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Abstract

Physical activity (PA) during childhood and adolescence is important for the accrual

of maximal peak bone mass. The precise dose that benefits bone remains unclear as

methods commonly used to analyze PA data are unsuitable for measuring bone‐
relevant PA. Using improved accelerometry methods, this study identified the

amount and intensity of PA most strongly associated with bone outcomes in 11–12‐
year‐olds. Participants (n = 770; 382 boys) underwent tibial peripheral quantitative

computed tomography to assess trabecular and cortical density, endosteal and

periosteal circumference and polar stress‐strain index. Seven‐day wrist‐worn raw

acceleration data averaged over 1‐s epochs was used to estimate time accumulated

above incremental PA intensities (50 milli‐gravitational unit (mg) increments from

200 to 3000 mg). Associations between time spent above each 50 mg increment and

bone outcomes were assessed using multiple linear regression, adjusted for age, sex,

height, weight, maturity, socioeconomic position, muscle cross‐sectional area and

PA below the intensity of interest. There was a gradual increase in mean R2 change

across all bone‐related outcomes as the intensity increased in 50 mg increments

from >200 to >700 mg. All outcomes became significant at >700 mg (R2

change = 0.6%–1.3% and p = 0.001–0.02). Any further increases in intensity led to a

reduction in mean R2 change and associations became non‐significant for all out-

comes >1500 mg. Using more appropriate accelerometry methods (1‐s epochs; no a

priori application of traditional cut‐points) enabled us to identify that ~10 min/day

of PA >700 mg (equivalent to running ~10 km/h) was positively associated with

pQCT‐derived measures of bone density, geometry and strength in 11–12‐year‐
olds.
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Highlights

� Accelerometry methods that are commonly used to assess free‐living, bone‐relevant

physical activity (PA) are not well suited to measuring bone‐specific characteristics of PA

(short bursts of high‐impact activity).

� Processing raw acceleration data using much shorter epochs (1‐s) and using incremental

50 mg intensity thresholds (rather than traditional, broad intensity thresholds) enabled a

bone‐specific, beneficial intensity to be identified.

� The methods outlined provide a means for more precisely assessing free‐living bone‐
relevant PA and permit the transparent and reproducible analysis of raw accelerometry

data, which will enhance our ability to quantify dose‐response associations in the future.

1 | INTRODUCTION

Globally, osteoporosis is responsible for 8.9 million fractures per

annum and conveys substantial social and economic burden (Johnell

et al., 2006). A large proportion of osteoporosis risk (~60%) is

determined by the amount of bone accrued at the point of peak bone

mass (PBM) in early adulthood (Bonjour et al., 2009). Whilst non‐
modifiable genetic factors account for a large degree of the vari-

ability in PBM (60%–80%), one of the most important modifiable

influences is physical activity (PA) experienced during childhood and

adolescence (Weaver et al., 2016). However, identification of specific

doses of PA that confer benefits to bone health remains problematic

(Weaver et al., 2016).

Accelerometers have become the method of choice for assessing

PA in relation to health outcomes (Trost, 2020) with the wrist wear‐
location becoming increasingly popular due to the improved wear

compliance and more complete depictions of free‐living PA that are

obtained (Fairclough et al., 2016). However, the accelerometry

methods most widely used in studies assessing PA‐bone relationships

average proprietary outputs over long (e.g., 15–60‐s) epochs and

classify this output into intensity categories (e.g., moderate PA

[MPA] and vigorous PA [VPA]), using cut‐points (numerous) that are

selected at the outset (Brailey et al., 2022). As a result, the short

bursts of high‐intensity activity that are required to initiate osteo-

genesis (Turner et al., 2003) and sporadically performed by children

(Bailey et al., 1995; Baquet et al., 2007) are “over‐smoothed” and

misclassified as lower intensity activity (Nilsson et al., 2002). Further,

different cut‐points result in divergent PA estimates (Freedson

et al., 2005; Routen et al., 2012) and prevent direct comparison be-

tween studies (Bornstein et al., 2011). Thus, a crucial opportunity to

aggregate data and identify important trends between PA, health and

disease is missed (Bornstein et al., 2011). Although familiar to re-

searchers, the continued use of these methods contributes to the lack

of clarity regarding the dose‐response relationship between PA and

bone health in youth.

To improve the identification of bone‐specific PA in free‐living

situations, a recent systematic review of studies assessing

accelerometer‐derived habitual PA in relation to bone outcomes

recommended that shorter 1‐s epochs be used to ensure that brief

dynamic episodes of osteogenic activity are captured more in their

entirety (Brailey et al., 2022). It was also stated that a data‐driven

approach that identifies the intensities of activity most strongly

associated with bone outcomes may be more informative than inves-

tigating the associations with pre‐defined intensity cut‐points (such as

MPA, moderate‐vigorous PA (MVPA), and VPA) that are calibrated

against measures of energy expenditure (Brailey et al., 2022). An

example of this approach already exists in a study of adult women from

UK Biobank (Stiles et al., 2017). Open‐source software was used to

process raw acceleration from a wrist‐worn device in 1‐s epochs and

instead of applying cut‐points a priori, time accumulated in incre-

mental intensities of acceleration (50 milli‐gravitational units (mg))

was used to identify that on average, only a few minutes of activity/day

above750 and 1000 mg (found to be equivalent to slow‐mediumpaced

running) was associated with bone health in post‐ and pre‐menopausal

women, respectively. Using this approach, an estimate of the volumeof

PA accumulated can also be obtained (Stiles et al., 2018). This tech-

nique gives more value to brief periods of high‐intensity activity in the

analysis, a characteristic of PA, which may be particularly pertinent to

generating an osteogenic response (Stiles et al., 2018), especially in

children where PA tends to be accumulated in short bursts (Bailey

et al., 1995; Baquet et al., 2007).

As the opportunity to accrue bone is enhanced during growth, the

amount and intensity of habitual PA found to benefit bone is likely to

differ in children and adolescents compared to adults (Bailey

et al., 1999; Baxter‐Jones et al., 2011) and warrants further investi-

gation. Large scale observational studies, such as Australia's Child

Health CheckPoint (Clifford et al., 2019), have been instrumental in

demonstrating that significant associations between bone outcomes

and habitual PA measured using a wrist‐worn accelerometer in chil-

dren do exist, with higher activity levels resulting in greater bone mass,

geometry and strength (Osborn et al., 2018), contributing to a

reduction in fracture risk (Kalkwarf et al., 2011). However, the use of

traditional intensity classifications (e.g., MVPA) and long epoch lengths

has prevented the precise amount and intensity of PA required to

benefit bone health from being identified (Brailey et al., 2022).

Therefore, this study aims to use open‐source software to process and

analyze raw acceleration data using methods that have been modified

to better detect bone‐relevant PA to identify the intensity of accel-

eration most strongly associated with pQCT‐derived measures of

bone health in a large cross‐sectional study of 11–12‐year‐olds.
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2 | MATERIALS AND METHODS

2.1 | Study population

Participants were part of the Child Health CheckPoint (Clifford

et al., 2019), a cross‐sectional physical health and biomarker module,

that was embedded within the population‐based Longitudinal Study

of Australian Children (LSAC) (Edwards, 2014). The LSAC and

CheckPoint studies are described in detail elsewhere (Clifford

et al., 2019; Edwards, 2014). In 2004, a two‐stage cluster randomized

design was used to recruit a nationally representative cohort of 5107

infants (B cohort) to LSAC. Children and families enroled in LSAC are

followed biennially with 6 data collection waves completed up until

2015 (73.7% retention rate). CheckPoint data collection took place

from February 2015 to March 2016 between LSAC's sixth and sev-

enth waves when B cohort children were 11–12‐years‐old. Written

informed consent for LSAC was provided by the child's parent/

guardian. At the beginning of wave 6, families provided written

consent to be contacted by the CheckPoint team to undertake

additional testing.

From December 2014, consenting families were invited to attend

either a main assessment center, mini assessment center or home

visit. Details of each assessment center and measures conducted are

in the CheckPoint Data User Guide (Clifford et al., 2018). Since bone

measures were only taken at the main assessment center, only par-

ticipants who attended the main assessment center were eligible for

inclusion in this study. Study data were collected and managed using

Research Electronic Data Capture (REDCap) electronic data capture

tools (Harris et al., 2009, 2019) hosted at the Murdoch Children's

Research Institute.

2.2 | Anthropometric measures

Anthropometric measures were conducted in line with previous

methods (Marfell‐Jones et al., 2006). Standing height was measured

(to the nearest 0.1 cm) using a portable stadiometer (Model IP0955,

Invicta) with the head in the Frankfort plane and shoes and socks

removed. Two measures were taken and if these differed by >0.5 cm,

a third was conducted. The average of the two closest measurements

was reported. Weight was measured once (to the nearest 0.1 kg)

using four‐limb bioelectrical impendence analysis scales (InBody230

scales; InBody Co Ltd.). Children wore light clothing, removed shoes

and socks and held the two horizontal handles whilst standing on the

scales. Body mass index (kg/m2) was calculated using weight (kg)/

height (m)2.

2.3 | Pubertal assessment

Pubertal status was self‐reported using the Pubertal Development

Scale (PDS; Petersen et al., 1988), and participants were assigned to

pre‐, early, mid‐, late and post‐pubertal categories. The PDS is a

validated, reliable method of assessing pubertal status (Brooksgunn

et al., 1987; Petersen et al., 1988) and asks questions relating to

growth spurt in height and changes in body hair and skin in both

males and females, along with sex‐specific questions regarding

deepening of voice and facial hair in males and breast growth and

menarche in females.

2.4 | Socioeconomic status

Socio‐economic status was assessed using The Australian Bureau of

Statistics' Socio‐economic Indicators for Areas (SEIFA) 2011 Index of

Relative Socio‐economic Disadvantage Score (Statistics ABo, 2011).

This census‐based measure was determined from each participant's

postcode and considers household education level, income, employ-

ment status and disability. A higher score indicates greater advan-

tage. The populations mean score for Australia is 1000 with an

standard deviation (SD) of 100.

2.5 | Bone health assessment

One of the three licensed research assistants performed a peripheral

quantitative computed tomography (pQCT) scan of the non‐dominant

distal tibia (dominance classified as the leg preferentially used to kick

a ball) using a single Stratec XCT 2000L pQCT scanner (Medi-

zintechnik); methods and descriptive values have been reported

elsewhere (Vlok et al., 2019). Participants were allocated 7 min for

one scout scan and two research scans of the lower leg at the relative

distances of 4% and 66%, respectively. Quality control was measured

daily using a standard phantom (XCT2000L, 0.370 1/cm) and

every 30 days using a cone phantom. A standard measuring tape was

used to manually assess tibial length. This was defined as the distance

between the superior edge of the medial malleolus and the medial

edge of the tibial plateau (Moyer‐Mileur et al., 2008) and was iden-

tified through palpation and marked with a pen. Seated participants

then extended their non‐dominant leg through the scanner gantry

and their foot (shoeless) was secured to the pQCT footrest. As the

scanner gantry was only 14 cm in diameter, participants with

larger calves had scans at the 4% site only. A scout scan identified the

distal epiphyseal plate and allowed placement of a reference line at

its proximal edge. The 4% (ankle) and 66% (shin) sites of the

tibia were then identified by the researcher using this reference line

in relation to limb length. One tomographic image was taken at

each site (scan speed 20 mm/s, slice thickness 2.4 mm, and voxel

size 0.4 mm).

Using Stratec XCT 2000 software (version 6.20C), one of two

trained research assistants reviewed the regions of interest around

the total image at the 4% and 66% sites and adjusted where neces-

sary. The MACRO analysis function was then used to generate bone

measures with near perfect inter‐rater agreement (ICC >0.99). At

the 4% distal cross‐section, trabecular bone mineral density (BMD;

mg/cm3) was calculated using a threshold of 169.0 mg/cm3, peel and

EUROPEAN JOURNAL OF SPORT SCIENCE - 3
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contour modes: 1 and a trabecular area of 45% (Biggin et al., 2013).

At the 66% proximal cross‐section, cortical BMD (mg/cm3), endosteal

circumference (mm) and periosteal circumference (mm) were calcu-

lated using a threshold of 710 g/cm3, contour mode: 1 and peel and

cortical modes: 2 (Farr et al., 2011; Sherk et al., 2012). The polar

stress‐strain index (SSI; mm3) was calculated at the 66% site from

geometry and density measures (threshold = 480.0 mg/cm3, peel and

contour modes = 1 and filter = F01 (Brookes et al., 2015)). Muscle

cross‐sectional area (MCSA) was calculated by subtracting the CSA

of bone from the combined muscle and bone CSA (threshold 50–

540 mg/cm³, contour mode: 3, peel mode: 1 and filter: F03F05

(Brookes et al., 2015; Sherk et al., 2012)). Each scan was reviewed

and using methods similar to Blew et al. (2014) given a quality score

of 1 (best) to 5 (worst) based on image resolution, presence of motion

artifacts and a clearly definable region of interest. Images were

excluded if they were graded 4 or 5 and had motion artifact that

affected the region of interest (inner 45% of trabecular bone in 4%

scans or cortical bone in 66% scans).

2.6 | PA monitoring and data processing

At the end of the visit, participants were given a wrist‐worn triaxial

GENEActiv accelerometer (dynamic range �8 g, where g = the value

of gravity (9.81 m/s2); Activinsights Ltd.); methods and descriptive

values have been reported elsewhere (Fraysse et al., 2019). Monitors

were configured using the GENEActiv PC software (version 2.9) to

capture and store raw acceleration at 50 Hz for 14 days. Participants

were instructed to wear the accelerometer on the non‐dominant

wrist continuously for 8 days (wear started on the day of the visit,

but recording did not begin until midnight), removing only for pro-

longed water immersion (swimming and bath) or sports where they

were not permitted. Devices were returned in a pre‐paid postal

envelope.

Data were downloaded (GENEActiv PC software; version 2.9

Activinsights Ltd.) and saved in raw format as .bin files. The open‐
source R‐package GGIR Version 1.9‐0 in R (http://cran.r‐project.

org) (van Hees et al., 2013, 2014) was used to analyze accelerometer

files. Processing of accelerometer data in GGIR involves autocali-

bration using local gravity as a reference (van Hees et al., 2014),

detection of sustained abnormally high values, non‐wear detection

and calculation of the average magnitude of dynamic acceleration

corrected for gravity (Euclidean Norm minus 1 g; ENMO) (van Hees

et al., 2013). ENMO values were averaged over 1‐s epochs and

expressed in milli‐gravitational units (mg). To ensure any activity

registered due to movement during travel/postage was not treated

as meaningful activity, the GGIR script was restricted to 7 days to

cover the main wear period. Accelerometer files that had a post‐
calibration error >0.01 mg or less than 4 valid days wear (3 week-

days and 1 weekend day) were excluded. A valid day was defined as

≥16 h of wear during a 24‐h period (Rowlands et al., 2016). Non‐
wear was identified when the SD of at least two of the three axes

was <13 mg, and the value range was <50 mg assessed over 60 min

windows with a 15‐min sliding window (da Silva et al., 2014). By

default, when non‐wear was detected, invalid data were imputed by

average data at similar time points from other days (described in

detail elsewhere (van Hees et al., 2013)).

To avoid the application of any cut‐points to ENMO a priori, the

time (minutes) accumulated in bins defined by incremental acceler-

ation thresholds (10 mg increments from 0 to 50 mg; 50 mg in-

crements from 50 to 3000 mg, for example, 50–99.99, 100–149.99,

150–199.99, … 3000 and in a single large bin from 3000 to 8000 mg

(occurrence of time accumulated >3000 mg was rare)) was calcu-

lated for each day and averaged across all valid days. Time spent in

each incremental acceleration bin for this “average day” was used to

compile PA predictor variables of interest and respective covariates

to assess associations with bone outcomes. Acceleration ranges

representing a variety of activities were used to provide context and

aid in the interpretation of activities that the most strongly asso-

ciated intensity may represent (described previously in Rowlands

et al. (2019)). Representative activities included walking (slow:

~3 km/h, 100–200 mg; brisk: ~5 km/h, >200–350 mg and fast:

~6.5 km/h, >350–500 mg), running (slow: ~8 km/h, >500–1000 mg;

medium: ~10 km/h, >1000–1500 mg and fast: ~15 km/h, >1500–

2000 mg) and sprinting/jumping (>2000 mg) (Rowlands et al., 2019).

For comparison, published thresholds for MVPA and VPA for chil-

dren range from 200–250 and 700–750 mg, respectively (Hilde-

brand et al., 2014; Phillips et al., 2013). To give value to short

amounts of high‐intensity activity that are important for osteo-

genesis, a volume acceleration metric was also calculated from in-

tensity and duration. The time in minutes in each 50 mg bin was

multiplied by the average intensity of that bin (e.g., 725 mg was the

average intensity for the 700–750 mg bin) to approximate the

volume of each bin in mg minutes (Stiles et al., 2018). The bins were

then summed to create a total volume variable for each threshold

analyzed.

2.7 | Statistical analyses

Descriptive statistics were calculated for anthropometric, bone and

PA variables using mean (SD). Independent t‐tests were conducted to

identify sex differences in anthropometric and bone variables. To

identify the PA intensity most strongly and consistently associated

with bone outcomes, the associations between each bone variable

and the time spent above each incremental PA intensity threshold

was examined using multiple linear regression. For each bone

outcome, we ran 19 separate regression models each with a different

PA intensity threshold. Each of these models was compared to the

“covariate‐only” model, and the corresponding R2 change and p‐
values were recorded. The 19 intensity thresholds that we tested

separately were >200, >250, >300, >350, >400, >450, >500, >550,

>600, >650, >700, >750, >800, >850, >900, >950, >1000, >1500,

and >3000 mg (designed to include accelerations that are typical of

4 - BRAILEY ET AL.
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walking, through to sprinting and jumping in children (Rowlands

et al., 2019)). This was done for each of the 5 bone outcomes to

examine how the strength of associations (R2 changes) varied be-

tween thresholds and to use these to identify the point at which the

association between a threshold of acceleration was consistently the

strongest across all 5 bone outcomes. The optimal intensity was

determined by the magnitude of the mean R2 change (calculated from

the R2 change for each bone outcome per intensity increment), the

SD of the R2 changes across all 5 bone outcomes per intensity

increment, and on the number of bone outcomes that were signifi-

cantly associated with each intensity increment.

Model 1 consisted of all potential covariates: age, sex, height,

weight, pubertal status, SEIFA index and MCSA, which were selected

a priori based on evidence of their influence on both PA and bone

during growth (Cooper et al., 2015; Osborn et al., 2018; Weaver

et al., 2016), and PA below the intensity of interest (e.g., 40–199 mg

when intensity of interest >200 mg). Activity <40 mg was omitted to

avoid multicollinearity and because PA <40 mg was considered non‐
meaningful for bone outcomes (Osborn et al., 2018). When investi-

gating higher intensities (e.g., >700 mg), PA covariates below the

intensity of interest were split into smaller categories (e.g., activity

classed as MPA (200–699 mg (Hildebrand et al., 2014; Phillips

et al., 2013)) was divided into 200–399 mg and 400–699 mg) to ac-

count for activity at the lower or higher end of this category that may

differ in impact magnitude and osteogenic potential. Model 2

included all variables entered in Model 1 with the addition of the

intensity threshold of interest (e.g., >200 mg or >250 mg etc.). As

there were no significant interactions of PA with maturity or sex,

model coefficients are presented for boys and girls and all maturity

groups combined. Residual plots were inspected for normality, line-

arity and homoscedasticity, and the variance inflation factor was

used to assess whether there was any collinearity with the variable of

interest. We did not adjust for multiple testing as we were not testing

multiple PA variables, we were testing the same PA variable in each

model just with different thresholds. The purpose was not to identify

which PA variables were statistically significant and which were not

but to record the magnitude of association (R2 change) for each

threshold and visually inspect a plot to identify the “optimal”

threshold (akin to Receiver Operating Characteristic curve analyses

where the true positive/false positive rate is recorded and plotted for

each threshold on the classification scale in order). All analyses were

conducted in IBM SPSS Version 27 (IBM).

3 | RESULTS

3.1 | Participant characteristics

Of the 3764 children that participated in wave 6 of LSAC, 1874

attended the Child Health CheckPoint. Of those attending main

assessment centers (n = 1356), 967 children had full or partial pQCT

data (93% full and 7% partial) and raw acceleration files. A further

197 participants were excluded due to lack of covariate data (PDS

and MCSA), poor bone image quality (graded 4 or 5), failure to meet

the accelerometer wear criteria of 16 h/day for 4 days (3 weekdays

and 1 weekend day) or due to acceleration files having a post‐
calibration error >0.01 g. A total of 770 children (382 boys) were

included in the final sample. Participant flow and reasons for exclu-

sion are detailed in Figure 1. Participants in the present study had

similar descriptive characteristics to those in the Child Health

CheckPoint who did not satisfy the study inclusion criteria (n = 918;

484 boys). Girls in the present study were significantly taller than

boys (p = 0.04) and had significantly higher cortical and trabecular

BMD (p < 0.001 and p = 0.008) but significantly lower endosteal and

periosteal circumferences (p < 0.001 and p = 0.006). Girls were also

at a more advanced pubertal stage than boys with a lower proportion

categorized as pre‐pubertal (5.4% vs. 16.5%) and higher proportion

categorized as late/post pubertal (21.4% vs. 3.7%). Descriptive

characteristics are presented in Table 1.

F I G U R E 1 Participant flow chart. CSA, cross‐sectional area;
LSAC, Longitudinal Study of Australian Children (Gray et al., 2005).

EUROPEAN JOURNAL OF SPORT SCIENCE - 5
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3.2 | Associations between bone outcomes and
time spent above incremental intensity thresholds

All assumptions for the regression analyses were met. The mean R2

change across all 5 bone outcomes, the number of outcomes that

were significant from the regression analyses and the respective time

spent above each 50 mg intensity increment are displayed in Figure 2.

As the PA intensity threshold of interest increased in 50 mg in-

crements from >200 to >700 mg, there was a gradual increase in

mean R2 change across the five bone outcomes. For example, when

adding PA >200 mg or >500 mg or >700 mg to the covariate model,

the mean R2 change was 0.54%, 0.58% and 0.92% with 3/5, 4/5 and

5/5 of the bone outcomes being p < 0.05, respectively. Further in-

cremental increases in PA intensity thresholds from this point

resulted in a reduction in overall mean R2 change and associations

became non‐significant for all bone outcomes from >1500 mg (mean

R2 change = 0.10%, p = 0.1–0.9; Figure 2). The R2 change, unstan-

dardized beta coefficients and associated p values for each bone

outcome and PA >700 mg are presented in Table 2. The >700 mg

threshold was associated with higher (i.e., better) trabecular BMD,

bigger endosteal and periosteal circumference (bone size) and higher

polar SSI (torsional strength). However, a negative relationship was

identified with cortical BMD (unstandardized beta = −1.3, p = 0.001;

Table 2.). As a sensitivity analysis, the regression analyses were

repeated without including any PA covariates below the threshold of

interest and with all PA below the intensity of interest collapsed into

one covariate. Results followed the same pattern with PA >700 mg

still having a larger overall mean R2 change compared to the other PA

intensities examined. Due to some sports not permitting acceler-

ometer wear, sensitivity analyses removing those reporting more

than on average 20, 30, and 60 min/d in sport (n = 562, 500 and 328,

respectively) were conducted. Results followed the same pattern as

the whole sample findings with the >700 mg threshold achieving the

highest overall mean R2 change. The mean time spent in activity

>700 mg was 10.87 min/day.

Associations with PA became non‐significant for all bone out-

comes from >1500 mg onwards. The study sample spent 3.28 (�2.83)

minutes/day engaged in PA above this intensity. Further regression

analyses were performed for each bone outcome and time spent

between 700 and 1500 mg to determine whether the removal of non‐
bone associated PA (e.g., due to clapping or other rapid hand

movements) improved the strength of associations observed.

Removing activity >1500 mg led to a slight increase in mean R2

change for activity between 700 and 1500 mg (0.92%–1.04%;

Table 2). Like >700 mg, activity between 700 and 1500 mg was

associated with better trabecular BMD, bone size and bone strength

(Table 2). The mean time spent in activity between 700 and 1500 mg

was 7.61 (�4.59) minutes per day. Results for the volume analyses

T A B L E 1 Descriptive characteristics and peripheral quantitative computed tomography bone outcomes.

All (n = 770) Boys (n = 382) Girls (n = 388)

Age (years) 11.9 (0.4) 11.9 (0.4) 11.9 (0.4)

Body height (cm) 153.1 (7.9) 152.5 (8.0)a 153.7 (7.9)

Body mass (kg) 44.8 (10.3) 44.2 (10.6) 45.4 (10.0)

BMI (kg/m2) 19.0 (3.4) 18.9 (3.5) 19.1 (3.2)

Puberty N [%]

Pre‐pubertal 84 [10.9] 63 [16.5] 21 [5.4]

Early/mid‐pubertal 589 [76.5] 305 [79.9] 284 [73.2]

Late/post‐pubertal 97 [12.6] 14 [3.7] 83 [21.4]

Disadvantage (SEIFA) 1028 (60) 1030 (60) 1027 (61)

Bone and muscle measurements from pQCT

Cortical BMD (mg/cm³)b 1018.9 (37.4) 1010.5 (35.7)a 1027.1 (37.2)

Trabecular BMD (mg/cm³)c 197.7 (25.9) 195.2 (23.4)a 200.2 (27.8)

Endosteal circumference (mm)b 61.9 (8.3) 63.0 (8.4)a 60.9 (8.1)

Periosteal circumference (mm)b 81.2 (7.2) 81.9 (7.5)a 80.5 (6.9)

Polar stress‐strain index (mm³)b 1700 (387) 1709 (396) 1692 (378)

Muscle CSA (mm2)b 4362 (704) 4313 (725) 4410 (682)

Note: Values are presented as mean (SD) unless otherwise indicated.

Abbreviations: BMD, volumetric bone mineral density; BMI, body mass index; pQCT, peripheral quantitative computed tomography; SEIFA,

Socio‐Economic Indexes for Areas (national average = 1000 and SD = 100).
aA significant difference between boys and girls, p < 0.05.
bn = 770.
cn = 762.
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F I G U R E 2 Mean R2 change (%) (bar chart, error bars = standard deviation [SD]) for model 2 for all 5 bone outcomes (cortical density,

trabecular density, endosteal circumference, periosteal circumference and polar stress‐strain index) from regression analyses with each 50 mg
physical activity (PA) intensity increment from >200 to >1000 mg and for >1500 and >3000 mg intensities (model 1 adjusted for age, sex,
height, weight, pubertal status, Socio‐economic Indicators for Areas index, muscle cross‐sectional area and PA intensities below the threshold

of interest (from 40 mg onwards)). Model 2 = model 1 þ PA intensity of interest. The line graph demonstrates the number of bone outcomes
(out of 5) that were significantly associated with each intensity. The mean (SD) minutes/day for the whole sample as well as the number of PA
covariates used in analyses for each intensity are presented below the chart. PA covariates used: 1 = 40 mg—intensity of interest; 2 = 40–
199 mg þ 200 mg—intensity of interest; 3 = 40–199 mg, 200–399 mg þ 400 mg—intensity of interest and 4 = 40–199 mg, 200–399 mg, 400–

699 mg þ 700 mg—intensity of interest.

T A B L E 2 R2 change, unstandardized beta coefficients and p values from multiple linear regression analyses.

Bone outcome

>700 mg 700–1500 mg

∆R2 (%) B p ∆R2 (%) B p

Cortical densitya 1.3 −1.3 0.001 1.4 −2.7 <0.001

Trabecular densityb 1.1 0.8 0.001 0.8 1.4 0.006

Endosteal circumferencea 0.6 0.2 0.020 1.0 0.5 0.002

Periosteal circumferencea 0.9 0.2 0.001 1.2 0.5 <0.001

Polar SSIa 0.7 9.7 <0.001 0.8 20.0 <0.001

Mean � SD R2 change 0.92 � 0.29 1.04 � 0.26

Note: ∆R2 (%) represents the change in R2 from model 1 to model 2 when >700 mg or 700–1500 mg activity intensities are added. B = unstandardized

beta. Model 1 is adjusted for age, sex, height, weight, pubertal status, SEIFA index, muscle cross‐sectional area and PA below 700 mg (meaningful

activity from 40 mg onwards). Model 2 contains all the variables entered into Model 1 with the addition of PA intensity >700 mg or 700–1500 mg.
Model 1 R2 = 11.6%, 20.7%, 20.9%, 44.6% and 64.0% for cortical density, trabecular density, endosteal circumference, periosteal circumference and

polar SSI, respectively (all p's < 0.001).

Abbreviations: BMD, bone mineral density; PA, physical activity; SEIFA, Socio‐economic Indicators for Areas 2011 Index of Relative Socio‐economic

Disadvantage.
an = 770.
bn = 762.
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(which gives value to short but meaningful amounts of high‐intensity

activity) followed the same pattern as the analyses for the time spent

in each intensity threshold (data not shown) and did not reveal any

additional information regarding associations between bone out-

comes and short bursts of high‐intensity activity. The analyses con-

ducted on time spent are presented as they lend themselves to easier

interpretation.

4 | DISCUSSION

Using open‐source software and applying an outcome‐specific

approach to the processing and analysis of wrist‐worn raw accel-

erometry data, this study has demonstrated that PA >700 mg was

positively and most strongly associated with pQCT‐derived measures

of bone density, geometry and strength in a large sample of 11–12‐
year‐olds. The use of 1‐s epochs (the shortest epoch currently used in

PA research) reduces the risk of misclassifying short, sporadic bursts

of high‐impact activity (Aadland et al., 2020) and investigating as-

sociations with incremental 50 mg intensity thresholds (rather than

applying traditional intensity cut‐points a priori) enabled a bone‐
specific, beneficial intensity to be identified in this sample. Unlike

more traditional approaches, the methods outlined provide a means

for more precisely assessing free‐living, bone‐relevant PA and use

open‐source software that permits the transparent and reproducible

analysis of raw accelerometry data (Migueles et al., 2019), which will

enhance the ability to quantify dose‐response associations in the

future (Rowlands et al., 2018).

The beneficial intensity of >700 mg identified in the present

study is equivalent to the VPA threshold identified in calibration

studies using wrist‐worn raw accelerometry in children (Hildebrand

et al., 2014; Phillips et al., 2013). Several previous cross‐sectional

studies have also reported that accelerometer‐derived VPA is most

strongly associated with bone outcomes in comparison to other pre‐
defined PA intensities (e.g., MPA and MVPA) (Brailey et al., 2022).

However, variability in the accelerometry methods used, particularly

in the numerous cut‐point definitions employed and averaging of

count‐based outputs over long epochs, heavily influences the PA data

obtained (Bornstein et al., 2011; Nilsson et al., 2002; Routen

et al., 2012), precluding comparisons between studies and preventing

more precise amounts and intensities (and types of activity these

likely represent) from being identified. Processing the data in smaller

50 mg intensity increments instead of pre‐defined intensity thresh-

olds enabled a bone‐relevant intensity to be identified and using

reference acceleration ranges to translate findings post‐hoc helped

to provide context and an interpretable health message (Row-

lands, 2018). In the present sample, the strongest associations with

bone outcomes came from activity between 700 and 1500 mg, which

has been shown to represent running at around 10 km/h in children

and adolescents (Hildebrand et al., 2014; Phillips et al., 2013; Row-

lands et al., 2019). To our knowledge, there are no other studies that

have used raw acceleration averaged over 1‐s epochs to identify a

bone‐specific intensity of PA in this population. However, in support

of our findings, Deere and colleagues (Deere et al., 2012) assessed

the number of impacts per day across a range of impact intensities

from raw acceleration and found that impacts >4.2 g, which were

also shown to approximate running at ~10 km/h, were positively

associated with hip BMD in older adolescents. Medium‐paced

running is a simple, accessible activity that can be easily incorpo-

rated into activities of daily living and may therefore be a realistic

and achievable option that can be promoted to improve bone health

in this population.

In the present study, no significant associations were identified

with activity >1500 mg. Acceleration values of >1500–2000 mg

pertain to faster running (~15 km/h) and >2000 mg to sprinting and

jumping in children and adolescents (Rowlands et al., 2019). The lack

of significant associations from >1500 mg is surprising as the oste-

ogenic benefits of high‐impact jumping activities have consistently

been demonstrated (Behringer et al., 2014). The mean time spent in

activity >1500 mg was 3.3 min/day and 80%, 59% and 43% of the

sample achieved at least 1, 2 or 3 min/day in this range. Therefore,

the lack of association is unlikely due to a lack of statistical power.

Instead, it is likely a result of little jumping activity occurring and the

wrist‐worn accelerometer capturing non‐bone associated activities

involving rapid hand movements but little body movement (e.g., from

interactive computer games and clapping) rather than sporadically

performed osteogenic activities, such as jumping. This is further

supported by the fact that the incremental analysis using volume

variables (which give more value to brief periods of high acceleration

magnitudes) did not reveal any significant associations with higher

acceleration magnitudes. However, a reliance on calibration studies

to infer activity type means we cannot be certain about the activity

that contributed to the time spent >1500 mg and why no significant

associations were identified.

Counter to other observations in this study, PA was negatively

associated with cortical BMD. This has previously been reported in

the same cohort using compositional (Dumuid et al., 2020) and non‐
compositional (Osborn et al., 2018) analyses of MVPA and is likely

due to the accelerated rate of remodeling that occurs around peak

growth (Parfitt, 1994) and in response to mechanical loading from PA

(Liu et al., 2003), which causes a transitory reduction in cortical BMD

(Parfitt, 1994). When subjected to mechanical loads, bone improves

its mechanical competence through geometric adaptations (increases

in size) at the expense of density to ensure that the resulting struc-

ture is as strong as possible with an economic amount of material (Liu

et al., 2003). This supports our findings of greater periosteal

circumference and bone strength with increased PA despite reduced

cortical density.

The methods outlined in the present study provide a simple,

accessible way of assessing free‐living bone‐relevant PA. The open‐
source software used (GGIR) can be operated without significant

prior programing expertize and can be easily applied to large data-

sets. Further, using demographic‐specific acceleration ranges to

translate findings rather than imposing pre‐defined cut‐points a‐
priori helps to maintain comparability of findings and facilitate the

development of interpretable health messages (Rowlands, 2018).

8 - BRAILEY ET AL.
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Nonetheless, these methods are still limited by the fact that they are

unable to obtain information regarding activity type and continue to

underutilize the richness of the raw signal by aggregating the data

into epochs. However, more sophisticated approaches to character-

izing PA behavior require complex analytical processes and in the

short‐term, are unlikely to take the place of these approaches.

This study is also limited by the cross‐sectional design, which

means it may be susceptible to reverse causality. Moreover, whilst

several important confounders were controlled for, it was not

possible to include information on nutrition, medical conditions or

medication, all of which may impact bone. The removal of acceler-

ometers for certain sports may have also impacted the PA data ob-

tained; however, sensitivity analyses removing those reporting more

than on average 20, 30 or 60 min/d sport demonstrated that

>700 mg was still most strongly associated with bone outcomes, and

the impact on results was likely minimal. To provide context to the

optimal intensity, activity type was inferred from calibration studies,

which include a limited range of activities (e.g., sitting, standing,

walking and running at different speeds) and may not represent all of

the activities being performed in this intensity range. However,

sitting, standing and dynamic physical activities, such as walking and

running, make up the majority of waking hours in most people and

therefore, contribute to a large portion of daily activity (de Almeida

Mendes et al., 2018; Hildebrand et al., 2014).

Whilst 1‐s epochs identify a higher proportion of the sporadic,

high‐intensity activity performed by children and adolescents (Aad-

land et al., 2020), activities, such as jumping, occur over a much

shorter time frame. Therefore, the averaging of raw data over 1‐s
epochs may still underestimate the existence and intensity of these

important osteogenic activities. This underestimation may have also

been why associations were non‐significant >1500 mg. Whilst the

use of raw acceleration to monitor impact peaks in relation to bone

has been demonstrated at the hip (Haapala et al., 2022), future

research should investigate whether it is possible to use this

approach with wrist‐worn devices, which are less burdensome and

have significantly greater wear compliance (Fairclough et al., 2016).

The osteogenic indices obtained from analyzing raw data in this way

are also not immediately interpretable, making it difficult to translate

study findings into an understandable health message. Therefore, raw

acceleration calibration studies are also needed to obtain reference

acceleration ranges for impact loading and enable translation of

findings from studies using this approach. Since changes in height,

body composition and movement patterns that occur during matu-

ration can impact accelerometer output (Welk, 2005), raw accelera-

tion calibration studies should also consider whether maturation

impacts the acceleration values obtained for a number of activities,

and whether maturity‐specific acceleration values should be applied

when translating study findings. Whatever future approaches might

be employed to analyze raw data, an ability to either translate raw

acceleration peaks via calibration studies into meaningful information

regarding activity type or make an adjustment for differences in

sample population when using algorithms designed to recognize ac-

tivity type will likely be necessary.

4.1 | Conclusions

To conclude, using a more precise, outcome‐specific approach to

process and analyze wrist‐worn activity data, we found that ~10 min/

day of activity >700 mg (an intensity equivalent to running ~10 km/h)

(Rowlands et al., 2019) is associated with better bone density,

geometry and strength in a population‐based sample of 11–12‐year‐
olds. The methods outlined can be easily replicated using open‐source

software, enabling associations between PA and bone outcomes to be

examined and compared in other samples, which has not been

possible with commonly used accelerometry methods. Greater

comparability of study findings will help to significantly advance

understanding of the PA‐bone dose‐response relationship, which in

turn, will enable the provision of clear guidance to parents, schools

and policy‐makers as to the most time‐economic recommendations

for PA to benefit bone health in children at this critical prevention

juncture in the course of life.
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