can see from 

figure 16. When compared with the ground truth, the prediction accuracy is high. 

 

 

 

Figure 17. Validation sample showing the model’s prediction on the validation set. 
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Figure 17, too, shows a high rate of detection by the COTS detector. When compared to 

the ground truth, we see that it detected so many COTS. 

 

 

Figure 18. Validation sample showing the ground truth values of the validation set. 

 

Figures 17 and 18 show the model’s prediction on the validation set and the ground truth 

values respectively. Comparing both shows that they look alike, meaning the model was 

able to detect exactly most of the COTS, and their exact locations in the validation set 

images. This is a confidence boost that the model is performing well as expected. But 

once more, let us perform a test on the model using the test set to confirm if the results 

we got from model validation are justifiable.  

 

The following table is the summary of the experiments and the results. It is good to look 

at the precisions when the confidence (IoU) was at 0.5 (mAP50) and between 0.5 to 0.95 

(mAP50-95). Precision is the measure of how accurate the model makes correct predic-

tions. 
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Table 2. The comparison of the base model and other parameters. P = Preprocessed data. 

Model Pre-

train 

Augmenta-

tion 

Prepro-

cessing 

Epochs Precision 

(P) 

Recall (R) F1 mAP 

50 

mAP 

50-95 

YOLOv8m No No No 100 0.960 0.957 0.958 0.981 0.674 

YOLOv8m Yes No No 100 0.972 0.974 0.973 0.987 0.717 

YOLOv8m Yes Yes No 100 0.973 0.967 0.970 0.988 0.702 

YOLOv8m Yes No Yes (P) 100 0.969 0.963 0.966 0.985 0.705 

YOLOv8l No No No 150 0.976 0.977 0.976 0.992 0.758 

YOLOv8l Yes No No 150 0.977 0.979 0.978 0.993 0.790 

YOLOv8l Yes Yes No 150 0.984 0.98 0.982 0.993 0.773 

YOLOV8l Yes No Yes (P) 150 0.979 0.978 0.978 0.993 0.786 

 

Table 2 shows the models used as base models, when we used pretrained models (trans-

fer learning), data augmentations, data preprocessing, the number of cycles through the 

training set (epochs), the precision, the recall, the F1, and the precisions with the confi-

dence threshold at 50% (mAP50) and between 50% - 95% (mAP50-mAP95). For example, 

using YOLOv8m model trained from scratch, when the confidence threshold (IoU) is kept 

at 50% (0.5), the model makes average mean precision of 0.981mAP correction predic-

tions, which is good. But, if the confidence threshold (IoU) is between 50%-95% (0.5-

0.95), the average mean precision is 0.674 mAP, which is not so good. We can see that 

there is increase in the average mean precision when we trained with pretrained model, 

data augmentation, or preprocessed our training data. We get more increase in average 

precision when pretrained model was combined with both original and preprocessed 

train sets, recording 0.992 mAP on YOLOv8m and 0.995 mAP on YOLOv8l.   

 

4.4 Model inference 

Now, the model is set to be used for inference, to see how it performs on unseen data. 

Here, the test set is used. To perform test on the model, the predict method of the model 

object is called. The model is initialized with the ‘best.pt’ model from the training of the 

model. The following figures were obtained from the testing of the model with new or 

unseen data. 
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Figure 19. The ground truth of test set. 

 

Figure 19 shows the ground truth of the test set. When compared to the prediction of 

the model in figure 20, the model got a lot of predictions correct. 

 

 

Figure 20. The predictions of the model on the test set. 

 

Figure 20 is the sample of the prediction on the test. From table 2, we got the best aver-

age mean precision of 0.992 mAP with IoU of 50% for YOLOv8m and 0.992 mAP with IoU 
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of 50% for YOLOv8l. These are good predictions for the COTS-detectors. The COTS detec-

tor can detect COTS in both data images as well as video data.  
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5 Findings and analysis 

This chapter will commence by presenting the evaluation of the results obtained in the 

last chapter with respect to our research questions. We have a model, but what do the 

results tell us about the accuracy of this model? Are there relationships between using 

a pretrained model, data augmentation, and data preprocessing and the performance of 

the model? This we explore in the first section and in the second section, we explore the 

limitation of the model. 

 

5.1 Results and performance analysis 

How has our model performed? Generally, good. But, what about regarding our research 

questions? The questions are: 

- Can transfer learning from pretrained models effectively improve the generalization 

of COT detection models across varied and underwater environments? 

- Can data augmentation and preprocessing methods improve the visibility and distin-

guishability of COTS from the reef background in underwater images and compen-

sate for the class imbalance? 

From table 2, the result summary, considering the first case when the YOLOv8m is 

trained from scratch and when a pretrained model is used, we can see that there is an 

improvement in the performance: Precision, from 0.960 to 0.972; Recall, from 0.957 to 

0.974; F1, from 0.958 to 0.973. There is an improvement in the average mean precision 

for IoU=0.5, from 0.981 mAP to 0.987 mAP. The same is true in the second case with 

YOLOv8l model. The precision improved from 0.976 to 0.977, recall from 0.977 to 0.979. 

F1 and mean average precision increased as well, from 0.976 to 0.978 and 0.992 mAP to 

0.993 mAP respectively. So, this answers the first research question. Higher precision, 

recall, and F1 show that there is an improvement in the generalization of the models to 

detect COTS across varied and underwater environments. We accept the first hypothesis. 

 

What about the second research question? Table 2 shows that using YOLOv8m as a case, 

when there is data augmentation or preprocessing involved in the model, the 
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performance metrics improve. For example, comparing training with pretrained model 

and that involving data augmentation sees the mean average precision of the model us-

ing data augmentation is higher (0.988, 0.987), the pretrained model has a higher F1 

value (higher by 0.003). This is beyond expectation because we expect data augmenta-

tion which involves data synthesis plus pretrained data to perform higher than the model 

that is only pretrained. The problem might be with the combination of data augmenta-

tion parameters applied. Experimenting with different combinations can help to see the 

combinations that will produce the better results. This should be investigated further. 

 

The same thing applies to comparing pretrained YOLOv8m module and another using 

pretrained YOLOv8m plus preprocessed training set. For the former we have an F1 of 

0.973 and average mean precision of 0.987 mAP for IoU=0.5 against the latter with F1 

score of 0.966 and average mean precision of 0.985. We see that pretrained YOLOv8m 

performs better than the module that is pretrained plus data augmentation. Again, this 

is beyond expectation because we expect a model pretrained on a dataset with data 

augmentation to perform better in detecting COTS than just pretrained. This should be 

investigated on. As in the case of training a model from scratch and pretraining a model 

on a given dataset, there could be so many reasons for this. It could be that the prepro-

cessed data introduced some noise to the dataset and ends up confusing the model 

when training, making the model unable to learn the features of the images. Of course, 

when the original training set is combined with the preprocessed set, there is a marked 

improvement. This could be explained because of using twice the amount of original 

training set (more data). Unfortunately, based on the results obtained do not accept the 

second hypothesis.  

 

This model can also be evaluated based on the recommendations contained in the doc-

umentations of CSIRO dataset and YOLOv8. One of the tips by YOLOv8 for improving 

models is to ensure that the training dataset includes images from 1,500 and above for 

each class and that each class should have from 10,000 and above annotated instances. 

In our case, we had 4,919 images annotated as files. Each file had one or more 
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annotations, bringing it to a total of 11,898 annotations or instances of this one class, 

COTS class. YOLOv8 recommends image variety so that this is representative of the class 

and environment. In the case of CSIRO dataset, the dataset was indeed representative 

because the images were taken in different locations, different lighting, different angles 

and so on. These were organized in three different folders. Surely, this is good to improve 

the performance of the model. 

 

Proper image labeling, or accurate and consistent image labeling in other words, is rec-

ommended by the documentation. This is because improper labeling will make the 

model not work. In our case, the CSIRO dataset came annotated by the publishers of this 

dataset. This removed lots of hard work that should have gone into labeling and anno-

tations. The annotation phase is the hardest phase because time and care are needed in 

image labeling. This helped me concentrate on the job of training and programming. Of 

vital importance is the inclusion of background images in the training dataset. Back-

ground images are images without objects or classes. YOLOv8 recommends about 0-10% 

background images to be included in the dataset to reduce False Positives. This can lead 

to model performance enhancement. In the first and second training of the model, there 

were no background images added. I added 10% of the background images to the train-

ing set.  

 

Based on the results obtained from this thesis experiment, the first hypothesis is true. 

Pretraining a model on a given or related dataset will transfer the weights and biases 

learned to the model, and this leads to improved performance. We say that transfer 

learning from pretrained models effectively improves the generalization of COT detec-

tion models across varied and underwater environments. For the second hypothesis, the 

result does not prove it right that data augmentation and preprocessing methods im-

prove the visibility and distinguishability of COTS from the reef background in underwa-

ter images and compensate for the class imbalance. Even though it is true that data aug-

mentation and preprocessing should improve the detectability of objects because of im-

proved performance. I am still trying to figure out why the model performs very on our 



68 

 

training set but when the training set is augmented or preprocessed, there is not marked 

improvement in the performance. 

 

5.2 Discussions and limitations 

It is a good feeling to go through this journey of implementing a deep learning technique 

to develop a computer vision detector using the state-of-the-art YOLOv8. Even though 

there are positive achievements in the model, there are some limitations that affected 

this work. Unfortunately, the data augmentation and preprocessing methods included 

did not improve our model as expected. One reason is that it was quite challenging to 

find the combinations of data augmentation parameters that worked best to improve 

the model. Incompatible combinations might adversely add noise. I experimented with 

different combinations, especially those that will impact underwater images such as 

color, contrast, but there was no improvement. I am suspecting that the data augmen-

tation parameters I chose inadvertently added noise to the images so that there is no 

marked improvement. Another is the processed images. It seems that the OpenCV func-

tions for dehazing, Dark Channel Prior (DCP) and Contrast Limited Adaptive Histogram 

Equalization (CLAHE), ended up adding some noise to the data, making it difficult for the 

model to extract patterns from the images. Closely following this is the limited 

knowledge in image processing, which affected the efficiency of image enhancement. 

 

There is also the hardware constraint. The use of computer systems with limited compu-

tational powers to process the images impacted the speed and memory capacity needed 

to train deep learning models. There was also data limitation, I had to work with data 

provided for the competition. The data may not adequately represent the variations in 

lighting, pose and size of COTS, or background. Again, the diversity of the COTS object 

could affect its detection by the model. I struggled with some concepts and tried to im-

plement some of these in my work. Related to this is the real-time processing challenge. 

Meeting the real-time processing constraints while maintaining accuracy simultaneously 

can be a big challenge. 
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Some base models are faster but less accurate while others are more accurate but slower 

in performance. For instance, I used YOLOv8m and YOLOv8l. While YOLOv8m is faster 

but less accurate, YOLOv8l is slower but more accurate. YOLOv8x is the most accurate in 

YOLOv8 family, but because it is the slowest, I did not train with it. The deployment en-

vironment will also affect this model. This is because models perform differently under 

various conditions. For instance, this model will not run the same when deployed on a 

mobile application, on the cloud or other devices. Their computation power will affect 

the performance. 

 

Another limitation is the choice of hyperparameters such as batch sizes. My system’s 

computational power impacted the model training. I used batch sizes of 6 and 8. I ob-

served a problem of memory with size 16, which would have been better and faster. I 

moved to Google Colab and signed up for Pro service. My first payment was not enough, 

and my use of GPU was restricted. I had to move back to use my system.  The same was 

true of data augmentation. I chose data augmentation to overcome overfitting and to 

improve the model performance. But it exerted a lot of power on the resources of the 

GPU because it had to manipulate the images, like rotating, flipping, and blurring images 

to produce more. Another limitation I experienced was the issue of transferability. This 

model is only for this use case, for detecting COTS. This will not work for another use 

case. Using it for another use case means that we must train it on another custom da-

taset with its different annotations and tinker with the code also. 
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6 Conclusions 

Deep learning computer vision has come a long way, and its application to COTS detec-

tion can help to save the oceans that have been threatened by various facts, including 

the overpopulation of the crown-of-thorns starfish. We have seen the computer vision 

journey and how the state-of-the-art computer vision is riding on the winds of previous 

computer vision techniques and development. Its application to COTS detection can lead 

to sustainable oceans. We have answered our two research questions. First, transfer 

learning from pretrained models can effectively improve the generalization of COTS de-

tection models across varied and underwater environments because the model im-

proved when using pretrained model. Second, data augmentation and preprocessing 

methods of our data do not improve the visibility and distinguishability of COTS from the 

reef background in the underwater images and take care of the class imbalance. They 

should have but unfortunately, they did not improve our models. I am still trying to un-

derstand why they did not in this case. 

 

The implementation did not experiment with all possibilities there are because of the 

time, limited knowledge, and hardware constraints. This work is only limited to one class 

detection, that of COTS, and cannot be used for other use cases without adjustment to 

the model. But the knowledge in implementing this can be applied not only to COTS 

detection but the detection of other marine life using similar or related underwater im-

ages. Since they share underwater environment together, this work can be applied to 

marine life detection and underwater environments. This is one good implication for this 

study. Another implication is that this study will contribute to effective ecosystem man-

agement strategies based on the underwater images used. Also, this computer vision 

Google-sponsored competition plays a role in public awareness and education. It fosters 

collaboration and partnerships among many stakeholders such as governments, re-

search institutions and corporate bodies. And finally, the detection methods of this pro-

ject work can be part of a strategy to maintain the health of the ecosystems. 
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The ocean is packed with life of various kinds that not only support one another but 

support planet earth and its life forms. One area for further research and improvement 

is in real-time monitoring and reporting. In addition to detection, future work can be 

done on reporting their locations in the sea in real-time. This can enable timely interven-

tion to know the exact locations of detected COTS to remove them and prevent damage. 

Another is to research image enhancement algorithms or dehazing techniques that are 

most effective in mitigating the effects of water turbidity and varying lighting conditions 

for better COTS detection. Future research can be on identifying discriminative features 

of COTS and minimizing noise since this is a challenge. Again, there is lack of research on 

ethical implications and potential impacts of AI-driven detection systems. This will be 

suitable for research purposes. 

 

In conclusion, it is worth mentioning that this has been a learning journey. At the begin-

ning of the thesis, I was scared not knowing if I could complete this and implement the 

COTS detection model in images and videos in real-time. This is a field that little has been 

written about and sometimes help is not forthcoming when you are stuck. However, it is 

a fulfilling experience. 
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Appendices 

Appendix 1. Software and library requirements for YOLOv8 

# Ultralytics requirements 

# Example: pip install -r requirements.txt 

# Base ---------------------------------------- 

matplotlib>=3.3.0 

numpy>=1.22.2 # pinned by Snyk to avoid a vulnerability 

opencv-python>=4.6.0 

pillow>=7.1.2 

pyyaml>=5.3.1 

requests>=2.23.0 

scipy>=1.4.1 

torch>=1.8.0 

torchvision>=0.9.0 

tqdm>=4.64.0 

# Logging ------------------------------------- 

# tensorboard>=2.13.0 

# dvclive>=2.12.0 

# clearml 

# comet 

# Plotting ------------------------------------ 

pandas>=1.1.4 

seaborn>=0.11.0 

# Export -------------------------------------- 

# coremltools>=7.0  # CoreML export 

# onnx>=1.12.0  # ONNX export 

# onnxsim>=0.4.1  # ONNX simplifier 

# nvidia-pyindex  # TensorRT export 

# nvidia-tensorrt  # TensorRT export 
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# scikit-learn==0.19.2  # CoreML quantization 

# tensorflow>=2.4.1  # TF exports (-cpu, -aarch64, -macos) 

# tflite-support 

# tensorflowjs>=3.9.0  # TF.js export 

# openvino-dev>=2023.0  # OpenVINO export 

# Extras -------------------------------------- 

psutil  # system utilization 

py-cpuinfo  # display CPU info 

thop>=0.1.1  # FLOPs computation 

# ipython  # interactive notebook 

# albumentations>=1.0.3  # training augmentations 

# pycocotools>=2.0.6  # COCO mAP 

# roboflow 

 

 

 

 

 

 

 

 


