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Abstract

Background

Respiratory pathogens inflict a substantial burden on public health and the economy.

Although the severity of symptoms caused by these pathogens can vary from asymptomatic

to fatal, the factors that determine symptom severity are not fully understood. Correlations in

symptoms between infector-infectee pairs, for which evidence is accumulating, can gener-

ate large-scale clusters of severe infections that could be devastating to those most at risk,

whilst also conceivably leading to chains of mild or asymptomatic infections that generate

widespread immunity with minimal cost to public health. Although this effect could be har-

nessed to amplify the impact of interventions that reduce symptom severity, the mechanistic

representation of symptom propagation within mathematical and health economic modelling

of respiratory diseases is understudied.

Methods and findings

We propose a novel framework for incorporating different levels of symptom propagation

into models of infectious disease transmission via a single parameter, α. Varying α tunes the

model from having no symptom propagation (α = 0, as typically assumed) to one where

symptoms always propagate (α = 1). For parameters corresponding to three respiratory

pathogens—seasonal influenza, pandemic influenza and SARS-CoV-2—we explored how

symptom propagation impacted the relative epidemiological and health-economic perfor-

mance of three interventions, conceptualised as vaccines with different actions: symptom-

attenuating (labelled SA), infection-blocking (IB) and infection-blocking admitting only mild

breakthrough infections (IB_MB).
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In the absence of interventions, with fixed underlying epidemiological parameters, stron-

ger symptom propagation increased the proportion of cases that were severe. For SA and

IB_MB, interventions were more effective at reducing prevalence (all infections and severe

cases) for higher strengths of symptom propagation. For IB, symptom propagation had no

impact on effectiveness, and for seasonal influenza this intervention type was more effective

than SA at reducing severe infections for all strengths of symptom propagation. For pan-

demic influenza and SARS-CoV-2, at low intervention uptake, SA was more effective than

IB for all levels of symptom propagation; for high uptake, SA only became more effective

under strong symptom propagation. Health economic assessments found that, for SA-type

interventions, the amount one could spend on control whilst maintaining a cost-effective

intervention (termed threshold unit intervention cost) was very sensitive to the strength of

symptom propagation.

Conclusions

Overall, the preferred intervention type depended on the combination of the strength of

symptom propagation and uptake. Given the importance of determining robust public health

responses, we highlight the need to gather further data on symptom propagation, with our

modelling framework acting as a template for future analysis.

Author summary

Symptom propagation occurs when the symptoms of an infected individual depend, at

least partially, on the symptoms of the person who infected them. An example is when an

individual is more likely to develop severe symptoms if infected by someone with severe

symptoms themselves. Symptom propagation has important implications for infection

control strategies and could be harnessed to amplify the impact of vaccines that reduce

the probability of severe disease.
Evidence for symptom propagation is growing, yet it is rarely included in models of

infectious disease transmission. Here, we provide a new infectious disease transmission

model with a single parameter representing the strength of symptom propagation and

study the consequences for vaccination control strategies. We show that the strength of

symptom propagation has profound effects on infectious disease outbreaks, including

notably on the proportion of cases that are severe.
We demonstrate that vaccines that reduce symptom severity are more effective in

reducing severe and overall cases when symptom propagation is stronger. Knowing the

strength of symptom propagation can help understand the effectiveness of vaccines that

reduce the risk of infection relative to those that reduce symptoms, helping to shape public

health strategy.

Introduction

Respiratory pathogens, of which influenza and SARS-CoV-2 are prominent examples, are

those that cause infection in the respiratory tract, and are a major cause of mortality worldwide

in high, medium and low income countries [1]. Many respiratory pathogens have demon-

strated their capability to cause large-scale epidemics and/or pandemics. For example, seasonal
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influenza causes annual epidemics which, prior to the COVID-19 pandemic beginning in

2020, were estimated to result in symptomatic infection of 8% of the US population each year

on average [2] and around 290,000 to 650,000 deaths globally [3]. Pandemic influenza has also

inflicted devastating consequences on global public health; the 1918/19 Spanish flu pandemic

is thought to have resulted in 50 million deaths worldwide [4], while the 2009 H1N1 pandemic

caused 200,000 deaths in its first year of circulation [5]. Since its emergence in humans in

2019, SARS-CoV-2, the causative agent of COVID-19 disease, has resulted in an estimated

number of global deaths exceeding 6.5 million by the end of 2022 [6].

Whilst the serious public health risks posed by respiratory diseases are evident, the resulting

outbreaks also come with a considerable economic cost. COVID-19 has had a massive impact

on the global economy, with the global cost in 2020 and 2021 estimated to be 14% of 2019

GDP [7]. These alarming valuations were partially due to the high cost of interventions. For

example, by September 2021, the UK had spent £17.9bn on the test and trace programme,

£13.8bn on the procurement of personal protective equipment and £1.8bn on vaccine and

antibody supply [8].

Although the headline statistics on the health burden of these pathogens are somewhat

bleak, many respiratory pathogens are capable of causing of range of symptomatic outcomes.

Often, infected individuals experience, at worst, only mild symptoms, such as a runny nose,

focused in the upper respiratory tract. On the other hand, such pathogens also have the poten-

tial to cause severe symptoms, primarily by infecting lower parts of the respiratory tract [9,

10]. Indeed, lower respiratory tract infections account for more than 2.4 million deaths world-

wide each year [1] and are a leading cause of global mortality, especially amongst children and

elderly people [11].

The COVID-19 pandemic has heralded a paradigm shift in modelling the actions of inter-

ventions when assessing public health control strategies, highlighting the importance of symp-

tom severity and leading to an increased understanding of the action of interventions beyond

being purely infection-blocking [12, 13]. Vaccines, whilst previously viewed in modelling

terms as solely a way to prevent infection, are now being considered to have a dual action of

reducing symptom severity [14–16]. Similarly, non-pharmaceutical interventions such as

mask-wearing, social distancing and hand washing were previously only thought of as ways to

reduce transmission but are now thought to additionally reduce the likelihood of symptomatic

infection [17–21].

Preparedness efforts against respiratory disease outbreaks and the contemporary evalua-

tions of intervention effectiveness motivate research into the relationship between the severity

of illness, viral load and the transmission routes through which they spread. This research has

revealed good biological grounds for investigating symptom propagation for respiratory path-

ogens, where we define symptom propagation as occurring when the symptoms of an infected

individual depend, at least partially, on the symptoms of their infector. Symptom propagation

has been documented for Yersinia pestis, the causative agent of plague. Those who develop the

more severe form, pneumonic plague, are then able to infect via the aerosolised route, which

results in pneumonic plague in those infected [22].

There is growing evidence that symptom propagation occurs for other respiratory patho-

gens [23]. Prior studies of influenza and SARS-CoV-2, have suggested two pathways through

which symptoms may propagate along chains of infection [24, 25]. The first pathway is

through a dose-response relationship. Individuals presenting with severe disease tend to shed

more viral particles [26–29], meaning that those they infect receive a larger infectious dose, in

turn increasing the probability of more severe disease outcomes [25, 30–32]. The second path-

way is through differential transmission routes: it is thought that severe disease arises more fre-

quently for aerosol transmission (transmission involving particles smaller than 5μm, which are
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sufficiently small and light to travel on air flows and to enter the lower respiratory tract) than

for close contact transmission (transmission involving direct or indirect contact with an

infected individual or transmission via large droplets, which are more likely to lodge in the

upper respiratory tract) [33]. The association with severity arises because aerosol transmission

is more likely to cause infection in the lower respiratory tract, resulting in a higher probability

of more severe disease [24, 31, 34]. These studies give evidence for symptom propagation

between infector-infectee pairs, but its incorporation into epidemiological models is required

to fully appreciate its importance at a larger scale.

Symptom propagation has the potential to create chains of severe infections, resulting in

large, intensive outbreaks that could have devastating consequences for groups most at risk; on

the other hand, it could result in mild or asymptomatic infection spreading through a popula-

tion, creating widespread immunity whilst incurring a minimal cost to public health. In light

of the observed differential symptom severity that may be experienced for many pathogens, we

are interested in exploring the public health ramifications of a relationship between symptom

severity of an infected individual and the symptom severity of any subsequent cases caused by

onward transmission.

We view the absence of a mechanistic representation of the propagation of symptom sets as

a modelling ‘blind spot’, in light of the earlier described biological evidence already giving

strong support of it being a notable process for some pathogens [22]. Symptom severity has

typically been modelled post-hoc or separately from epidemiological dynamics. For example,

it has become commonplace for models to distinguish between asymptomatic and symptom-

atic infection, but asymptomatic infections are generally assumed to occur with a fixed proba-

bility, independent of other infected individuals [35]. An extension to this model has been

explored in Paulo et al. [36], where the probability of severe disease depended on the propor-

tion of the population infected at the time, although not on their severity. Other models in the

literature capture multi-route transmission but do not invoke a relationship between the route

of transmission and symptom severity [24, 37–39]. Initial attempts to incorporate symptom

propagation into an epidemiological model of a respiratory tract infection can be seen in Ear-

nest [40] and Harris et al. [41]; however, work in this area remains rudimentary.

Another aspect meriting greater attention is the impact of symptom propagation on health

economic outcomes used to assess cost-effectiveness and help optimise public health strategies.

For seasonal influenza, there has been a focus in previous health economic studies on the cost-

effectiveness of vaccination scenarios [42, 43]. On the other hand, in the context of COVID-

19, although health economic modelling studies have predominantly focused on vaccine roll-

out [44], there have been evaluations of symptom-dependent interventions, such as comparing

the effectiveness of symptomatic versus asymptomatic testing [45] and considering quarantin-

ing measures that predominantly target symptomatic individuals [46]. At the time of writing,

no work has been done to explore the effect of symptom propagation on health economic

outcomes.

In this paper, we develop a mathematical modelling framework that incorporates symptom

propagation and apply it to a range of pathogens to investigate the epidemiological and health-

economic implications of symptom propagation. First, we develop a generalisable, mechanistic

infectious disease transmission model that incorporates different strengths of symptom propa-

gation via a single parameter, which we call α. Parameterising this model to capture three rep-

resentative respiratory tract pathogens of public health concern (seasonal influenza, pandemic

influenza and SARS-CoV-2), we conduct numerical experiments to explore the impacts of

symptom propagation of different strengths on epidemiological and health economic out-

comes, both with no intervention and under three interventions that we conceptualise of as

vaccines with different modes of action. As well as symptom severity propagation having
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important impacts on natural epidemiological dynamics (in the absence of intervention), we

found that when interventions were applied, symptom propagation acted to amplify the bene-

ficial effects of symptom-attenuating interventions on community-level epidemiological out-

comes. These effects became even more stark for cost-effectiveness based assessments. For

pathogens where the propagation of symptom severity is an important attribute, our findings

motivate the development and use of a new class of models to help identify the most appropri-

ate type of intervention to harness the beneficial attributes of symptom propagation, delivering

a reduced burden on public health and more cost-effective control policy.

Methods

The propagation of symptom severity has been largely neglected in epidemiological modelling,

with symptom severity having typically been modelled post-hoc or separately from epidemio-

logical dynamics. With an application to outbreaks of respiratory pathogens of public health

concern (namely seasonal influenza, pandemic influenza and SARS-CoV-2), we investigated

the impact of the strength of symptom propagation on epidemiological and health economic

measures. Our methodology comprised multiple aspects that we detail in turn: (i) a mathemat-

ical model of infectious disease transmission that included two symptom severity classes (mild

and severe) and a mechanism for symptom propagation; (ii) incorporation of interventions

into the model, with our implementation roughly corresponding to three plausible modes of

action of a vaccine; (iii) approaches to assess the health economic implications of proposed

strategies.

Infectious disease model including symptom severity and propagation

The basis of our infectious disease model is a standard deterministic, compartmental suscepti-

ble-exposed-infectious-recovered (SEIR) model, described by a system of ordinary differential

equations (ODEs) [47, 48]. We extended the framework by stratifying infections according to

two levels of symptom severity, mild and severe, and mechanistically incorporating (the poten-

tial for) symptom propagation (Fig 1).

We expand below on: (a) the reasoning for the selection of two symptom severity classes;

(b) a description of how symptom severity was augmented into the compartmental framework;

(c) the transmission dynamics; (d) the mathematical formulation of the symptom propagation

mechanism; (e) the collection of ODEs describing the system dynamics (in the absence of

interventions); (f) the computational simulations performed to consider the implications of

symptom propagation on our three exemplar pathogens (seasonal influenza, pandemic influ-

enza, SARS-CoV-2) in the absence of interventions.

(a) Two symptom severity classes. No formal scheme exists for classifying disease sever-

ity, with differing interpretations possible across pathogens. For some pathogens, cases are typ-

ically stratified into ‘mild’ or ‘severe’; in the context of influenza, severe disease is generally

associated with the development of a cough or fever [35, 49, 50]. For other pathogens, severity

is commonly stratified according to ‘asymptomatic’ or ‘symptomatic’ infection, with SARS--

CoV-2 being a notable example [41, 51]. Due to the ubiquity of ‘mild’ and ‘severe’ within the

literature for respiratory pathogens, we have decided to use this terminology throughout. It

should be noted, however, that the parameters chosen for mild COVID-19 disease, such as the

infectious period, are taken from estimates for the asymptomatic parameters. We model the

propagation of mild and severe symptoms because of the clinical importance of symptom

severity for respiratory tract infections but note that the framework can be applied to the prop-

agation of symptom sets in general.
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(b) Infectious disease model compartments. Under our model structure of compart-

mentalising the population into susceptible, exposed (infected but not yet infectious), infec-

tious and recovered states, we further separated each of the exposed, infectious and recovered

states into two classes representing the two symptom severity levels (‘mild’ and ‘severe’). In

detail, EM (ES) contains individuals exposed to the disease who would go on to develop mild

(severe) disease. IM (IS) contains individuals who had become infectious and exhibited mild

(severe) symptoms. Note that we assumed there was no movement between the severity clas-

ses, meaning an individual’s severity would be constant across their exposed and infectious

periods. RM (RS) contains individuals who had experienced mild (severe) disease and since

recovered.

(c) Transmission dynamics. We assumed a dependence between disease severity and

both the rate of transmission of infection, βM, βS (for ‘mild’ and ‘severe’ cases, respec-

tively), and the recovery rate from infection, γM, γS. On the other hand, the incubation

period, and thus the rate of becoming infectious, �, took the same fixed value for both

severity classes due to data suggesting there is limited variation between mild and severe

cases [50, 51].

Additionally, we assumed there was no waning immunity after recovery and we ignored

demographic processes (natural births and deaths)—as such we are modelling a single epi-

demic outbreak. In the majority of scenarios, the simulated outbreaks occurred over a short

time frame where the impacts of these waning and demographic processes would be negligible.

Equally, in the unusual case that outbreaks persisted over a sustained time period (a decade

and above), for the purposes of simplicity, we wanted to maintain the focus on the impact of

symptom propagation-associated factors.

We explored three disease parameter sets (Table 1), chosen to reflect a range of disease sce-

narios: influenza-like parameters with R0 = 1.5 (seasonal influenza), influenza-like parameters

with R0 = 3.0 (pandemic influenza) and early SARS-CoV-2-like parameters with R0 = 3.0.

Fig 1. Schematic showing how symptom severity was determined according to the two symptom severity

associated parameters, α and ν. White shaded individuals correspond to those susceptible to infection, yellow shaded

individuals correspond to infectious cases with mild severity and red shaded individuals correspond to infectious cases

with severe symptoms. The values on the arrows show the corresponding probability. In brief, an infected individual

has probability α of copying the symptom severity of their infector and a probability 1 − α of reverting to the baseline

probability of having severe disease, i.e. they developed severe disease with probability ν.

https://doi.org/10.1371/journal.pcbi.1012096.g001
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Specifically, R0 = 1.5 represented a pathogen that, on average, would spread through a popula-

tion slowly and require minimal interventions to be suppressed. In contrast, R0 = 3.0 repre-

sented a highly transmissible pathogen with the potential to infect the majority of the

population in the absence of strong interventions. These values of R0 were chosen to reflect

estimates in the literature of 1–1.69 for seasonal influenza [52–54], 1.95–3.5 for pandemic

influenza [55–57] and 2.43–3.60 for wild-type SARS-CoV-2 [58–60]. To obtain these fixed val-

ues of R0, we computed the required value of the transmission rate β for each value of α by

deriving an equation for R0 using the next-generation matrix approach (see Section 1 in S1

Text). To better align with approaches taken when analysing real-world infections, we chose to

fix R0 as opposed to fixing the value of β; R0 is the parameter most likely to be known from

available empirical measurements, with other model parameters (in this case β) inferred to

generate the measured R0 value. Our analysis with the value of β fixed instead of R0 can be

found in Section 2 in S1 Text (Figs A and B).

Estimates for the other parameters were taken from studies of influenza A virus strains [26,

50, 61] and estimates for wild-type SARS-CoV-2 [51, 62]. Comparing between the pandemic

influenza and SARS-CoV-2 parameter sets, the notable differences were SARS-CoV-2 having a

higher ratio between mild and severe transmission rates (four for SARS-CoV-2, two for pan-

demic influenza), a longer incubation period (five days for SARS-CoV-2 versus two days for

pandemic influenza) and a longer duration of infection for both mild and severe cases (full

details in Table 1).

(d) Incorporation of symptom propagation into the model framework. We encapsu-

lated symptom severity and symptom propagation into the model framework through two key

parameters: α—the dependence on the symptom severity of the infector, or equivalently, the

strength of symptom propagation; ν—the baseline probability of the pathogen causing severe

disease in the absence of propagation effects. The parameter ν is aligned with the idea of ‘viru-

lence’ in that it is a measure of the intrinsic severity of the pathogen. When α = 0, the symptom

severity of the infected individual has no dependence on the infector’s symptom severity;

instead, the symptom severity of the infected individual depends entirely on ν—this corre-

sponds to the typical assumption applied to compartmental infectious disease models. When α

Table 1. Epidemiological parameter values for the (seasonal and pandemic) influenza and SARS-CoV-2 scenarios. In each parameterisation, we calibrated the β value

to acquire the stated value of R0 in the respective scenario. All rates have a unit of ‘per day’ (day−1). (Top) Parameters used for the two influenza scenarios: influenza-like

parameters with R0 = 1.5 (seasonal influenza parameterisation), influenza-like parameters with R0 = 3.0 (pandemic influenza parameterisation). (Bottom) SARS-CoV-

2-like parameters with R0 = 3.0.

Parameter Description Influenza value (day−1) Source

βM Mild transmission rate β

βS Severe transmission rate 2β Couch et al. [26]

� Rate of becoming infectious 1/2 Cowling et al. [50]

γM Mild recovery rate 1/5 Cao et al. [61]

γS Severe recovery rate 1/7 Cao et al. [61]

Parameter Description SARS-CoV-2 value (day−1) Source

βM Mild transmission rate β

βS Severe transmission rate 4β Letizia et al. [62]

� Rate of becoming infectious 1/5 Byrne et al. [51]

γM Mild recovery rate 1/7 Byrne et al. [51]

γS Severe recovery rate 1/14 Byrne et al. [51]

https://doi.org/10.1371/journal.pcbi.1012096.t001
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= 1, the symptom severity of an infected individual is wholly dependent on that of their infec-

tor, meaning that symptom severity is always passed on with infection; in the case of no inter-

ventions, this parameterisation is akin to a two-strain model, where one strain causes mild

infections only and the other strain causes severe infections only. When α 2 (0, 1), the symp-

tom severity of the infectee has a partial dependence on the infector’s symptom severity and a

partial dependence on ν.

Overall, our model of symptom propagation means that an infected individual, with proba-

bility α, copies the symptom severity of their infector, whilst with probability 1 − α, their symp-

tom severity is assigned randomly according to the underlying probability of having severe

disease, ν (as depicted in Fig 1).

(e) Baseline model equations (without interventions). The rate of change for each dis-

ease state was governed by the system of differential equations shown in Eq 1, with parameters

as described in Table 1 and Fig 1. This system of ODEs captures the different levels of disease

severity, the dependence of the infectee’s symptom severity on the infector’s symptom severity

(through the α parameter) and a baseline probability of an infected case having severe disease

(through the ν parameter).

dS
dt
¼ � ðlM þ lSÞS

dEM

dt
¼ ððaþ ð1 � aÞð1 � nÞÞlM þ ð1 � aÞð1 � nÞlSÞS � �EM

dES

dt
¼ ðð1 � aÞnlM þ ðaþ ð1 � aÞnÞlSÞS � �ES

dIM
dt

¼ �EM � gMIM

dIS
dt

¼ �ES � gSIS

dRM

dt
¼ gMIM

dRS

dt
¼ gSIS;

ð1Þ

where the force of infection from mild cases, λM, and severe cases, λS, respectively, were given

by:

lM ¼
bMIM
N

; lS ¼
bSIS
N

; ð2Þ

where N is the population size that is assumed to be constant.

(f) Exploring the effect of symptom propagation on epidemiological dynamics in the

absence of interventions: Simulation overview. In all our model simulations described here

and throughout the manuscript, we considered an outbreak arising within a population com-

parable in size to that of the UK (N = 67 million). All the scenarios began with one infectious

individual. We assumed that this individual would have severe symptoms with probability

given by the baseline probability of severe disease (ν). As the model used was fully determin-

istic, we chose to simulate this effect by splitting the single infectious individual between the

two symptom severity classes so that IS was initialised to contain ν people and IM contained 1

− ν people. The remainder of the population were initially susceptible (in the S class). The
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simulations were run until there was less than one individual combined across all the infected

classes (EM, ES, IM and IS).
All code was produced using Matlab R2022a and is available at https://github.com/pasplin/

symptom-propagation-mathematical-modelling.

To explore the effect of symptom propagation on the epidemiological dynamics of our

three exemplar pathogens, for set values of α (0 through 1 in 0.1 increments) and a fixed

value of ν (0.2), we calculated the following quantities: the final outbreak size (the number of

recovered individuals at the end of the simulation), the peak prevalence (the maximum num-

ber of individuals infected at any one time) and the outbreak duration (the number of days

until cumulatively there was less than one infected individual across all of the infected

classes).

We also inspected the dependence of the proportion of infections that were severe with

respect to changes in α and ν for the three exemplar pathogens. We tested combinations of α-ν
values with an increment of 0.05 for each parameter.

Across all simulations, for each value of α (and ν), β was chosen to generate a given R0 of

the required value for that disease parameterisation (further details in Section 1 in S1 Text).

Modelling interventions

To investigate how the strength of symptom propagation could impact epidemiological and

health economic assessments of infectious respiratory disease intervention strategies, we con-

sidered the roll-out of three vaccines with different mechanistic actions on the infectious dis-

ease dynamics: (a) a symptom-attenuating vaccine; (b) an infection-blocking vaccine (that did

not impact the severity of any breakthrough infections); (c) an infection-blocking vaccine that

only admitted mild breakthrough infections. Our vaccines having differing modes of action

was motivated by contemporary studies on effectiveness of SARS-CoV-2 vaccines that have

estimated effectiveness with respect to infection, symptoms, hospitalisation and mortality [14–

16].

We assumed a proportion of the population, given by the vaccine uptake, u, were vacci-

nated before the start of the outbreak. In model terms, we moved a proportion, u, of those who

would initially be in the susceptible (S) class to the vaccinated class, V.

We assumed that all three vaccines were imperfect (below 100% efficacy, with details on

the assumed vaccine efficacies stated in the upcoming simulation overview subsection) and

had a ‘leaky’ action, meaning the susceptibility of all those who were vaccinated was modu-

lated by the vaccine efficacy- in comparison, an ‘all-or-nothing’ action would result in

some of those who were vaccinated having full protection and the rest remaining fully sus-

ceptible. To minimise complexity, in each simulation, we only studied sole intervention

use.

We highlight that the proportion of cases that were severe had a strong dependence on α,

meaning α would have a notable impact on the observed effectiveness of vaccination strate-

gies, even when we would intuitively expect symptom propagation to have no effect. Conse-

quently, we sought to separate the impact of symptom propagation on vaccination strategies

from confounding epidemiological factors that would result in an increase in severe cases.

Therefore, we explored the effectiveness of the above-described three vaccines for two values

of α, 0.2 and 0.8, where for each value of α we chose the appropriate value of ν to fix the pro-

portion of cases (in the absence of interventions) that were severe at 80%. This value was cho-

sen to allow a large value of α to be considered, as in this case, the proportion of cases that

were severe was high regardless of the value of ν. Conceptually, we may consider that the
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proportion of severe cases is ‘known’ from epidemiological data, and we are fitting parame-

ters to match this data.

We next provide an overview of the modifications to the model equations for each of

the three vaccines (depicted in Fig 2). For each vaccine, we show the modified equations

for EM and ES states, with the equations for all other states being unchanged from those in

Eq 1. We also introduce a V class, corresponding to susceptible individuals who are

vaccinated.

(a) Symptom-attenuating vaccine. First, we considered a vaccine with a symptom-atten-

uating effect. Vaccinated individuals have probability η of having mild disease, and probability

1 − η of their symptom severity being determined as usual (Fig 2A).

Fig 2. Schematics depicting the mechanistic actions of each vaccine. Across all panels, yellow shaded individuals

correspond to infectious cases with mild symptoms, red shaded individuals correspond to infectious cases with severe

symptoms, blue shaded individuals correspond to those who are vaccinated. The values on the arrows show the

corresponding probability. The three vaccines displayed are: (A) symptom-attenuating vaccine—an infected individual

who is vaccinated had a probability η of having mild disease, and a probability 1 − η of their symptom severity being

determined as usual; (B) an infection-blocking vaccine—a vaccinated individual had a probability η of their infection

being prevented, and a probability 1 − η of being infected and their symptom severity being determined as usual; and

(C) an infection-blocking vaccine that only admits mild breakthrough infections—a vaccinated individual had a

probability η of their infection being prevented, and a probability 1 − η of being infected but only with mild disease.

https://doi.org/10.1371/journal.pcbi.1012096.g002
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Updates to the V class, corresponding to susceptible individuals who are vaccinated, and

the exposed classes (ES and EM) followed these ODEs:

dV
dt

¼ � ðlM þ lSÞV

dEM

dt
¼ ZðlM þ lSÞV

þððaþ ð1 � aÞð1 � nÞÞlM þ ð1 � aÞð1 � nÞlSÞðSþ ð1 � ZÞVÞ � �EM

dES

dt
¼ ðð1 � aÞnlM þ ðaþ ð1 � aÞnÞlSÞðSþ ð1 � ZÞVÞ � �ES:

ð3Þ

(b) Infection-blocking vaccine. Next, we considered a vaccine with an infection-blocking

effect. Vaccinated individuals are not infected when exposed with probability η (Fig 2B); other-

wise, infection and symptoms proceed as before.

The revised system equations were:

dV
dt

¼ � ð1 � ZÞðlM þ lSÞV

dEM

dt
¼ ððaþ ð1 � aÞð1 � nÞÞlM þ ð1 � aÞð1 � nÞlSÞðSþ ð1 � ZÞVÞ � �EM

dES

dt
¼ ðð1 � aÞnlM þ ðaþ ð1 � aÞnÞlSÞðSþ ð1 � ZÞVÞ � �ES:

ð4Þ

(c) Infection-blocking vaccine that only admits mild breakthrough infections. Lastly,

we modelled a vaccine with a combined infection-blocking and symptom-blocking effect. The

action of this vaccine meant those who were protected were not infected when exposed with

probability η. Furthermore, all vaccinated individuals only develop mild disease, regardless of

the efficacy of the vaccine in blocking infection (Fig 2C).

The revised system equations were:

dV
dt

¼ � ð1 � ZÞðlM þ lSÞV

dEM

dt
¼ ð1 � ZÞðlM þ lSÞV

þððaþ ð1 � aÞð1 � nÞlM þ ð1 � aÞð1 � nÞlSÞS � �EM

dES

dt
¼ ðð1 � aÞnlM þ ðaþ ð1 � aÞnÞlSÞS � �ES:

ð5Þ

Additionally, we modelled another infection-blocking vaccine that had an alternative man-

ner in which breakthrough infections could arise, namely breakthrough infections were only

possible when the infector was a severe case. We found no difference in results between this

vaccine type and the infection-blocking vaccine. We provide the model schematic, equations

and summary of findings in Section 4 in S1 Text.

(d) Exploring the effect of symptom propagation on epidemiological dynamics in the

presence of vaccination: Simulation overview. Across our main vaccination analyses, the

vaccine efficacy was fixed at 70% based on estimates of COVID-19 vaccine efficacy [14, 15].
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This vaccine efficacy level was also a reasonable selection for influenza vaccines since the vac-

cine efficacy during the 2009/10 season was estimated to be 72% vs the pandemic H1N1 strain

[63], and other studies have estimated influenza vaccine efficacy to be between 56–78% [64]

and between 26–73% [65]. To assess sensitivity to vaccine efficacy, as supplementary analyses,

we also considered vaccine efficacies of 50% and 90%, where we found qualitatively similar

results (see Section 7 in S1 Text, Figs P-W).

For the three vaccine types, two vaccine uptake levels (50% and 90%) and three sets of dis-

ease parameters, we calculated the proportion of the population in each recovered compart-

ment (having had mild or severe symptoms) at the end of the outbreak for two values of α (0.2

and 0.8), with ν chosen to fix the proportion of cases that were severe without intervention at

80%.

For a range of values of α and ν (0 through 1 in 0.02 increments), we also calculated the dif-

ference in the number of individuals severely infected when an infection-blocking vaccine was

used compared to a symptom-attenuating vaccine.

Health economic modelling

Often there are many potential intervention strategies that can be used to limit the spread of

the disease. Since public health decision makers have a finite budget, the cost of the interven-

tion is an important factor to consider alongside the resulting epidemiological outcomes.

Thus, measures for both the benefit to public health and the costs associated with the interven-

tion and treatment warrant consideration.

Measures of health quality and model parameterisation. The chosen measure to quan-

tify disease burden was quality-adjusted life years (QALYs), which consider both the quality

and quantity of years lived [66]. We assumed there were no QALY losses associated with mild

cases. The magnitude of QALY loss from a severe case depended on whether the case was hos-

pitalised and whether it was fatal; a proportion of severe cases was assumed to lead to hospitali-

sation and fatalities, as dictated by the pathogen-specific hospitalisation rate and death rate

(parameter details in Table 2). Hospitalisations and fatalities also had an associated monetary

cost, where once again values differed for influenza and SARS-CoV-2 (Table 2). Further details

of the health economic model parameters are provided in Section 3 in S1 Text.

We deemed an intervention to be cost-effective if the overall cost of implementing the

intervention was less than or equal to the value of QALYs gained from doing so. In particular,

we computed threshold unit intervention costs, the monetary cost of an intervention unit that

would result in intervention costs equalling the monetary value of QALYs gained. In this case,

the threshold unit intervention cost refers to the threshold cost per vaccine dose.

Determining whether an intervention is cost-effective requires setting a willingness to pay

(WTP) threshold per QALY—the amount one is willing to pay to gain one QALY. We used a

default WTP per QALY of £20,000, reflecting the typical criteria used in England that alterna-

tive intervention strategies need to satisfy to be judged as cost-effective [71]. Equivalently,

Threshold unit intervention cost ¼
ðWTP thresholdÞ � ðQALY loss preventedÞ þ ðhospital costs preventedÞ

intervention uptake� N
:

ð6Þ

In all simulations, the threshold unit intervention cost was normalised with respect to the

highest absolute threshold unit intervention cost attained for that disease parameterisation

across the range of tested vaccine uptake values.

Exploring the effect of symptom propagation on health economic outcomes: Simulation

overview. For the three vaccine types, two vaccine uptake levels (50% and 90%) and three
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disease parameterisations, we conducted comparisons of the relative threshold unit interven-

tion cost between two values of α (0.2 and 0.8) with ν chosen to fix the proportion of cases that

were severe without intervention at 80%. We then explored how the threshold unit interven-

tion costs varied with the vaccine uptake, looking at uptake levels between 0% and 100% in 1%

increments.

For the results presented in the main text, we applied a 3.5% discounting rate to both

QALY losses and monetary costs, as recommended [72]. For sensitivity purposes, we also

tested having no discounting, with results given in Section 6 in S1 Text (Figs N and O).

Results

Symptom propagation affects epidemiological dynamics

Initially, we explored the effect of varying the strength of symptom propagation on epidemio-

logical outcomes for a fixed baseline probability of severe disease, ν = 0.2. Since, for each set of

parameters, the value of R0 was fixed, the resultant outbreak size remained mostly constant as

we varied the strength of symptom propagation, α (Fig 3A–3C), although there was a slight

reduction in final outbreak size as α approached 0.5 due to numerical inaccuracies (Fig F in S1

Text). As these differences in case numbers were proportionally small, we assumed the final

size to be fixed throughout the remainder of the analysis.

Considering the stratification of cases by severity (mild or severe), the proportion of total

cases that were severe monotonically increased with α. As expected, when α = 0, the

Table 2. Description of parameters used in the health economic modelling. (Top) Values applied to both the sea-

sonal influenza and pandemic influenza disease parameterisations. (Bottom) Values applied to the SARS-CoV-2 dis-

ease parameterisation.

Description Influenza value Source

Probability of hospitalisation (given severe disease) 0.01 Hill et al. [42]

Probability of death (given severe disease) 0.001 Hill et al. [42]

QALY loss from a mild case 0 QALYs Assumption

QALY loss from a severe, non-hospitalised case 0.008 QALYs Hill et al. [42]

QALY loss from a non-fatal hospitalised case 0.018 QALYs Hill et al. [42]

QALY loss from a fatal hospitalised case 37.5 QALYs Hollmann et al. [67]

Total cost of a non-fatal hospitalised case £1,300 Hill et al. [42]

Total cost of a fatal hospitalised case £2,600 Hill et al. [42]

Willingness to pay threshold per QALY £20,000 NICE [68]

Description SARS-CoV-2 value Source

Probability of hospitalisation (given severe disease) 0.065 Moran et al. [69]

Probability of death (given severe disease) 0.02 Moran et al. [69]

QALY loss from a mild case 0 QALYs Assumption

QALY loss from a severe, non-hospitalised case 0.0035 QALYs Moran et al. [69]

QALY loss from a non-fatal hospitalised case 0.0059 QALYs Moran et al. [69]

QALY loss from a fatal hospitalised case 11.29 QALYs Moran et al. [69]

Total cost of a non-fatal hospitalised case £2,600* Vekaria et al. [70]

Total cost of a fatal hospitalised case £5,200* Vekaria et al. [70]

Willingness to pay threshold per QALY £20,000 NICE [68]

*Hospitalisation costs for SARS-CoV-2 are double those of influenza, based on the average hospital stay being twice

as long for SARS-CoV-2 versus influenza—further details available in Section 3 in S1 Text.

https://doi.org/10.1371/journal.pcbi.1012096.t002
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proportion of cases that were severe was equal to the baseline probability of severe disease, ν =

0.2. This proportion increased to effectively all cases being severe when α = 1 (Fig 3A–3C).

Similarly, the proportion of cases that were severe at the peak of the outbreak increased with α,

with this proportion aligning with the proportion severe overall (Fig 3D–3F). The outbreak

duration also increased with α (Fig 3G–3I) due to individuals with severe disease having a lon-

ger infectious duration. Comparing α = 1 with α = 0 across all three disease scenarios, we

observed an increase of approximately 20% in the outbreak duration.

Overall, the qualitative patterns of the impact of symptom propagation differed relatively

little between the three sets of disease parameters. Unsurprisingly, seasonal influenza had a

much lower final outbreak size and peak prevalence than the other two disease parameterisa-

tions (Fig 3A and 3D, due to its lower assumed R0 value). More interestingly, SARS-CoV-2

had a lower peak prevalence than pandemic influenza, especially for low values of α (Fig 3E

and 3F), with longer generation times for SARS-CoV-2 dominating the effects of a higher R0

value. SARS-CoV-2, compared to the two influenza disease parameterisations, showed a

slightly higher proportion of severe cases for intermediate values of α. Furthermore, the

Fig 3. The final outbreak size, peak prevalence and outbreak duration, by severity, for three disease

parameterisations, plotted for different symptom propagation strengths, α. (A-C) Final outbreak size by severity.

(D-F) Peak prevalence by severity. The intensity of the shading denotes the symptom severity class, with severe cases in

red and mild cases in yellow. (G-I) Outbreak duration (note the different y-axis scales). In all panels, ν = 0.2. The three

disease parameterisations used were: (A,D,G) Seasonal influenza; (B,E,H) Pandemic influenza; (C,F,I) SARS-CoV-2,

with parameters as given in Table 1.

https://doi.org/10.1371/journal.pcbi.1012096.g003
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proportion of cases that were severe (both overall and at peak) for SARS-CoV-2 exhibited a

roughly linear increase as α increased from 0 to 1, whereas for influenza these metrics

increased sub-linearly for α between 0 and 0.5, and approximately linearly for increasing α
between 0.5 and 1 (Fig 3A–3C).

Next, we considered how the value of the baseline probability of severe disease, ν, impacted

epidemiological outcomes. As expected, the proportion of cases that were severe increased

with ν (Fig 4). For values of α close to 0, the value of ν mostly determined the proportion of

cases that were severe. In contrast, when α was close to 1, the proportion of cases that were

severe remained high, independent of the value of ν. The relationship between α, ν and the

proportion of cases that were severe was consistent across parameter sets.

Symptom propagation increases the effectiveness of interventions that

impact symptom severity

In this section, we explored three types of intervention, corresponding to three plausible vacci-

nation scenarios: a symptom-attenuating vaccine (SA), an infection-blocking vaccine (IB) and

an infection-blocking vaccine that only admits mild breakthrough infections (IB_MB). We

considered two vaccine uptake rates (50% and 90%) and two values of α (0.2 and 0.8). In order

to highlight the differences between vaccine types, the value of ν was chosen (as a function of a

given value of α) to fix the proportion of cases that were severe equal to 0.8. We additionally

produced an analogous set of results with ν fixed equal to 0.2 for comparison (see Section 5.4

in S1 Text, Figs L and M), noting there would be an inherent relative reduction in potential

impact of SA interventions for that scenario.

For all parameter sets and both uptake and α values, the IB_MB vaccine type was, unsur-

prisingly, the most effective at reducing both total and severe cases (Fig 5). Similarly, a solely

infection-blocking vaccine was always more effective at reducing total cases than a symptom-

attenuating vaccine. In the case of seasonal influenza, both IB and IB_MB were sufficient to

fully suppress the outbreak (<0.01% of the population was infected), even at 50% uptake,

whereas 90% uptake was required for the SA vaccine to suppress the outbreak. However, in

many cases, the symptom-attenuating vaccine was more effective at reducing severe cases than

the solely infection-blocking vaccine. This effect was seen for both α values for pandemic influ-

enza or SARS-CoV-2 and 50% uptake (Fig 5B and 5C). For these two disease parameterisa-

tions, when the uptake was instead 90%, whether the SA or IB vaccine was more effective at

reducing severe cases depended on the value of α, with the higher value of α = 0.8 resulting in

the SA vaccine being more effective (Fig 5E and 5F).

Fig 4. The proportion of infections that were severe against changes in α and ν for three parameter sets. The

shading shows the proportion of infections that were severe, with darker shading corresponding to a higher proportion

being severe. Black lines correspond to the contours taking values from 0.1 to 0.9, at increments of 0.1. The three

disease parameterisations used were: (A) Seasonal influenza; (B) Pandemic influenza; (C) SARS-CoV-2. The

parameters were as given in Table 1.

https://doi.org/10.1371/journal.pcbi.1012096.g004

PLOS COMPUTATIONAL BIOLOGY Epidemiological and health economic implications of symptom propagation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012096 May 3, 2024 15 / 28

https://doi.org/10.1371/journal.pcbi.1012096.g004
https://doi.org/10.1371/journal.pcbi.1012096


Across all scenarios, the IB vaccine resulted in the same epidemiological outcomes for both

values of α. For the other two vaccine types (SA and IB_MB), effectiveness was always higher

for the higher α value, with the exception of scenarios in which the outbreak was suppressed

for both α values (<0.01% of the population was infected). Results were similar when consid-

ering peak prevalence (Fig J in S1 Text). For all intervention scenarios (including no interven-

tion), the duration was higher for α = 0.8 compared to α = 0.2 for those instances where the

outbreak was not effectively prevented (>0.01% of the population was infected, Fig K in S1

Text). Inspection of temporal profiles of the outbreaks revealed that, in all intervention scenar-

ios, the peak prevalence occurred later for α = 0.8 than for α = 0.2, even when no intervention

was used (Figs G-I in S1 Text). For the no intervention and IB vaccine scenarios, this delay was

a noticeable change in the temporal dynamics between the two α values; otherwise, the tempo-

ral dynamics largely exhibited similar qualitative behaviour.

We then explored the difference in the number of severe cases prevented by an IB vaccine

and an SA vaccine for the three disease parameterisations and two vaccination uptake levels,

under a fixed vaccine efficacy (70%) (Fig 6). We found that the IB vaccine was always more

effective at preventing severe cases in the case of seasonal influenza (Fig 6A and 6D). For the

other two parameter sets, the results were qualitatively similar. For a lower vaccine uptake

Fig 5. The proportion of the population in each disease state at the end of the outbreak for the four intervention

scenarios, two vaccine uptake levels and three disease parameterisations. The four groups of bars correspond to

four intervention scenarios: no intervention (No), a symptom-attenuating vaccine (SA), an infection-blocking vaccine

(IB) and an infection-blocking vaccine which only admits mild breakthrough infections (IB_MB). The two bars in each

group correspond to two different strengths of symptom propagation: α = 0.2 (left bar with hatched lines) and α = 0.8

(right bar with solid fill). Bar shading corresponds to the disease status: red—recovered from severe infection (RS);
yellow—recovered from mild infection (RM); blue—susceptible and vaccinated (V); white—susceptible and not

vaccinated (S). The two rows correspond to two vaccine uptake levels: (A-C) 50%; (D-F) 90%. Columns correspond to

different disease parameterisations: (A,D) seasonal influenza; (B,E) pandemic influenza; (C,F) SARS-CoV-2. We fixed

the vaccine efficacy at 70% and all other parameters as given in Table 1, with ν chosen to fix the proportion of cases

that were severe equal to 0.8.

https://doi.org/10.1371/journal.pcbi.1012096.g005
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(50%), the SA vaccine was more effective at reducing severe cases for almost all values of α and

ν (red shaded cells of Fig 6B and 6C). In contrast, when the vaccine uptake was high (90%),

which vaccine type was most effective at reducing severe cases depended on the values of α
and ν, with the SA vaccine being more effective for larger values of α and ν (Fig 6E and 6F).

Symptom propagation can affect health economic outcomes

Switching attention to how the strength of symptom severity propagation can impact health

economic assessments, the differences in the threshold unit intervention cost for the two val-

ues of α aligned with our previously presented results (Fig 7).

When comparing between vaccine types, we found that the IB_MB vaccine always had the

highest threshold unit intervention cost of the three vaccine types considered. For the pan-

demic influenza and SARS-CoV-2 parameterisations, SA always had a higher threshold unit

intervention cost (and was, therefore, more cost-effective) than IB when α = 0.8 (Fig 7B, 7C,

7E and 7F). When α = 0.2, SA was only more cost-effective than IB when uptake was low

(50%) (Fig 7B and 7C).

When comparing between the two α values, there was the least variation observed for the

IB vaccine, where the threshold unit intervention cost was roughly the same for the two α val-

ues in all uptake and disease parameterisation scenarios. This result aligns with our previous

finding that α had no effect on epidemiological outcomes when an IB vaccine was used (Fig 5).

For the other two vaccine types, SA and IB_MB, the threshold unit intervention cost was

higher when α = 0.8, unless the outbreak was effectively contained (<0.01% of the population

was infected) for both α values, in which case the threshold unit intervention costs were the

same. In all of these scenarios, the relative difference in threshold unit intervention cost was

Fig 6. The relative effectiveness in reducing severe cases of a symptom-attenuating and infection-blocking vaccine

as a function of α and ν, given a fixed efficacy (70%). Rows correspond to the two vaccine uptake levels (A-C) 50%;

(D-F) 90%, and columns to the different disease parameterisations ((A,D) seasonal influenza; (B,E) pandemic

influenza; (C,F) SARS-CoV-2). Pixel shading denotes (for given combinations of α-ν values) the difference in the

proportion of the population severely infected between vaccine types, such that blue regions show parameter

combinations where the infection-blocking vaccine was more effective at reducing the number of severe cases and red

regions show those where the symptom-attenuating vaccine was more effective.

https://doi.org/10.1371/journal.pcbi.1012096.g006

PLOS COMPUTATIONAL BIOLOGY Epidemiological and health economic implications of symptom propagation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012096 May 3, 2024 17 / 28

https://doi.org/10.1371/journal.pcbi.1012096.g006
https://doi.org/10.1371/journal.pcbi.1012096


higher for the influenza parameter sets (16%-45% increase, Fig 7A, 7B, 7D and 7E) than for the

SARS-CoV-2 parameter set (Fig 7C and 7F, 5%-16% increase). The relative difference in out-

comes between α values was also generally higher for the SA vaccine than for the IB_MB vac-

cine (14%-45% increase for SA vs 5%-16% for IB_MB). In all cases, as anticipated the observed

differences in threshold unit intervention cost reflect the differences in epidemiological out-

comes (Fig 5).

We then explored how vaccine cost-effectiveness varied for a range of α and ν values (see

Section 8.1 in S1 Text, Figs X-Z). We found that the threshold unit intervention cost increased

with both α and ν irrespective of the action of the vaccine as a consequence of higher values of

α and ν causing a larger proportion of cases to be severe.

We then applied greater scrutiny to how the threshold unit intervention cost depended on

the level of uptake for the three vaccine types and three disease parameterisations (Fig 8). For

both seasonal influenza (Fig 8A–8C) and pandemic influenza (Fig 8D–8F), the difference in

threshold unit intervention cost (obtained for α = 0.2 and α = 0.8) decreased as vaccine uptake

increased. This was particularly noticeable for the SA vaccine, where the difference decreased

somewhat linearly until the point where the values converged. For the SARS-CoV-2 parame-

terisation, the difference in threshold unit intervention cost between the two α values

remained relatively constant as the uptake increased, up until the point where the two values

converged (Fig 8G–8I).

Fig 7. Threshold unit intervention cost for the three types of vaccine, two vaccine uptake levels and the three

disease parameterisations. In all panels, we normalised threshold intervention costs by the highest absolute threshold

unit intervention cost obtained across the range of tested vaccine uptake values. The three groups of bars correspond

to: a symptom-attenuating vaccine (SA), an infection-blocking vaccine (IB) and an infection-blocking vaccine which

only admits mild breakthrough infections (IB_MB). The two bars in each group correspond to symptom propagation

strengths of α = 0.2 (left bar, hatched lines) and α = 0.8 (right bar, solid fill). The two rows correspond to two vaccine

uptake levels: (A-C) 50%; (D-F) 90%. Columns correspond to differing disease parameterisations: (A,D) seasonal

influenza; (B,E) pandemic influenza; (C,F) SARS-CoV-2. Vaccine efficacy was fixed at 70% and all other parameters

were as given in Table 1, with ν chosen to fix the proportion of cases that were severe equal to 0.8.

https://doi.org/10.1371/journal.pcbi.1012096.g007
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As previously, we observed different effects of α for the different types of vaccine. For the IB

vaccine, we found that the threshold unit intervention cost was equal for the two values of α at

all vaccine uptake levels (Fig 8B, 8E and 8H). For the SA vaccine (Fig 8A, 8D and 8G) and

IB_MB vaccine (Fig 8C, 8F and 8I), the threshold unit intervention cost remained higher for α
= 0.8 as the uptake increased, up until the uptake level at which the outbreak was suppressed

for both α values. After this point, for both α values, the threshold unit intervention costs were

equal and decreased monotonically with vaccine uptake.

Across all uptake and disease parameterisation scenarios, the most cost-effective uptake

(i.e. the uptake that maximised the threshold unit intervention cost) varied minimally with α.

There was a consistent general relationship between the threshold unit intervention cost and

the vaccine uptake between the two α values.

Fig 8. Variation of the threshold unit intervention cost with vaccine uptake. We normalised threshold unit

intervention costs for each disease parameterisation; the normalisation constant was the highest absolute threshold

unit intervention cost attained for the respective disease parameterisation across the range of tested uptake values. The

three rows correspond to the three different disease parameterisations: (A-C) seasonal influenza; (D-F) pandemic

influenza; (G-I) SARS-CoV-2. The three columns correspond to: (A,D,G) a symptom-attenuating vaccine (SA), (B,E,

H) an infection-blocking vaccine (IB) and (C,F,I) an infection-blocking vaccine that only admits mild breakthrough

infections (IB_MB). The two lines correspond to two symptom propagation strengths; the dashed, light purple line

corresponds to α = 0.2 and the solid, dark purple line corresponds to α = 0.8. We fixed the vaccine efficacy at 70% and

all other parameters values were as given in Table 1, with ν chosen to fix the proportion of cases that were severe equal

to 0.8.

https://doi.org/10.1371/journal.pcbi.1012096.g008
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We further explored the most cost-effective uptake value for a range of α and ν values and

found that the most cost-effective level of vaccine uptake (i.e the uptake with the highest

threshold unit intervention cost) generally remained constant across α and ν values (see Sec-

tion 8.2 in S1 Text, Figs AA-AC). Some exceptions to this did arise for the vaccines that were

symptom-attenuating and infection-blocking with mild breakthrough infections. For certain

disease parameterisations and efficacy values, we found large variation in the most cost-effec-

tive uptake, from close to 0% to nearly 100% in some parameterisations. Between scenarios,

we did not observe a simple qualitative pattern of variation, although the regions where uptake

close to 0% was most cost-effective tended to have lower values of α and ν.

Lastly, to give insight into how outcomes could differ if symptom propagation was mistak-

enly omitted from the modelled infection dynamics, we compared between the threshold unit

intervention cost of the most cost-effective uptake for a particular value of α and the threshold

unit intervention cost for the most cost-effective uptake at α = 0 (see Section 8.3 in S1 Text,

Figs AD-AF). We found that generally the difference in threshold unit intervention costs

increased with α for both the SA vaccine and the IB_MB vaccines.

Discussion

In this paper, we make three main contributions to the literature. Firstly, we introduce a parsi-

monious and generalisable mechanistic mathematical framework to model infectious disease

transmission that incorporates symptom propagation of different strengths via a single param-

eter, α. Secondly, we demonstrate substantial impacts of symptom propagation on epidemio-

logical outcomes. For parameterisations corresponding to seasonal influenza, pandemic

influenza and SARS-CoV-2, we demonstrate that, for a given value of R0, even for a low base-

line probability of severe disease, ν, (which we conceptualise as relating to the virulence of the

pathogen) the proportion of cases that experience severe disease can approach one as the

strength of symptom propagation, α, increases. Thirdly, we apply three types of intervention,

corresponding to three plausible vaccination scenarios (symptom-attenuating, SA, infection-

blocking, IB, and infection-blocking with mild breakthrough infections, IB_MB), and demon-

strate important impacts of symptom propagation on epidemiological and health economic

outcomes. We showed that although the strength of symptom propagation had no effect on

epidemiological outcomes for IB interventions, differences were seen for interventions that

acted to reduce symptom severity, with the effectiveness of these interventions in reducing the

number of severe and total cases increasing with the strength of symptom propagation. The

strength of symptom propagation also affected the relative effectiveness of SA and IB interven-

tions in reducing severe cases, with the optimal type of intervention dependent on a combina-

tion of uptake and α. In the health economic analysis, we found that the strength of symptom

propagation had important implications for the cost-effectiveness of SA interventions and, to

a lesser extent, IB_MB interventions. Thus, we demonstrated how symptom propagation influ-

ences both epidemiological and health economic outcomes, which can alter the balance

between preferred intervention types.

A cornerstone of our encapsulation of symptom propagation was the parameter α, the

dependence of the symptoms of an infected individual on the symptoms of their infector, or

equivalently, the strength of symptom propagation. Our general finding was that the propor-

tion of cases that were severe increased with α. Although the effect of symptom propagation

on the proportion of cases that are severe has not received attention in previous modelling

studies, this result aligns with suggestions that symptom propagation, at least through a dose-

response relationship, could lead to severe outbreaks and intense epidemics [25]. This result

also aligns with the findings of Paulo et al. [36], who found that the inclusion of a dose-
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response relationship in their model led to an increase in the incidence of severe disease and

higher mortality. The appreciable effect of α on epidemiological outcomes motivates the inclu-

sion of symptom propagation in models of infectious disease transmission, both when simulat-

ing an outbreak from a given set of parameters and when estimating parameters from an

empirical data set. It also highlights the importance of examining in more detail the basic bio-

logical mechanisms of symptom propagation for respiratory pathogens.

We found that the proportion of cases that were severe not only increased with α, but also

with the baseline probability of severe disease, ν. In many scenarios, for a given value of α, it

was possible to compute the value of ν that returned a pre-specified proportion of cases that

were severe. However, this was limited to relatively low values of α, since for high values of α
the proportion of cases that were severe was large regardless of the value of ν. As a result of

this, when the proportion of cases that were severe was fixed, the proportion chosen was rela-

tively high (80%) to allow for the consideration of a value of α close to one. We acknowledge

that it may be unrealistic for such a high percentage of cases to have severe symptoms, with the

proportion of cases that are mild estimated to be 43% for influenza (where mild is defined as

subclinical) [73] and 44% for SARS-CoV-2 (where mild is defined as asymptomatic) [74]. It

may also be the case that such high values of α (i.e. high amounts of symptom propagation) are

unrealistic, although we know that for certain diseases, such as plague, the value of α is close to

one [22]. Instead, this overestimation of the proportion of cases that are severe for high values

of α may be due to our subjective parameterisation of some of the epidemiological parameters,

for example, the relative transmissibility of mild and severe disease. Alternatively, it may be

that such strengths of symptom propagation are realistic, but are not observed due to beha-

vioural changes not included in this model, since individuals displaying symptoms have been

shown to reduce their contact with others in their community [75]. The inclusion of beha-

vioural responses is an important area of infectious disease modelling identified for dedicated

research.

When exploring the effect of symptom propagation on the effectiveness of interventions,

we found that interventions affecting symptom severity (i.e. the symptom-attenuating inter-

vention or infection-blocking intervention with mild breakthroughs infections) were consis-

tently more effective at reducing cases and were more cost-effective for a higher value of α;

exceptions to this were when the intervention suppressed the outbreak for both α values under

consideration (α = 0.2 and α = 0.8). In contrast, varying α had little or no effect on epidemio-

logical outcomes when the intervention was purely infection-blocking. These results suggest

that determining the effect, if any, of an intervention on the symptoms experienced by individ-

uals is critical to understand whether symptom propagation is an important consideration

when investigating the effectiveness of the intervention.

Given increasing evidence that many interventions used to prevent the spread of disease

also reduce symptom severity, it may be the case that symptom propagation should be consid-

ered more often than not. Indeed, vaccinated individuals are often more likely to have asymp-

tomatic disease in addition to having a lower risk of infection, as was the case for COVID-19

vaccines [76]. Additionally, it has been indicated that non-pharmaceutical interventions such

as social distancing and mask-wearing can reduce the infectious dose for onward transmission,

leading to less severe disease in those infected [20, 21, 77].

For disease parameterisations with a higher R0 (corresponding to pandemic influenza and

SARS-CoV-2) and a high intervention uptake, comparisons between intervention types

showed that, given a strong symptom propagation action, a symptom-attenuating intervention

was more effective at reducing severe cases than an infection-blocking intervention, even

though total outbreak sizes were larger. This finding suggests dual benefits of SA interventions:

reduced numbers of severe cases alongside widespread population immunity. Similar effects
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have been described previously. For example, a so-called ‘variolation effect’ has been discussed

in the context of mask-wearing during the COVID-19 pandemic; some authors hypothesise

that masks could act to reduce the inoculum dose leading to reduced disease severity in those

infected, and that this effect could have been used to generate widespread immunity before

vaccines became available [19, 21].

The intervention type ranked as most effective at reducing severe cases (when comparing

between them) had a notable dependence on α, ν and the disease parameterisation. Accord-

ingly, symptom propagation may be an important factor to consider when choosing between

intervention types. A renewed analysis of interventions for the containment, suppression and

management of respiratory pathogens of public health concern could result, for example via

the examination of interventions that can create large-scale population immunity while mini-

mising the number of severe cases. Such modelling analysis is only viable by us taking a con-

temporary approach to capturing actions of interventions, rather than treating them as being

solely infection blocking. The data arising from SARS-CoV-2 vaccines having a stratification

of efficacy for different health episode outcomes (infection, symptomatic, hospitalisation, mor-

tality) [14–16] motivates a similar richness of data collection being undertaken for other path-

ogens. Seasonal influenza is one such pathogen where additional information would be

informative; vaccination effectiveness has historically been assessed using a ‘test-negative’

design, meaning patients with influenza-like illness are tested for influenza, with reported vac-

cine effectiveness usually relating solely to the prevention of symptomatic infection [78], with-

out further stratification of outcomes.

There are a number of limitations to the work conducted in this paper. First, there was

some uncertainty in the parameters used in the epidemiological model. We sourced parame-

ters from the literature, where disparate estimates were reported. Certain parameters, such as

the relative transmissibility of mild and severe disease, were difficult to measure. Whilst

acknowledging that our results may be sensitive to the parameterisations chosen, to retain our

focus on the implications of symptom propagation and interventions that had different modes

of action, we took a pragmatic approach of considering a single fixed relative transmissibility

scaling for each pathogen informed by the available literature. These relative transmissibility

scalings were also dissimilar, two for influenza and four for SARS-CoV-2 giving us more

breadth in our coverage of disease parameter space. A notable limitation of these choices is

that the transmission rates do not account for changes in contact patterns that we would

expect to see for those with more severe disease, and hence may be an overestimation of the

real values. The inclusion of heterogeneity in contact patterns as a function of symptom sever-

ity is highlighted as an area for future work.

Additionally, whilst our intent is for our model to be generalisable to other respiratory path-

ogens for which symptom propagation is possible, the assumptions made in this paper may

not be well suited to all such pathogens. In particular, the assumption that severe disease is

more transmissible and has a longer infectious period may not hold. If this assumption were

removed and mild and severe disease were to produce the same number of secondary cases,

we would expect the proportion of cases that were severe to be similar regardless of the

strength of symptom propagation.

Second, definitions of severity of infection can vary appreciably, showcased by prior work

on the two pathogens focused upon in this study (influenza and SARS-CoV-2) [35, 41, 50, 51].

An inevitable consequence was there being uncertainty in quantifying health economic param-

eters (such as QALY losses and hospitalisation rates) for our ‘mild’ and ‘severe’ infection cate-

gorisations. Creating a formal definition of severity in this context requires a deeper biological

understanding of how symptom propagation occurs and, in turn, further research. We would

encourage a conceptual re-analysis of the symptoms of respiratory infections from a clinical
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standpoint, leading to a new framework for categorising clinical outcomes informed by an

understanding not only of patient-level symptoms, but also symptom propagation and its

implications for onward transmission, along with the formulation of associated data collection

protocols. Indeed, although we have chosen to focus on only two severity classes, this simplifi-

cation may not always be appropriate. An extension of this model to include a separate asymp-

tomatic class or a continuum of severity could be explored in future work (or even

qualitatively different symptom sets that do not straightforwardly map to levels of severity),

with model structural choices informed by data where appropriate.

We also recognise that there are many factors not included in this model which are known

to affect symptom severity, and future work could extend the framework presented here to

incorporate characteristics such as age, immune status and multiple strains. Age structure

could be of particular interest because it has previously been suggested that the combination of

age-dependent mixing and age-dependent severity might cause correlations between the sever-

ity of the infector and the infectee [41]. As such, the inclusion of age structure could amplify

the effects of symptom propagation. Also, as a consequence of not modelling demographic

characteristics, we assumed intervention uptake to be uniform across the population. In real-

ity, those identified as risk groups, such as healthcare workers or immuno-compromised peo-

ple, are likely to be targeted first as part of any intervention policy, as seen in the vaccine roll-

out during the COVID-19 pandemic [79]. We expect that such targeting would amplify the

increase in intervention effectiveness caused by strong symptom propagation and anticipate

this effect could be seen for all intervention types, even purely infection-blocking interven-

tions. Further work is required to investigate these potential dependencies.

In addition to extensions to the deterministic, compartmental ODE model used in this

paper, the model framework could be applied to a range of model types [48]. If applied to a sto-

chastic model at a localised spatial level (population size of the order of hundreds rather than

millions), we could expect symptom propagation to result in a large variation in the proportion

of cases that are severe, depending on the severity of the initial cases. We would likely find

that, even for relatively weak symptom propagation, a stochastic model may generate large var-

iation in the proportion of cases that are severe, with the potential for outbreaks to be predom-

inantly severe. The symptom propagation model framework could also be applied to network

or spatial models. In these cases, we might expect symptom propagation to result in large spa-

tial heterogeneity in the severity of (local) outbreaks, leading to increased strain on local

healthcare services despite the larger-scale outbreak severity being similar to what is predicted

by a model with no spatial structure.

Another identified key area of future work is the estimation of the α parameter, i.e. the

strength of symptom propagation. However, due to the complex nature of symptom severity

and the many confounding factors, performing this inference is non-trivial. A large volume of

individual data with both information on symptom severity and who infected whom is

required. Major challenges include separating symptom propagation from the effects of strains

and from the impact of genetic similarity between an individual and the person who infected

them (e.g. in the case of related individuals). Nevertheless, the public health benefits of such

estimations will make surmounting such challenges rewarding, including informing the rela-

tive importance of transmission from those who are asymptomatic (and therefore the optimal

approach for contact tracing) and the role of vaccines that may reduce symptom severity as

well as infection burden. Close dialogue with appropriate data holders will be a crucial aspect

to successfully accomplish these goals.

In summary, these findings demonstrate the importance of including symptom propaga-

tion in models of infectious disease transmission to assist decision makers in planning infec-

tion control and mitigation strategies, where insights on epidemiological and health economic
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implications of possible actions are required and where there is evidence to support the pres-

ence of symptom propagation for a given pathogen. There are still questions around whether,

and to what extent, symptom propagation occurs for various pathogens and, although evi-

dence in the literature supporting symptom propagation is accumulating, we believe it would

be beneficial to reduce the uncertainty around this topic. We conclude that the consideration

of symptom propagation should be commonplace in the modelling of infectious diseases and

in evaluating proposed control policies from a health economics perspective. To heighten the

robustness of future modelling analyses, this motivates data collection to promote the use of

data-driven models and the development of analytic methods to identify the extent of symp-

tom propagation (i.e. the value of α) for pathogens of concern.
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Main differences between the first and second waves of COVID-19 in Madrid, Spain. International Jour-

nal of Infectious Diseases. 2021; 105:374–376. https://doi.org/10.1016/j.ijid.2021.02.115 PMID:

33684560

21. Spinelli MA, Glidden DV, Gennatas ED, Bielecki M, Beyrer C, Rutherford G, et al. Importance of non-

pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by

SARS-CoV-2 and potentially disease severity. The Lancet Infectious Diseases. 2021; 21(9):e296–

e301. https://doi.org/10.1016/S1473-3099(20)30982-8 PMID: 33631099

PLOS COMPUTATIONAL BIOLOGY Epidemiological and health economic implications of symptom propagation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012096 May 3, 2024 25 / 28

https://doi.org/10.1093/cid/cix1060
http://www.ncbi.nlm.nih.gov/pubmed/29206909
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://archive.cdc.gov/#/details?url=https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html
https://archive.cdc.gov/#/details?url=https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html
https://doi.org/10.1016/S1473-3099(12)70121-4
https://doi.org/10.1016/S1473-3099(12)70121-4
http://www.ncbi.nlm.nih.gov/pubmed/22738893
https://covid19.who.int/
https://covid19.who.int/
https://doi.org/10.1108/AEA-11-2020-0162
https://doi.org/10.1136/bmj.o490
http://www.ncbi.nlm.nih.gov/pubmed/35273010
https://doi.org/10.1056/NEJMra074111
http://www.ncbi.nlm.nih.gov/pubmed/18272895
https://doi.org/10.1016/j.vaccine.2017.11.018
https://doi.org/10.1016/j.vaccine.2017.11.018
http://www.ncbi.nlm.nih.gov/pubmed/29157959
https://doi.org/10.1371/journal.pcbi.1008849
https://doi.org/10.1371/journal.pcbi.1008849
http://www.ncbi.nlm.nih.gov/pubmed/33956791
https://doi.org/10.1016/S1473-3099(21)00143-2
http://www.ncbi.nlm.nih.gov/pubmed/33743847
https://doi.org/10.1136/bmj.n1088
https://doi.org/10.1136/bmj.n1088
https://doi.org/10.1016/S0140-6736(21)00790-X
https://doi.org/10.1016/S0140-6736(21)00790-X
https://doi.org/10.1016/S1473-3099(21)00289-9
http://www.ncbi.nlm.nih.gov/pubmed/34174193
https://doi.org/10.1093/cid/ciaa644
http://www.ncbi.nlm.nih.gov/pubmed/32472679
https://doi.org/10.1007/s11606-020-06067-8
http://www.ncbi.nlm.nih.gov/pubmed/32737790
https://doi.org/10.1098/rsif.2021.0781
https://doi.org/10.1098/rsif.2021.0781
http://www.ncbi.nlm.nih.gov/pubmed/35506215
https://doi.org/10.1016/j.ijid.2021.02.115
http://www.ncbi.nlm.nih.gov/pubmed/33684560
https://doi.org/10.1016/S1473-3099(20)30982-8
http://www.ncbi.nlm.nih.gov/pubmed/33631099
https://doi.org/10.1371/journal.pcbi.1012096


22. Dennis DT, Gage KL, Gratz N, Poland JD, Tikhomirov E. Plague manual: epidemiology, distribution,

surveillance and control. World Health Organisation. 1999;.

23. Asplin P, Mancy R, Finnie T, Cumming F, Keeling MJ, Hill EM, et al. Symptom propagation in respiratory

pathogens of public health concern: a review of the evidence. MedRxiv [Preprint]. 2024.

24. Tellier R. COVID-19: the case for aerosol transmission. Interface Focus. 2022; 12(2). https://doi.org/10.

1098/rsfs.2021.0072 PMID: 35261731

25. Van Damme W, Dahake R, van de Pas R, Vanham G, Assefa Y. COVID-19: Does the infectious inocu-

lum dose-response relationship contribute to understanding heterogeneity in disease severity and

transmission dynamics? Medical Hypotheses. 2021; 146:110431. https://doi.org/10.1016/j.mehy.2020.

110431 PMID: 33288314

26. Couch RB, Gordon Douglas R, Fedson DS, Kasel JA. Correlated Studies of a Recombinant Influenza-

Virus Vaccine. III. Protection against Experimental Influenza in Man. Journal of Infectious Diseases.

1971; 124(5):473–480. https://doi.org/10.1093/infdis/124.5.473 PMID: 5000515

27. Hijano DR, Cardenas JBd, Maron G, Garner CD, Ferrolino JA, Dallas RH, et al. Clinical correlation of

influenza and respiratory syncytial virus load measured by digital PCR. PLOS ONE. 2019; 14(9):

e0220908. https://doi.org/10.1371/journal.pone.0220908 PMID: 31479459

28. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, et al. Viral dynamics in mild and severe cases of COVID-

19. The Lancet Infectious Diseases. 2020; 20(6):656–657. https://doi.org/10.1016/S1473-3099(20)

30232-2 PMID: 32199493

29. Pujadas E, Chaudhry F, McBride R, Richter F, Zhao S, Wajnberg A, et al. SARS-CoV-2 viral load pre-

dicts COVID-19 mortality. The Lancet Respiratory Medicine. 2020; 8(9):e70. https://doi.org/10.1016/

S2213-2600(20)30354-4 PMID: 32771081

30. Han A, Czajkowski LM, Donaldson A, Baus HA, Reed SM, Athota RS, et al. A Dose-finding Study of a

Wild-type Influenza A(H3N2) Virus in a Healthy Volunteer Human Challenge Model. Clinical Infectious

Diseases. 2019; 69(12):2082–2090. https://doi.org/10.1093/cid/ciz141 PMID: 30770534

31. Miller DS, Kok T, Li P. The virus inoculum volume influences outcome of influenza A infection in mice.

Laboratory Animals. 2013; 47(1):74–77. https://doi.org/10.1258/la.2012.011157 PMID: 23467492

32. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a

small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the

National Academy of Sciences. 2020; 117(28):16587–16595. https://doi.org/10.1073/pnas.

2009799117 PMID: 32571934

33. Killingley B, Nguyen-Van-Tam J. Routes of influenza transmission. Influenza and Other Respiratory

Viruses. 2013; 7:42–51. https://doi.org/10.1111/irv.12080 PMID: 24034483

34. Tellier R. Aerosol transmission of influenza A virus: a review of new studies. Journal of The Royal Soci-

ety Interface. 2009; 6(suppl_6). https://doi.org/10.1098/rsif.2009.0302.focus PMID: 19773292

35. Mathews JD, McCaw CT, McVernon J, McBryde ES, McCaw JM. A Biological Model for Influenza

Transmission: Pandemic Planning Implications of Asymptomatic Infection and Immunity. PLoS ONE.

2007; 2(11):e1220. https://doi.org/10.1371/journal.pone.0001220 PMID: 18043733

36. Paulo AC, Correia-Neves M, Domingos T, Murta AG, Pedrosa J. Influenza Infectious Dose May Explain

the High Mortality of the Second and Third Wave of 1918–1919 Influenza Pandemic. PLOS ONE. 2010;

5(7):e11655. https://doi.org/10.1371/journal.pone.0011655 PMID: 20668679

37. Atkinson MP, Wein LM. Quantifying the Routes of Transmission for Pandemic Influenza. Bulletin of

Mathematical Biology. 2008; 70(3):820–867. https://doi.org/10.1007/s11538-007-9281-2 PMID:

18278533
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