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Abstract

This paper presents a comprehensive overview of the critical process safety consid-

erations inherent in hydrometallurgical metal recovery within the lithium-ion battery

(LiB) recycling process. As hydrometallurgy application in LiB recycling is still in the

early stages of development, it is crucial to identify the hazards and provide safety

recommendations. Hazards related to hydrometallurgy are identified and categorized

in process, toxic, fire, explosion, corrosion, environment, storage, and transport

hazards. Risk reduction measures are suggested using the hierarchy of control meth-

odology to eliminate and reduce risks to as low as reasonably practicable (ALARP),

based on UK regulatory framework.
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1 | INTRODUCTION

Lithium-ion batteries (LiBs) can be used in various applications ranging

from portable electronic devices to energy storage.1,2 The demand for

LiBs is seen to be rising rapidly to meet the global net zero targets.3

By 2050, an increase of 80%–90% is predicted in the automobile

industry4 and a significant rise is expected in the use of LiBs in storage

of renewable energy across the globe.5

With an increase in demand for LiBs, the demand for constituent

metals, that is, Li, Ni, Mn, and Co, would also increase. These metals

are not abundant in many regions of the world, especially in the UK

and USA, and mining for these metals is not sustainable.6,7 Therefore,

resulting in increasing focus on recycling and closed loop economy

solutions.8 Recycling of LiB also helps reduce waste batteries from

being disposed unsafely or being accumulated as waste on battery

collection and landfill sites.9,10 Improper storage or handling of waste

batteries can result in thermal runaway or ignition.11–13

Recycling of LiB is completed in three main stages, namely, disman-

tling, separation, and metal recovery, as shown in Figure 1. Dismantling

and separation of batteries are widely undertaken across the globe; how-

ever, metal recovery is still in the early stages of development.

One of the techniques being researched for metal recovery is

hydrometallurgy.15,16 As this is mainly being researched in small-scale

laboratories, the severity of the hazards in research facilities is small.

As these techniques start to be commercialized and larger scale facili-

ties are installed and operated, the severity of the hazards would

increase exponentially.17,18

Past incidents show that hazards, such as thermal runaway, igni-

tion of battery, explosion, and so forth, exist in the storage, pretreat-

ment, and separation processes.11 No incidents were identified

relating to use of hydrometallurgy in LiB recycling, with only limited

information available on the process safety issues.15,19

Therefore, there is an opportunity for proactive approach to inte-

grate inherent safety in design, operation, and maintenance of these
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recycling facilities.17,18 This may be achieved by collaboration

between greenfield sites, researchers, and regulatory bodies.

This paper summarizes the process safety issues associated with

the use of hydrometallurgy in recycling of LiBs. All background infor-

mation, such as methodology, material data, and regulatory data,

related to this paper is provided in an online supplement.

2 | PROCESS OVERVIEW

LiB recycling consists of three main steps, as shown in Figure 1.

Hydrometallurgy is a metal recovery technique used for the recovery

of cathode material. It is a pH and temperature-sensitive process,

where chemicals and solvents are used to recover metals from cath-

ode metal slag (also known as black powder). The metal slag is formed

in the preceding material separation step, through pyrometallurgy or

thermal processing.

Leaching is the first step in hydrometallurgy, during which, acid,

bases, or specialist chemicals are used for reaction with the black

powder.14,20 This separates out the powder into its constituent

metals and creates metal salts in the leaching solution. Individual

metal is extracted and precipitated out from the leaching solution

to obtain metal salts or pure metals. Additional acids, bases, or spe-

cialist chemicals are used in the extraction and precipitation stages

to adjust pH of the leaching solution, based on their selectivity

to certain metals.15,21 The constituent metals may be recovered in

multiple stages, therefore, making hydrometallurgy a series of batch

reactions. The reaction temperature may be varied to increase the

recovery efficiency of metals of interest.

Figure 2 gives a basic block flow diagram for the hydrometallurgy

process studied in this project.

3 | HAZARD IDENTIFICATION

The hazard study technique recommended by Tony Ennis6 has

been used together with detailed research on hydrometallurgy

process and associated materials and their hazards. An in-depth

review of the best available techniques, policies, and regulations

was completed to recommend risk reduction measures (RRMs)

for future commercialization of the use of hydrometallurgy in

LiB recycling.

3.1 | Chemical hazards

Table 1 summarizes the common leaching agents, extractants, precipi-

tants, and recovered metals associated with hydrometallurgy.14,21–24

However, hydrochloric acid, sulfuric acid, sodium hydroxide, sodium

carbonate, hydrogen peroxide, D2EPHA, Cyanex 272, and PC 88-A

are noted to be widely used chemicals.

The hazards associated with these chemicals can be categorized

into toxic, fire, explosion, corrosivity, environmental, storage, and

transport hazards.

3.1.1 | Toxic hazards

Reaction between the metal slag and leaching agent, extractants, or

precipitants results in the formation of a metal salt and the generation

of gases. Depending on the chemical agents used, toxic gases, such as

sulfur dioxide or chlorine, can be released from the reaction.25 For

example, use of HCl leads to the generation of Cl2 gas or the use of

H2SO4 generates SO2 gas.

Battery 

Pretreatment

• Discharge

• Dismantle

• Crushing
• Pyrometallurgy

• Thermal Treatment

• Direct Recycling

• Hydrometallurgy

Cathode Material or 

Metal Recovery

Separation of 

Cathode Material

F IGURE 1 Generic stages of LiB recycling.14
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Some of the raw materials and products have been noted to have

toxic properties and have associated workplace exposure limits, which

must be adhered to during plant operations (e.g., nickel, manganese,

lithium, and hydrogen peroxide).

3.1.2 | Fire and explosion hazards

From study of the fire and explosion parameters, that is, MIE, flash

points, autoignition or decomposition temperature, flammability or explo-

sion limits, and allowable surface temperatures for common chemicals, it

is noted that the fire and explosion hazards are inherent to many mate-

rials involved in hydrometallurgy. Explosion hazards may also exist during

storage and handling of raw materials and final products in solid or dust

form. Some flammable or explosive materials include acetic acid, formic

acid, Cyanex, D2EPHA, cellulose, maleic acid, and manganese.

3.1.3 | Corrosivity hazards

The corrosion hazard is inherent to acids and bases, such as H2SO4 or

NaOH, which are commonly used in hydrometallurgy. Corrosion over time

can damage the pipework and equipment, leading to loss of containment

over time. Prolonged leaks of corrosive materials can also lead to damage

to the surrounding areas, such as damage to concrete in bunds, flooring

(concrete or metal), vessel supports, and so forth, which can escalate into

a significant incident. Risk to operators due to corrosion may exist during

handling of these materials, for example, coming into contact with surfaces

with leaks or during manual handling of containers etc.

3.1.4 | Environmental hazards

The toxicity and corrosiveness of the chemicals also impact the envi-

ronment. Release of substances such as lithium, H2SO4, HCl, and so

forth, into the water drains or nearby water bodies may lead to signifi-

cant harm to aquatic life. Fire at vent stacks may also result in harm to

nearby personnel or arial environment. The hydrometallurgy process

also generates a significant amount of wastewater, which may be con-

taminated with hazardous leaching agents, extractants, precipitates,

and trace amounts of unrecovered products. This harmful wastewater

may enter surface water drains, which if not managed can be drained

into local water bodies. Uncontained wastewater may also run off

onto the vulnerable offsite facilities and population, for example,

nearby farmland, schools, offices, and so forth.

3.1.5 | Storage and transport hazards

Many of the hazardous chemicals used in hydrometallurgy require specific

storage conditions, such as dry places, lower ambient temperatures, or

segregation with incompatible materials. The common requirement

between all substances is tightly closed containers with authorized access.

Risk may exist during transport of raw materials and product to and

from site.26 During transport, the substances may be carried through off-

site areas, such as public motorways, railway lines, and so forth. In addi-

tion, there is a limited level of control to prevent uncontrolled releases

into the environment. Another aspect of transport is the transfer of

products into storage vessels at consumer sites. Transfer of products

from transport vessels and storage vessels may include manual steps

such as connection/disconnection, purging/draining of hoses, or start-

ing/stopping the transfer, which requires specialist training. Any errors

during these tasks and activities can lead to a process safety incident.

3.2 | Compatibility hazards

Hydrometallurgy process is highly dependent on reaction kinetics and

the concentration of the solutions. Therefore, there is inherent incom-

patibility between the raw materials or products in use. Any loss of

control of concentration and therefore, the pH, may lead to produc-

tion of harmful by—products. Using the CRW software, compatibility

charts were created for the common chemicals used in the hydromet-

allurgy process.

From the compatibility study, it is noted that all substances have

varying levels of incompatibility between them. It is, however, noted

that phosphoric acid and DES leaching solvents, such as urea and thio-

urea, are the most compatible with other solvents and agents.

Figure 3 shows that the components used in the LiB at their elemental

levels may react with each other releasing heat.

F IGURE 2 Basic block flow diagram without risk reduction measures.
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Another aspect is the compatibility between the substances and

material of construction as not all materials are suitable for all substances,

pH, or temperature conditions. In addition, in hydrometallurgy, the pH

and temperature are continuously varied, to change product selectivity

and efficiency. Use of unsuitable material for construction may lead to

loss of containment from equipment or an unwanted reaction between

the construction material and process fluid.

3.3 | Process hazards

Loss of pH and/or temperature control is identified to be the two

main processing hazards.27 Loss of pH or temperature control may

result from control system failures and may lead to unwanted reac-

tions or thermal runaway. Changes in pH may escalate the compatibil-

ity hazards, as discussed in Section 3.2. Increase in temperature may

TABLE 1 Common leaching agents, extractants, precipitants, and products from hydrometallurgy of LiB.

Materials Key hazards Type

Hydrochloric acid, HCl Corrosive Leaching agent

Sulfuric acid, H2SO4 Corrosive Leaching agent

Reducing agent

Extractant

Phosphoric acid, H3PO4 Corrosive Leaching agent

Sodium hydroxide, NaOH Corrosive Leaching agent

Extractant

Precipitant

Ammonia, NH3 Toxic Leaching agent

Oxalic acid Toxic Leaching agent

Citric acid Irritant Leaching agent

Maleic acid Toxic Leaching agent

Choline chloride Not hazardous Leaching agent

PEG200 (polyethylene glycol) Not hazardous Leaching agent

Urea Not hazardous Leaching agent

Thiourea Toxic Leaching agent

Grape seed Irritant Leaching agent

Hydrogen peroxide, H2O2 Flammable/toxic Reducing agent

Ethylene glycol Toxic Reducing agent

Sodium carbonate, Na2CO3 Irritant Extractant

Precipitant

Dimethylglyoxime (DMG) Flammable Extractant

(4,4-trimethylpentyl) phosphinic acid (Cyanex 272) Irritant Extractant

(2-ethylhexyl) phosphonic acid mono-2-ethylhexyl ester (PC-88A) Corrosive/toxic Extractant

D2EHPA Toxic/corrosive Extractant

Versatic 10 acid Not hazardous Extractant

Potassium permanganate, KMnO3 Corrosive/toxic Precipitant

Lithium Explosive in dust Form/corrosive Product

Lithium carbonate Toxic Product

Lithium sulphate Toxic Product

Cobalt Flammable Product

Cobalt sulphate Carcinogenic Product

Cobalt oxide Carcinogenic Product

Nickel Carcinogenic Product

Nickel sulphate Toxic Product

Nickel hydroxide Toxic Product

Manganese Not hazardous Product

Manganese hydroxide Toxic Product

4 JAIN ET AL.
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result in flammable or explosion hazards, as discussed in Section 3.1.2,

if the temperature reaches the auto-ignition temperatures.

3.4 | Risk reduction measures

BREF documents issued by the European Commissions have been

used to identify best practices.28–37 Hierarchy of control (Figure 4)

may be used to select appropriate RRMs for a facility.

3.4.1 | Elimination

Use of another inherently safer metal recovery technique, which is not pH

or temperature dependent, may be considered to eliminate the use of

hydrometallurgy. If not possible, consideration should be given to choosing

inherently safer non-hazardous chemicals, where possible for leaching,

extraction, and precipitation. For example, use of ammonium sulfate, alumi-

num hydroxide, ascorbic acid, cellulose, choline chloride, glucose, sodium

thiosulfate, sodium sulfate, PEG200, sucrose, urea, or Versatic 10 Acid.

F IGURE 3 CRW software

compatibility matrix output pure elements

used in LiB (compatibility matrix legend:

Y—compatible, C—caution).

F IGURE 4 Hierarchy of

control adapted from NIOSH.38
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3.4.2 | Substitution

Substitution measures should include the use of substances with high

ignition temperatures, with flash point above the surface temperatures

and worst-case temperatures expected on loss of control. Recovery of

metals in their stable phase or form, for example, recovering lithium as

lithium carbonate, which can be directly reused as a cathode material,

can also be considered. Another substitution technique is minimization,

for example, reducing the number of flanges or joints will reduce the

leak points or reducing the storage inventory stored or transported

to/from site to reduce the severity of a loss of containment event.

Minimization can also be achieved through continuous operations

instead of batch processes to reduce the capacity of reactors or vessels,

hence, reducing the severity of the event. Optimization of water and

energy use and maximizing reuse and recycle of wastewater will mini-

mize the use of freshwater.

3.4.3 | Engineering controls

Engineering controls, such as pH, temperature, pressure, speed, and

level control systems as per IEC 61508 guidance, active safety sys-

tems (relief devices, quenching systems, etc.) or passive safety

systems (blast walls, bunds, dikes, etc.) should be considered. Suitably

designed interceptors on sites effluent and surface water drainage

system, scrubber systems or incinerators on vent or relief device dis-

charge, dust prevention systems, anti-towaway or breakaway connec-

tions, and barriers in the import/export area are other forms of

engineering controls.

Other design requirements include control of ignition or heating

sources, safe location of vent and relief outlets, site layout, material

separation and segregation, and selection of suitable material of

construction for equipment with consideration given to fatigue due to

pH—temperature cycles and worst-case ambient conditions.

3.4.4 | Administrative controls

Recyclers should ensure compliance with industry good practices, regu-

lations, and policies, including guidance on workplace safety measures.

This can be achieved through robust and well-defined safety manage-

ment systems (SMS), including process safety, environment and energy

efficiency, and completion of a suitable and sufficient risk assessment.

SMS should be supported by well-written procedures for routine

and non-routine operations, operator competency and training pro-

grams, periodic monitoring and trending of process conditions, and

any emissions and development of emergency plans with onsite

and offsite requirements.

3.4.5 | Personal protective equipment

Personal protective equipment (PPE), such as fire-resistant overalls, Hi-

Viz jackets, hard hats, safety boots, safety glasses, hearing protections,

and safety gloves, should be used during routine or non-routine opera-

tions. Specialized PPE, such as personal gas monitors, safety showers,

eye washing stations, gas masks, and breathing apparatus, should also be

considered using an appropriate risk review of the facility.

3.4.6 | Summary of RRMs

Figure 5 provides a recommended process block flow for hydrometal-

lurgical metal recovery from LiBs.

F IGURE 5 Recommended process block flow diagram with suggested risk reduction measures.
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4 | CONCLUSION

Recycling of LiB is of utmost importance to meet the increasing

demand. This is especially important in countries like the UK, where

battery materials, such as Li, Ni, Co, and Cu, are not naturally occur-

ring. The overall recycling process, including hydrometallurgy, can

result in potential accidents if the recyclers do not manage the risk

suitably and sufficiently. Therefore, the most critical finding of this

work to enhance process safety is the crucial importance of estab-

lishing a robust process safety management system right from the

outset when risks are more manageable. This paper identifies the

common hazards and recommends RRMs, based on the hierarchy of

control, which can be used to mitigate and reduce the risks to

ALARP. Future work should consider collaborating with greenfield

sites and regulatory bodies to identify best practices for hydrometal-

lurgical recovery of metals from LiBs.
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