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A B S T R A C T   

The concept of correlation appears to be the cornerstone of modern finance as it is applied in almost all finance- 
related research studies. However, Fama (1963) argued that “if the [population] variance is infinite, other sta
tistical tools (e.g., least-squares regression) which are based on the assumption of finite variance will, at best, be 
considerably weakened and may in fact give very misleading answers” (p. 421). This study shows variances of 
foreign exchange rates to be governed by power laws with a tail exponent of α < 3, suggesting infinite second 
moments. We derive a new concept to measure dependencies between power-law processes with this tail 
exponent, which we term co-fractality. We show that risk diversification based on the concept of correlation 
indeed gives misleading results. Notably, foreign-exchange-rate variances lacking co-fractality in our earlier 
subsample do not show evidence for co-fractality in our later subsample. We argue that co-fractality, as opposed 
to correlation, should be used to measure the dependency between processes governed by power laws.   

“Invariances make life easier. If you can find market properties that 
remain constant over time or place, you can build better, more useful 
models and make sounder financial decisions.” 
(Benoit Mandelbrot, The (Mis)Behavior of Markets, p. 242) 

1. Introduction 

The concept of correlation appears to be the cornerstone of modern 
finance, as it is used in almost all finance-related research studies. 
Notably, the Nobel prize for economic-related research has been awar
ded about half a dozen times for research drawing conclusions based on 
the statistical concept of correlation. Consider two assets A and B. 
Denoting the return-generating processes of assets A and B at time t as yt

A 

and yt
B, and provided yt

A~N(μA,σA
2) and yt
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It is important to note that the variance is an integral part of this 
metric. Indeed, variances, covariances, and correlations are used in 
virtually all finance studies for point estimation, hypothesis testing, 
portfolio optimization, risk management, etc. A textbook example is 
portfolio diversification, in which the lack of correlation is considered 
important for minimizing overall portfolio risk. Modern portfolio theory 
in the spirit of Nobel prize laureate Markowitz (1952) tells us that the 
expectation of portfolio P consisting of assets A and B is given by 

E
(
yP

t

)
= wμA +(1 − w)μB, (2a)  

where w denotes the weight in terms of percentage of wealth invested in 
A and μA (μB) is the expected return of asset A (B). The portfolio vari
ance, denoted as VAR(yt

P) is, hence, given by 
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(2b) 

From Eq. (2b), it becomes evident that for any given VAR(yt
A) and 

VAR(yt
B), portfolio variance VAR(yt

P) decreases as COV(yt
A,yt

B) decreases, 
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and assuming there are no negatively correlated assets, the portfolio risk 
is minimized if ρ(yt

A,yt
B) = 0. Such an example can be found in perhaps 

all standard finance books used by business schools. Unsurprisingly, Ray 
Dalio, founder of Bridgewater Associates, which manages the world’s 
largest and perhaps most successful hedge fund, calls the search for 
uncorrelated assets “the holy grail of investing.” In his bestselling book 
Principles, Dalio (2017) highlighted, “Having a few good uncorrelated 
return streams is better than having just one, and knowing how to 
combine return streams is even more effective than being able to choose 
good ones (though of course you have to do both). At the time (and still 
today), most investment managers did not take advantage of this” (p. 
57). 

It is important to note that correlation-based methods have been 
intensively used also for measuring co-dependencies between asset 
market uncertainties in terms of variances or volatilities, respectively. 
For instance, Da Fonseca and Zhang (2019) used high-frequency data for 
major volatility indices to compute the volatility of volatility and argued 
that the correlation between the volatility and the volatility of volatility 
is positive, consistent with observations in the volatility option market. 
Moreover, Andersen, Bollerslev, Diebold, and Labys (2001a, 2001b) 
used high-frequency data on deutschemark and yen returns against the 
dollar to construct model-free estimates of daily exchange rate volatility 
and correlation. Using correlation as metric for measuring co- 
dependencies, they found high correlation between foreign exchange 
rate volatilities. Furthermore, Boldanov, Degiannakis, and Filis (2016) 
used the realized volatilities for both oil and stock returns to study the 
dynamic interdependencies between volatilities. The authors found that 
the correlation between the volatilities is subject to time-variation. 

Even though the concept of correlation appears to be appealing for 
both academics and practitioners, there is overwhelming evidence that 
reality looks very different from what is taught in business schools. 
Manifestations of reality are hedge fund bankruptcies and replication 
failure of published research. An example for the former has been pro
vided by Taleb (2010), who described the bankruptcy of the Long-Term 
Capital Management (LTCM) hedge fund, for which Nobel laureates 
Robert Merton Jr. and Myron Scholes served as members in the board of 
directors: “… during the summer of 1998, a combination of large events, 
triggered by a Russian financial crisis, took place that lay outside their 
models. It was a Black Swan. LTCM went bust and almost took down the 
entire financial system with it, as the exposures were massive” (p. 288). 
An example for the latter comes from the study of Hou, Xue, and Zhang 
(2020), who showed that 82% of cross-sectional asset-pricing phenom
ena mostly published in top-notch finance journals fail scientific 
replication. 

Paradoxically, these realities should not come as a surprise—in his 
seminal study, Mandelbrot (1963) became the first to document that 
cotton price changes do not exhibit a finite variance. Note that if the 
variance does not exist, t-statistics are not defined either, and as a 
consequence, the concept of correlation falls to pieces. Interestingly, in 
his article entitled “Mandelbrot and the stable Paretian hypothesis,” 
Eugene Fama (1963), who happened to be both a Nobel laureate (like 
Merton Jr. and Scholes) and a doctoral student of Benoit Mandelbrot, 
commented that: 

… the infinite variance assumption of the stable Paretian model has 
extreme implications. From a purely statistical standpoint, if the 
population variance of the distribution of first differences is infinite, 
the sample variance is probably a meaningless measure of dispersion. 
Moreover, if the variance is infinite, other statistical tools (e.g., least- 

squares regression) which are based on the assumption of finite 
variance will, at best, be considerably weakened and may in fact give 
very misleading answers. (p. 421). 

Hence, prominent scholars in financial economics have been aware 
of this issue for many years. Unsurprisingly, the seminal studies of 
Mandelbrot (1963) and Fama (1963) resulted in an enormous amount of 
follow-up research.1 The corresponding research hypothesis postulating 
infinite variance is often referred to as the Lévy-stable hypothesis. In this 
regard, Lux and Alfarano (2016) highlighted the following: 

The Lévy distributions are characterized by an asymptotic power-law 
behavior of their tails with an index α (called the characteristic 
exponent) which implies a complementary cumulative density 
function of returns (denoted by ret. in the following) which in the 
tails converges to: 

Pr(|ret| > x) ≈ x− a.

The Lévy hypothesis restricts the power-law for returns to the ad
missible range of α ∈ (0,2) which indicates the mentioned non- 
convergence of the second moment (with α < 1 not even the mean 
would converge). Empirical estimates based upon the Lévy model 
typically found α hovering around 1.7. (p. 4). 

On the other hand, Lux and Alfarano (2016) argued that other 
studies raised doubts over the validity of the Lévy hypothesis by ques
tioning the stability-under-aggregation property of these estimates, and 
the pertinent literature gradually converged to the insight of an expo
nent significantly larger than 2 and mostly close to 3. Moreover, the 
authors argued that the approximate cubic form of the power law of 
returns appears to be accepted as a universal feature of practically all 
types of financial market, from share markets and futures to foreign 
exchange (FX) and precious metal markets. This finding implies, in turn, 
a rejection of the time-honored Lévy hypothesis because α ≈ 3 means 
that the decay of the outer part of the distribution is faster than allowed 
by this family of distributions. 

While earlier studies modeled power-law functions for asset returns, 
recent studies by Grobys, Junttila, Kolari, and Sapkota (2021) and 
Grobys (2021) used realized volatility or realized variances estimated by 
intraday price ranges. For instance, Grobys et al. (2021) explored the 
volatility processes of stable cryptocurrencies (e.g., stablecoins) and 
their potential stochastic interdependencies with Bitcoin volatility. In 
doing so, the authors used realized daily volatilities to model the 
probability density functions of five stablecoins exhibiting the largest 
market capitalizations. Using power laws, the authors found the expo
nents to be statistically significantly below 3 across all stablecoins, 
thereby rendering stablecoin volatilities statistically unstable. Relatedly, 
Grobys (2021) used realized daily variances for five key financial asset 
markets to test the power-law null hypothesis. His findings indicated 
first that the power-law null hypothesis cannot be rejected for any of 
those asset markets and second that the exponents are below 3, implying 
that the variance of variance does not exist for any of those asset mar
kets. In a robustness check, the power-law null hypothesis was investi
gated using lower frequented data on a monthly frequency. His findings 
indicate that the economic magnitude for the power-law exponent of the 
realized monthly variance of the S&P 500 is statistically the same for 
monthly data as it is for daily data, which strongly supports Mandelbrot 
(1963) early findings on the scaling property of cotton price changes. 

Findings from recent literature have some serious implications. If the 

1 Relevant studies in this stream of research are, for instance, those of Hall, 
Brorsen, and Irwin (1989), Lau, Lau, and Lau, Lau, and Wingender (1990), Hill 
(1975), Jansen and de Vries (1991), Lux (1996), Werner and Upper (2002), 
Cont, Potters, and Bouchaud (1997), and Gopikrishnan, Meyer, Amaral, and 
Stanley (1998). 
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variances of asset variances do not exist, we cannot use correlation as a 
statistical metric to measure the co-movement between the uncertainty 
of financial assets because the correlation is undefined.2 Even if we were 
interested in examining the correlation for simple asset returns and 
assuming that α ≈ 3, the research environment would still not meet the 
conditions allowing us to use correlation or correlation-based method
ologies to evaluate data dependencies. Taleb (2020) conjectured that if 
the fourth moment is undefined, which is the case if α < 5, the stability 
of the second moment is not ensured. Therefore, we cannot work with 
the variance even if it exists in the theoretical distribution. 

The purpose of this study is manifold. First, we test the power-law 
null hypothesis for realized FX rate variances using Group of Ten 
(G10) currencies. Matching the data samples, we use the intersection for 
all data sets. Hence, the overall sample period used in this study is from 
May 16, 2006 to November 19, 2021. We test the power-law null hy
pothesis first for the whole sample and then for two subsamples of equal 
length. The two subsamples contain nonoverlapping daily data and 
correspond to an earlier subsample from May 16, 2006 to March 07, 
2014 and a later subsample from March 10, 2014 to November 19, 2021. 
The stability of the estimated power-law exponents is studied in a 
comparative manner across subsamples. We then propose a new test to 
examine the co-dependencies in the tails of the variance distributions 
accounting for nonexistent second moments. Provided the tails of the 
variance distributions are governed by fractal processes with infinite 
variances, as indicated by earlier research, we term our metric co-frac
tality as opposed to correlation. Deriving the statistical distribution of 
the test statistic, we test for co-fractality in the overall sample, as well as 
in our two independent subsamples—thereby examining whether po
tential co-fractality has changed over time. 

Our study has some important contributions. First and most impor
tantly, we propose a new methodology that allows for testing the co- 
dependencies of power-laws with infinite variances. This is an impor
tant issue because of the following reasons: First of all, power-law 
behavior of financial assets is not a new finding per se. In reviewing 
Mandelbrot (1963) early study documenting power-law behavior in 
cotton price fluctuations, already Fama (1963) argued that if the pop
ulation variance of the distribution of first differences is infinite, the 
sample variance is a useless measure of dispersion and that other stan
dard statistical tools such least-squares regression, which are based on 
the assumption of finite variance, will provide very misleading research 
results. Second, Grobys (2021) argued that “a hypothetical root cause 
for the high rate of replication failures in financial economics could be 
that many researchers correctly use incorrect methods, that is, these 
methods do not work well, given the very nature of financial markets.” 
The high rate of replication failure of finance research studies published 
in top-notch finance journals is a well-documented issue, subject to 
investigation in the studies of Hou et al. (2020), Harvey, Liu, and Zhu 
(2016) and Serra-Garcia and Gneezy (2021). Given the failure of 
correlation-based methodologies, a methodological approach address
ing the prevalent instability-of-variance-problem in financial markets is 
in urgent need. 

Next, there is a large body of research examining the power-law 
hypothesis for financial markets. An interesting overview on this liter
ature was provided, for instance, by Lux and Alfarano (2016). In view of 
this literature, our study is related to those of Grobys (2021) and Grobys 
and Kolari (2022), who tested the plausibility of the power-law null 
hypothesis using the goodness-of-fit (GoF) test proposed by Clauset, 
Shalizi, and Newman (2009). Specifically, Grobys (2021) tested the 
power-law null hypothesis for realized variances of gold, crude oil, the 

USD/GBP exchange rate, the S&P 500, and Bitcoin. His findings indicate 
that the power-law null hypothesis of α < 3 cannot be rejected for any 
asset market variance. Similarly, Grobys and Kolari (2022) tested the 
power-law null hypothesis for realized variances for G10 currencies 
using daily and weekly data. Their findings indicate that the power-law 
null hypothesis of α < 3 cannot be rejected for most FX rate variances, 
with a surprising result of this finding being even stronger when using 
lower frequented data (e.g., weekly data). This result is surprising 
because Mandelbrot (2008) highlighted that some economists would 
argue that “the degree of wildness–the fatness of the tails–appeared to 
diminish as you looked at returns over longer time periods” (p. 219). The 
studies of Grobys and Kolari (2022) and Grobys (2021) did not find such 
evidence for realized variances for G10 currencies or the S&P 500, 
implying strong fractal behavior as their exponents did not appear to 
alter as the time scale changed. 

Finally, in a critical manner Mandelbrot (2008) highlighted the 
following: 

When you pick a stock by the conventional [correlation-based] 
method, you may actually be adding risk rather than reducing it. 
[…] A new approach is needed. Today, building a portfolio by the 
book is a game of statistics rather than intelligence: You start by 
assuming the market has correctly priced each stock, and so your 
task is simply to combine the particular stocks in your portfolio in 
such a way as to meet your investment goals. (Mandelbrot, 2008, p. 
266). 

Every endeavor begins with a first step and the concept of co- 
fractality could serve as a more robust tool for managing risks in wild 
market environments as opposed to correlation-based methods. Hence, 
from a broader perspective, the present study extends the literature on 
risk assessment and risk management. There is a large body of finance 
research related to risk assessment and risk management. Some relevant 
studies on risk management related to asset management are Alexander 
(2009), Palomba and Riccetti (2012), or Kaplanski and Levy (2015). 
Moreover, Aven (2016) provided an interesting review on the relevant 
literature, pointing out that Taleb (2010) made the “black swan” met
aphor well-known and that his work has inspired many authors to 
examine tail risks. This study extends this wide strand of literature by 
examining co-dependencies among fractal processes that may exhibit 
infinite variances. 

Our results show that the realized variances for G10 currencies are 
governed by Paretian tails with power-law exponents varying between α 
= 2.25 and α = 2.78. The part of the distributions governed by power 
laws varies between 4.75% and 31.61%. Clauset et al.’s (2009) goodness 
of fit test cannot reject the power-law null hypothesis for at least seven 
out of nine realized variances for G10 currencies. This result strongly 
supports the findings of Grobys and Kolari (2022), even for a restricted 
sample where some of the extreme events are neglected. Sample-split 
tests show that the hypothesis of α < 3 cannot be rejected for any 
realized variance, irrespective of which realized FX rate variance is 
considered. Strikingly, for four out of nine realized FX rate variances, the 
estimated α for the later subsample falls into the 95% confidence in
terval for the corresponding estimated α for the earlier subsample. We 
interpret this finding as evidence for parameter stability. 

Next, our results employing the whole data sample indicate that the 
variance for the AUD/USD exchange rate is co-fractal in its strong form 
with the variances for the CAD/USD and SEK/USD exchange rates, 
whereas the variance for the CHF/USD exchange rate is only co-fractal 
in its strong form with the variance for the EUR/USD exchange rate. 
Moreover, the co-fractality matrix shows that only 9 out of 36 variance 
pairs do not exhibit co-fractality in its weak form, implying that there is 
not much room for risk diversification. Interestingly, in the earlier 
subsample, only 7 out of 36 variance pairs do not exhibit co-fractality in 
its weak form. Strikingly, those seven do not exhibit co-fractality in its 
weak form in the later subsample either, showing that the absence of co- 
fractality, as measured in terms of its weak form, appears to be time- 

2 Uncertainty of financial assets can be measured by the volatility or the 
variance, where the former is the square root of the latter. Modeling variances 
processes directly, as Grobys et al. (2021) and Grobys (2021), it becomes 
evident from Eq. (1) that the correlation between variances is undefined if the 
variances of variances do not exist. 
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persistent, whereas the presence of co-fractality does not necessarily 
imply that extreme events in variance pairs coincide in later time pe
riods. Finally, examining the correlations, we find that the absence of 
correlation in one sample is a poor predictor of noncorrelation in later 
samples. This should not come as a surprise, given that correlations are 
to a high degree sample-specific in this research environment (e.g., 
financial market data). 

This study is organized as follows: The next section presents the data. 
The third section presents the methodology. The fourth section describes 
the results, whereas the fifth section provides a detailed discussion. The 
last section concludes. 

2. Data 

Publicly available daily series for the AUD/USD, CAD/USD, CHF/ 
USD, EUR/USD, GBP/USD, JPY/USD, NOK/USD, NZD/USD, and SEK/ 
USD exchange rates were downloaded from finance.yahoo.com. Because 
data for the AUD/USD exchange rate are only publicly available from 
May 16, 2006 onward, we restrict the data samples to cover only data 
from May 16, 2006 to November 19, 2021. We only use the intersection; 
that is, we only account for daily data where all FX rates were quoted on 
the same day, leaving us with 4014 daily observations.3 

Following Grobys (2021), the annualized daily realized variances for 
each FX market i are computed using the following Parkinson (1980) 
estimator: 

σ2
i,t = T

1
4ln(2)

(
ln
(
Hi,t
)
− ln

(
Li,t
) )2

, (3)  

where Hi, t and Li, t denote the highest and lowest price for FX market i on 
day t, respectively, σi, t

2 denotes FX market i’s corresponding realized 
annualized variance, and T = 250. Table 1 reports the descriptive sta
tistics. As shown in Table 1, kurtosis values vary between 140.57 for the 
CAD/USD exchange rate and 4014.00 for the EUR/USD exchange rate, 
strongly suggesting fat tails. 

3. Methodology 

3.1. Power laws 

Following Grobys (2021) and Grobys and Kolari (2022), we model 
realized FX rate variances using the following probability function, 
respectively, power-law function: 

p(x) = Cx− α, (4)  

where C = (α − 1)xMIN
α− 1 with α ∈ {ℝ+|α > 1}, x denotes the respective 

realized FX rate variance provided x ∈ {ℝ+|xMIN ≤ x < ∞}, xMIN is the 
minimum value of realized FX rate variance governed by the power-law 
process, and α is the magnitude of the corresponding tail exponent.4 

Taleb (2020) argued that tail exponent α of a power-law function cap
tures via extrapolation the low-probability deviation not seen in the 
data, playing a disproportionately large role in determining the mean. 
Using power laws as a methodological approach is also in line with the 
argument of Lux and Alfarano (2016), who stated that “recent research 
shows that these models provide a very versatile, yet simple framework 

to model asset returns in a parsimonious way, and they have been found 
to perform at least as good as the time-honored GARCH models in terms 
of forecasting volatility, and often outperform the later to some extent” 
(p. 5). Next, it can be shown that the conditional expectation of the 
variance, defined in this context as E[x|x > xMIN], is given by 

E[x|x > xMIN ] =

∫∞

xMIN

x p(x)dx =
(α − 1)
(α − 2)

xMIN (5)  

and that the second moment, E[X2], or the variance of the variance, is 
defined as 

E
[
X2|x > xMIN

]
=

∫∞

xMIN

x2 p(x)dx =
(α − 1)
(α − 3)

x2
MIN . (6) 

Higher moments of order k are analogously defined as 

E
[
Xk|x > xMIN

]
=

(α − 1)
(α − 1 − k)

xk
MIN . (7) 

From Eqs. (3) and (4), we see that the theoretical conditional mean 
for the respective realized variance only exists for α > 2, whereas the 
theoretical conditional variance of variance only exists for α > 3. 

3.2. Maximum likelihood estimation and goodness of fit test 

Following White, Enquist, and Green (2008) and Clauset et al. 
(2009), who concluded maximum likelihood estimation (MLE) as the 
most accurate procedure for estimating power-law exponents, we esti
mate tail exponents as 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

, (8)  

where α̂ denotes the MLE estimator, N is the number of observations 
exceeding xMIN, and other notations are as previously defined. Clauset 
et al. (2009) noted that determining the corresponding values for α and 
xMIN is important for accurately estimating probability density func
tions. From Eq. (8), we see that the MLE estimator depends on the 
chosen xMIN, and hence, there are different possible MLE estimators from 
which to select the most accurate. In this regard, Clauset et al. (2009) 
documented it as common practice to employ the α̂/xMIN plot and select 
the value for xMIN beyond which α̂ is stable. Because this procedure is 
somewhat subjective and can be sensitive to noise or fluctuation in the 
tail of the distribution, the authors proposed a goodness of fit (GoF) test 
based on minimizing distance D between the power-law function and the 
empirical data. First, the Kolmogorov–Smirnov (KS) distance is the 
maximum distance between the cumulative density functions (CDFs) of 
the data and the fitted power-law model as defined by 

D = MAXx≥xMIN |S(x) − P(x) |, (9)  

where S(x) is the CDF of the data for the observation with a value of at 
least xMIN, and P(x) is the CDF for the power-law model that best fits the 
data in the region x ≥ xMIN. Estimate x̂MIN is then the value of xMIN that 
minimizes D. Using the parameter vector (α̂, x̂MIN) that optimizes D, 
Clauset et al.’s (2009) GoF test generates a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test 
compares D with distance measurements for comparable synthetic data 
sets drawn from the hypothesized model. The p-value is then defined as 
the fraction of synthetic distances that are larger than the empirical 
distance. If we wish to use a significance level of 5%, the power-law null 
hypothesis is not rejected for p-values exceeding 5% because the dif
ference between the empirical data and the model can be attributed to 
statistical fluctuations alone. The implementation of this test was 
detailed by Clauset et al. (2009, p. 675–678). 

3 Comparing Table 1 here with Table 1 of Grobys and Kolari (2022), we see 
that our matching procedure results in losing 23 observations. Moreover, the 
maximums for GBP/USD, JPY/USD, and NZD/USD change from 73.5617 
(2012-01-27), 0.9140 (1998-10-08), and 14.3882 (2012-01-27) as reported by 
Grobys and Kolari (2022) to 0.8985 (2016-06-24), 0.4658 (2008-10-24), and 
14.3093 (2012− 02− 01) as reported in the current research. 

4 This study follows the notation by Clauset et al. (2009). To simplify nota
tion, index i denoting the respective realized variance of the individual FX rate 
is dropped. 
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3.3. Defining the concept of co-fractality: strong co-fractality versus weak 
co-fractality 

Clauset et al. (2009) argued that “in practice, few empirical phe
nomena obey power laws for all values of x. More often the power law 
applies only for values greater than some minimum xMIN. In such cases 
we say that the tail of the distribution follows a power law” (p. 662). 
Indeed, Grobys (2021) and Grobys and Kolari (2022) showed that 7.04% 
to 27.52% (12.70% to 36.27%) of daily (weekly) observations of real
ized FX rate variances are governed by power-law functions. Moreover, 
both studies found that the null hypothesis of α < 3 cannot be rejected 
for virtually all realized FX rate variances, irrespective of which data 
frequency is considered. From Eq. (6), we know that the variance does 
not exist for α < 3, and hence, the correlation between pairs of realized 
variances is not defined either; see Eq. (1). This also makes intuitive 
sense for the following reasons. First of all, and as noted by Taleb (2020), 
even if the theoretical mean of a variance exists, we are not allowed to 
use it because we do not observe it in finite samples. Second, measuring 
the correlation between variances requires the variances of the vari
ances, not the means of the variances. If α < 3, the variance of variance is 
different in every sample we consider, and we do not observe the true 
value of the variance’s theoretical mean. For these reasons, using cor
relations or correlation-based metrics is not only useless, but gives 
inevitably misleading results, as already pointed out by Fama (1963). 
However, we know that extreme events occur in the tails of the distri
butions of the FX variances. Specifically, extreme events may occur for x 
≥ xMIN, but we do not know “how extreme” the realizations in future 
samples look as the variance of variance does not converge. 

However, we can interpret the part of the distributions governed by 
power laws as “power-law regimes” and can define binary variables that 
have values equal to 1 whenever the corresponding distribution is in a 
regime governed by a power law; otherwise, the values are equal to 0. 
For instance, if an FX rate variance has M observations in the power-law 
regime and N observations in total, M/(N-M) is then the part of the 
distribution governed by the power-law process and (1–M/(N-M)) is the 
part governed by a supposedly thin-tailed distribution. Because (1–M/ 
(N-M)) + M/(N-M) = 1, we can interpret these figures as empirical 
probabilities for these two distinct regimes. Based on these elaborations, 
we can define the concept of co-fractality as follows. 

Definition 1. Co-fractality in its strong form. Let us define two 
financial assets A and B whose variances consist of two different 
distributional components. Then, the distributions of the realizations of 

the variances at time t, denoted as xt
A and xt

B, are given by tA~χ2(1) with 
probability pA, xt

A~PL(αA) with probability (1 − pA), 
xt

B~χ2(1) with probability pB, and. xt
B~PL(αB) with probability (1 −

pB), where pA and pB denote the probabilities that xt
A and xt

B, respec
tively, are realizations of the χ2(1), and PL(αA) and PL(αB) denote power 
laws with exponents αA and αB, provided αA > 1 and αB > 1. Defining the 
Tx1 binary vectors xA*and xB* that have values of 1 if xt

A ≥ xMIN
A or xt

B ≥

xMIN
B , and values of 0 if xt

A < xMIN
A or xt

B < xMIN
B , the processes xt

A and xt
B 

are strongly co-fractal if the following condition is satisfied: λs =

xA*
′

xB*

MAX(xA* ′ 1,xB* ′ 1)
> 0.5, where 1 is a Tx1 vector of ones and λs defines the co- 

fractality coefficient (CFC) measuring strong co-fractality. 

Comment 1: From Definition 1 it becomes evident that λs = 1 can 
only be satisfied if both processes xt

A and xt
B exhibit the same number of 

observations governed by a power law—that is, (1 − pA) = (1 − pB)—and 
those realizations are generated at the same points in time t. If (1 − pA) 
∕= (1 − pB), co-fractality in its strong form cannot exist. For instance, if (1 
− pA) > (1 − pB), more realizations of xt

A are governed by a power law 
than of xt

B. Even if all realizations of xt
B for which xt

B~PL(αB) is satisfied 
coincide with realizations xt

A for which xt
A~PL(αA) is satisfied, xt

A and xt
B 

cannot be co-fractal in its strong form. 
Comment 2: Note that Grobys (2021) argues that when standard 

assumptions of finance theory hold, the variance of standardized 
financial returns must follow a χ2(1)-distribution. As a consequence, we 
assume that one part of the variance distribution is in line with standard 
finance theory, whereas the other part of the distribution obeys a power- 
law process which is in line with Mandelbrot (1963) (and subsequent 
research studies confirming Mandelbrot’s finding that financial data are 
governed by power-law processes). 

Definition 2. Co-fractality in its weak form. 
Let us define two financial assets A and B whose variances consist of 

two different distributional components. Then, the distributions of the 
realizations of the variances at time t, denoted as xt

A and xt
B, are given by 

xt
A~χ2(1) with probability pA, xt

A~PL(αA) with probability (1 − pA), 
xt

B~χ2(1) with probability pB, xt
B~PL(αB) with probability (1 − pB), 

where pA and pB denote the probabilities that xt
Aand xt

B, respectively, are 
realizations of the χ2(1), whereas PL(αA) and PL(αB) denote a power law 
with exponents αA and αB, provided αA > 1 and αB > 1. Defining the Tx1 
binary vectors xA*and xB* that have values of 1 if xt

A ≥ xMIN
A or xt

B ≥ xMIN
B , 

and values of 0 if xt
A < xMIN

A or xt
B < xMIN

B , the processes xt
A and xt

B are 
weakly co-fractal if the following condition is satisfied: 

Table 1 
Descriptive statistics.  

Exchange rate AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

Mean 0.1538 0.0070 0.0104 0.1100 0.0074 0.0076 0.0156 0.0168 0.0132 
Median 0.0060 0.0035 0.0039 0.0018 0.0039 0.0035 0.0075 0.0066 0.0065 
Maximum 

Date of maximum 
282.2602 
2006-12-25 

0.3105 
2008-10-29 

9.9818 
2015-01-15 

428.3998 
2008-03-17 

0.8985 
2016-06-24 

0.4658 
2008-10-24 

2.4978 
2020-03-20 

14.3093 
2012-02-01 

1.2027 
2020-03-19 

Minimum 1.0884E-04 1.2608E-05 1.4467E-07 8.8948E-06 1.4375E-05 8.9947E-06 8.6650E-05 3.3508E-05 1.2262E-04 
Std.Dev. 6.2894 0.0127 0.1590 6.7617 1.0905 0.0178 0.0583 0.2272 0.0298 
Skewness 44.7806 8.8695 61.5019 63.3560 28.1440 13.4117 28.8911 62.0796 19.3949 
Kurtosis 2004.3740 140.5692 3852.7490 4013.9950 1218.9120 274.4099 1053.1140 3905.2760 665.2244 
Start of the sample 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 
End of the sample 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 
Total observations 4014 4014 4014 4014 4014 4014 4014 4014 4014 

This table reports the descriptive statistics for the annualized daily realized variance for AUD/USD, CAD/USD, CHF/USD, EUR/USD, GBP/USD, JPY/USD, NOK/USD, 
NZD/USD, and SEK/USD. The annualized daily realized variances for each FX market i are in line with those of Parkinson (1980), computed as 

σ2
i,t = T

1
4ln(2)

(
ln
(
Hi,t
)
− ln

(
Li,t
) )2

,

where Hi, t and Li, t denote the highest and lowest price for FX market i on day t, σi, t
2 denotes FX market i’s corresponding realized annualized variance, and T = 250. 

Publicly available daily data on FX rates against the USD were retrieved from finance.yahoo.com.  
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λw =
xA*

′

xB*

MIN(xA* ′

1, xB* ′

1)
> 0.5  

, where 1 is a Tx1 vector of ones and λw defines the co-fractality coef
ficient (CFC) measuring weak co-fractality. Comment: Unlike co- 
fractality in its strong form, from Definition 2 it becomes evident that 
λw = 1 can also be satisfied if (1 − pA) ∕= (1 − pB). For instance, if (1 − pA) 
> (1 − pB), more realizations of xt

A are governed by a power law than of 
xt

B. However, if all realizations of xt
B for which xt

B~PL(αB) is satisfied 
coincide with realizations of xt

A for which xt
A~PL(αA) is satisfied, xt

A and 
xt

B are co-fractal in its weak form. From Definitions 1 and 2 it becomes 
evident that strong co-fractality subsumes it weak form. 

Next, the question arises—how can we test the significance of co- 
fractality? Let us consider first the case of strong co-fractality. We can 

interpret the fraction xA*
′

xB*

MAX(xA* ′ 1,xB* ′ 1)
, which measures the coincides of two 

random variables in the power-law regime in relative terms, as stem
ming from a Bernoulli-distributed random variable with MAX(xA*′1, 

xB*′1) drawings. Next, let us assume that xA*
′

xB*

MAX(xA* ′ 1,xB* ′ 1)
= p̂s and MAX 

(xA*′1,xB*′1) = ns. Then, if p̂s < 0.5, we cannot argue that the variances 
of assets A and B are co-fractal in its strong form because <50% of the 
power-law observations generated in the variance process of one asset 
coincide with power-law observations in the variance process of the 
other asset. In other words, if p̂s < 0.5 for our Bernoulli-distributed 
random variable “contemporary coincides in power law regimes”, co
incides in power law regimes can be regarded a matter of chance. In a 
Bernoulli experiment such as “tossing a coin”, a coin is regarded as unfair 
if the relative fraction of one side is statistically significantly larger than 
0.5. The notion of an unfair coin in a Bernoulli experiment is in the 
current study regarded as co-dependency in terms of contemporary co
incides. This is indeed a very simple, yet very intuitive and powerful 
definition of co-dependency. Therefore, the variances of assets A and B 
are co-fractal in its strong form if and only if p̂s > 0.5. Furthermore, 
testing for statistical significance, we can define test statistic ts as 

ts =

̅̅̅̅ns
√

(p̂s − p)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p̂s(1 − p̂s)

√ ,

where p = 0.5. Again, the rationale is here that we are interested in 
analyzing whether or not coincides in power-law regimes can be 
regarded a matter of chance. Hence, if p̂s is statistically significantly 
larger than p = 0.5, coincides in power-law regimes cannot be regarded 
a matter of chance. 

By the central limit theorem (CLT), as p = E(xi) if xi~Bernoulli, p̂s =∑
ixi/ns and assuming random sampling, 

̅̅̅̅
ns

√
(p̂s − p)→

d
N(0,VAR(xi)

)

.

But VAR(xi) = p(1 − p) for such a Bernoulli-distributed random 
variable, so the test statistic converges in distribution to 

̅̅̅̅
ns

√ (p̂s − p)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p(1 − p)

√ →
d

N(0, 1).

By the law of large numbers (LLN), p̂s→d p; hence, we can use p̂s to 

replace the true p(1 − p) because a consistent estimator of this quantity 
does not alter the asymptotic distribution. Analogously, evaluating co- 

fractality in its weak form, we assume that xA*
′

xB*

MIN(xA* ′ 1,xB* ′ 1)
= p̂w and MIN 

(xA*′1,xB*′1) = nw. Then, if p̂w < 0.5, we cannot argue that the vari
ances of assets A and B are co-fractal in its weak form because <50% of 
the power-law observations generated in the variance process with fewer 
observations coincide with power-law observations of the variance 
process with more observations in the power-law regime. Having defined 
p̂w and nw, the implementation of the corresponding test statistic is 

analogously as derived above. 
Figs. 1a – d visualize the concept of co-fractality. The figures show 

two distributions with data-generating processes evolving form t = 0 to t 
= T. In the areas that are marked as grey, the distributions are governed 
by distribution-specific power-law processes. The intersection between t 
= 1 and t = 2 marks the time span where both distributions are in power- 
law regimes. Fig. 1a visualizes co-fractality in its strong form. We see 
that the intersection of observations governed by power-law processes 
covers >0.5 of the observations in power-law regimes for both distri
butions. Hence, coincident realizations in power law regimes cannot be 
regarded as matter of chance (e.g., “throwing a fair coin” in a Bernoulli 
experiment). Next, Fig. 1b visualizes co-fractality in its weak form. We 
see that the intersection of observations governed by power-law pro
cesses covers >0.5 of the observations in the power-law regime for one 
distribution (i.e., the distribution with less realizations in the power-law 
regime). Finally, Fig. 1c and d visualize the absence of co-fractality. We 
see that irrespective of which pair of distributions is considered, the 
intersection of observations governed by power-law processes covers 
<0.5 of the observations in power-law regimes for both distributions. 
Therefore, coincident realizations in power-law regimes can be regarded 
as a matter of chance.5 

4. Results 

4.1. Evidence for co-fractality among foreign-exchange-rate variances 

Table 2 reports the results from estimated power-law models for our 
variances for G10 currencies using the whole data set from May 16, 2006 
to November 19, 2021. We observe from Table 2 that the exponents for 
all realized FX variances are at least two standard deviations below 3. 
The realized variance for AUD/USD (EUR/USD) exhibits the lowest 
(largest) economic magnitude, corresponding to 2.25 (2.78). Moreover, 
the realized variance for AUD/USD (NOK/USD) is governed to the 
largest (lowest) extent by a power-law process because 31.61% (4.76%) 
of the overall realized variance distribution is governed by a Paretian 
tail. Clauset et al.’s (2009) GoF test shows that we cannot reject the 
power-law null hypothesis for seven out of nine realized FX variances. 
The GoF test rejects the power-law null hypothesis only for the realized 
CAD/USD and SEK/USD variances. 

Our results are in line with those of Grobys and Kolari (2022), who 
reported very similar findings even though the vast majority of their 
realized FX rate variance samples covers more data by a substantial 
margin. Whereas the authors also found the power-law null hypothesis 
to be rejected for the realized SEK/USD variance, they did not reject the 
power-law null hypothesis for the realized CAD/USD variance using a 
longer sample period from September 17, 2003 to November 19, 2021. 
Hence, the discrepancy in the results is a matter of data used in the 
models. This is, however, in line with the results of Taleb (2010), who 
argued that a long time series is needed for some fractal processes to 
reveal their properties. A key characteristic of fractal processes is the 
occurrence of low-probability events that have a high impact. Per defi
nition, it may take a long time until such events occur and, hence, 
become visible in the data. That means that at the same time, we cannot 
rule out that the realized SEK/USD variance is not governed by a power 
law. For instance, the maximum realized variance in the SEK/USD, 
observed on March 19, 2020, corresponds to a 45-sigma event. Man
delbrot (2008) similarly pointed to a 22-sigma event: “… on October 19, 
1987, the worst day of trading in at least a century, the index fell 29.2 
percent. The probability of that happening, based on the standard 
reckoning of financial theorists, was less than one in 1010 – odds so small 
they have no meaning. It is a number outside the scale of nature. You 

5 Note that the Figures 1a – d illustrate this issue in a simplified manner 
because in empirical time series data, power-law regimes may occur in re- 
occurring clusters which is also referred to as multifractality. 
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could span the powers of ten from the smallest subatomic particle to the 
breadth of the measurable universe – and still never meet such a num
ber” (p. 4). Using the same logic, if the realized SEK/USD variance were 
governed by some standard distribution (e.g., χ2(1)-distribution), this 
event would have never happened. Only power laws allow for this kind 
of low-probability event that has an enormous impact. 

Next, Panel A of Table 3 reports the total number of observations in 
the power-law regime for each realized FX variance and the overall 
sample. We see that the realized variance for AUS/USD (NOK/USD) has 
the highest (lowest) number of realized variance observations governed 
by a power law. Panel B of Table 3 reports the number of coinciding 
observations. We see that 777 variance realizations exceed xmin =

0.0097 for realized AUS/USD variance and xmin = 0.0066 for realized 
CAD/USD variance at the same point in time. The co-fractality matrix in 
Panel C of Table 3 shows that a fraction corresponding to 0.61 of the 
1268 observations of the realized AUS/USD variance governed by a 
power law coincide with observations in the realized CAD/USD variance 
that are time-congruently in the power-law regime. Because realized 
AUS/USD variance is, according to Panel C of Table 3, strongly co-fractal 
with the realized variances for CAD/USD and SEK/USD, combining 

these currencies means that the currency portfolio may be exposed to 
extreme events at the same time and, as a consequence, may deliver poor 
risk diversification when it may be needed most. 

Further, Panel D of Table 3 reports the co-fractality matrix in its weak 
form. From our definitions, it may be clear that strong co-fractality 
subsumes co-fractality in its weak form. Elaborating on our previous 
example, we see here that a fraction corresponding to 0.69 of the 1127 
observations for the realized CAD/USD variance governed by a power 
law coincide with observations in the realized AUS/USD variance 
obeying a power law time-congruently. Weak-form co-fractality relates 
the coinciding observations between two variances to the data set 
exhibiting fewer observations. Because fewer observations imply less 
exposure to extreme events, we define this metric consequently as the 
weak form of co-fractality. While only three realized variance pairs 
exhibit co-fractality in its strong form, we see from Panel D of Table 3 
that only 9 out of 36 realized variance pairs do not exhibit co-fractality 
in its weak form, implying that there is not much room for risk 
diversification. 

Next, we split the overall subsample into two subsamples of equal 
length. The first (earlier) subsample is from May 16, 2006 to 2014 March 

Fig. 1. Visualizing the concept of co-fractality. 
Figs. 1a – d visualize the concept of co-fractality. The figures show two distributions with data-generating processes evolving form t = 0 to t = T. In the areas that are 
marked as grey, the distributions are governed by distribution-specific power-law processes. The intersection between t = 1 and t = 2 marks the time span where both 
distributions are in power-law regimes. Fig. 1a visualizes co-fractality in its strong form. Fig. 1b visualizes co-fractality in its weak form. Fig. 1c and d visualize the 
absence of co-fractality. 
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07, 2014, whereas the second (later) subsample is from March 10, 2014 
to November 19, 2014. For both subsamples, we again estimate power- 
law models and employ Clauset et al.’s (2009) GoF test to test succes
sively the power-law null hypothesis across all nine realized FX rate 
variances. The results are reported in Tables 4 and 5. We observe from 
Table 4 that for eight out of nine power-law exponents, the estimates for 
α are below 3; moreover, for all realized variances, the 95% confidence 
intervals for the power-law exponents indicate that α ≤ 2.7949 < 3 
cannot be rejected for any realized FX rate variance. Furthermore, in line 
with the results for the overall sample, for two realized FX rate vari
ances, the GoF rejects the power-law null hypothesis. From Table 5 we 
observe that for seven out of nine power-law exponents, the estimates 
for α are below 3, and for all realized variances, the 95% confidence 
intervals for the power-law exponents indicate that α ≤ 2.9291 < 3 
cannot be rejected for any realized FX rate variance. We interpret this 
finding as strong evidence for stability of the power-law behavior over 
time. These results nicely complement those of Grobys and Kolari (2022) 
and Grobys (2021), who found power-law exponents to remain virtually 
the same with time-scale changes from daily to weekly to monthly data. 

Moreover, the point estimates for α for realized variances for CAD/ 
USD, CHF/USD, EUR/USD, and JPY/USD conditional on the later sub
sample fall into the 95% confidence interval for the estimated power- 
law exponents for the earlier subsample. This is indeed an intriguing 
result because, as pointed out by Taleb (2010), a long time series is 
actually able to reveal the properties of power-law processes. Further
more, in the later subsample, for none of the realized FX rate variances is 
the GoF able to reject the power-law null hypothesis. Especially, the 
realized SEK/USD variance exhibits a p-value of 0.9990, implying that 
there is no doubt about the power-law property in the second sample. 

However, the empirical fact that realized FX rate variances are 
governed by power laws in both subsamples does not necessarily imply 
that they coincide in both samples in the same manner. To explore 
whether the dynamics of co-fractality are subject to change over time, 
we test for co-fractality in both subsamples. The results for the first 
subsample are reported in Table 6, and the results for the second 

subsample are reported in Table 7. From Panel C of Table 6 we observe 
that in the first subsample, only the realized variance pair AUS/USD- 
SEK/USD exhibits statistically significant co-fractality in its strong 
form. Moreover, from Panel D we see that only 7 out of 36 realized 
variance pairs do not exhibit co-fractality in its weak form: CAD/USD- 
CHF/USD, CAD/USD-EUR/USD, CAD/USD-GBP/USD, JPY/USD-CHF, 
JPY/USD-EUR/USD, JPY/USD-GBP/USD, CHF/USD-NZD/USD. 

Notably, from Panels C and D of Table 7 we see that those seven 
realized FX rate variance pairs do not exhibit co-fractality in the later 
subsample either. Surprisingly, we also note that only 10 out of 36 
realized FX rate variance pairs exhibit co-fractality in its weak form in 
the later subsample, implying that periods where extreme events are 
generated have become less connected in the later subsample as opposed 
to the first subsample. Overall, the results from Tables 6 and 7 suggest 
that while a lack of co-fractality between realized FX rate variance pairs 
in earlier subsamples may predict absence of co-fractality also seen in 
subsequent subsamples, the presence of co-fractality is not as persistent 
as its absence. Indeed, from 29 realized FX rate variance pairs exhibiting 
weak co-fractality in the earlier sample, only one-third exhibit co- 
fractality in its weak form also in the later subsample. 

4.2. Co-fractality versus correlation 

Table A.1 in the appendix reports the correlation matrices for real
ized FX rate variances for the overall sample, as well as for both sub
samples. We see that the concept of co-fractality is very different from 
the concept of correlation. While Panel B of Table A.1 shows that the 
realized CAD/USD variance is statistically significantly positively 
correlated with realized CHF/USD variance, this pair of realized vari
ances is not exposed to co-fractality. That means that while the thin- 
tailed part of those realized variance distributions (e.g., x values for 
which x < xmin) co-moves, the tails of those distributions (e.g., x values 
for which x ≥ xmin) do not. Comparing Panels B and C, we see that an 
investor trying to gain portfolio diversification benefits by relying on the 
concept of correlation may be misled. As an example, the first subsample 

Table 2 
Estimated power-law functions.  

Distribution α̂ 95% CI ⃒
⃒
⃒
(3 − α̂)

σ̂

⃒
⃒
⃒
⃒

x̂MIN GoF test (p-value) N NPL 

AUD/USD 2.2515 [2.1830; 2.3204] 21.30 0.0097 0.9030 4014 31.61% 
CAD/USD 2.3893 [2.3082; 2.4704] 14.76 0.0066 0.0000 4014 28.10% 
CHF/USD 2.7785 [2.6102; 2.9468] 2.58 0.0159 0.6380 4014 10.69% 
EUR/USD 2.7807 [2.6090; 2.9524] 2.50 0.0072 0.8340 4014 10.29% 
GBP/USD 2.6085 [2.4638; 2.7532] 5.30 0.0113 0.4630 4014 11.83% 
JPY/USD 2.5735 [2.4394; 2.7076] 6.23 0.0131 0.4900 4014 13.18% 
NOK/USD 2.7414 [2.4942; 2.9886] 2.05 0.0408 0.3640 4014 4.75% 
NZD/USD 2.5614 [2.4006; 2.7222] 5.34 0.0294 0.6710 4014 9.02% 
SEK/USD 2.3455 [2.2671; 2.4239] 16.36 0.0119 0.0000 4014 28.18% 

This table reports the estimates for power-law models p(x) = (α − 1)xMIN
α− 1x− α using MLE. Tail exponent α is estimated as 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

,

where α̂ denotes the MLE estimator, and N denotes the number of observations, provided xi ≥ xMIN. In this model, estimate x̂MIN is assessed via the KS statistic D, which 
is the maximum distance between the CDFs of the data and the fitted model: 
D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with a value at least xMIN, and P(x) is the CDF for the power-law model that best fits the data in the region x ≥ xMIN. 
The estimate of the x̂MIN is the value of xMIN that minimizes D. Clauset et al.’s (2009) GoF test generates a p-value that quantifies the plausibility of the hypothesis. This 
test compares D with distance measurements for comparable synthetic data sets drawn from the hypothesized model, and the p-value is defined as the fraction of 
synthetic distances that are larger than the empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected because the difference 
between the empirical data and the model can be attributed to statistical fluctuations alone. The implementation of this test was detailed by Clauset et al. (2009, p. 
675–678). NPL denotes the percentage of sample observations governed by a power-law process, whereas CI denotes the confidence interval for α̂. The sample period 
used in this table is from 2006 - 05-16 to 2021-11-19.  
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shows that the realized AUS/USD variance appears to be uncorrelated to 
any other realized FX rate variance, whereas the second subsample 
shows that the realized AUS/USD variance is statistically significantly 
correlated with seven out of eight realized FX rate variances. Moreover, 
from Panel D of Table 7, we know that the realized AUS/USD variance is 
statistically significantly co-fractal in its weak form with at least two 
other realized FX rate variances (e.g., realized CAD/USD and NZD/USD 
variances). The correlation matrix shows that 16 out of 36 realized FX 
rate variance pairs do not exhibit statistically significant correlation in 
the first subsample, whereas 15 of those 16 realized FX rate variance 
pairs show statistically significantly positive correlation in the later 
subsample. Hence, relying on the concept of correlation for risk diver
sification is a poor choice because correlation is sample-specific for 
processes governed by power laws with tail exponent α < 3. 

5. Discussion 

5.1. Power law or log-normal distribution? 

The finding of a power law with a relatively low tail index for some 
measure of realized volatility is in strong contrast to earlier literature 
documenting that realized asset variances are typically very close to a 
log-normal distribution (e.g., Andersen, Bollerslev, Diebold, & Ebens, 
2001; Andersen, Bollerslev, Diebold, & Labys, 2001a, 2001b). However, 
Renò and Rizza (2003), who study the unconditional volatility distri
bution of the Italian futures market, conclude that the standard 
assumption of log-normal unconditional volatility has to be rejected and 
a much better description is provided by a Pareto distribution. Recent 

studies have confirmed Renò and Rizza (2003) study for realized foreign 
exchange rate variances, realized variances of commodities (e.g., gold 
and oil), and the realized variances for the S&P 500 (Grobys, 2021; 
Grobys & Kolari, 2022). To clarify whether Pareto distributions are more 
appropriate than the log-normal, we apply Bayes’ rule as proposed in 
Taleb (2020) to examine the plausibility of the lognormal distribution. 

As an example, it is worthwhile to consider the event occurring on 
2016-06-24 in the realized GBP/USD variance. In Table 8 we report the 
corresponding maxima in terms of sigma-events (σ-events) for all real
ized FX variances. From Table 8 we see that this event corresponds to a 
47σ-event. How high is the likelihood that the log-normal distribution 
would generate such an event? From Table 8 we observe that the 
probability of this event’s occurrence, provided the underlying distri
bution is log-normal (e.g., P(X > 47σ|LGN)) corresponds to 5.90E-05. 
How high is the likelihood that a power-law distribution with param
eter vector (α̂, x̂MIN) = (2.6085,0.0113) would generate such an event? 
From Table 8 we observe that the probability of this event’s occurrence, 
provided the underlying distribution is governed by a power law (e.g., P 
(X > 47σ|PL)) corresponds 8.77E-04. That means, that the arrival of 
such an event is 15 times more likely for the power law. According to 
Benoit Mandelbrot, events of this magnitude never happen.6 However, 
this result is in line with Renò and Rizza (2003), who argue that the log- 
normal distribution is unable to capture the tail behavior of variance 
distributions. In this regard, Taleb (2020) proposed an application of 

Table 3 
Co-fractality matrix for the whole sample.  

Panel A. Total observations governed by a power law. 

Currency AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

# 1268 1127 428 412 591 528 253 362 1126  

Panel B. Matrix of coinciding observations. 
AUD/USD 1268 777 308 332 410 374 234 340 728 
CAD/USD  1127 298 322 404 337 221 308 664 
CHF/USD   428 258 198 202 139 167 348 
EUR/USD    412 230 189 172 197 388 
GBP/USD     591 232 179 230 408 
JPY/USD      528 134 204 338 
NOK/USD       253 165 232 
NZD/USD        362 300 
SEK/USD         1126  

Panel C. Co-fractality matrix in terms of its strong form. 
AUD/USD 1 0.61*** 0.24 0.26 0.32 0.29 0.18 0.27 0.57*** 
CAD/USD  1 0.26 0.29 0.36 0.30 0.20 0.27 0.52 
CHF/USD   1 0.60*** 0.34 0.38 0.32 0.39 0.31 
EUR/USD    1 0.39 0.36 0.42 0.48 0.34 
GBP/USD     1 0.39 0.30 0.39 0.36 
JPY/USD      1 0.25 0.39 0.30 
NOK/USD       1 0.46 0.21 
NZD/USD        1 0.27 
SEK/USD         1  

Panel D. Co-fractality matrix in terms of its weak form. 
AUS/USD 1 0.69*** 0.72*** 0.81*** 0.69*** 0.71*** 0.92*** 0.94*** 0.65*** 
CAD/USD  1 0.70*** 0.78*** 0.68*** 0.64*** 0.87*** 0.85*** 0.59*** 
CHF/USD   1 0.63*** 0.46 0.47 0.55 0.46 0.81*** 
EUR/USD    1 0.56** 0.46 0.68*** 0.54 0.94*** 
GBP/USD     1 0.44 0.71*** 0.64*** 0.69*** 
JPY/USD      1 0.53 0.56 0.64*** 
NOK/USD       1 0.65*** 0.92*** 
NZD/USD        1 0.83*** 
SEK/USD         1 

This table reports the co-fractality matrix for realized FX rate variances. 
** Statistically significant at a 5% level. 
*** Statistically significant at a 1% level. 

6 See Benoit Mandelbrot’s lecture at MIT is available at https://www. 
youtube.com/watch?v=ock9Gk_aqw4. 
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Table 4 
Estimated power-law functions for the first subsample.  

Distribution α̂ 95% CI ⃒
⃒
⃒
(3 − α̂)

σ̂

⃒
⃒
⃒
⃒

x̂MIN GoF test (p-value) N NPL 

AUD/USD 2.1262 [2.0361; 2.2163] 19.01 0.0136 0.2270 2007 29.90% 
CAD/USD 2.8334 [2.5970; 3.0699] 1.38 0.0206 0.1220 2007 11.51% 
CHF/USD 2.7934 [2.6068; 2.9800] 2.17 0.0159 0.7870 2007 17.69% 
EUR/USD 2.7359 [2.5463; 2.9255] 2.73 0.0072 0.8610 2007 16.04% 
GBP/USD 2.3691 [2.2389; 2.4993] 9.50 0.0102 0.0130 2007 21.18% 
JPY/USD 2.5833 [2.4295; 2.7371] 5.31 0.0134 0.6780 2007 20.28% 
NOK/USD 3.2075 [2.7949; 3.6201] 0.99 0.0553 0.7870 2007 5.48% 
NZD/USD 2.5767 [2.3770; 2.7737] 4.21 0.0353 0.5970 2007 12.26% 
SEK/USD 2.2568 [2.1710; 2.3430] 16.90 0.0122 0.0000 2007 40.71% 

This table reports the estimates for power-law models p(x) = (α − 1)xMIN
α− 1x− α using MLE. Tail exponent α is estimated as 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

,

where α̂ denotes the MLE estimator, and N denotes the number of observations, provided xi ≥ xMIN. In this model, estimate x̂MIN is assessed via the KS statistic D, which 
is the maximum distance between the CDFs of the data and the fitted model: 
D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with a value at least xMIN, and P(x) is the CDF for the power-law model that best fits the data in the region x ≥ xMIN. 
The estimate of the x̂MIN is the value of xMIN that minimizes D. Clauset et al.’s (2009) GoF test generates a p-value that quantifies the plausibility of the hypothesis. This 
test compares D with distance measurements for comparable synthetic data sets drawn from the hypothesized model, and the p-value is defined as the fraction of 
synthetic distances that are larger than the empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected because the difference 
between the empirical data and the model can be attributed to statistical fluctuations alone. The implementation of this test was detailed by Clauset et al. (2009, p. 
675–678). NPL denotes the percentage of sample observations governed by a power-law process, whereas CI denotes the confidence interval for α̂. The sample period 
used in this table is from 2006 - 05-16 to 2014-03-07.  

Table 5 
Estimated power-law functions for the second subsample.  

Distribution α̂ 95% CI ⃒
⃒
⃒
(3 − α̂)

σ̂

⃒
⃒
⃒
⃒

x̂MIN GoF test (p-value) N NPL 

AUD/USD 2.8085 [2.6438; 2.9732] 2.28 0.0095 0.4020 2007 23.07% 
CAD/USD 2.9950 [2.7884; 3.2016] 0.05 0.0064 0.2950 2007 17.84% 
CHF/USD 2.6711 [2.4498; 2.8924] 2.91 0.0083 0.8110 2007 10.91% 
EUR/USD 2.7499 [2.5749; 2.9249] 2.80 0.0031 0.1660 2007 19.13% 
GBP/USD 3.1706 [2.8748; 3.4664] 1.13 0.0116 0.5470 2007 10.31% 
JPY/USD 2.5946 [2.3958; 2.7934] 4.00 0.0080 0.5640 2007 12.31% 
NOK/USD 2.5002 [2.3683; 2.6321] 7.43 0.0121 0.1210 2007 24.76% 
NZD/USD 3.0522 [2.9291; 3.2934] 4.21 0.0132 0.1040 2007 13.85% 
SEK/USD 2.7354 [2.5731; 2.8977] 3.19 0.0097 0.9990 2007 21.87% 

This table reports the estimates for power-law models p(x) = (α − 1)xMIN
α− 1x− α using MLE. Tail exponent α is estimated as 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

,

where α̂ denotes the MLE estimator, and N denotes the number of observations, provided xi ≥ xMIN. In this model, estimate x̂MIN is assessed via the KS statistic D, which 
is the maximum distance between the CDFs of the data and the fitted model: 
D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with value at least xMIN, and P(x) is the CDF for the power-law model that best fits the data in the region x ≥ xMIN. 
The estimate of the x̂MIN is the value of xMIN that minimizes D. Clauset et al.’s (2009) GoF test generates a p-value that quantifies the plausibility of the hypothesis. This 
test compares D with distance measurements for comparable synthetic data sets drawn from the hypothesized model, and the p-value is defined as the fraction of 
synthetic distances that are larger than the empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected because the difference 
between the empirical data and the model can be attributed to statistical fluctuations alone. The implementation of this test was detailed by Clauset et al. (2009, p. 
675–678). NPL denotes the percentage of sample observations governed by a power-law process, whereas CI denotes the confidence interval for α̂. The sample period 
used in this table is from 2014 - 03-10 to 2021-11-19.  
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Bayes’ rule to examine to plausibility of some distribution conditional 
on the occurrence of observed extreme events. Using this application of 
Bayes’ rule, the conditional probability that the underlying distribution 
is log-normally distributed, given that a 47σ-event occurred on 2016-06- 
24 in the realized GBP/USD variance, is defined as 

P(LGN|E) =
P(LGN)P(E|LGN)

(1 − P(LGN) )P(E|PL) + P(LGN)P(E|LGN)
,

where P(LGN|E) is the probability that the distribution is log-normal 
given that the corresponding event occurred, P(E|LGN) is the probabil
ity of the event given that the distribution is log-normal, and P(E|PL) is 
the probability of the event given that the distribution is governed by a 
power-law process with (α̂, x̂MIN). Assuming various probabilities for P 
(LGN), Table 9 reports the computed likelihoods P(LGN|E). 

From Table 9 we observe that when assuming that the log-normal 
distribution and the power-law process are equally likely, the likeli
hood that the distribution is log-normal given a 47σ-event is 6.30%. 
Even if we assume that the probability that the underlying data- 
generating process is log-normally distributed is as high as 90%, the 
likelihood that the distribution is lognormal given a 47σ-event is only 
37.71%. We see that even if we make very unreasonable assumptions 
concerning the likelihood that the underlying distribution is log-normal, 
the probability that the underlying distribution is log-normal given the 
arrival of such an extreme event is still less than tossing a fair coin. Thus, 
according to Taleb (2020) reasoning we can rule out the log-normal 
distribution as corresponding distribution for the underlying data- 
generating process governing the realized variance of the GBP/USD 

FX rate. 
In the same manner, we can explore the plausibility of the log-normal 

distribution versus power laws for the remaining realized FX variances. 
From Table 9 we observe that when we assume that the log-normal 
distribution and the power-law process are equally likely, for six out 
of nine realized FX rate variances, the probability that the underlying 
distribution is log-normal given the arrival of the corresponding maxi
mums are <25%. Even when we assume that the log-normal distribution 
is 70% likely, still for six out of nine realized FX rate variances, the 
probability that the underlying distribution is log-normal given the 
arrival of the corresponding maximums are <40%. Overall, testing the 
log-normal distribution against power laws, we see that for the vast 
majority of realized FX rate variances we can clearly rule out the log- 
normal distribution as the corresponding underlying data-generating 
process for realized FX variances. 

5.2. Are the chosen values for the cut-offs accurately describing the data- 
generating power law? 

It is well-known that maximum-likelihood estimators for the power 
law exponent are very sensitive to the chosen value for the cut-off, that 
is, xmin. Selecting a proper cut-off is, of course, a tricky matter. For 
instance, Lux (2000) attempted to replicate the study of Krämer and 
Runde (1996), who estimated the tail index (e.g., power law exponent) 
for the German stock index DAX as well as 26 individual constitutes over 
the 1960 to 1992 sample period. He argues that the enormous discrep
ancies between his replication attempt and the results reported in 
Krämer and Runde (1996) are due to differences in the chosen cut-offs. 

Table 6 
Co-fractality matrix for the first subsample.  

Panel A. Total observations governed by a power law. 

Currency AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

# 599 230 354 321 422 407 110 246 806  

Panel B. Matrix of coinciding observations. 
AUD/USD 599 194 228 240 305 260 107 233 455 
CAD/USD  230 116 131 169 137 81 138 197 
CHF/USD   354 208 184 172 76 126 292 
EUR/USD    321 209 160 94 155 314 
GBP/USD     422 204 99 183 357 
JPY/USD      407 76 161 281 
NOK/USD       110 92 110 
NZD/USD        246 218 
SEK/USD         806  

Panel C. Co-fractality matrix in terms of its strong form. 
AUD/USD 1 0.32 0.38 0.40 0.51 0.43 0.18 0.39 0.56** 
CAD/USD  1 0.33 0.41 0.40 0.34 0.35 0.56 0.24 
CHF/USD   1 0.59 0.44 0.42 0.21 0.36 0.36 
EUR/USD    1 0.50 0.39 0.29 0.48 0.39 
GBP/USD     1 0.48 0.23 0.43 0.44 
JPY/USD      1 0.19 0.40 0.35 
NOK/USD       1 0.37 0.14 
NZD/USD        1 0.27 
SEK/USD         1  

Panel D. Co-fractality matrix in terms of its weak form. 
AUD/USD 1 0.84*** 0.64*** 0.75*** 0.72*** 0.64*** 0.97*** 0.95*** 0.76*** 
CAD/USD  1 0.50 0.57 0.40 0.60** 0.74*** 0.60** 0.86*** 
CHF/USD   1 0.65*** 0.73*** 0.49 0.69*** 0.51 0.82*** 
EUR/USD    1 0.65*** 0.50 0.85*** 0.63*** 0.98*** 
GBP/USD     1 0.50 0.90*** 0.74*** 0.69*** 
JPY/USD      1 0.69*** 0.65*** 0.69*** 
NOK/USD       1 0.84*** 1.00*** 
NZD/USD        1 0.89*** 
SEK/USD         1 

This table reports the co-fractality matrix for realized FX rate variances for the first subsample. 
** Statistically significant at a 5% level. 
*** Statistically significant at a 1% level. 
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Relatedly, Lux (2001) provides a statistical analysis of high-frequency 
recordings of the German stock index DAX over the 1988 to 1995 
sample period. His study focuses on the limiting behavior characterizing 
the tail regions of the empirical distribution. In both studies, Lux em
ploys a data-driven method to estimate the optimal tail indices by 
selecting the value of N (see Eq. (8)) by minimizing the mean squared 
error (MSE) of the following function: 

N = argminNE
[
(γ̂(N) − γ )2 ]

,

where ̂γ = 1/α̂. In this regard, Lux (2000, p. 646) highlights: “In view of 
these problems of implementations, the recent development of methods 
for data-driven selection of the tail sample constitutes an important 
advance.” Following Lux (2000) argument, the current research employs 
a more recently developed data-driven approach, as proposed in Clauset 
et al. (2009), to select the optimal power law exponents for our realized 
FX rate variances. As outlined in Section 3.1., this approach is based on 
the so-called Kolmogorov–Smirnov (KS) distance which is the maximum 
distance between the cumulative density functions (CDFs) of the data 
and the fitted power-law model as defined by Eq. (9): 

D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with a value of at 
least xMIN, and P(x) is the CDF for the power-law model that best fits the 
data in the region x ≥ xMIN. Using this approach, the optimal cut-off, 
x̂MIN, is then the value of xMIN that minimizes D. While both ap
proaches are data-driven, a refinement of Clauset et al.’s (2009) 

approach is that based on the optimal D, a GoF test can be derived which 
generates a p-value that quantifies the plausibility of the power-law null 
hypothesis. This p-value is obtained from comparing the empirical D̂, 
estimated via Eq. (9), with simulation-based values for D derived from 
the theoretical null model.7 From Table 2 we see that for at least seven 

Table 7 
Co-fractality matrix for the second subsample.  

Panel A. Total observations governed by a power law. 

Currency AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

# 463 355 216 374 206 245 493 277 437  

Panel B. Matrix of mutual observations. 
AUD/USD 463 210 128 214 103 125 255 210 215 
CAD/USD  355 100 157 90 92 205 157 172 
CHF/USD   216 172 53 89 135 87 141 
EUR/USD    374 97 129 227 145 235 
GBP/USD     206 72 98 78 95 
JPY/USD      245 118 101 103 
NOK/USD       493 176 272 
NZD/USD        277 151 
SEK/USD         437  

Panel C. Co-fractality matrix in terms of its strong form. 
AUD/USD 1 0.45 0.28 0.46 0.22 0.27 0.52 0.45 0.46 
CAD/USD  1 0.28 0.42 0.25 0.26 0.42 0.44 0.39 
CHF/USD   1 0.46 0.25 0.36 0.27 0.31 0.39 
EUR/USD    1 0.26 0.34 0.46 0.39 0.54 
GBP/USD     1 0.29 0.20 0.28 0.22 
JPY/USD      1 0.24 0.36 0.24 
NOK/USD       1 0.36 0.55 
NZD/USD        1 0.35 
SEK/USD         1  

Panel D. Co-fractality matrix in terms of its weak form. 
AUD/USD 1 0.59** 0.59* 0.57* 0.50 0.51 0.55 0.76*** 0.49 
CAD/USD  1 0.46 0.42 0.44 0.38 0.58** 0.57 0.39 
CHF/USD   1 0.80*** 0.26 0.41 0.63*** 0.40 0.65*** 
EUR/USD    1 0.47 0.53 0.61*** 0.52 0.63*** 
GBP/USD     1 0.35 0.48 0.38 0.46 
JPY/USD      1 0.48 0.41 0.42 
NOK/USD       1 0.64*** 0.62*** 
NZD/USD        1 0.55 
SEK/USD         1 

This table reports the co-fractality matrix for realized FX rate variances for the second subsample. 
* Statistically significant at a 10% level. 
** Statistically significant at a 5% level. 
*** Statistically significant at a 1% level. 

7 As mentioned earlier, the exact implementation of this test was detailed by 
Clauset et al. (2009, p. 675–678). Since this test assumes the power law model 
as the null model, one could refer to this test as a weak test. There is, however, 
an important issue that needs to be taken into account. Note that under certain 
circumstances, it might be reasonable to use the hypothesized distribution as 
null model as opposed to the alternative. As typical example one could, for 
instance, refer to the time-honored augmented Dickey–Fuller test (ADF) test 
which assumes the process of higher order of integration under the null hy
pothesis. This type of test is often used to test a non-stationary process against a 
stationary process. Specifically, the integrated process is assumed under the null 
hypothesis, whereas stationarity is presumed under the alternative. The logic is 
here that when using mistakenly a non-stationary process in an econometric 
model requiring stationary data, the impact of the error is enormous as statis
tical inferences derived from such as model are inevitably wrong. The same 
argument seems to be relevant in the current research context: Using mistak
enly a distribution that exhibits strong Pareto-type behavior (e.g., α < 3) in an 
econometric model requiring thin-tailed distributions, the impact of the error is 
enormous as statistical inferences derived from such as model are inevitably 
invalid because obtained results will be sample-specific. It is for this reason that 
even if the GoF test based on the optimal KS distance D̂ is weak in a statistical 
sense, it seems to be a reasonable choice. 
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realized FX rate variances, the GoF test cannot reject the power law null 
hypothesis. Moreover, from the comparison between power law and log- 
normal distribution, as elaborated on in Section 4.1., it became evident 
that power laws are more accurately describing the extreme events for at 
least six of out nine realized FX rate variance processes. Finally, let us 
turn our attention to the Hill plots which illustrate the set of possible 
MLE candidates for the data-generating power laws. Figs. 2–10 show the 
Hill plots for the estimated realized FX variances. Inspection of 
Figs. 2–10 shows that for at least five out of nine realized FX rate vari
ances (e.g., AUD/USD, CHF/USD, EUR/USD, NOK/USD, NZD/USD) it is 
true that 

α̂ < 3∀xMIN .

This is strong evidence supporting the results from Table 2 doc
umenting that the power law exponents are below 3. Recall that power 
law exponents below 3 imply in the current study’s research setting that 
the variances of realized FX rate variances are mathematically unde
fined. Finally, Clauset et al. (2009) pointed out that using the Hill plot, it 
is common practice to choose the cut-off x̂MIN beyond which α̂ is stable. 
From Fig. 3 in Clauset et al. (2009, p. 670), it is evident that this value 
corresponds to the saddle point in a α̂/x̂MIN-graph. Comparing Fig. 2–10 
with Fig. 3 in Clauset et al. (2009, p. 670), we see that the optimal cut- 
offs derived from the optimal KS distances D coincide with the first local 
maximums in the Hill plots for all realized FX variances, except for CAD/ 
USD and SEK/USD.8 In this regard, it is noteworthy that the GoF test 
rejects the power-law null hypothesis only for those two exceptions (e.g., 
CAD/USD, SEK/USD). Overall, we can interpret these findings as evi
dence supporting the view that the approach used here to select the most 
accurate cut-offs provides a proper description of the underlying data- 
generating power-law processes. 

5.3. What is the difference between co-fractality and the tail dependence 
coefficient (TDC)? 

This study evaluates the concept of co-fractality in relation to the 
concept of correlation. The concept of correlation is the most wide

spread methodological concept used for conducting empirical finance 
research. It is worth noting that with respect to economic research, the 
Nobel prize has been awarded at least half a dozen times for research 
derived from correlation-based methodologies.9 One could argue that in 
the corresponding literature, other methodologies have been proposed 
that share common features with the concept of co-fractality. Perhaps, 
the methodological concept that is closet to co-fractality is the so-called 
tail dependence coefficient (TDC).10 Frahm, Junker, and Schmidt (2005) 
document that three types of TDC estimations have been proposed in the 
literature, that is, TDC estimations which are based on either (i) a spe
cific distribution or a family of distributions, or (ii) a specific copula or a 
family of copulas, or (iii) a nonparametric model. Given the research 
context of the current study, the upper tail-dependence coefficient (upper 
TDC) is perhaps the most relevant counterpart for our realized FX rate 
variances which is defined as, 

Table 9 
Bayes’ rule.  

P(LGN)  

0.50 0.70 0.90 1 

AUD/USD 0.9645 0.9845 0.9959 1 
CAD/USD 0.1205 0.2423 0.5522 1 
CHF/USD 0.5351 0.7287 0.9120 1 
EUR/USD 0.9997 0.9999 1.0000 1 
GBP/USD 0.0630 0.1357 0.3771 1 
JPY/USD 0.1348 0.2667 0.5838 1 
NOK/USD 0.0655 0.1406 0.3869 1 
NZD/USD 0.2116 0.3851 0.7073 1 
SEK/USD 0.0340 0.0759 0.2406 1 

We apply Bayes’ rule as outlined in detail in Taleb (2020, p.52) to explore how 
likely it is that the data generating processes of the realized foreign exchange 
rate variances are governed by a log-normal process as opposed to a power-law 

process with 
(

α̂i, x̂MIN,i
)

where i =

{
AUD
USD

,
CAD
USD

,…,
SEK
USD

}

, given the low 

probability events which we observed in Table 8. According to Bayes’ rule, the 
conditional probability that the underlying distribution governing those events 
follows a log-normal distribution (LGN), conditional on extreme event occur
rences, is defined as: 

P(LGN|E) =
P(LGN)P(E|LGN)

(1 − P(LGN) )P(E|PL) + P(LGN)P(E|LGN)
,

where P(LGN|E) is the probability that the distribution is log-normal given that 
the corresponding event occurred, P(E|LGN) is the probability of the event given 
that the distribution is log-normal, and P(E|PL) is the probability of the event 
given that the distribution is governed by a power-law process with 

(
α̂ i, x̂MIN,i

)
. 

Assuming various probabilities for P(LGN), the table reports the computed 
likelihoods P(LGN|E).  

Table 8 
Low probability events.  

Distribution Event day Sigma P(E|LGN) P(E|PL) P(E|PL)
P(E|LGN)

AUD/USD 2006-12-25 45σ 7.04E-05 2.59E-06 0.0368 
CAD/USD 2008-10-29 25σ 6.44E-04 0.00470 7.2981 
CHF/USD 2015-01-15 68σ 1.22E-05 1.06E-05 0.8689 
EUR/USD 2008-03-17 68σ 1.22E-05 3.15E-09 2.58E-04 
GBP/USD 2016-06-24 47σ 5.90E-05 8.77E-04 14.8644 
JPY/USD 2008-10-24 26σ 5.61E-04 0.00360 6.4171 
NOK/USD 2020-03-20 48σ 5.42E-05 7.73E-04 14.2620 
NZD/USD 2012-02-01 63σ 1.71E-05 6.37E-05 3.7251 
SEK/USD 2020-03-19 45σ 7.04E-05 0.0020 28.4091 

For each foreign exchange market i =

{
AUD
USD

,
CAD
USD

,…,
SEK
USD

}

, the time series 

vectors are standardized and extreme events from Table 1 are collected. This 
table reports the corresponding deviation in terms of sigma (σ) and the proba
bilities for its occurrence given that the distribution is log-normal P(E|LGN). We 
also report the probability for power law distributions P(E|PL) using the esti
mated optimal parameter vector 

(
α̂i, x̂MIN,i

)
from Table 2.  

8 In Figures 1–9, the optimal cut-offs derived from the optimal KS distances D 
are highlighted by grey arrows. 

9 Nobel prizes for economic-related research derived from correlation-based 
methodologies have been awarded to Harry Markowitz (1990), William 
Sharpe (1990), Robert Merton (1997), Myron Scholes (1997), Robert Engle 
(2003), Eugene Fama (2013), and Lars Hansen (2013).  
10 Other metrics presenting some alternatives to the concept of correlation are 

the covariation or the co-difference (see Garel, d’Estampes, & Tjøstheim, 2005; 
Janicki & Weron, 2021; Samorodnitsky & Taqqu, 2017; Weron, Burnecki, 
Mercik, & Weron, 2005). Another methodology related to the concept of co- 
fractality is the concept of exceedance correlation or asymmetric correlation 
as proposed by Ang and Chen (2002). Exceedance correlation measures corre
lation asymmetry by evaluating the behavior in the tails of the distribution, and 
as a consequence, the statistic is not model-specific. There is, however, an 
important difference between the concept of exceedance correlation or asym
metric correlation, proposed by Ang and Chen (2002), and the concept of co- 
fractality: exceedance correlation presumes that some correlation exists. On 
the other hand, the current research shows that correlation is not defined for 
some financial data governed by power laws with α < 3. 
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λU = lim
t→1−

P{G(X) > t|H(Y) > t },

where (X, Y) is a random pair with joint cumulative distribution function 
F and marginals G (for X) and H (for Y). Hence, the upper TDC, λU, 
corresponds in essence to the probability that one margin exceeds a high 
threshold under the condition that the other margin exceeds a high 
threshold. Note that Cirillo and Taleb (2016, p. 1489) point out that in 
risk management the top 5% of the observations are typically treated as 
the extremes of a distribution, which appears to be a common practice 
which is also in line with earlier relevant literature (Gnedenko, 1943; 
Gumbel, 1958). To make the results from an application of the upper 
TDC estimation comparable with our proposed concept of co-fractality, 
we choose a similar set-up; that is, for each subsample, we use the top 
5% of each realized FX rate variance and construct binary vectors that 
have values of 1 if the realized FX rate variances are in the top 5% of its 
corresponding distribution and a value of 0 otherwise. As described in 
Section 3.3, we count the coincides for each pair of binary vectors and 
divide this figure by the total of extremal values. The relative frequency 
of coincides is treated as drawings from a Bernoulli distribution, where 

co-dependency requires relative frequencies to be statistically signifi
cantly higher than 0.50. 

The results are reported in Tables A.2 and A.3 in the appendix. From 
Table A.2 we observe that in the first subsample, six realized FX rate 
variance pairs exhibit statistically significant co-dependencies in their 
tails. Interestingly, from Table A.3 we observe that only one of those 
pairs (NZD/USD-AUD/USD) exhibits also statistically significant co- 
dependency in their tails in the second subsample. Surprisingly, from 
30 realized FX rate variance pairs that did not exhibit statistically sig
nificant co-dependencies in their tails in the first sample, 29 pairs did not 
either exhibit statistically significant co-dependencies in their tails in the 
second sample. This result is similar to what we documented earlier for 
co-fractality: Whereas lack of co-fractality between realized FX rate 
variance pairs in the first subsample had some predictive power for 
expecting absence of co-fractality in the second subsample, the presence 
of co-fractality has been shown to be not as persistent as its absence. 

The question arises what are the benefits from using co-fractality as 
opposed the TDC? Frahm et al. (2005) point out that it is difficult to 
conclude whether (X, Y) is tail dependent or not, given one has only 

Fig. 2. Hill plot for the AUD/USD realized variance. 
This figure shows the Hill plot for the AUD/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006 - 05-16 to 2021- 
11-19.   

Fig. 3. Hill plot for the CAD/USD realized variance. 
This figure shows the Hill plot for the CAD/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   
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finitely many observations (x1, y1), …, (xn, yn) of (X, Y) available. The 
authors highlight that as for tail-index estimation, one can always 
specify thin-tailed distributions which produce sample observations 
suggesting heavy tails even for large sample sizes.11 Co-fractality can be 
considered a data-driven approach, where it is first analyzed whether 
some specific data exhibit Paretian tails, respectively, are partly gov
erned by fractal processes. Thereby, the power-law exponents are esti
mated via MLE. In this regard, Clauset et al. (2009, p. 668-669) argue: 
“…we note that the MLEs are only guaranteed to be unbiased in the 
asymptotic limit of large sample size, n → ∞. For finite data sets, biases 
are present but decay as O(n− 1) for any choice of xmin. For very small 
data sets, such biases can be significant but in most practical situations 
they can be ignored because they are much smaller than the statistical 
error of the estimator, which decays as O(n− 1/2). Our experience sug
gests that n ≥ 50 is a reasonable rule of thumb for extracting reliable 
parameter estimates.” Since we have n ≥ 50 in the tail regions for all 

MLEs, our estimation results can be deemed reliable.12 As outlined in 
Sections 3.1 and 4.2, the power-law models are tested using GoF tests as 
proposed in Clauset et al. (2009). Hence, the crucial difference between 
the TDC and co-fractality is that co-fractality assesses in the first step the 
specific data-generating (power-law) process, and in the second step, 
potential co-dependencies between those parts of the distributions 
governed by power-law processes are evaluated. 

Whereas the TDC is designed for investigating co-dependencies be
tween tail regions of some distributions, co-fractality is focused on 
exploring co-dependencies between relatively substantial parts of dis
tributions: For instance, considering the realized variance for AUD/USD, 
we see from Table 2 that >30% of the variance distribution is governed 
by a power law. Hence, we cannot argue here with a “tail region” 
because 30% means a considerable part of the overall distribution. 
Finally, we argue that extreme events can occur in the part of the 

Fig. 4. Hill plot for the CHF/USD realized variance. 
This figure shows the Hill plot for the CHF/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   

Fig. 5. Hill plot for the EUR/USD realized variance. 
This figure shows the Hill plot for the EUR/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   

11 Frahm et al. (2005) provide a detailed simulation study on this issue. 

12 From Table 2 we see that we have at least 4.75% of 4014 observation in the 
tail region. 
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distribution governed by a power law process–especially power laws 
with α < 3 which allow for “wild behavior”–which appears to be a 
feature that simple TDC estimation does not account for. Therefore, we 
would like to argue that co-fractality serves as a more general approach 
to identify co-dependencies is some specific parts of distributions that 
may be subject to “wild behavior”. 

Finally, the concept of co-fractality takes explicitly into account that 
not all processes that are analyzed would exhibit power-law behaviors to 
the same degree. For instance, from Table 2 we observed that only 
4.75% of the realized variance for the NOK/USD are governed by a 
power law process, whereas the corresponding figure is 31.61% for the 
AUD/USD exchange rate. Hence, the maximal fraction that could be 
subject to potential co-dependency in terms of co-fractality is limited to 
only 4.75% of the overall sample. TDC estimation – based on the 
empirical distribution – would in this case treat 0.25% of the distribu
tion as “extremes” even though the corresponding observations are 
generated from the thin-tailed part of the distribution. 

5.4. Are our results a statistical artefact due to employing the Parkinson 
estimator to measure FX rate variances? 

The current research follows Grobys’ (2021) recent study by using 
the Parkinson estimator to measure realized FX rate variances. On the 
one hand, Shu and Zhang (2006), who analyze the relative performance 
of four range-based volatility estimators including Parkinson, Garman- 
Klass, Rogers-Satchell, and Yang-Zhang estimators for S&P 500 index 
data, find that all those price range estimators perform very well. On the 
other hand, Molnár (2012) argues that when taking into account the 
noise of range-based volatility estimators, the best estimator appears to 
be the Garman and Klass (1980) estimator. Hence, to explore whether 
the assessed power-law property of realized FX rate variances is an 
artefact manifested in the possibly larger variance produced from the 
Parkinson estimator, we compare our annualized realized FX rate vari
ances based on daily data with those obtained from using the Garman- 
Klass estimator. Specifically, in line with Garman and Klass (1980), 
the realized annualized realized FX rate variances based on daily data 
are computed as 

σ2
i,t = T

(

0.5
[

ln
(

Hi,t

Li,t

)]2

− [2ln(2) − 1 ]
[

ln
(

Ci,t

Oi,t

)]2
)

,

where Hi, t, Li, t, Ci, t and Oi, t denote the highest, lowest, closing and 
opening price for FX market i on day t, σi, t

2 denotes FX market i’s cor
responding realized annualized daily variance, and T = 250. The 
descriptive statistics are reported in Table A.4 in the appendix.13 

Notably, from Table A.4 we observe that for seven out of nine realized 
FX rate variances, the maximums are even higher for the Garman-Klass 
estimator as opposed to the Parkinson estimator. Indeed, only the real
ized FX rate variances for AUD/USD and NOK/USD are lower when 
computing the realized variances using the Garman-Klass estimator. 
Next, in Table A.5 the results are reported for estimating the power-law 
exponents, the corresponding cut-offs assessed via the optimal KS dis
tance D, and GoF tests in line with Clauset et al. (2009). 

Strikingly, the we find strong evidence for that our power-law hy
pothesis is confirmed as the optimal power-law exponents are estimated 
to be below three for all realized FX rate variances. These results are in 
line with Table 2 and confirm that the variances of variances are un
defined. Furthermore, our findings indicate that for all realized FX rate 
variances – except for the realized variance for SEK/USD – the estimated 
power law exponents are more than two standard deviations below α =
3. An astonishing result is that the point estimates for six out of nine 
realized FX variances, the estimated power-law exponents using the 
Parkinson estimator are within the 95% confidence interval for the 
power-law exponents estimated using the Garman-Klass estimator. That 
means, for the vast majority of realized FX rate variances, both esti
mators are statistically indistinguishable from each other. Overall, we 
find that the power-law property of realized FX rate variances is not an 
artefact manifested in the possibly larger variance produced by the 
Parkinson estimator. 

5.5. Financial implications of co-fractality 

To illustrate some financial implications of our proposed concept of 

Fig. 6. Hill plot for the GBP/USD realized variance. 
This figure shows the Hill plot for the GBP/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   

13 Note that using the Garman-Klass estimator, we lose five sample observa
tion (e.g., T = 4009 as opposed to T = 4014 when using the Parkinson esti
mator). One drawback of the Garman-Klass estimator may be that if 

[2ln(2) − 1 ]
[
ln
(

Ci,t
Oi,t

) ]2
> 0.5

[
ln
(

Hi,t
Li,t

) ]2
, the variance is undefined. 
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co-fractality, let us consider the following two scenarios: First, let us 
consider N stochastic processes which do not exhibit any co-fractality. 
This set-up is illustrated in Fig. 11a, where analogously to Figs. 1a – d, 
the thin-tailed realizations are highlighted in white, whereas the re
gimes governed by power laws are highlighted in various grey levels. We 
see from Fig. 11a that power-law regimes are non-overlapping across the 
N vectors which corresponds to the extreme case where λs = λw = 0. 
Recall from Table 8 that the uncertainty in the FX market exhibited 
numerous extreme events ranging from 25σ events (e.g., CAD/USD 
realized variance on 2008-10-29) to 68σ events (e.g., EUR/USD realized 
variance on 2008-03-17). Let us for simplicity assume that all N sto
chastic processes which are visualized in Fig. 11a are governed by the 
same power-law process like the CAD/USD realized variance, that is, 

p(x1) = p(x2) = … = p(xN) = Cx− α,

with C = (α − 1)xMIN
α− 1, and according to Table 2, (α,xMIN) =

(2.3893,0.0066). If all N stochastic processes are held in a portfolio, the 

probability of the arrival of extreme events that are equal or larger than 
25σ is, according to Table 8, p = 0.00470 regardless of time t. Since the 
thin-tailed part of the distributions do virtually not allow for the oc
currences of such extreme events, we can ignore it in the calculation.14 

Second, let us consider N stochastic processes which exhibit strong 
co-fractality. This set-up is illustrated in Fig. 11b, where again the thin- 
tailed realizations are highlighted in white, whereas the regimes gov
erned by power laws are highlighted in various grey levels. We see from 
Fig. 11b that power-law regimes are overlapping across the N vectors 
which corresponds to the extreme case where λs = 1. From Fig. 11b we 
see that the power-law regimes for all N stochastic processes overlap, 
which occurs between t = 0 and t = 1. Again, let us for simplicity assume 
that all N stochastic processes visualized in Fig. 11b are governed by the 

Fig. 8. Hill plot for the NOK/USD realized variance. 
This figure shows the Hill plot for the NOK/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   

Fig. 7. Hill plot for the JPY/USD realized variance. 
This figure shows the Hill plot for the JPY/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   

14 For instance, the probability that a χ2(1) would generate such an event is p 
= 5.73E-07 ≈ 0. 
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same power-law process like in the previous example. The question 
arises, what is the probability of the arrival of extreme events that are 
equal or larger than 25σ? Obviously, from t = 1 to T, the probability of 
the occurrences of such extreme events is negligible because all distri
butions are contemporaneously governed by some thin-tailed distribu
tion. However, between t = 0 and t = 1, the risk is accelerated by a 
substantial margin because all distributions are contemporaneously in a 
power-law regime allowing extreme events to occur. Using the same 
assumptions like in the previous example, the probability of the occur
rences of extreme events that are equal or larger than 25σ is then 
0.00470 N. More precisely, holding a portfolio of N = 100 stochastic 
processes, the probability of the occurrences of extreme events that are 
equal or larger than 25σ is, hence, 47%. It is perhaps for this reason that 

Mandelbrot (2008, p. 266) critically argues: “When you pick a stock by 
the conventional [correlation-based] method, you may actually be 
adding risk rather than reducing it.” 

6. Conclusion 

Periods of high variance are manifestations of extreme events. 
Traditional finance research has typically relied on the concept of cor
relation for risk diversification. For instance, Markowitz (1952) modern 
portfolio theory, Sharpe (1964) capital asset pricing model, and factor 
models such as the Fama and French (1993, 2015, 2018) models, are 
built on the fundamental concept of correlation. This study argues that 
correlation is not defined for processes governed by power laws for 

Fig. 10. Hill plot for the SEK/USD realized variance. 
This figure shows the Hill plot for the SEK/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   

Fig. 9. Hill plot for the NZD/USD realized variance. 
This figure shows the Hill plot for the NZD/USD 
realized variance. On the y-axis, the graph shows the 
evolution of α̂ depending on the cut-off xMIN which is 
shown on the x-axis. The α̂ is obtained from using the 
MLE estimator of the model p(x) = (α − 1)xMIN

α− 1x− α 

where α̂ = 1+ N
(∑N

i=1ln
(

xi
xMIN

))− 1
, where N denotes 

the number of observations, provided xi ≥ xMIN. The 
grey arrow illustrates the location of the MLE with 
respect to the optimal KS distance D. The sample 
period used in this table is from 2006-05-16 to 2021- 
11-19.   
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which α < 3. As a remedy, we define the concept of co-fractality as a 
metric measuring the co-dependence of power law regimes across dis
tributions. Specifically, we distinguish between co-fractality in its strong 

and weak form because the number of realizations governed by power 
laws differs between distributions; in our sample the percentage of the 
part of the distributions governed by power-law processes varies be
tween 4.75% and 31.61%. 

Confirming the results of earlier studies, the findings of this study 
indicate that realized variance processes for G10 currencies exhibit 
Paretian tails. Because our findings indicate that the power laws for all 
currencies exhibit exponents that are statistically below 3 (α < 3), we 
infer that theoretical second moments for the variances—or the vari
ances of variances—do not exist. This implies, in turn, that correlations 
between variances are not defined either. Extending earlier studies, we 
show that the tail exponents are stable in the sense that the null hy
pothesis that the power-law exponent is α < 3 cannot be rejected across 
independent samples. 

We further explore whether the co-dependencies of power-law re
gimes between realized FX rate variances change over time. While the 
evidence suggests that the presence of co-fractality does not appear to be 
persistent across samples, the absence of co-fractality seems to be more 
persistent than its presence. Indeed, all seven realized FX rate variance 
pairs not exhibiting weak co-fractality in the first subsample do not show 
evidence of any co-fractality in the later subsample either. This finding 
suggests that tail risks can be diversified. Power laws with tail exponent 
α < 3 generate unforeseen extreme events; that is, past data do not 
capture the potential impact of extreme events in the future. Hence, risk 
diversification should focus on the tails as opposed to the thin-tailed part 
of the data (e.g., x < xmin). Since the concept of correlation is not 
designed as a tool that could be used for portfolio or risk management in 
the presence of power-law processes with tail exponent α < 3, the 
concept of co-fractality appears to be a remedy to solve such concrete 
financial problems that traditional approaches cannot solve. 

The current study opens various avenues for future research. For 
instance, referring to the usage of power laws to model financial market 
data, Lux and Alfarano (2016) commented, “The power laws in returns 
and in volatility seem to be intimately related: none of them was ever 
observed without the other and it, therefore, seems warranted to 
interpret them as the joint essential characteristics of financial data” (p. 
4). While the current research explicitly explores power-law in
terdependencies in the second moments of some financial assets (i.e., 
G10 currencies), future research is encouraged to investigate this issue 
for other moments. Given that power laws are a stylized fact for financial 
market data, future research could also explore power-law in
terdependencies for the first or second moment for equities or for 
cryptocurrencies. Moreover, future research is needed to validate the 
result of this study for expanded samples. Finally, the simple and 
straightforward methodological approach proposed in this study, where 
co-dependencies are derived from transformations of random processes 
into some Bernoulli-distributed auxiliary variables, can be arbitrarily 
extended to modeling co-dependencies of many other fat-tailed distri
butions – not necessarily ones that exactly follow power-law decays. 
These issues are, however, beyond the scope of the current research and 
are therefore left for future research. 

Data availability 

Foreign exchange rate data used in this study is publicly available.  

Fig. 11. Diversification of extreme risks. 
Fig. 11a illustrates N stochastic processes which do not exhibit any co-fractality. 
Analogously to Figs. 1a – d, the thin-tailed realizations are highlighted in white, 
whereas the regimes governed by power laws are highlighted in various grey 
levels. Power-law regimes are non-overlapping across the N vectors which 
corresponds to the extreme case where λs = λw = 0. Fig. 11b illustrates N sto
chastic processes which exhibit strong co-fractality. Power-law regimes are 
overlapping between t = 0 and t = 1 across the N vectors which corresponds to 
the extreme case where λs = 1. Risk is accelerated by a substantial margin 
because all distributions are contemporaneously in a power-law regime 
allowing extreme events to occur. 
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Appendix A. Appendix  

Table A.1 
Correlation matrices.  

Panel A. Correlation matrix for the overall sample from 2006-05-16 to 2021-11-19. 

Currency AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

AUD/USD 1 0.00 0.00 0.00 0.00 − 0.01 0.00 0.00 0.00 
CAD/USD  1 0.06*** 0.02 0.40*** 0.43*** 0.30*** 0.07*** 0.44*** 
CHF/USD   1 0.00 0.02 0.04** 0.04** 0.01 0.05*** 
EUR/USD    1 0.01 0.04** 0.01 0.01 0.00 
GBP/USD     1 0.52*** 0.34*** 0.05*** 0.46*** 
JPY/USD      1 0.22*** 0.06*** 0.36*** 
NOK/USD       1 0.05*** 0.69*** 
NZD/USD        1 0.08*** 
SEK/USD         1  

Panel B. Correlation matrix for the sample from 2006-05-16 to 2014-03-07. 
AUD/USD 1 − 0.01 − 0.01 0.00 0.00 − 0.01 − 0.01 0.00 − 0.01 
CAD/USD  1 0.23*** 0.01 0.57*** 0.42*** 0.60*** 0.06*** 0.57*** 
CHF/USD   1 0.03 0.24*** 0.15*** 0.28** 0.02 0.28*** 
EUR/USD    1 0.01 0.04* 0.02 0.00 0.00 
GBP/USD     1 0.58*** 0.67*** 0.06*** 0.63*** 
JPY/USD      1 0.48*** 0.06** 0.45*** 
NOK/USD       1 0.07*** 0.79*** 
NZD/USD        1 0.07*** 
SEK/USD         1  

Panel C. Correlation matrix for the sample from 2014 to 2014-03-10 to 2021-11-19. 
AUD/USD 1 0.54*** 0.04* 0.37*** 0.26*** 0.32*** 0.63*** 0.90*** 0.82*** 
CAD/USD  1 0.09*** 0.37*** 0.27*** 0.31*** 0.42*** 0.46*** 0.39*** 
CHF/USD   1 0.09*** 0.00 0.04* 0.03 0.06*** 0.03 
EUR/USD    1 0.46*** 0.57*** 0.30*** 0.36*** 0.41*** 
GBP/USD     1 0.59*** 0.28*** 0.26*** 0.36*** 
JPY/USD      1 0.20*** 0.35*** 0.28*** 
NOK/USD       1 0.60*** 0.72*** 
NZD/USD        1 0.78*** 
SEK/USD         1 

This table reports the correlation matrix for realized FX rate variances for the overall sample and subsamples. 
* Statistically significant at a 10% level. 
** Statistically significant at a 5% level. 
*** Statistically significant at a 1% level.  

Table A.2 
Tail dependence coefficient for the first subsample.   

AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

AUD/USD 1 0.5960*** 0.3535 0.4848 0.5556** 0.4242 0.5152 0.6768*** 0.4848 
CAD/USD  1 0.3232 0.4343 0.5354 0.3737 0.5253 0.5253 0.4545 
CHF/USD   1 0.5152 0.3939 0.2929 0.3737 0.2929 0.3939 
EUR/USD    1 0.5253 0.3333 0.5859*** 0.4040 0.5152 
GBP/USD     1 0.3939 0.5556** 0.4747 0.5253 
JPY/USD      1 0.3737 0.4141 0.3535 
NOK/USD       1 0.5253 0.6566*** 
NZD/USD        1 0.4747 
SEK/USD         1 

Using the empirical distributions, we define the empirical tail dependence coefficient as the relative fraction of coincides in the 5% upper tail of the underlying 
variance. 

** Statistically significant at a 5% level. 
*** Statistically significant at a 1% level.  

Table A.3 
Tail dependence coefficient for the second subsample.   

AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

AUD/USD 1 0.4040 0.2929 0.3131 0.2424 0.3131 0.4646 0.5556** 0.4343 
CAD/USD  1 0.2828 0.2626 0.2020 0.2828 0.3333 0.4444 0.3131 
CHF/USD   1 0.6768*** 0.1616 0.2828 0.3434 0.3030 0.3535 
EUR/USD    1 0.1919 0.2727 0.3636 0.3232 0.4545 
GBP/USD     1 0.2222 0.2626 0.2727 0.2626 
JPY/USD      1 0.2323 0.3535 0.2323 
NOK/USD       1 0.3838 0.4949 

(continued on next page) 
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Table A.3 (continued )  

AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

NZD/USD        1 0.3737 
SEK/USD         1 

Using the empirical distributions, we define the empirical tail dependence coefficient as the relative fraction of coincides in the 5% upper tail of the underlying 
variance. 

** Statistically significant at a 5% level. 
*** Statistically significant at a 1% level.  

Table A.4 
Descriptive statistics.  

Exchange rate AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD NOK/USD NZD/USD SEK/USD 

Mean 0.1368 0.0088 0.0130 0.3136 0.0344 0.0091 0.0185 0.0206 0.0158 
Median 0.0079 0.0048 0.0052 0.0046 0.0050 0.0046 0.0097 0.0085 0.0084 

Maximum 241.2387 0.3642 13.8377 1187.7764 1.2456 0.5358 2.2629 19.8368 1.6670 
Date of maximum 2006-12-25 2008-10-29 2015-01-15 2008-03-17 2016-06-24 2008-10-24 2020-03-20 2012-02-01 2020-03-19 

Minimum 3.3621E-06 1.7479E-05 2.0055E-07 1.3363E-05 8.5145E-06 3.6122E-07 1.1825E-04 2.1406E-05 1.4454E-04 
Std.Dev. 5.3699 0.0151 0.2201 18.7684 1.6106 0.0201 0.0557 0.3143 0.0363 
Skewness 44.7512 8.9298 61.9117 63.2237 63.2956 12.6614 26.3595 62.5630 26.6588 
Kurtosis 2001.8233 145.0671 3886.4707 4000.9855 4007.2082 236.3705 900.2472 3944.8998 1108.4176 

Start of the sample 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 2006-05-16 
End of the sample 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 2021-11-19 
Total observations 4009 4009 4009 4009 4009 4009 4009 4009 4009 

This table reports the descriptive statistics for the annualized daily realized variance for AUD/USD, CAD/USD, CHF/USD, EUR/USD, GBP/USD, JPY/USD, NOK/USD, 
NZD/USD, and SEK/USD. The annualized daily realized variances for each FX market i are in line with those of Garman and Klass (1980), computed as 

σ2
i,t = T

(

0.5
[

ln
(

Hi,t

Li,t

)]2

− [2ln(2) − 1 ]
[

ln
(

Ci,t

Oi,t

)]2
)

,

where Hi, t, Li, t, Ci, t and Oi, t denote the highest, lowest, closing and opening price for FX market i on day t, σi, t
2 denotes FX market i’s corresponding realized annualized 

variance, and T = 250. Publicly available daily data on FX rates against the USD were retrieved from finance.yahoo.com.  

Table A.5 
Estimated power-law functions for variances using the Garman and Klass (1980) estimator.  

Distribution α̂ 95% CI ⃒
⃒
⃒
(3 − α̂)

σ̂

⃒
⃒
⃒
⃒

x̂MIN GoF test (p-value) N NPL 

AUD/USD 2.3063 [2.2334; 2.3797] 18.66 0.0133 0.1410 4009 30.81% 
CAD/USD 2.5329 [2.4351; 2.6307] 9.36 0.0103 0.0000 4009 23.55% 
CHF/USD 2.7817 [2.6246; 2.9388] 2.72 0.0172 0.6880 4009 12.32% 
EUR/USD 2.8198 [2.6466; 2.9930] 2.04 0.0170 0.4280 4009 10.58% 
GBP/USD 2.7325 [2.5799; 2.8851] 3.44 0.0159 0.4360 4009 12.35% 
JPY/USD 2.6781 [2.5199; 2.8363] 3.99 0.0176 0.4780 4009 10.78% 
NOK/USD 2.6818 [2.5390; 2.8246] 4.37 0.0301 0.0300 4009 13.33% 
NZD/USD 2.4579 [2.3771; 2.5387] 13.16 0.0140 0.0000 4009 31.23% 
SEK/USD 2.9792 [2.7617; 3.1967] 0.19 0.0395 0.2460 4009 7.93% 

This table reports the estimates for power-law models p(x) = (α − 1)xMIN
α− 1x− α using MLE. Tail exponent α is estimated as 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

,

where α̂ denotes the MLE estimator, and N denotes the number of observations, provided xi ≥ xMIN. In this model, estimate x̂MIN is assessed via the KS statistic D, which 
is the maximum distance between the CDFs of the data and the fitted model: 
D = MAXx≥xMIN |S(x) − P(x) |,

where S(x) is the CDF of the data for the observation with a value at least xMIN, and P(x) is the CDF for the power-law model that best fits the data in the region x ≥ xMIN. 
The estimate of the x̂MIN is the value of xMIN that minimizes D. Clauset et al. (2009) GoF test generates a p-value that quantifies the plausibility of the hypothesis. This 
test compares D with distance measurements for comparable synthetic data sets drawn from the hypothesized model, and the p-value is defined as the fraction of 
synthetic distances that are larger than the empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected because the difference 
between the empirical data and the model can be attributed to statistical fluctuations alone. The implementation of this test was detailed by Clauset et al. (2009, p. 
675–678). NPL denotes the percentage of sample observations governed by a power-law process, whereas CI denotes the confidence interval for α̂. The sample period 
used in this table is from 2006-05-16 to 2021-11-19. 
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