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Abstract: The Trachenko–Brazhkin equation of the minimal possible viscosity is analysed, empha-

sising its validity by the account of multibody interactions between flowing species through some

effective masses replacing their true (bare) masses. Pressure affects the effective masses, decreasing

them and shifting the minimal viscosity and the temperature at which it is attained to higher values.

The analysis shows that effective masses in the Trachenko–Brazhkin equation are typically lighter com-

pared bare masses; e.g., for tin (Sn) the effective mass is m = 0.21mSn, whereas for supercritical argon

(Ar), it changes from m = 0.165mAr to m = 0.129mAr at the pressures of 20 and 100 MPa, respectively.

Keywords: viscosity equation; minimal viscosity; bare mass; effective mass

1. Introduction

Viscosity quantifies the resistance of material to flow and indicates the ability to
dissipate momentum, arising because of a transfer of momentum between fluid layers
moving at different velocities. For glass-forming liquids, viscosity changes by many
orders of magnitude, attaining values exceeding 1014–1012 Pa·s in the vitreous state and
decreasing to less than 10 Pa·s at the melting temperature. Indeed, in glass technology, the
so-called strain point below which fracture will occur before the onset of plastic deformation
corresponds to the temperature at which the viscosity is 3 × 1013 Pa·s, with the glass
transition temperature typically being near it. The conventional melting point for glass
which does not crystallise on heating corresponds to the temperature at which the viscosity
is 10 Pa·s, so that the melt is fluid enough to be considered a liquid. Generically, the
viscosity of matter has a minimal possible value which is revealed by available viscosity
equations applied in the high temperature range of melts such as the double-exponent
equation [1–3], also termed the Douglas–Doremus–Ojovan (DDO) model [4] or the Eyring
and Kaptay (EK) models [5,6]. Moreover, recently, Trachenko and Brazhkin analysed
viscous flow, deriving a universal equation for the minimum viscosities of materials [7] by
merging two asymptotic cases, that of a liquid and a gas. This enabled an approximate
(within order of magnitude) estimation of the minimal viscosity, with the observation that
it is not significantly spread, at least by its order of magnitude. This equation resulted in
further investigations, particularly for metallic systems [8–10], although the minima or
viscosity were discussed priorly for organics based on condensed matter approaches rather
than the merge of two asymptotic behaviours of matter [11]. The Trachenko–Brazhkin
(TB) equation of minimal viscosity, ηmin contains only basic universal constants (mass of
electron me and Plank constant, h̄, in combination with the density of matter, ρ, and mass
of flowing material species (atoms or molecules), m:

ηmin = ρh̄/4π(mem)1/2, (1)
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For the kinematic viscosity νmin = ηmin/ρ = h̄/4π(mem)1/2, the TB analysis shows that only
fundamental constants (h̄ and me) and the mass of the atom or molecule (m) are contained,
a fact which has allowed for TB to coin the notion of “elementary” viscosity [7]. The TB
analysis gives minimal viscosity values of the order of 0.1 mPa·s [7–9], although it does not
determine the crossover temperature when the viscosity is minimal, and it is generically
provided via (1) rather rough numerical estimations, with some exceptions. Regarding the
inaccuracy of the results obtained using (1), we assume that this is because of the non-exact
fit within the merging process of the condensed matter asymptote equations of viscosity,
such as that used before in [11] with one valid for gases. Such inaccuracies arise while
applying the same effective masses of flowing units (species which are atoms, molecules,
and clusters depending on the substance), for both the gaseous phase and condensed
matter, a procedure which does not account for many-body interactions characteristic of
liquids and practically absent in gases. One should note that the minimum of viscosity
connected with the liquid-to-gas phase transition is rather expected. However, even in
supercritical liquids where boiling is suppressed, the minimum viscosity is also achieved
before entering into the plasma state [12,13].

The purpose of this communication is to align a pathway of utilisation of TB Equation (1)
enabling the estimation of minimal viscosities to numerical data being equal or close to
that found from experimental works. We argue that the mass, m, to be used in Equation (1)
is not the bare atomic mass of moving atoms or molecules but rather some effective
masses which, depending on the system parameters, are modified to account for the multi-
body interactions between them. This substitution arises from the analysis of viscous
flow based on the EK model [5,6] and configuron concept which follows the Mott [14]
and Doremus [2] approaches, whereby the flow of condensed matter is treated as being
facilitated by structural defects in the form of broken chemical bonds termed configurons
in the case of multi-body systems such as condensed matter or superfluid matter.

2. Minimal Viscosity from the Condensed Matter Approach

The Kaptay equation of viscosity [6] is based on the Eyring work [5] and is a quan-
titative description tested for many molten metallic systems [6,15]. It can be represented
as follows:

η(T) = A
M1/2T1/2

V2/3
exp(

Ea

RT
), (2)

where M and V are the atomic mass and molar volume, Ea is the activation energy, R
is the gas constant, and T is the temperature. Equation (2) was tested on 101 measured
points of 15 selected liquid metals, and the average value of constant A was found to be
A = (1.80 ± 0.39) × 10−8 (J/Kmol1/3)1/2, while the activation energy Ea = B × RTm where Tm

is the melting point and the constant B = 2.34 ± 0.20 [6]. Similarly to the DDO model [11],
Equation (2) has a well-defined minimum attained at the crossover temperature, Tvm,
provided by formula (3):

Tvm =
2Ea

R
(3)

and given by expression (4):

ηmin = A
M1/2

(

2enEa)
1/2

(

R)1/2V2/3
(4)

Here, en is the Euler number (en = 2.71828. . .).
The analysis of viscosity changes at high temperatures contains attempts to predict

minimal viscosities, applying both TB Equation (1) [8,16] and Kaptay Equation (2) [15];
however, experimental confirmations of any such type of assessments were not the case
until recent works by Patouillet and Delacroix who experimentally analysed the viscosity
of melts up to very high temperatures, especially for tin (Sn) and lead (Pb) [17]. The
measurements of high-temperature viscosity of tin [17] confirmed the occurrence of minimal
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viscosity ηmin = 0.53 mPa·s at Tvm = 1600 ◦C not far from that derived in [15] and quite
close to that calculated using Equations (3) and (4) (see, e.g., for additional details and
discussion Ref. [10]), although the authors of [17] have not related their observations with
the minimal viscosity predicted theoretically.

Apart from correctly predicting the temperature when the viscosity reaches its mini-
mum, Equation (2) results in an expression for ηmin which contains both individual atomic
characteristics (M, V) and the activation energy of flow Ea which is a distinct collective
parameter of the system of atoms/molecules rather than of an individual specie alike
occurring in the gaseous phase when the interaction between them can be fully neglected.
Moreover, the temperature when the viscosity attains its minimum given by Equation (3)
is explicitly dependent on the collective parameter of the system, i.e., Ea. This suggests
that most probably, the universal TB equation of viscosity minimum needs amendments to
properly describe the experiment. The latter evidently indicates that the minimum viscosity
of matter strongly depends on the pressure. Figure 1 illustrates this dependence for the
materials analysed in [7].

η

η

tt

tt
tt

ff

ν
ff

tt

ffi

Figure 1. The effect of pressure on temperatures when the viscosity is minimal, and on kinematic

viscosity minima, demonstrating their significant shift to higher values with pressure (upward and

righthand), which can be interpreted in terms of the change of activation energy of flow, Ea (see

Equations (3) and (4)). The minimum kinematic viscosities of Sn and Na at a normal pressure are also

indicated with data taken from [17] and [18], respectively.

Both higher νmin and Tvm at higher pressures provide evidence for the importance of
collective effects in reaching the minimal viscosity. However, in contrast to the logarithmic
scale used in Figure 1, temperature is typically plotted on a linear scale in experiments;
therefore, the minima of viscosities are on a linear scale of temperature, and the exact
determination of temperature when they occur is not straightforward (see, e.g., Figure 9
of [17]). We show this explicitly in Figure 2 for the temperature dependence of viscosity of
argon (Ar) at a 20 MPa pressure based on data from the NIST Chemistry WebBook [19],
demonstrating that the curves are smooth with a shallow minimum, and that the exact
determination of the minimum position is difficult even in the case of using the same linear
scale for both viscosity and temperature.
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η

η

tt tt

Figure 2. The dynamic viscosity of Ar at a 20 MPa pressure with data taken from the NIST Chemistry

WebBook [19].

Both the ηmin and Tvm of materials are pressure-dependent, as they follow from
Equations (2) and (3), and are illustrated in Figure 3 for argon at the pressures of 20 to
100 MPa.

η

  

(a) (b) 

η

tt tt

Figure 3. Pressure dependencies of the minimal viscosity and the crossover temperature when the

minimum is achieved: (a) minimal viscosity, ηmin; (b) crossover temperature, Tvm. Viscosity data are

taken from the NIST Chemistry WebBook [19].

The approach within the configuron percolation theory (CPT) accounting for the
breaking of chemical bonds which facilitate shear flow has led to a two-exponential form
of viscosity as a function of temperature: the DDO model, which is, as a rule, providing a
better fitting to experimental data compared to single-exponential expressions [3,4,11]. The
activation energy of flow at high temperatures within CPT is constant and low, being equal
to the enthalpy of motion of configuron Ea = Hm [3,11]. The Hm in glasses can be considered
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an elastic strain energy or friction between moving layers since, at the microscopic level, the
viscosity arises due to the transfer of momentum between fluid layers moving at different
velocities, as explained in Maxwell’s kinetic theory (Figure 4).ff
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Figure 4. Schematic of imaginary moving layers in a flowing liquid.

The shear viscosity coefficient, η, by definition is the ratio of shear stress divided to
the velocity gradient: η = (F/S)(V/H), where F is the force applied to the surface of area
S, V is the velocity, and H is the separation height between the two layers (see Figure 4).
The tighter the bound layers and the more difficult their motion, the higher the resulting
viscosity. The external pressure will push layers against each other, therefore increasing the
force of internal friction between the layers, hence F = F0 + PS, where the intrinsic force
F0 is related to the surface tension of matter σ via friction coefficient µ: F0 = aµσ with a
being the proportionality coefficient. We can thus assess the Hm assuming that the internal
friction between the imaginable layers of flowing liquid is caused by the existing bonding
between them without any external pressure (Hm0), with an added part proportionally
dependent on the applied external pressure, P, which accounts for the fact that the higher
pressure, the higher the force pressing the layers against each other:

Hm = Hm0 + bµPα (5)

where α is the power coefficient and b is the proportionality coefficient (in m3/mol). Thus,
at higher pressures, Hm increases in line with Frenkel’s original ideas that loose molecular
cages facilitate the escape of atoms from cages often used in practice [20–24], whereas
oppositely to that, a compressed molecular cage will prevent the atoms to escape from it.
Hence, in the first approximation, if Hm0 >> bµPα, for the crossover temperature and the
viscosity minimum, the following functions hold:

Tvm = AP + BPPα, ηmin = CP + DPPα, (6)

where AP = 2Hm0/R, BP = 2bµ/R, CP = AM1/2(2en)1/2/R1/2V2/3, and DP = AM1/2(2en)1/2

AP/2R1/2V2/3BP. The higher the external pressure, the higher Ea, which naturally explains
the pressure shifts of both the minimal viscosity, as seen in Figure 3a, and the crossover
temperature, as seen in Figure 3b. From these data, it follows that α ≈ 0.4.

3. Effective Masses of Flowing Units

At a first glance of the above results, we may conclude that the collective effects are
fully missed in TB Equation (1). Nevertheless, we are prone to dismiss such conclusions
with arguments as follows. Apart from fluid density, ρ, and the mass of flowing unit, m,
Equation (1) contains fundamental constants only and shall therefore be augmented with a
fitting coefficient effectively dependent on the type of material aiming to correctly describe
the experiment. As seen (see Figure 1), the kinematic viscosity is also affected by pressure;
thus, an augmenting fitting coefficient shall also depend on pressure, from which it follows
that the coefficient is clearly not a universal constant missed within the merging analysis.
However, the TB equation contains the mass of flowing unit m, which, in the condensed
matter, is not necessarily equal to that of a single atom or molecule. Such discrepancies
are well known in calculating the effective sizes of flowing units in liquids (see Table IV
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of Ref. [2]), which shows rather small sizes compared with the actual sizes of molecules.
The situation is similar to that encountered in conductors when the mass of charge carriers
is not necessarily equal to me for an electronic or ionic mass for ionic conductors for the
reason of multibody interactions in the system [25,26] where even negative effective masses
can appear [27]. Hence, the mass of flowing unit in the TB equation should be an effective
mass m rather than the bare mass of an atom or molecule of flowing substance mi:

m = Mrelmi (7)

where Mrel is the coefficient which accounts for the multibody interaction in the system
of flowing units and mi = M/NA, where NA is the Avogadro number. Effective masses
of flowing units can be derived from data on known minimal viscosities, ηmin,exper, using
Equation (7):

m =
1

me

(

ρh̄

4πηmin,exper

)2

(8)

Coefficients Mrel, which can be also termed the relative masses of lowing units (as
Mrel = m/mi), can be found through the comparison of minimal viscosity from the experi-
ment ηmin,exper with ηmin,TB available from the calculation while using TB Equation (1) with
bare masses mi instead of effective masses m (see, e.g., [7–9]):

Mrel =

(

ηmin,TB

ηmin,exper

)2

(9)

Table 1 shows the effective masses of flowing units Mrel of some materials analysed in
Tables 1 and 10 of references [7] and [17].

Table 1. Relative masses of the flowing units (Mrel) of materials at the minima of viscosity.

Substance Reference for ηmin,exper Mrel

Neon (Ne) at 50 MPa [7] 1 1.09
Neon (Ne) at 300 MPa [7] 0.54
Helium (He) at 20 MPa [7] 4.23
Helium (He) at 100 MPa [7] 2.04
Nitrogen (N2) at 10 MPa [7] 0.4
Nitrogen (N2) at 500 MPa [7] 0.1
Hydrogen (H2) at 50 MPa [7] 0.87

Oxygen (O2) at 30 MPa [7] 0.26
Water (H2O) at 100 MPa [7] 0.18

Carbon dioxide (CO2) at 30 MPa [7] 0.16
Methane (CH4) at 20 MPa [7] 0.24

Carbon monoxide (CO) at 30 MPa [7] 0.28
Tin (Sn) [17] 0.21

Sodium (Na) [18] 0.07
1 See Table 1 of [7].

Hence, it is revealed that the effective masses are typically, although not necessarily
smaller compared to the bare masses of species. However, it is unambiguously revealed
that the higher the pressure, the lower the effective masses of the flowing units. This trend
is explicitly shown in Figure 5 for argon, the interest in structural changes of which, at
varying pressures, is not diminishing, demonstrating the existence of crystalline clusters
within the background of an amorphous phase, even at ultra-fast cooling rates [28].

The trend from both Table 1 and Figure 5 is evident: the higher the pressure, the closer
the atoms and molecules to each other (see Figure 4), the stronger the interactions between
them which lead to changes in effective masses, namely the decrease in effective masses
compared to the bare masses of flowing units (atoms, molecules, clusters). Although the
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TB equation could be corrected with a non-accounted coefficient which will change the
numerical values of Meff, the trend will be preserved: the higher the pressure, the lower the
effective mass of the flowing unit.

 

ff

ff ff

ffi
ff

ff

ff
ffi

Figure 5. Effective masses of the flowing units in argon as a function of pressure. Minimal viscosities

were taken from the NIST Chemistry WebBook [19].

4. Discussion

Having a dynamic topologically disordered structure, liquids are typically assumed
with uniformly distributed species (atoms, molecules), although this is true only macro-
scopically and on average observation time, whereas at the microscopic scale and short
observation times (nanoscale), they are dynamically inhomogeneous media. Indeed, due to
the relatively high density of liquids, which is close to that of solids, metastable clusters
made up of several or more species are always formed because of close (almost solid state)
distances between species and the tendency to form microscopically metastable collective
structures (clusters) which diminish the energy of the system. Some clusters can, with time,
disintegrate, but the lower the temperature, the larger the sizes and longer the lifetime of
clusters [13,15,29–31]. Typical examples of ordering in liquids are tetrahedral structures in
silica melts and icosahedral structures in molten metallic glasses [31–34] the assemblage
of which, on the lowering of temperature, leads to either crystallisation or vitrification
(liquid–glass transition) [35–40]. The existence of both persistent (static) and dynamic
structures was recently demonstrated, e.g., in [34], where static structural features included
the peak positions of the structure factor and pair distribution function, bond angle distri-
bution, number of tetrahedra, cluster connection, free volume, and dynamical structural
features comprising the relaxation time, diffusion coefficient, and non-Gaussian parameter.
Long-wavelength density fluctuations (Fischer clusters) revealed the occurrence of local
ordering in glass-forming liquids [41,42]. It was also shown that the density fluctuations
have correlation lengths of up to 300 nm and are characterised by a fractal structure with
the dimension D < 3 [43]. Moreover, within CPT, the liquid state is viewed as consisting of
macroscopic clusters with a fractal geometry surrounded by macroscopic configuron clus-
ters, and the glass transition as a percolation via broken bonds being formally is a two-state
model in which the high energy level is the broken bond and the low one is the intact bond,
operating on a bond lattice instead of the more conventional particle lattice [3,38,39].

It is important to emphasise that the tendency to cluster is observed in liquids above
the melting temperature (liquidus), e.g., the atomic structure of melts of simple metals
demonstrates that the dense part of the liquid in molecular dynamic models represents
branched chains of almost regular tetrahedra linked in pairs by faces, with the resulting
clusters being fractal with the dimension D = 2.6 [44]. The occurrence of local ordering
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in liquids is confirmed experimentally in many works, e.g., [45–47]. Moreover, the mem-
ory effects of thermal evolution were found above the liquidus temperatures of silicate
systems [48]. Recent analysis has shown that the de-wetting temperatures of pre-frozen
(pre-solidified) and grafted layers in ultrathin films can be viewed as the melt memory
effects lead to new scenarios of crystallisation [49]. These observations overturn simpli-
fied notions that the structure of a liquid above the liquidus temperature is completely
disordered and has neither a long-range nor middle-range order. Hence, liquids are homo-
geneous and fully disordered at large times, exceeding the lifetime of metastable formations
and spatial scales large enough and being characterized by a short- and medium-range
order locally at distances of the size of molecules and metastable clusters. At smaller scales,
liquids are neither completely homogeneous nor fully disordered where ordering does not
mean periodicity, as quasicrystals being ordered are not periodic. This shall be accounted
for in the description of the liquid properties observed, including the viscous flow and
the viscosity, because even for dilute systems, clusters are formed arising from the direct
contact aggregation of particles [50].

Inhomogeneities observed in liquids and gases also occur in the supercritical state [13,51].
For example, the structure of pure supercritical water (H2O) exhibits both tetrahedral liquid-
like and gas-like configurations depending on the external pressure [51]. The supercritical
state of water is observed at temperatures and pressures exceeding 647 K and 22 MPa,
respectively. Figure 6 shows the temperature dependence of the viscosity of water at two
pressures: (a) 50 MPa, when it becomes supercritical above 660 K; and (b) at 20 MPa, when
it becomes gaseous above 638.9 K.

tt
tt

ff
tt

ff

  

(a) (b) 

η

tt

Figure 6. Isobaric viscosities of water: (a) the viscosity at P = 50 MPa. At temperatures exceeding

660 K, the water becomes supercritical and the viscosity minimum occurs at Tvm = 840 K in the

supercritical state. (b) The viscosity at P = 20 MPa. At temperatures exceeding 638.9 K, the water

becomes gas and the viscosity minimum occurs at Tvm = 655 K in the gaseous state. The behaviour of

viscosity near their minimal values is shown by the insets. Viscosity data are taken from the NIST

Chemistry WebBook [19].

The higher the pressure, the higher both ηmin and Tvm, in line with Equation (6).
However, an interesting observation is that at both pressures, the minimal viscosity is not
attained in the liquid phase of water. Instead, the viscosity is minimal either in supercritical
or gaseous water. In the latter case, this seems to be surprising, as the equations of the
viscosity of gases have no minima and the viscosity should always grow with temperature.

Concerning metallic systems, TB Equation (1) with bare masses of metals works only
within the orders of magnitude range of viscosity and is not resulting in the description of
the experiment which shows that metallic alloys differ by viscosity minima by an order of
magnitude. The TB equation gives a narrow range within 23% difference only, e.g., within
(2.04–2.66) × 10−8 m2/s, as seen in Table 1 of Ref. [8]. An account for effective instead of
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the bare masses of species allows for an exact description of experiment. An important
aspect for metals is either that the Tvm is below or above the critical temperature Tc. Table 2
compares the Tvm calculated in [10] with the boiling point temperatures Tb [52] and critical
temperatures Tc estimated from sound velocities applying the isochoric thermal pressure
coefficient method [53].

Table 2. Crossover temperatures at which the viscosity is minimal compared with the critical

temperatures of metals 1.

Metal Tvm, K [10] Tb, K [52] Tc, K [53]

Hg 604 630 1982
Na 1260 1156 2447
K 1210 1032 2288
Pb 2510 2022 5573
Bi 1550 1837 4620 2

Ga 920 2477 4282
Sn 1720 2875 4536

1 The DDO model of viscosity gives a twice-lower value [11]. 2 The critical temperature was taken from [54].

Hence, Table 2 reveals that all metals will exhibit minimal viscosities, far below that
required to achieve the critical state. Thus, the experimental determination of Tvm is
experimentally achievable using a conventional viscometer, which may be of interest
for the practical applications of metallic coolants of fast breeder reactors [18]. Earlier
analysis of viscosity of sodium and other alkali metals have confirmed the existence of
achievable minima of viscosity [55,56]. The most recent large-scale molecular dynamics
simulations performed for LiF and Pb also confirmed the lower bound of the viscosity
in the liquid state [57]. The experimental data of viscosities analysed in [7] and used to
support the conclusion on the existence of minimal viscosities were taken for pressures
far above the critical pressure. This was performed aiming to avoid crossing the boiling
line where substances undergo the liquid–gas transition accompanied by a sharp change
of viscosity, although this was not necessarily for the generic theoretical conclusion on
the existence of minimal viscosity. However, data from column 2 of Table 2 show that the
minimal viscosities of metals can be achieved at temperatures below not only the critical
temperatures, but also below their boiling points, at least for Hg, Bi, Ga, and Sn. This is not
the case for Pb, the viscosity of which was analysed at temperatures up to 1770 [17] without
detecting any shallow minimum in line with the data of [10]. This, however, was the case
for Sn, for which the experiment demonstrated that Tvm = 1600 ◦C and ηmin = 0.53 mPa·s,
being relatively close to the theoretical parameters obtained using the EK viscosity model
(Equations (3) and (4)): Tvm = 1447 ◦C and ηmin = 1.1 mPa·s. Data for the other metallic
systems are provided in Table 1 of [10]. Thus, we may infer that metallic systems, and
particularly Hg, Bi, Ga, and Sn, indeed present a high potential for future experimental
work to further validate and refine the above-proposed modifications to the TB equation.

We have calculated the effective masses of the flowing units by comparing the available
experimental data (mainly from Ref. [19]) with that obtained using TB Equation (1) [7].
Only in this case can we infer that typically Mrel < 1 (see the last column of Table 1).
However, it is generically possible that TB Equation (1) contains a non-accounted numerical
coefficient CN which can expectedly be a large, compared unit, and Equation (1) will instead
read ηmin = CNρh̄/4π(mem)1/2. The method used in [7] to derive equation (1) resembles
the well-known similarity and dimensional methods widely used in the past especially
for solving a wide range of problems in the mechanics and hydrodynamics such as that
characteristic for the theory of explosions and in the astrophysics [58]. These methods
cannot however derive the exact values of numerical coefficients in equations derived
which can be quite large (e.g. the coefficient CN = π or let say CN = 16π2) meaning that
the effective mass (9) would differ by several orders of magnitude (e.g. one or four orders
in the above two examples) from that given by Equation (10). In this case, the masses of
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the flowing units could be in liquids not smaller than the individual masses of species mi

because in this case, the relative masses will be given by

Mrel = (CN)
2

(

ηmin,TB

ηmin,exper

)2

(10)

where CN > 1. Nevertheless, even in this case, the trend seen in Table 1 and Figure 5 will be
preserved, indicating that the higher the pressure, the lower the effective mass of a flowing
unit. This in turn indicates the increasing role of the interactions between particles in the
collective parameters of systems, one of which is the effective mass of the moving units
in fluids. The effective masses are hence sensitive not only to the characteristics of the
substances analysed, but also to external conditions, namely external pressure. The extreme
increase in temperature can additionally cause the dissociation of molecules and ionisation,
and leads to the transformation of matter to a plasma state, with possible intermediate con-
densed phases such as the condensed Rydberg matter, the rheological behaviour of which
is unknown [59–62], although these can be of practical use to validate the TB approach to
viscosity and its modification, applying the above concept of effective masses.

Finally, we note that the Eyring–Kaptay (EK) equation used here to find the tem-
perature Tvm was extended from the temperature range, where its correctness was con-
firmed by the experiment [6,63], to the range where its validity may be questionable;
therefore, Equation (3) is an approximate assessment of the crossover temperature Tvm.
Accounting for the fact that the DDO model of viscosity gives a twice-smaller value of
Tvm = Ea/R [10,11], we can admit that in the experiment, the viscosity minima could be
expected to be within the interval from Ea/R to 2Ea/R, in any case being directly propor-
tional to the activation energy of fluid flow at high temperatures. As shown in Table 2,
the minimum viscosity temperature is a fraction of the boiling point temperature for some
metals, and above it for others (and would always be below TB within the DDO viscosity
model). Therefore, experimental verification of the existence of minimal viscosities is
possible, especially for metals within the reach of common viscometers.

5. Conclusions

The viscosity minima occur at crossover temperatures, Tvm, which are considerably
above the melting points and are universally observed in the liquid, gaseous, and supercrit-
ical states. An assessment of the crossover temperatures when the minima are observed is
provided by Equation (3), with the minimal viscosity estimations given by Equation (4).
These equations were derived extending the Eyring–Kaptay model of viscosity to a higher
range of temperatures. Both the crossover temperature and the minimal viscosity increase
with the increase in external pressure have a dependence on the first approximation given
by Equation (6). Comparison of experimental data with the Trachenko–Brazhkin universal
equation for minimal viscosity (1) suggests that it can correctly describe the experiment,
provided that the effective masses of the flowing units of materials are used in it instead of
the bare masses of single atoms or molecules.
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