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Abstract 
In this paper the response of fibre reinforced concrete with main re

inforcement in pure tension is considered. Test results are presented 

showing three distinct regimes: a regime of linear elasticity, a regime of 

yielding at approximately constant stress, and finally, a regime of strain 

hardening. A simple model of the response of a tension mernher with 

main reinforcement and a partially opened crack is presented, and the 

infiuence of ditferen t shapes of the crack opening relation is studied. The 

case of a parabolic crack opening relation defines a brittleness number 

that describes the transition from discrete cracking to multiple cracking. 

It is shown, that if the crack opening relation is assumed to consist of 

a brittie contribution from the cement paste, and a more duetile contri

bution from the pull-out of the fibres, a plastic regime will be present 

in the tensile response. The fracture process is deseribed from the un

cracked state and formation of the first crack til the final stage where a 

large number of cracks have developed and the failure load is reached. 

The model is compared with experiments, and resonable aggreement is 

achieved. 

l. Introduetion 

During the last decade, very strong concrete materiais have been developed. Using low 

water-to-cement ratios, and densifying the material using small particles like microsilica 

- the so-called DSP concept - it is possible to make concretes with a compressive strength 

araund 150 MPa. 

The main problem using these new materiais is their brittleness, i.e. their Jimited re

sistance to crack formation and crack extension. Thus, for structures built with these 
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new high strength concretes, cracks might be a more serious problem than for normal 
strength concrete. In same cases, structures built with these materiais might develop 
cracks at unexpected low stress levels, and crack widths in these types of structures 
might be substantially larger, leading to larger sensitivity to environmental influences. 

It has been shown e.g. Bache [1], that it is possible to use the newhigh strength materiais 
in such a way, that the tendency to crack growth is decreased. In faet, by using high 
valurne fractions of fibres combined with traditional reinforcement it is possible to obtain 
a ductility and a resistance to crack growth that is much larger than for normal strength 

concrete. 

In practice, however, situations might arise where the u se of a high strengt h concrete 
is needed, but where it is not the objective to use high valurne fibre fractions, but just 
to add enough fibres to adjust the ductility of the high strength concrete, so that crack 
development and crack width might be controlled. 

In this paper it is shown that if moderate fibre fractions are used, the tensile response of 
the material reinforced with main reinforcement might be dominated by initial yielding 
caused by formation of discrete cracks at a relatively low stress level. The plastic strains 
developed at this stage in the fracture process, might be large compared to elastic strains 
and plastic strains developed during later strain hardening. 

In the literature many models have been proposed describing the cracking and the tensile 
response of concrete mernhers with main reinforcement [5-10]. In most cases however, the 
models do not take into account the shape of the crack opening relation, or the models do 
not inelude debonding between reinforcement and matrix material. Same models inelude 
both effects , e.g. Stang and Aarre [5], but in this case, themodel is relatively complicated 
taking into account other effects such as elastic shear in the concrete and influence of the 
Paisson ratio. 

The idea of the work presented here, is to formulate the simplest possible model taking 
into account debonding as well as the shape of the crack opening relation. The model 
follows the basic ideas presented in the elassical paper by Aveston, Cooper and Kelly, 
[10], but as an extension of the Aveston model, a partially opened crack is considered. 
The model provides a simple basis for analysing the uniaxial response of a fibre rein
forced specimen with main reinforcement. The model gives the solution to the strain 
contribution due to partially opening cracks, and it provides a direct way of analysing 
the infl uence of the crack opening relation o n the crack development process. 

For the case where the crack opening relation is parabolic, the modelleads to a brittleness 
number describing the transition from multiple cracking to formation of larger discrete 
cracks. For cases where the crack opening relation gets a large contribution from the 
DSP sub-matrix active only for very small crack openings, the model predicts the above 
mentianed initial yielding. A simple analytical expression is given for plastic strain 
developing during initial yielding. 

The model is compared to experimental results, and it appears to be able to predict 
observed behaviour qualitatively correct. 
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2. Test results 

The test results presented here, are a part of an extensive programme carried out in co

operation between Michigan University, Ann Arbor, and Aalborg University, Denmark, 
see Al-Shannaq [4]. 

The tension test specimens presented here were made of a fibre reinforced matrix rein
forced with threaded bars. The matrix material was a relatively brittie cement-based 

sub-matrix reinforced with 6 mm steel fibres, fibre valurne fractions vf = 3 % and 
Vf = 6 %. The main reinforcement was varied over the reinforcement ratios <.p = l %, 
<.p = 3 %, and <.p = 5 %, l % corresponding to 2 bars with an outer diameter 3 mm, 3 % 
corresponding to 3 bars with an outer diameter 4 mm, and finally 5 % corresponding to 
5 bars with an outer dimater 4 mm. 

The sub-matrix was a brittle, high strength cement mortar, a so-called DSP mate
rial ( densifled with smal! particles) made of white Portland cement, microsilica, super
plasticizer, and fine quarts sand aggregates, Bache [1], Al-Shannaq [4]. 

It is well known, Bache [1], Tjiptobro & Hansen [2], Hansen et al. [3], that the behaviour 
of a relatively brittie material such as DSP can be substantially modified by adding 
discrete fibres in a suitable valurne fraction Vf > 2 %. The main effect of adding fibres 
is an improved ductility. The tensile strength is usually not affected much. 

The fibres used in this investigation were brass coated steel fibres with a diameter of 0.15 
mm. The tensile strength of the fibres was 2950 MPa. The properties of the interface 
between fibres and the DPS sub-matrix have been studied in detail in Al-Shannaq [4]. 
Tests showed debonding energies in the range lO - 50 N /m, and frietion stresses during 

debonding in the range 4 - 6 MPa. 

The bars used as reinforcement had metric threads, the effective area of the bars Aef = 
0.695Anom' where the nominal areais determined from the outer diameter. The exact 
reinforcement ratios based on the effective areas were 1.09 %, 2.91 % and 4.85 %. The 
failure stress basedon the nominal area was 480 MPa for 3 mm bars, and 450 MPa for 4 
mm bars, and the nominal Young's modulus (based on the outer diameter) was 135000 

MPa. 

The tensile specimens were rectangular piates of size 300 X 75 X 12 mm, figure l.a, the 
cross-section having the area A = 12 X 75 = 900 mm2 . The specimens were tested in 
a servo controlled 40 kN load frame in dispiacement contra!, figure l.b. The strain was 
measured with strain gauges and with two clip gauges with a measurement length of 180 

mm. 

Some typical test results showing stress response to the total strain estimated from the 
clip gauge measurements are shown in figure 2. Pigure 2.b shows_ the :esponse of a DS: 
material with 6 % fibres reinforced with l %, 3 %, and 5 % mam remforcement. As It 
appears, the response is close to the response of a material with linear strain hardening, 
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and there is a smooth transition from the elastic regime to the strain hardening regime. 
Results from similar tests on a DSP material with 3 % fibres are shown in figure 2.a. 
As it appears from the results, in this case, the behaviour is distinctly different. The 
transition from the elastic regime to the strain hardening regime is no longer smooth as 
for the case with 6 % fibres, the transition is gaverned by initial yielding, i.e. befare 
the strain hardening regime starts, an approximately horizontal regime appears in the 
response. As it appears, this initial yielding is present for all reinforcement ratios, but 
the associated plastic strain decreases with increasing reinforcement ratio. 

3. Model of Partially Opened Crack 

A specimen with cross-section area A subjected to uniaxial tension is considered. The 
specimen consists of a matrix reinforced with m continuous reinforcement bars with 
radius r. Thus the reinforcement ratio is t.p = m1rr 2 /A. Since the idea of this model 
is to consider crack development in the case of a relatively tough matrix, the matrix 
itself should be considered as a cement based material (the sub-matrix) reinforced with 
fibres small enough to allow the fibre reinforced material to be treated as a continuum. 
The Young's moduli of the matrix and the reinforcement are Em and En respectively, 

defining the ratio n = Er/ Em. 

For a given uniform strain E, the elastic stresses in the reinforcement and the matrix 

are easily calculated defining the composite stress a = (Ert.p + (1 - t.p )Em)€ and the 
composite Young's modulus E = t.pEr + (1 - t.p )Em. Now, assuming that the matrix is 
the weak p hase with tension strengt h ft, the critical composite stress ( the external stress 
corresponding to beginning failure of the matrix) is found to 

O"c = ((n -1)t.p + 1)ft) (1) 

At t his state, the reinforcement stress is a r = nft, t hus the force in the reinforcement is 

Fe = nftt.pA. 

Now, let us assume, that a crack starts opening uniformly over the cross-section, and 
let the matrix material have a certain crack opening response curve, figure 4. The crack 
is assumed to have the crack width w corresponding to the reduction Sm of the matrix 

stress. Thus, the matrix stress in the crack is O"m = ft -sm, and requirering equilibrium, 
the corresponding force in the reinforcement is obtained 

(2) 

The state of stress araund the crack changes when the crack opens. A simple model of the 
stress re-distribution is given by assuming plane deformation and that the reinforcement 
is partially debonding over a zone with debth a, the softening shear stress in the fibre 
matrix interface being constant equal to T f. Now consider a piece of reinforcement araund 
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the crack. At the crack, the force is given by eq. (2), and at the depth a the force is given 
by nftcpA as explained above . Assuming a constant shear stress T f at the interface, the 
length a of the debonding zone is obtained by equilibrium 

a (3) 

Assuming plane deformation in the reinforcement as well as in the matrix material, the 
stress disturbance introduced by the crack will be a linear deviation from the initially 

constant strain field. Thus, the unknown crack opening is easily obtained in terms of 

the stress change Sm by integrating the difference of strain in the reinforcement and the 

matrix 

w 

(4) 

and using eq. (3) the foliowing expression is obtained for the crack opening 

w 
(1- ep+ ncp)(l- cp)r 2 s 

2TfErcp 2 m 
(5) 

The solution is illustrated in tigure 4 showing the relation between the matrix stress and 
the crack opening for the solution given by eq. (5) and the material resistance given by 

the crack opening relation for the matrix material. The model solution is a horizontal 

parabola centred at O" m = ft at the vertical axis. Two cases are shown, one for a relatively 
weak reinforcement, and one for a strong reinforcement. For both cases it is seen that 
since the derivative of the model solution is approaching infinity for w ----+ O, close to the 
vertical axis, the resistance is larger than the model solution. Thus, if no initial cracks 
are present, the state O"m = ft, w = O is stable. However, if the crack has opened to 
a certain degree, so that the resistance becomes Jess than the model solution, the state 
is unstable, and the crack will o pen u neontrolied. Further, i t is noticed, t hat for the 
case with a strong reinforcement , the crack must be forced throught a larger set of stable 
states befare reaching the unstable state. Thus , increasing the amount of reinforcement 
will hel p stabilizing existing cracks as i t would be expected. As i t appears, the same 
effect is achieved by decreasing the radius r of the reinforcement or by increasing the 

frietion stress T f. 
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4. Some Theoretical Solutions 

The simple model proposed in the preceding sections provides a basis for definition of 
a brittleness number Br for the reinforced material. Assume that the crack opening 
relation for the matrix material is parabolic like the model solution, figure 5.a. In this 

case, if and only if the area Gr under the model curve is Jess than the fracture energy 

G f of the matrix, all crack opening states will be stable. Thus, the stability eriterion 
is G r < G f defining the brittleness number B r = G r/G f and the stability eriterion 
Br < l. The defined brittleness number is easily obtained 

(6) 

where Bo= j'frj(EmGf) is the traditional brittleness number for homogenous materi
als, [l] where the reinforcement radius r is used as the characteristic length. 

The value of the brittleness number might be taken as a guideline for the type of crack 

formation in the reinforced material. If Er is well below one, stable cracks are expected 
resulting in a well distributed crack pattern. On the other hand, if Br is well above one, 
unstable cracks are expected to form resulting in formation of larger discrete cracks. 

Sametimes the shape of the crack opening is far from being parabolic, and an analysis 
based on the brittleness number defined above might be misleading. An important case 
is when the matrix is lightly or moderately fibre reinforced. In this case, the first part of 
the crack opening relation is gaverned by crack formation in the cement mortar resulting 
in a sharp peak at the beginning of the crack opening relation . Because of their brittie 
nature, it is difficult to measure these effects experimentally, but the tendency has been 
observed, see e.g. Li et al. [6]. For this case therefore, the crack opening relation is 
idealized as a delta spike at w = O followed by a constant level, figure 5.b. 

Assuming a delta spike with height !:lft, the elongation of the specimen due to forma

tion of the crack is found by taking the contribution Wr to the crack opening from the 
reinforcement only 

1-rp 
Wr = ~a!:lft 

'P r 
(7) 

The finite crack opening caused by the spike, will result in an initial plastic strain !:le at 
the stress equal to the critical composite stress a-c, figure 6. Assuming that the cracks 
form with the distance 2a, where a is given by eq. (3), the initial plastic strain is found 
as 

2a 
(7) 
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Theoretically, the distance beween the cracks is in the range from a to 2a. Thus, the 
expression given above underestimates the plastic strain. 

5. Model Validation 

The simulated responses using the model presented in the preceding sections are shown 
in figure 7. 

The crack opening relations where estimated from the test results fitting a function of 
the form O' = ft/ (1 - (w/ W o )P) as propos ed by Stang and A arre [5]. However, since 
the crack opening dispiacement relations were measured on notehed specimens, and since 
cracks will form at the weakest points along the specimen, the measured crack opening 
stresses should be reduced. Thus, the estimated crack opening relations were reduced 
by a constant factor. Further, since the fibre contribution for the case of 3 % fibres is 
believed to be smaller than the contribution from the DSP sub-matrix for very small 
crack openings, in this case, the crack opening relation was supplied with a delta spike 
at the beginning. Thus, for 3 %fibre reinforcement, the values ft = 10 MPa, 6ft = 3.2 
MPa were used, and for 6 %fibre reinforcement the values ft = 11 MPa, 6ft =O MPa 
were used. The crack opening realtions used in the simulations are shown in figure 8. 
For the shear resistance the value T f = 10 MPa was used. 

The model was slightly modified to take into account higher stress levels than those con
sidered in the presentation of the model. For higher stress levels, the solution presented 
in the preceding sections will introduce stresses in the material between the cracks that 
are larger than the tensile strength. This is acceptable to a certain extent. The first 
cracks will form in areas with low strength, thus, stresses away from the crack might 
be larger than the tensile stress of the material in the crack zone. Thus for composite 
stresses only moderaly larger t han the critical stress O' c, the presented model mig h t be 
an acceptable approximation. For larger stresses, however, the strain contribution due 
to partial failure of the material between the model cracks must be estimated. In this 
investigation, this contribution has been incorporated using a simple piasticity model for 
the matrix material between model cracks. For the matrix material between cracks a 

yield stress of fy = 11 MPa was used for the 3 % fibre case, and fy = 12 MPa for the 
6 % fibre case . 

As i t appears from figure 7, the model is a ble to predict a response qualitative cl ose 
to the response measured in the experiments. The model predicts the right tendencies 
concerning critical stress, initial yielding and strain hardening as well as final failure load. 
However, a eloser examination shows some deviations. First, the model has a tendency 
to underestimate the strains. This is true for the initial plastic strain as well as the 
plastic strain developed during strain hardening. Partlythis might be due to the simple 
assumption that the distance beween cracks is twice the calculated debonding Iength. 
As mentianed earlier , this leads to an underestirnation of the strain contribution due 
to cracking. Further, the final failure loads are overestimated. T his is believed to be 
due to the simple model of the reinforcement response. In the model the reinforcement 
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was modelled as being linear elastic material up to the failure load. This is a rough 
approximation close to failure where yielding and necking might substantially decrease 
the reinforcement stiffness. If the stiffness is decreased in the model, this will lead to 
larger crack widths, and this again willlead to smaller matrix stresses tending to reduce 
the final failure load estimated by the model. 

6. Condusions 

In this paper test results have been presented showing that there is a transition from a 
smooth behaviour when high fibre valurne fractions are used together with main rein
forcemnt to a behaviour with initial yielding- plastic strain development at approximately 
constant stress preceeding the hardening regime- at moderate fibre contents. 

A model has been presented that takes into account the shape of the crack opening 
relation as well as debonding of the reinforcement araund the crack. The model is 
extremely simple, and in its most simple form, it gives a suitable approximation only for 
the material response araund the point of first cracking. For higher streses, the model 
must take into account partial failure of the material between cracks. 

The presented model provides a direct way of analysing the inf!uence of the shape of the 
crack opening relation. Two cases are considered. One case is when the crack opening 
relation is parabolic. For this case, a brittleness number is defined describing the tran
sition from a response without initial yielding dominated only by multiple cracking and 
strain hardening (high fibre valurne fractions) to a response with formation of larger dis
crete cracks (lower fibre valurne fractions). The other case considered is when the initial 
part of the crack opening relation is dominated by the contribution from the sub-matrix. 
Knowing the strength contribution from the sub-matrix and the fibre reinforcement, a 
simple analytical solution provides an estimate of the plastic strains developed during 

initial yielding. 

The model compares well with the experimental results and predicts the right tendencies 
concerning critical stress, initial yielding and strain hardening as well as final failure 
load. However, the model tends to underestimate plastic strains and overestimate the 
final failure load. These deviations might be explained by same of the simplifications 
introduced in the modelling. 
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Figure 6. Estimating the plastic strain due to initial yielding. 6.a: esti
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af the plastic strain due to initial yielding . 
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Figure 7. Response in uniaxial tension simulated by the presented model. 

7.a: responsefor 3 %fibres, 7.b: responsefor 6 %fibres. 
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