
Exploring Realism in Virtual Testing: Towards a
Scalable Platform Using Open-Source Solutions for

Automated Driving Systems
Peter Baker, Joseph Mitchell, Emil Chodowiec, Xizhe Zhang,

Siddartha Khastgir, Paul Jennings
WMG, University of Warwick, Coventry, United Kingdom, CV4 7AL

{peter.baker, joe.mitchell, emil.chodowiec, jason.zhang, s.khastgir.1, paul.jennings}@warwick.ac.uk

Abstract—This paper presents a novel solution to the demand
of a realistic virtual test environment (VTE) for the development
and safety assurance of Automated Driving Systems (ADSs).
The current VTE offerings suffer limitations when it comes
to creating a rich environment (from the Operational Design
Domain perspective) based on the ASAM OpenDRIVE files
(a formatted description of the scenery), and hence there is
no automatic OpenDRIVE scenery generation available that
resembles the richness required to thoroughly test an ADS in
a virtual environment. Therefore, through the use of Unreal
Engine, leveraging the power of esmini’s roadmanager and
developing on a primitive OpenDRIVE plugin, a comprehensive
scenery with complex lighting, dynamic environmental conditions
and photoscanned meshes can be achieved. There is then a
demonstration of how this is incorporated into an end-to-end
testing framework, using just one user interface to take the
user from the creation and retrieval of scenarios through to the
execution.

Index Terms—scenario based testing, simulation, scenery gen-
eration, automated systems, safety, digital twin

I. INTRODUCTION

Automated Driving Systems (ADSs) development is a chal-
lenging area within the automotive and wider engineering
industry. It has the potential however to provide many benefits
to the end user, yet the most important benefit is to attain a
greater level of safety than with a human driver.

A. Scenario Based Testing

With a distance based approach to achieving AV safety, it
has been proposed [1] that to prove with a 95% confidence that
AVs are 20% safer than human drivers, the ADSs would need
to drive “more than 11 billion miles” [1]. Therefore, rather
than using a distance based approach, a method of achieving
safety is through the use of scenario based testing [2] [3],
which is aimed at developing trustworthy ADSs [4], as well
as verifying and certifying their safety [5].

A scenario represents any situation that might occur on
the road, it contains both the temporal and spatial aspects
of the situation. A scenario can be categorised into three
main parts, the scenery, the environmental conditions, and the
dynamic elements. The scenery part alone can be described
using the ASAM OpenDRIVE [6], utilising an XML format.

Alternatively, the scenery is also part of the ASAM OpenSCE-
NARIO DSL [7], WMG SDL 2 [8], BSI Flex 1889 [9], stiEF
[10]. The dynamic and environmental conditions are contained
within the ASAM OpenSCENARIO [11], which focuses on
describing how the ego and the other actors in the scenario
interact with each other. They are also contained within the
other scenario formats mentioned above (OpenSCENARIO
DSL, WMG SDL 2, BSI Flex 1889, stiEF etc). Through
the use of scenarios there is the ability to thoroughly and
iteratively test a system in either fully virtual [12], XiL (e.g.,
hardware in the loop) [13], or real world environments, with
the goal of identifying the failure conditions of the system
[14]. Through the use of virtual testing, such testing can be
performed in a low risk and scalable manner (e.g., setting
environmental conditions). It also has the added benefit that it
is a lot less costly than real world testing. In order to virtually
test the system, there is the need to mimic real world scenery
and environmental conditions that the ADS may experience.
Therefore the use of realistic digital twin environments for
testing vehicles is paramount to achieving this goal of scenario
based testing.

B. ODD

Using scenarios in isolation cannot guarantee that the right
scenarios, or enough scenarios have been used during the
safety assurance process. Hence, scenario-based testing needs
to be underpinned by the operational design domain (ODD) of
the system. ODD defines the operating conditions under which
the system is designed to function safely, it is a design specifi-
cation of the system. During a scenario based testing process,
individual scenarios need to fully explore the performance of
the system within its ODD boundary. Furthermore, it is key to
test the system’s risk mitigation mechanism whenever it goes
beyond its ODD boundary or shows signs of doing so.

To enable the common understanding of ODD specifications
and to be able to share or exchange ODDs, there is a need
for a common taxonomy and format with which the industry
and academia can reference. The BSI PAS 1883 (2020) [15]
is one of the early standards that proposed a set of common
ODD taxonomy concepts, together with their definitions and

quantifiable measures. The ASAM OpenXOntology [16] and
the ASAM OpenLABEL [17] then utilised the PAS 1883 to
establish a common domain ontology for use cases such as
database organisation and scenario tagging. With the recent
release of the ISO 34503 [18] on ODD taxonomy, the PAS
1883 has been superseded. At a high level, the ODD covers
the scenery, the environmental conditions, and the dynamic
elements (subject to the vehicle maximum designed speed,
and dynamic agent types).

While ODD is fundamental to the safety assurance of Au-
tomated Driving Systems (ADSs), to cover the scope defined
in a scenario, the ODD needs to be combined with behaviour.
Using a set of ODD elements and behaviours of a system,
users can start to construct individual scenarios which explore
the boundary set out by the ODD.

C. Open Simulation Interface (OSI)

In order to simulate scenarios, the complete simulation
framework needs to operate within a co-simulation environ-
ment, which comprises of multiple subsystems. To enable effi-
cient interaction, OSI [19] provides standardised interfaces and
message definitions for integration between different systems,
subsystems, and simulation environments. Depending on the
subsystems used, the OSI ground truth data can be used for
the planning aspect, or raw sensor data can also be used when
the sensing layer is involved. Currently the OSI Performance
& Packaging WP is investigating the most efficient method
for the exchange of raw sensor data.

In the context of scenario-based testing, a reliable com-
munication interface is crucial to guarantee the accuracy of
simulation results. Executing scenarios for a specific ODD,
whilst utilising OSI, allows for a comprehensive and scalable
development and testing of ADSs.

II. RELATED WORK

A. Current Virtual Testing Platforms

For conversion of an OpenDRIVE description into a equiv-
alently represented VTE, there is the need for two aspects to
come together. Firstly, using a tool that has the capability for
the realistic rendering needed in a VTE. Secondly, converting
from an OpenDRIVE description into the 3D space. There are
a few methods in existence, which will be detailed below:

An ‘open-source autonomous driving simulator’ called
CARLA [20], which is based on a modified build of Unreal
Engine (an open-source game engine), has attempted to do a
conversion of an OpenDRIVE file (.xodr) into a tangible 3D
World. However it is quite primitive in terms of the outcome,
and the latest documents detailing the OpenDRIVE generation
[21] show that the mesh generation for the roads has issues
to do with smoothness that need mitigation. It also does not
represent the other ODD objects that are present within the
OpenDRIVE file.

esmini is another simulator with the capability to render the
OpenDRIVE files, it is “a basic OpenSCENARIO player” [22].
It can successfully generate scenery and handle OpenSCE-
NARIO and OpenDRIVE files, however its limitations come

in terms of its graphical realism, majorly due to the intended
purpose for which the simulator was developed, i.e. visually
simplistic simulation. As it is a lightweight OpenSCENARIO
player, it means that when trying to capture certain scene
qualities, such as tree geometries, light reflections and light
refractions from an object, esmini is unable to provide the level
of detail needed to test an autonomous system adequately.

A third relevant work is an OpenDRIVE plugin [23] for
Unreal Engine, which allows the user to import the .xodr
file into the Unreal Engine editor and then generate the road
layout through using esmini’s roadmanager library. However
this mesh is not tangible but more of an overlay, and is
translucent in appearance. Even though there are tools to
sculpt the landscape and repeat objects, they need to be done
manually after generating the road layout, so the pipeline is
not fully automatic in its nature.

As has been discussed, each of the above methods have both
their limitations and benefits, however none of the methods
achieve both of the aspects outlined for OpenX conversion
into a photo-realistic VTE. However, by developing on the
OpenDRIVE plugin for Unreal Engine, the first aspect can
be achieved as Unreal Engine can be used for realism. As
this OpenDRIVE plugin uses the esmini roadmanager library,
through more development, the second aspect can be achieved
in order to convert all OpenDRIVE information into 3D
coordinates.

III. APPROACH

A. Scenery Generation

With the initial OpenDRIVE plugin, some aspects to resolve
were that roads did not have any realistic materials or physical
properties applied to them, the junctions consisted of lines
and directional arrows rather than 3D meshes, and the curved
lanes that were produced had a broken mesh due to having
short straight sections joined together, which resulted in the
start and end of meshes not aligning (as shown in Figure 1),
compared to the goal of a smooth and continuous mesh.

Fig. 1. OpenDRIVE Plugin’s Initial Auto Generated Road Network

Therefore, the roadmanager library was used to get the
number of lanes in each road, retrieving information on each
lane, such as its length, width, tangent, and S value coordinates

from OpenDRIVE. The lane position and lane width from
the OpenDRIVE description were sampled dynamically based
on the curvature of the road (higher sample rate at greater
road curvatures) along with the tangent information in order
to create spline points for each lane, which a spline would fit.
The tangent information was used to allow each spline point to
guide the curvature of the spline according to the OpenDRIVE
specifications. This resulted in successfully correcting the
broken meshes from the initial plugin. After this, physical
properties of the lanes were allocated and a road surface
material was applied based on the lane type specified in the
OpenDRIVE file.

At junctions, there were overlapping lanes, which results
in a graphical glitch, known as Z-fighting, where two or
more meshes share the same 3D space. Hence, Unreal Engine
will attempt to render all meshes at the same time, resulting
in flickering occurring. Therefore, the textures for the road
network needed to be world dependant instead of individual
object dependant. By aligning the material’s texture tiling (the
repeating pattern of the material) to the world space instead
of to individual objects, then the multiple overlapping meshes’
materials will be perfectly aligned with one another.

After achieving roads and junctions being automatically
generated from any selected OpenDRIVE file, it was important
to be able to create a landscape that would enclose the whole
of the road network, hence the maximum and minimum coor-
dinates of the network were calculated and then a landscape
mesh was created around the network, as seen in Figure 2.

Fig. 2. Top Down View of a Road Network and Landscape Automatically
Generated

One of the benefits of using Unreal Engine is that it is
an Open Source game engine. As such, there is an ability
to integrate many different aspects together, whether through
plugins and content packs from the Unreal Engine marketplace
or through adding custom logic by writing code directly in
C++ and blueprints, which is Unreal Engine’s visual scripting
language. For creating road markings specified along the
road, an Unreal Engine content pack was incorporated into
the project, which contained the meshes and materials for

road markings. However, the logic for how to generate them
automatically based off an OpenDRIVE file still needed to be
determined. There are two types of road markings, solid-line
and broken-line, which require different methods for how they
are generated in a 3D environment. Solid lines were created
using stretched meshes whilst broken lines were procedurally
placed, using the OpenDRIVE defined spacing for each road
mark.

The OpenDRIVE standard [6] also defines object spawning
and the automatic spawning was achieved by extracting the
positions and rotations of all the objects through the use of the
roadmanager and then converting them to the Unreal Engine
coordinate and rotation system, and finally spawning them
in the 3D environment. In a similar manner, road signs can
also be spawned into the environment. As well as individual
object spawning, repeated object spawning is an option in an
OpenDRIVE description in order to ‘avoid lengthy XML code’
[24]. In order to place repeating objects along a certain path,
they were procedurally placed in a similar manner to the logic
of the broken road markings. Figure 3 shows the combination
of a curved road, with both broken and solid line road marks,
as well as traffic cones as repeating objects.

Fig. 3. Scenery Generation showing Repeating Objects along the curvature
of the road, along with Solid and Broken Line Roadmarks

B. Achieving a Greater Sense of Realism

A main objective of the project was to be able to create
a more realistic scenery compared to the current methods
available. Through this, the integration of influences to the
environment, such as the date, time and weather is essential,
in order to meet ODD requirements. For example, when
comparing 21st December at 12pm to 21st June at 12pm,
the sun will be in a vastly different position. Hence the date
and time information are a major influence in a scenario
execution’s accuracy, as this can influence how the sensors
on the ADS perceive the environment. However, the only
available tool that can both generate the scenery and also run
the scenario is esmini. This tool doesn’t take into account the
date or time at all, and simply displays a blue background to
the scenario. Hence the lighting system is very simplistic.

Unreal Engine’s lighting system, is very comprehensive
when using a global illumination system called ’Lumen’ [25],
available in Unreal Engine 5. Compared to a default Ray
Tracing Global Illumination (seen on Unreal Engine 4 for

example), which isn’t “reliable or performant” [25] on real-
time high detail systems, Lumen is able to render “diffuse
interreflection with infinite bounces and indirect specular re-
flections in large, detailed environments at scales ranging from
millimeters to kilometers” [25], enabling “high-end visualiza-
tions” [26].

Photo-scanned meshes can be used within the Lumen light-
ing system in order to add to the realism of a digital twin.
There is a large scalability of photo-realistic (photo-scanned)
assets, due to a selection of readily available photo-scanned
assets. However users can also import 3D assets that they have
created themselves. Hence, by combining a photo-scanning
system with the simulator, there is the ability to include custom
assets of any object in the real world and bring it straight into
the digital twin environment.

Fig. 4. Sunrise and Sunset in Real-time with Lumen Lighting

However, on top of this, the 3D assets inside the digital
twin will also need to be viewed in different environmental
conditions and still have realism. By integrating and modifying
an environmental conditions plugin, a greater realism can be
achieved for the simulator platform when compared with other
OpenDRIVE and OpenSCENARIO simulators available. This
includes being able to set the exact date (including the time,
day, month and year) for a scenario and have a realistic real-
time representation of the sun or moon position, as seen in
Figure 4. Having high-fidelity assets that replicate real world
assets ensures that the sensors on the vehicle can perceive
the real world environment in a similar manner to the virtual
environment.

As well as this, the weather can be modified in real-
time, such as adjusting the volume of clouds, rain, snow and
fog; there are other weather features that can be used as
well, such as thunder and lightning, rainbows and sandstorms.
These parameters can be adjusted individually, or in any

Fig. 5. Rain and Snow in 3D Environment with Dynamic Materials

combination, so that a user could have both snow and rain
in the environment simultaneously if desired. By linking the
material logic to the weather functions, the materials can
dynamically react to the weather, such as by accumulating
snow or by getting wet from rain, as seen in Figure 5.

C. Optimisation

Road generation was initially done in sequential order,
however it was possible to do this in parallel through the use
of multi-threading, which would reduce the generation time
needed to produce the scenery. In unreal engine, there is a
game thread, which runs gameplay logic, such as rendering
and spawning actors. Then there are background threads,
which can be used for other tasks, such as calculating values.
In the road generation function, some code required this game
thread, such as the spawning of the meshes for the roads,
but for code which does not depend on the game thread, a
mechanism can be used to automatically delegate non-game-
thread-essential code to background threads. Therefore, all
of this logic calculating how and where to place the road
network is done in background threads and hence roads can
be generated in parallel. In one test (consisting of a scene
including a 500 metre straight road with 20 to 30 objects
and road signs), the road generation time was 4.18 seconds
without multithreading and 0.04 seconds with multithreading,
over 100 times faster. When stress-testing the time required to
generate a scenery from an OpenDRIVE file, it was discovered
to take under 7 seconds to generate a 10km three lane
motorway populated with over 14000 trees and more than 1000
lampposts.

With the photo-scanned meshes and the need to use a
range of different objects within the environment, an efficient
strategy of how to organise and create an easily expandable

object list was necessary. By using a custom-built library
which maps object names to mesh references, an object’s
OpenDRIVE name could be input as a string variable and
then the desired object could be selected, which meant adding
a new object and having it link and be generated from an
OpenDRIVE file would now only take a few minutes.

D. Integration of End-to-End Framework

As well as having automated scenery generation for an
OpenDRIVE file, it was important to be able to retrieve or
create a scenario (OpenDRIVE and OpenSCENARIO file),
and then be able to execute the scenario, all from within
the same tool. In Figure 6, the overarching framework is
shown and the Visualisation block (Unreal Engine) is designed
to retrieve scenarios through the Scenario Engine and then
generate the scenery (.xodr) or execute the scenario (.xosc).
This can be achieved through the creation and use of a user
interface (UI), as seen in Figure 7.

Fig. 6. Simulation Framework for Execution and Analysis of Scenarios

Fig. 7. Simulation GUI which shows the Retrieve, Create (Simple) and
Create (Advanced) buttons for acquiring an OpenDRIVE/OpenSCENARIO

file.

By separating the game into levels, the UI could display
a loading screen (’loading screen level’) whilst the scenery
is generating in the background and then show the ’scenery
level’ once it has finished loading. Once the scenery level had
loaded, the user can then ’pause’ the simulator, which overlays
the UI on top of the scenery world whilst they select their next
scenery or scenario to load.

Safety PoolTM Scenario Database (SPSD) [27], which is
the ‘largest public store of scenarios for testing automated
vehicles’, was used for the retrieval of scenarios and was
accessed through the use of its API. With the user entering
their SPSD API key and desired scenario collection (test
suite number), a C++ function called a python function that
accessed the API and then the scenarios from a test suite
could be retrieved, being available to use immediately, all from
within the UI (see Figure 7).

For the creation of scenarios, the UI was developed to
integrate a simple to use tool called ’Safety Pool Studio’ [28]
within the UI, which allows users with even little experience to
design scenarios by use of a graphical interface. Another more
advanced tool for the creation of scenarios via an application
was also able to be integrated into the UI and then newly
formed scenarios and sceneries could be executed directly
after designing them. With the expandability and integration
capabilities of this simulation platform, even more tools could
be introduced and accessed through the UI.

The next part of the end-to-end framework to integrate was
the dynamic aspect, namely the “complex, synchronized ma-
neuvers that involve multiple entities like vehicles, pedestrians
and other traffic participants” [11], as seen in Figure 8.

Fig. 8. Execution of a Crossroad Scenario containing Three Vehicles

Some work prior to this project had been done on the
dynamic elements and the process is to call a python function
from C++ which then sends positional data from esmini to
Unreal Engine via a communication layer. This is then inter-
preted by an Unreal Engine blueprint to position and move the
actors in the scenario according to the OpenSCENARIO file.
As well as executing the OpenSCENARIO in it’s default mode,
there was also another option which allowed the scenario to
run with the use of an analysis engine. This used a bayesian
optimisation algorithm to tweak the dynamic parameters of a
scenario and analyse the system.

IV. CONCLUSION

A. Summary of Work Achieved

In this paper, a unique solution to the need for an it-
erative realistic digital twin environment for ADS testing
was proposed and demonstrated. This solution was built on
the platform of Unreal Engine and contains runtime scenery
generation, including photoscanned meshes for objects, a

complex lighting setup and the setting of the time of day,
date, location and weather. These environmental conditions are
able to also be updated in real-time. The simulator benefits
from photoscanned meshes and is easily extendable. The
platform also has the ability to connect with the world’s largest
scenario database, SPSD [27], to retrieve scenarios, as well as
integrating scenario creation tools for users to make custom
scenarios. The user can then generate either a scenery or
execute a scenario (with or without an analysis engine), so
it achieves an end-to-end framework.

B. Recommendations Towards the Industry

To have a coherent workflow from the ODD, to the
scenarios, to the executing environment, to the simulation
data, it is essential for the wider industry to use a common
taxonomy with standardised terms and definitions within the
field, otherwise interpretation and translation will need to be
put in place to enable an end-to-end scenario based testing
process.

C. Limitations and Future Work

With the current simulation platform, it is important to
compare the digital twin and the real world to determine the
accuracy of the digital twin, therefore future work will need to
be performed to validate the digital twin. Another limitation
is that the landscape used for the scenarios is completely
flat, which doesn’t mimic real world landscapes, thus future
exploration into dynamic landscapes will enhance the realism.
There needs to be future work undertaken into the integration
of sensors into Unreal Engine, as this aspect also needs to
mimic real world sensors, however the potential of this sensor
work is large as the complex meshes and lighting system will
influence the sensors in a more realistic way. Looking into the
longer term future, the goal would be to be able to interchange
any ADS and ODD with the platform in order to verify and
validate the system’s safety.

ACKNOWLEDGEMENT

The work presented in this paper has been supported by
UKRI Future Leaders Fellowship (Grant MR/S035176/1),
Department of Transport, UK, and Transport Canada (T8080-
220112). The authors would like to thank the WMG center
of HVM Catapult, and WMG, University of Warwick, UK
for providing the necessary infrastructure for conducting this
study. For the purpose of open access, the author(s) has applied
a Creative Commons Attribution (CC BY) license to any
Accepted Manuscript version arising. No new data was created
in this study.

REFERENCES

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transportation Research Part A: Policy and Practice, vol. 94, no.
December, pp. 182–193, 2016.

[2] X. Zhang, S. Khastgir, H. Asgari, and P. Jennings, “Test Framework for
Automatic Test Case Generation and Execution Aimed at Developing
Trustworthy AVs from Both Verifiability and Certifiability Aspects,” in
2021 IEEE ITSC, 2021, pp. 312–319.

[3] E. Esenturk, D. Turley, A. Wallace, S. Khastgir, and P. Jennings, “A
data mining approach for traffic accidents, pattern extraction and test
scenario generation for autonomous vehicles,” in International Journal
of Transportation Science and Technology, 2023, pp. 955–972.

[4] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “Effect of
knowledge of automation capability on trust and workload in an au-
tomated vehicle: a driving simulator study,” in Advances in Human
Aspects of Transportation: Proceedings of the AHFE 2018 International
Conference on Human Factors in Transportation, July 21-25, 2018,
Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida,
USA 9, 2019, pp. 410–420.

[5] S. Khastgir, H. Sivencrona, G. Dhadyalla, P. Billing, S. Birrell, and
P. Jennings, “Introducing ASIL inspired dynamic tactical safety decision
framework for automated vehicles,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–
6.

[6] ASAM e.V., “OpenDRIVE V1.8.0,” 2023. [Online]. Available:
https://www.asam.net/standards/detail/opendrive/

[7] ——, “OpenScenario DSL V2.1.0,” 2024. [Online]. Available:
https://www.asam.net/standards/detail/openscenario-dsl/

[8] X. Zhang, S. Khastgir, and P. Jennings, “Scenario Description Language
for Automated Driving Systems: A Two Level Abstraction Approach,”
in 2020 IEEE SMC, 2020, pp. 973–980.

[9] BSI, “BSI Flex 1889 - Natural language description for abstract scenar-
ios for automated driving systems - Specification,” 2022.

[10] F. Bock, C. Sippl, A. Heinzz, C. Lauerz, and R. German, “Advantageous
usage of textual domain-specific languages for scenario-driven develop-
ment of automated driving functions,” in 2019 IEEE SysCon, 2019, pp.
1–8.

[11] ASAM e.V., “ASAM OpenSCENARIO XML,” 2022. [Online].
Available: https://www.asam.net/standards/detail/openscenario-xml/

[12] A. Wallace, S. Khastgir, X. Zhang, S. Brewerton, B. Anctil, P. Burns,
D. Charlebois, and P. Jennings, “Validating Simulation Environments for
Automated Driving Systems Using 3D Object Comparison Metric,” in
2022 IEEE IV. IEEE, 2022, pp. 860–866.

[13] ASAM e.V., “ASAM XIL.” [Online]. Available: https://www.asam.net/
standards/detail/xil

[14] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “The Science of
Testing: An Automotive Perspective,” in SAE Technical Paper 2018-01-
1070. SAE International, 2018.

[15] BSI, “PAS 1883 Operational Design Domain (ODD) taxonomy for an
automated driving system (ADS) – Specification,” 2020.

[16] ASAM e.V., “ASAM OpenXOntology.” [Online]. Available: https:
//www.asam.net/standards/asam-openxontology

[17] ——, “OpenLABEL V1.0.0,” 2021. [Online]. Available: https:
//www.asam.net/standards/detail/openlabel/

[18] ISO, “ISO 34503:2023 - Road Vehicles - Test scenarios for automated
driving systems - Specification for operational design domain,” 2023.

[19] ASAM e.V., “ASAM OSI.” [Online]. Available: https://www.asam.net/
standards/detail/osi

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[21] CARLA, “OpenDRIVE - CARLA Simulator.” [Online]. Available:
https://carla.readthedocs.io/en/latest/adv opendrive/

[22] E. Knabe, “Environment Simulator Minimalistic (esmini).” [Online].
Available: https://github.com/esmini/esmini

[23] Bertrand Richard, “OpenDrive Plugin for Unreal Engine.” [Online].
Available: https://github.com/brifsttar/OpenDRIVE

[24] ASAM e.V., “ASAM OpenDrive Repeating Objects.” [Online].
Available: https://publications.pages.asam.net/standards/ASAM
OpenDRIVE/ASAM OpenDRIVE Specification/latest/specification/
13 objects/13 02 repeating objects.html

[25] Unreal Engine, “Lumen Global Illumination and Reflec-
tions.” [Online]. Available: https://docs.unrealengine.com/5.3/en-US/
lumen-global-illumination-and-reflections-in-unreal-engine

[26] D. Wright and K. Narkowicz, “Unreal Engine 5 goes
all-in on dynamic global illumination with Lumen.”
[Online]. Available: https://www.unrealengine.com/en-US/tech-blog/
unreal-engine-5-goes-all-in-on-dynamic-global-illumination-with-lumen

[27] “Safety PoolTM Scenario Database.” [Online]. Available: https:
//safetypooldb.ai

[28] WMG, “Safety Pool Studio.” [Online]. Available: https:
//safetypoolstudio.ai/

