
              

City, University of London Institutional Repository

Citation: Chekakta, Z., Zenati, A., Aouf, N. & Dubois-Matra, O. (2022). Robust deep 

learning LiDAR-based pose estimation for autonomous space landers. Acta Astronautica, 
201, pp. 59-74. doi: 10.1016/j.actaastro.2022.08.049 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/32877/

Link to published version: https://doi.org/10.1016/j.actaastro.2022.08.049

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Robust Deep Learning LiDAR-based Pose Estimation for
Autonomous Space Landers
Zakaria Chekaktaa, Abdelhafid Zenatia, Nabil Aoufa and Olivier Dubois-Matrab

aCity, University of London, London, EC1V 0HB, United Kingdom
b European Space Agency, 2200 AG, Noordwijk ZH, The Netherlands

A R T I C L E I N F O
Keywords:
Space Landing Operations
Robotics
Deep Neural Network
Relative Pose Estimation
LiDAR Navigation

A B S T R A C T
Accurate relative pose estimation of a spacecraft during space landing operation is critical to
ensure a safe and successful landing. This paper presents a 3D Light Detection and Ranging
(LiDAR) based AI relative navigation architecture solution for autonomous space landing. The
proposed architecture is based on a hybrid Deep Recurrent Convolutional Neural Network (DR-
CNN) combining a Convolutional Neural Network (CNN) with an Recurrent Neural Network
(RNN) based on a Long-Short Term Memory (LSTM) network. The acquired 3D LiDAR data
is converted into a multi-projected images and feed the DRCNN with depth and other multi-
projected imagery. The CNN module of the architecture allows an efficient representation of
features, and the RNN module, as an LSTM, provides robust navigation motion estimates.
A variety of landing scenarios are considered, simulated and experimented to evaluate the
efficiency of the proposed architecture. A LiDAR based imagery data (Range, Slope, and
Elevation) is initially created using PANGU (Planet and Asteroid Natural Scene Generation
Utility) software and an evaluation of the proposed solution using this data is conducted. Tests
using an instrumented Aerial Robot in Gazebo software to simulate landing scenarios on a
synthetic but representative lunar terrain (3D digital elevation model) is proposed. Finally, real
experiments using a real flying drone equipped with a Velodyne VLP16 3D LiDAR sensor to
generate real 3D scene point clouds while landing on a designed down scaled lunar moon landing
surface are conducted. All the test results achieved show that the suggested architecture is capable
of delivering good 6 Degree of Freedom (DoF) pose precision with a good and reasonable
computation.

1. Introduction
Space missions have demonstrated a crucial need for further research and development activities in autonomous

guidance, navigation, and control systems (GNC). Space research roadmaps indicate that achieving safe and accurate
landing operations is one of the top priorities that requires complex but efficient and robust GNC algorithms operating
with advanced on-board sensors. Indeed, accurate relative navigation is one of the key modules for a safe space
landing, as it allows the lander to approach the targeted landing site with high precision and adapts to inaccuracies
related to winds, turbulence and other uncertainties available in the lander system. Therefore, relative pose estimation
is considered an important topic and an active field of research to achieve autonomous space landing operations.

Relative pose estimation is required in the following space missions: 𝑖) orbital navigation and spacecraft rendezvous
with a target for docking, refuelling or debris removal tasks; 𝑖𝑖) planetary robots exploration and localisation; 𝑖𝑖𝑖)
autonomous landing and terrain navigation, where the space vehicle should be able to estimate its relative position
and attitude using data acquired from on-board sensors. Present relative pose estimation techniques use visual 2D data
from a monocular camera [1, 2] or stereo cameras [3, 4, 5, 6], thermal Infrared (IR) camera 2D data [7], or LiDAR
3D data [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Small and lightweight onboard cameras are now the primary
sensor adopted for autonomous rendezvous and close-proximity operations [20]. In [21], the authors review methods
for spacecraft orbital pose estimation with great details.

While precise autonomous space landing and navigation is always a critical challenge, safety is a crucial factor when
landing a space vehicle on another planet. Future space landers are expected to travel to faraway and scientifically
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interesting planets and will have to land on unknown and rough locations on dangerous terrains and under light
changing conditions. To deal with this challenge, Terrain Relative Navigation (TRN) was developed, as a visual relative
navigation technique, to place the Perseverance Rover and the Ingenuity helicopter safely during landing descent.
TRN takes images, compares them with an on-board orbital map, and then pinpoints safely the lander during descent.
Even though this technique was successful for the Mars 2020 mission, it is dependent on lighting conditions at the
time of acquiring the images required to match images from a passively lit scene [22]. Due to this difficulty, landing
safely and precisely with existing vision-based landing systems has proven to be hard since it requires detailed orbital
reconnaissance, a prior hazard maps, and knowledge of time-of-day restrictions on landing to ensure similar lighting
conditions in orbit and descent. To overcome these challenges, a qualified space 3D LiDAR sensor, which is robust
against change of lighting conditions, can be adopted instead of/or in addition to a typical optical landing sensor suite.

On the other hand, machine learning (ML), specifically deep learning (DL), is becoming increasingly prevalent in
space applications, echoing its unprecedented success on the terrestrial and computer vision fronts. Based on a Digital
terrain Map (DTM) of the lunar surface, the CNN structure proposed in [23] can be trained and deployed to return the
source’s location relative to the DTM. In 2020, the work in [24] investigated the possibility of using the deep network
LunaNet to address the TRN problem and presented a robust strategy for relative pose estimation. LunaNet has therefore
been used to identify craters across a lander trajectory and match them with known features of the lunar. Compared
to a classical image based crater detection approach [25], LunaNet and Extended Kalman Filter (EKF) improve TRN
accuracy and reliability under different lighting conditions. In [26, 27], a comparison study of different learning-based
approaches for terrain classification and recognition is provided. One of those approaches is a CNN-LSTM based
algorithm [28]. In [29] a Deep Neural Network architecture dealing with autonomous lunar landing scenario and based
on raw greyscale images obtained from an on-board camera, is proposed to predict fuel-optimal control actions. In spite
of these new developments, space landing missions generally still adopt more traditional approaches [30, 31]. The next
two sub-sections present related works on AI- based and LiDAR-based navigation techniques for orbital scenarios and
for the Entry, Descent and Landing (EDL) phase scenarios, respectively.
1.1. Orbital navigation

Space navigation based on deep learning has been the subject of several previous studies. In [32], the authors
demonstrate how ML can be applied to space data, and demonstrated the use of deep learning on-device to improve
spacecraft navigation. Furthermore, Deep Neural Networks based algorithms showed robustness when it comes to
setting the initial space lander attitude regardless of the dynamic lighting [33, 34]. As high-performance space-graded
computation devices are being developed, CNN-based approaches are set to be deployed for pose determination
problem without resource to complex dynamics models [23].

The work in [35] suggests a deep CNN to deal with the problem of relative pose classification. Using transfer
learning, the AlexNet model [36], pre-trained on ImageNet data, [37] is adapted to Tango space images from the
Prisma mission [38]. These results are further enhanced by establishing the Spacecraft Pose Network (SPN) in [39]. In
[35], the authors investigate both aspects of the SPN: estimation of the target pose and quantification of the estimation
uncertainty. Further experiments are performed to compare the SPN technique to their earlier CNN based work [35],
[40]. In [41], an estimator, which directly relates spacecraft pose to an AlexNet-based CNN architecture, is presented.
A synthesised image of a 3D model was used to create data set, using Gazebo simulation software [42], for the training
stage of a CNN network. Using hardware simulators, real images are captured to test the trained CNN. Based on these
produced data, the work in [43] proposes to estimate spacecraft attitude quaternion using a CNN-based regression
scheme. Using Gazebo to generate synthetic images labelled with their poses, an architecture similar to that described
in [35], is used in [44] to determine relative poses for space assembly tasks. The work in [45] proposes a pre-trained
GoogLeNet on Unreal Rendered Spacecraft On-Orbit (URSO) dataset for spacecraft pose estimation. Experiments
have shown that the proposed weighted Euclidean based pose estimation model has a reasonably good estimation
accuracy, whereas an exponential model has low accuracy in estimating the orientation of the target’s pose. Oestreich
et al. [33] use AlexNet-based transfer learning for post-classification and attitude refinement technique, focusing on
resolving issues about DL’s applicability to this domain. Cosmas and Kenichi [46] assess the inference capability of
space on-board devices to check if a CNN-based spacecraft pose estimation algorithm is feasible. Considering power
and cost-effectiveness, their analysis reveals that a U-Net-based detection network outperforms a ResNet-50-based
detection network, but falls short of the established ResNet34-U-Net model. Cassini’s et al. [47] assesses the accuracy,
during pose initialization, of the existing monocular CNN based pose estimation algorithms. In ref [48], authors present
a deep learning pipeline, which estimates the relative pose of a spacecraft by incorporating temporal information in a
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rendezvous sequence. A comprehensive survey of Deep Learning-based spacecraft relative navigation methods can be
found in [49].

As a result of the proven advantages of 3D LiDAR sensor and its demonstrated robustness in space applications,
the research community proposes several strategies utilizing LiDAR data for space relative navigation. Galante et al.
[11] introduce the Argon relative navigation system, which consists of a flash LiDAR in addition to a stereo optical
camera configuration that can be used for relative navigation. Argon estimates the pose using extracted edges from
the collected data in combination with an Iterative Closest Point (ICP) algorithm. The use of an Oriented Unique
Repeatable Clustered Viewpoint Feature Histogram (OUR-CVFH) or Spin Images [50] in combination with ICP, as
well as a Multiplicative Extended Kalman Filter (MEKF) to track the target platform [10, 16, 51] are examples of other
LIDAR based orbital navigation solutions that are proposed in the literature. An adaptive H inf filter is used to iteratively
filter the HoD-S 3D local feature matches in Ref. [15]. Reference [52] elaborates on that work by evaluating several 3D
features and recursive filtering algorithms on real and simulated data. Rather than estimating poses at single frames,
Kechagias-Stamatis et al. [53] suggest a Deep Recurrent CNN (DRCNN) mechanism to predict a spacecraft’s relative
pose between two consecutive frames. Synthetic (Elite platform) and real data (Envisat mockup model) are used in the
algorithm’s test phases. The study demonstrates that the DRCNN outperforms current techniques like Iterative Closest
Point (ICP) [54]. Reference [53] provides a list of the current 3D LiDAR-based space pose estimation methods.
1.2. Entry, Descent and Landing (EDL) navigation

The estimation of the spacecraft’s status during EDL is linked to the several on-board sensor modalities. A star
tracker and gyroscopes are used to determine the lander orientation. The procedure of measuring altitude using a
radar or laser rangefinder is known as altimetry. The horizontal position is determined in visual TRN (also called Map
Relative Localization (MRL)), and the velocity is obtained either by the use of specialized instruments such as Doppler
radar or LiDAR or by using velocimetry (frame-to-frame synchronization of images). The work in [6] states that a flash
LiDAR can be used for altitude and velocity measurements between 20 𝑘𝑚 and 100 𝑚. A Doppler LiDAR is used for
altitude and velocity measurements between 2.5 𝑘𝑚 and 10 𝑚 and a laser altimeter is used for TRN measurements
between 15 𝑘𝑚 and 5 𝑘𝑚. Figure 1 depicts the different LiDAR based sensors in operation during a lunar landing
scenario.

Researchers involved in the Autonomous Landing and Hazard Avoidance Technology project (ALHAT) provide
an overview of both passive and active sensor options for lunar landing [56]. Both frame-to-frame and frame-to-
map DEM matching are included in the study. In [57], the authors discuss field testing using a laser altimeter and
a flash LiDAR for LiDAR-based TRN. LiDAR point clouds were matched to similar resolution topographic maps.

Figure 1: LiDAR-based Landing navigation [55]
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The results demonstrate that by utilising internal metrics on terrain relief and data correlation, LiDAR-based TRN can
produce position estimations of less than 90 𝑚. Sensitivity analyses indicate that the method maintains its matching
performance even when the initial location is imprecise by up to 1.6 𝑘𝑚. In [58], authors estimate velocity using
a scanning LiDAR without feature matching. The study in [59] investigated the performance of LiDAR-based Map
Relative Localization (MRL) for Europa Lander. Using realistic trajectory, LiDAR features, and future available maps,
simulation results show promising performance of LiDAR-based MRL and prove to be competitive with passive-
optical MRL when topography is sufficiently rich. In contrast to passive-optical MRL, LiDAR-MRL is not affected
by illumination conditions. Recently, researchers developed a new LiDAR-inertial navigation and mapping algorithm
for precision landing, where the landing spacecraft’s overall trajectory can be estimated using a smoothing framework
[22].
1.3. Paper contributions

Space-qualified LiDARs are developing and the current advanced 3D imaging LiDAR systems have the potential to
operate from altitudes up to 5 𝑘𝑚 [22]. A landing system based on a LiDAR sensor can perform accurate altimetry, map-
relative localisation, odometry, and map refinement in an illumination-insensitive manner, over unknown or partially
known terrains. Indeed, more demanding planetary exploration requirements implies a technology development
program that calls for more precise guidance systems capable of delivering rovers and/or landers with higher and higher
degree of precision. A deep Recurrent Neural Network (RNN) architecture has been designed, tested and validated for
predicting the fuel-optimal thrust from sequence of states during a powered planetary descent [60]. To our knowledge,
this work presents the first research demonstrating Deep Learning LiDAR-based pose estimation approach applied to
planetary landing operation. Similar approach has been explored by Ghilardi et. all [61], where authors present an
image-based powered descent guidance via hybrid architecture to control the command acceleration along the three
axes during the descent phase. Their research highlights one of the most significant obstacles in supervised learning:
the need to create a training data set that adequately and efficiently covers the state space to be learnt. We introduce a
hybrid CNN-RNN (LSTM) architecture for pose estimation presenting the following advantages:

• Effective feature representation due to the adoption of the CNN module. The latter allows for features to be
generalised and used on untrained terrains;

• The RNN (LSTM) module provides a robust and efficient modelling of the navigation kinematics;
• The hybrid network is flexible to train and test on different data modalities from simulation and real LiDAR data.

This capability allows the potential extension of the network to deliver accurate pose estimation on further data
modalities;

• Combine both of CNN and LSTM networks after the training stage and perform the estimation in one step.
The paper is organized as follows: Section 2 is devoted to introduce the proposed hybrid CNN-RNN(LSTM) pose

estimation architecture. Section 3 details the different techniques and simulation tools used for landing scenarios data
collection, and presents some preliminary results. Section 4 describes the experiment that has been conducted to obtain
realistic and real LiDAR data from real equivalent landing scenarios, evaluation results of the proposed deep pose
estimation architecture are presented and discussed. Section 5 outlines our conclusions and future work directions.

2. CNN-LSTM pose estimation approach
2.1. LiDAR-based pose estimation

The Lidar based pose estimation we propose is set to determine a rigid body transformation from two consecutive
LiDAR scene data scans,𝑆𝑘 and𝑆𝑘+1 collected from a 3D LiDAR sensor mounted on a space lander. Figure 2 illustrates
the navigation states and frames adopted in this work. The planet-centered-inertial reference frame is referred to as 𝑊 ,
for the “world” frame, which is non-rotating. From the lander’s CAD design, frame 𝐵 is chosen as a reference frame.
Body frame 𝐵 is attached to the LiDAR frame 𝐿, which represents the sensing frame of the LiDAR.

Let us consider 𝑅 to be a rotation matrix [62], which adheres to the 𝑆𝑂(3) requirements throughout the training
and testing stages. This representation of translation and rotational motion of a rigid-body is suited for the regression
we perform over our network’s last layer. In terms of the restrictions applied on the rotation matrix elements by the
𝑆𝑂(3), the training strategy takes these constraints into account by learning them, at the training stage, from the known,
Z. Chekakta et all: Preprint submitted to Elsevier Page 4 of 22
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Figure 2: Coordinate System Frames and Navigation States

free-constraints, ground truth 𝑅. This results in generating free of 𝑆𝑂(3) constraints rotation matrices, at the testing
stage.
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Where 𝑅 denotes the rotation matrix, and 𝑇 represents the translation component. These components remap 𝑆𝑘 to
𝑆𝑘+1.
2.2. CNN-RNN(LSTM) approach

Hereinafter, we dive into the proposed approach and explore its essential parts and modules including the network
configuration and its selected parameters.
2.2.1. Transforming frames to feature vectors

CNN is used to extract features by putting two consecutive frames into the network in order to determine the
activation and thus transforming the input images into sequences of feature vectors. The feature vectors represent the
outputs of the activation function at the fully connected layer of the CNN.

The CNN’s parameters are given in Table 1.
2.2.2. Estimate pose from feature vector

The RNN (specifically LSTM) module intends to automatically model the spacecraft landing navigation and the
relationships between the 𝐼𝑘,𝑘+1 features that were extracted by the CNN network. The LSTM network is adaptable
when it comes to learning the model of motion. LSTM layers implemented in the proposed architecture, are capable
Z. Chekakta et all: Preprint submitted to Elsevier Page 5 of 22
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Layer N Layer Type Parameters
1 Input Conv1 depth image
2 Conv1 Filter size 5 × 5, padding 3, stride 2, channels 64
3 ReLU1 -
4 Conv2 Filter size 5 × 5, padding 2, stride 2, channels 128
5 ReLU2 -
6 Conv3 Filter size 5 × 5, padding 2, stride 2, channels 256
7 ReLU3 -
8 Fully Connected1 1024 × 1 matrix
9 Regression 1024 × 1 matrix

Table 1
Configuration of the CNN Network

Figure 3: Block diagram of a LSTM recurrent memory unit

of learning long-term relationships between two sequential depth image projections 𝐼𝑘 and 𝐼𝑘+1. This is beneficial to
the problem of spacecraft pose estimation by learning how the current frame is being linked to the motion estimates
of previous frames.

LSTM’s ability to learn long-term dependencies is owed to its gated design that determines which sectors of the
previous hidden state should be kept or discarded in the current iteration. This is achieved not only in combination with
the current input, processed by four different units, but also by a cell state which acts as an “information motorway”
that bypasses the cells. The LSTM structure is illustrated in Figure 3. In order to get the pose estimation vectors, we
employ an RNN network composed of few LSTM layers i.e taking as input the feature vectors extracted from the CNN
network. The LSTM network’s parameters are given in Table 2.
2.2.3. Building the CNN-RNN(LSTM) architecture

The CNN and RNN(LSTM) networks are trained and tested separately. Thus, to perform estimation, we need first
to extract the features between two frames using the trained CNN network. Then, feeding the extracted feature vector
to the trained RNN network (LTSTMs) as a sequence of inputs.

Z. Chekakta et all: Preprint submitted to Elsevier Page 6 of 22
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Layer N Layer Type Variables
1 Sequence input layer 1024 × 1 matrix
2 LSTM1 hidden values 1000
3 LSTM2 hidden values 1000
4 LSTM3 hidden values 1000
5 Fully Connected2 1024 × 1 matrix
6 Regression 1024 × 1 matrix

Table 2
Configuration of the LSTM Network

Following, we build the network that contains the trained layers from the CNN network in addition to the LSTM
layers of the RNN network. Figure 4 shows the proposed architecture. The CNN module extracts features from 𝐼𝑘,𝑘+1,
and because both components of 𝐼𝑘,𝑘+1 are composed of 2D depth images, the corresponding features are geometric
in nature. This is essential since it allows for the features to be generalised, hence boosting the overall robustness.

Figure 4: Hybrid CNN-LSTM architecture.

Initially, the 2D depth image 𝐼𝑘,𝑘+1 is given to the sequence input to layer. The size of 𝐼𝑘,𝑘+1 is empirically defined
during training, and it is the greatest possible to maintain the details of point cloud frames.

The next layer is the sequence folding layer which is used to convert a batch of image sequences to a batch of images.
A sequence folding layer allows performing convolution operations on time steps of image sequences independently.
The layers after that are convolutional layers, each one, accompanied by a Rectified Linear Unit (ReLU) activation
layer. To connect the CNN and RNN (LSTMs) modules, the CNN module has a Fully Connected layer at the output.
Whereas the sequence unfolding layer restores the sequence structure of the input data after sequence folding, the
flatten layer fits the spatial dimensions of the input into the channel dimension.

The RNN module is comprised of three LSTM layers, which work to improve the RNN’s ability to learn a high-level
representation and complex navigation modelling, respectively. Following the three LSTM layers, a Fully Connected
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Layer N Layer Type Variables
1 Sequence Input Depth image
2 Sequence Folding
3 Conv1 Filter size 5 × 5, padding 3, stride 2, channels 64
4 ReLU1 -
5 Conv2 Filter size 5 × 5, padding 2, stride 2, channels 128
6 ReLU2 -
7 Conv3 Filter size 5 × 5, padding 2, stride 2, channels 256
8 ReLU3 -
9 Fully Connected1 1024 × 1 matrix
10 Sequence Unfolding
11 Flatten layer
12 LSTM1 hidden values 1000
13 LSTM2 hidden values 1000
14 LSTM3 hidden values 1000
15 Fully Connected2 1024 × 1 matrix
16 Regression 1024 × 1 matrix use 12 first variables to predict the pose

Table 3
Assembled Hybrid CNN-LSTM Network configuration

layer is added. The final layer of the RNN (LSTM) module is a Regression layer, the output of which is transformed
into ∗ by extracting its resulting elements 1 − 12, as following:

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟 = [ 𝑟11 𝑟21 𝑟31 𝑟12 𝑟22 𝑟32 𝑟13 𝑟23 𝑟33 𝑡1 𝑡2 𝑡3] (3)
Elements 13 − 1024 are omitted. Table 3 shows the CNN-RNN(LSTM) network configuration with the selected

parameters for each layer.

3. Landing scenario simulation
It is not trivial for a spacecraft to autonomously determine its pose relative to the planetary bodies terrains. The

following sub-sections describe the methods and software used for this work to simulate the landing scenario and
render the sensor data from the LiDAR.
3.1. PANGU simulation

PANGU (Planet and Asteroid Natural Scene Simulation Utility) [63] software is utilised to simulate the landing
scenario and generate data producing a sequence of LIDAR frames. PANGU enables users to create models of both
extraterrestrial objects or surfaces and generate images/point clouds of them similar to those acquired by real on-board
imaging/LIDAR sensors. This helps to test and verify the approaches of landing and autonomous spacecraft missions.

The descent and landing scenario is provided in Figure 5a. It highlights the scenario phases and the landing
trajectory leading to safe landing. [64]. Our landing approach is based on LiDAR sensor and the landing path would
be a projectile trajectory starting at 1200 (m) in altitude, as shown in Figure 5b. Data collection is performed using
the LiDAR interface function provided by PANGU. The function provides several outputs and we choose to model the
following ones:

• Range: is the distance from the LiDAR emitter to the target point;
• Slope angle: is the angle formed by the surface normal and the LiDAR pulse direction;
• Elevation angle: is identical to the slope except that the elevation angle is of the LiDAR beam inside the emitter;
Figure 5b illustrates the data generated through the synthetic LiDAR sensor. At each specified position and

orientation, we trigger the LiDAR and store those sensor outputs for each frame.

Z. Chekakta et all: Preprint submitted to Elsevier Page 8 of 22



Robust Deep learning LiDAR-based pose estimation

(a) (b)
Figure 5: (a) Landing scenario, (b) LiDAR function outputs

Data Processing: The data generated from the LiDAR function is encoded as images as presented in Figure 6. The
images are rainbow colour-coded with red representing small ranges/slopes/elevation and blue/violet representing large
ranges/slopes/elevation. Following different predefined landing trajectories, the collected images from each frame are
concatenated and resized with a conversion operation to grayscale to produce an image that includes the three data.

Figure 6: LiDAR data processing

3.2. Tests on PANGU LiDAR data
In this trials, we consider several landing trajectories on the Lunar Apollo 16 surface. We use those trajectories

during the CNN and RNN (LSTMs) network’s training stages. The 768 × 64 pixel depth image 𝐼𝑘,𝑘+1 is the input.
𝐼𝑘,𝑘+1 is chosen to be as large as possible during training in order to maintain image information while yet providing a
satisfying pose estimation. Several examples of landing scenarios along with their simulated ground truth trajectories
are presented in Figure 7(a-b). The ground truth pose of the spacecraft is used to perform a comparison with the
estimated pose delivered by the proposed deep network architecture.

Figure 8 shows the lander position estimation, starting from 1.2 𝑘𝑚 altitude, compared to the ground truth. We
observe that the hybrid CNN-RNN (LSTMs) estimation achieves a high accuracy estimation of the relative position.
Figure 9 displays the attitude estimation along with the 3D position estimation curve, both compared to the ground
truth. The orientation is noticed as less accurate than the result obtained for the the position. This is due to the training
data collected from PANGU does not have enough variation in terms of the spacecraft attitude to achieve a better
training and feature detection from the CNN module to improve the attitude estimation. The performance metrics of
the deep learning algorithm estimation on PANGU data are given in Table 4. It is noticed that the network is providing
a solution at a promising computational time.
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(a) (b)
Figure 7: PANGU Landing scenario samples
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Figure 8: Spacecraft position estimation

Figure 9: Orientation estimation and 3D landing trajectory prediction
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𝑇𝑒𝑟𝑟𝑜𝑟(%) 𝑒𝑇 t(s)
Testing Trajectory 1.53 (m) 44.461 0.0104

Table 4
Performance metrics of the tested data from PANGU simulation

3.3. Gazebo Simulation
Gazebo software is used to create an environment that contains a representative lunar terrain surface model as

a ground plan of a world inside Gazebo. Thereafter, we insert a drone robot equipped with a 3D LiDAR sensor to
collect the data while the drone is performing landing scenarios on the lunar terrain. Figure 10 shows the simulation
environment in addition to the QGround-control station software provided for PX4 SIL simulation [65], in order to
control the drone to do its planned trajectories.

Figure 10: Gazebo simulator environment

The data collected from the LiDAR sensor in this simulation is different from the one of PANGU, as the sensor
used in Gazebo provides directly 3D point cloud data of the scene. Contrary to PANGU, this data output is different
but more realistic as in real space-qualified LiDAR we expect to generate raw 3D point clouds. This enable us to test
the proposed solution on a different sensor data modality as the one we get from PANGU. Figure 11 depicts few data
samples taken at different landing altitudes.
3.3.1. Data Processing

In the following, we present how we process the point cloud data collected from the Gazebo simulation. Deep
learning can be adopted for 3D point clouds with few challenges. The most significant ones are as follows:

• Irregularity: The data is irregular since Object/scene points are not evenly distributed across different parts of a
point cloud;

• Unstructured: Point cloud data is not griddable as opposed to pixels in images;
• Unorderdness: A scene’s point cloud is a collection of 3D points that are typically kept as a list in a file. The

sequence in which the points are kept as a set does not reflect the rendered scene;
These features of point clouds make deep learning, particularly convolutional neural networks (CNN) difficult to use.
This is because convolutional neural networks are built on convolution operations, which are applied to ordered, regular,
and structured inputs. Nevertheless, deep learning can be adopted straight to a point cloud by converting point cloud
data to a structured one. These techniques can be classified as voxel-based or multiview-based. Although voxel-based
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4(𝑚) (2𝑚) 0.5(𝑚)

Figure 11: Samples of point cloud data from different altitude

approaches have demonstrated excellent performance, they suffer from significant memory consumption due to the
sparsity of the voxels. Multiview-based networks outperform voxel-based networks because they use well-known 2D
techniques, and they can hold more information due to voxelization quantization errors.

In this work, a multiview-based approach in combination with a data projection strategy onto an image plane is
adopted. The proposed Deep Learning LiDAR-based architecture is then applied on the created multiple 2D depth
maps to tackle the problem of relative space navigation pose estimation.

Given two consecutive point cloud frames 𝐒𝑘 = {𝐒1𝑘, ...,𝐒
𝑎
𝑘} and 𝐒𝑘+1 = {𝐒1𝑘+1, ...,𝐒

𝑎
𝑘+1}, the superscript 1 means

the first point in the space, the last point superscript is 𝛼. It is related to the density of the sensor and how many points
in space we can get in one single frame. Our proposed solution takes advantage of both data modalities (3D and 2D)
by remapping 𝐒𝑘 and 𝐒𝑘+1 from the 3D to the 2D domain by creating three 2D depth images. To create the three 2D
depth images, first, a floating-point vertex coordinate is quantized 𝐒𝑘 = {𝑆1

𝑘 , ..., 𝑆
𝑎
𝑘} into 𝐒𝑄−𝑘 = {𝑆1

𝑄−𝑘, ..., 𝑆
𝑎
𝑄−𝑘}with:

𝐒𝑄−𝑘(𝑥𝑄−𝑘, 𝑦𝑄−𝑘, 𝑧𝑄−𝑘) = [𝑞𝑓 .𝑆𝑘(𝑥, 𝑦, 𝑧)] (4)
Selecting 𝑞𝑓 is not trivial because it has a significant impact on the size of the 2D remapped images in each projection,
and the amount of detail contained in these images. For our work, we set 𝑞𝑓 = 20 to preserve the point cloud topology.
Figure 12 shows different quantized images using different 𝑞𝑓 factors applied on point cloud data along YZ-plane.

Figure 12: Effects of 𝑞𝑓 factor on the data
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Next, we use the orthographic projection process 𝑆𝑜𝑟𝑡ℎ𝑜, and project 𝑆𝑄−𝑘 on each plane of the 𝑋𝑌𝑍𝐿𝐼𝐷𝐴𝑅reference frame:

�̃�𝑄−𝑘 =

⎡

⎢

⎢

⎢

⎣

�̃�𝑞
�̃�𝑞
�̃�𝑞
1

⎤

⎥

⎥

⎥

⎦

= 𝑆𝑜𝑟𝑡ℎ𝑜.𝑆𝑄−𝑘 =

⎡

⎢
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⎢

⎣

𝑐1 0 0 0
0 𝑐2 0 0
0 0 𝑐3 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

.

⎡
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𝑥𝑄−𝑘
𝑦𝑄−𝑘
𝑧𝑄−𝑘
1

⎤

⎥

⎥

⎥

⎦

(5)

Based on the three depth images of 𝑆𝑄−𝑘, i.e. �̃�𝑋𝑌
𝑄−𝑘, �̃�

𝑋𝑍
𝑄−𝑘, �̃�

𝑌 𝑍
𝑄−𝑘, we create a stacked image.

𝐼𝑘 = �̃�𝑋𝑌
𝑄−𝑘||�̃�

𝑋𝑍
𝑄−𝑘||�̃�

𝑌 𝑍
𝑄−𝑘 (6)

||(.) denotes the process of vertical concatenation. Subsequently, we construct 𝐼𝑘,𝑘+1 = 𝐼𝑘||𝐼𝑘+1 as an input to feed
the proposed CNN-RNN(LSTM) network. Figure 13 exhibits the quantization, projection and concatenation processes
to remap the 3D point cloud data into 2D depth images.

Figure 13: Projection and concatenation of a 3D point cloud data

3.4. Tests on Gazebo simulation LiDAR data
This evaluation is based on the data generated from Gazebo simulation, which has a different data modality (3D

point clouds). Samples of simulation landing scenario conducted on Gazebo are shown in Figure 14b. Figure 14a
summarizes the data processing of the data collected from Gazebo. We collect 3D point cloud frames while the drone
is performing a landing operation, then the 3D data is projected into 2D depth images as previously explained. The
768 × 32 pixel depth image 𝐼𝑘,𝑘+1 is the input. 𝐼𝑘,𝑘+1 is chosen to preserve point cloud information while reducing
processing burden and keep providing an appealing pose estimation.

Based on the training dataset, the parameters of the proposed architecture are tuned for optimal pose estimation. Our
trials are evaluated in terms of 𝑇𝑒𝑟𝑟𝑜𝑟 which is the metric that represents the overall translation error as a percentage
of the GT distance travelled. 𝑒𝑇 denotes the root mean square error of the actual and estimated positions along the
landing trajectory. 𝑡 is the processing time necessary for each frame. The desktop used to run our algorithm solution
is equipped with an Intel i7, an NVIDIA Quadro P2000 GPU, 16 GB of RAM, and is running Linux (Ubuntu 18.04)
and MATLAB 2020b.

Figure 15 depicts the curves of the errors between the pose estimation ∗ and the ground truth. The performances
are compared to an estimation obtained by using only a CNN network. It can be observed that the hybrid CNN-
RNN(LSTM) network achieves better accuracy because of the integrated RNN(LSTM) module. It is noted from the
performances in Table 5 that the network CNN-RNN(LSTM) offers a promising accuracy.
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(a) (b)
Figure 14: Gazebo Landing scenario samples

Figure 15: Pose estimation of landing scenario in Gazebo

𝑇𝑒𝑟𝑟𝑜𝑟(%) 𝑒𝑇 t(s)
CNN 6.4357 0.34984 0.0150
CNN-RNN(LSTM) 2.9836 0.14794 0.0220

Table 5
Performance metrics of the tested trajectory from Gazebo simulation

4. Experiment and Validation
The following details the performed experiment to obtain real data from a Velodyne VLP-16 Puck Lite LiDAR

sensor including the installation of the LiDAR sensor on a flying UAV with respect to a scaled lunar terrain surface.
The suggested CNN-RNN(LSTM) is trained and evaluated using several landing scenario trajectories. We compare
the accuracy of the estimated pose to the flying robot’s ground truth, which is obtained using an OptiTrack system that
tracks the drone inside our arena’s workspace.
4.1. Main components
4.1.1. Platform test bench

Figure 16a shows the platform adopted for the experiment. It includes the main core of the drone, a companion
computer, and a Velodyne VLP16 LiDAR sensor. Initially, we investigate mounting the LiDAR in different orientations
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in order to find the appropriate mounting position and orientation for better data reading and collection of the area of
interest. The best LiDAR mounting configuration used for this work [66] is shown in Figure 17.

(a) (b)
Figure 16: (a)Test bench hardware, (b)Lunar terrain DEM model

Figure 17: (a) Typical orientation of the VLP-16 scanner aboard a drone. (b) Scanner-oriented coordinate system of the
VLP-16 [66]

The Velodyne is connected to the computer companion NVIDIA Xavier GPU Board, which is the brain of our
platform. The computer is responsible of several tasks, mainly, receiving the tracking data from an exterior system
(Optitrack system), reading the 3D point cloud data acquired by the Velodyne, and producing the estimated pose by
our proposed algorithm.
4.1.2. Lunar terrain DEM model

An accurate digital elevation model (DEM) improves our knowledge of the lunar surface, aids in the identification
and characterization of the topography, and helps us to understand the impact history by evaluating the relative ages
of the geological units [67, 68]. In addition, illumination and communication maps can be simulated based on a
DEM for optimizing the potential lunar landing sites [69, 70]. Laser altimeters are commonly used to map the lunar
topography. The Apollo 15 to Apollo 17 missions provided preliminary laser altimeter data for creating maps of the
lunar topography [71]. In our experiments, the DEM model of the lunar terrain is provided by ESA and it is printed
using a dedicated and special CNC machine. The picture in Figure 16b , shows the produced model used in our work.
The model dimension are as follow: 300 × 150 × 10 (cm).
4.1.3. Motion Capture (MoCap) system

MoCap involves measuring the position as well as the orientation of objects or people in a physical space [72].
A single OptiTrack motion capture system tracks the 6 degrees of freedom (DOF) pose of one or more objects in
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the workspace. Tracked objects need to be defined as rigid bodies. Each rigid body is a cluster of reflective markers
arranged in a unique configuration when appropriately mounted on the body. Our OptiTrack real-time tracking system
is worldwide used for Robotics applications due to its low latency and precise 6DoF indoor tracking poses of ground
and aerial robotics (UAVs).
4.2. Experiment

The validation and testing task concerns the utilisation of the hardware prepared for data reading and data collection,
to train and test the developed and implemented Deep Leaning pose estimation solution. Testing and evaluation are
performed offline. Figure 18 shows the conducted experiment including all the involved components. Basically, the
lunar terrain model is placed in a workspace monitored by the OptiTrack system. The OptiTrack cameras are connected
via an Ethernet switch to the desktop PC. The motive software, installed on this PC, receives the tracking data of the
drone inside the workspace and streams, over a WIFI network, the data to use in another workstation machine. This
latter monitors the drone status via the QGroundcontrol software supported by the PX4. The workstation uses the ROS
layer, to communicate with the drone and remotely accesses the drone’s on-board computer in order to execute the
control algorithm that run the waypoints navigation and move the drone according to the planned landing trajectory.
The workstation machine is also used for data recording, visualisation, and monitoring purposes.

Figure 18: Experiment setup

In order to simulate the landing scenario and collect realistic LiDAR data, a predefined trajectory is implemented
on-board the drone’s companion computer and executed from the workstation machine. The data recording process
starts after the drone takes off and reaches the maximum altitude defined in the trajectory. Thus, the point cloud data is
recorded only during the landing operation. Figure 19a shows the platform during the landing operation, while Figure
19b is a visualization tool to follow the data acquisition from the available sensors.
4.3. Tests on real LiDAR data

The objective of this work is to study the feasibility of developing for the first time an advanced deep learning
strategy based on LiDAR data to space landing operation. Thus, our experimental evaluation is mainly focused on
assessing the methodologies that we develop in the case of real point cloud data. We also compare the performances
of the proposed hybrid CNN-LSTM with respect to a CNN network. The data set created for the training is 120
trajectories (including simulation trajectories and real experimental trajectories). In the experimental case the landing
site is distributed along the Moon mock-up as shown in Figure 20. The initial conditions are different for all the
trajectories and simulated scenarios.
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(a) (b)
Figure 19: (a)Drone during landing, (b)Point cloud data acquisition

Figure 20: Experiment landing trajectories

𝑇𝑒𝑟𝑟𝑜𝑟(%) 𝑒𝑇 t(s)
CNN 7.2536 0.69631 0.0155
CNN-RNN(LSTM) 2.8142 0.15123 0.0210

Table 6
Performance metrics of the tested trajectory from real experiment

Figure 21b shows separately few samples of trajectories performed to collect the data from our real drone
experimental setup. The objective is to collect point cloud data of the representative lunar terrain and test our
deep learning estimator solution on those real data. Figure 22 presents the pose estimation delivered by the CNN-
RNN(LSTM) applied to real point cloud data. Figure 23 presents the 3D pose estimation of one of the test trajectories.
Performance results for the real landing trajectories tests are given in Table 6. The mean absolute error and the standard
deviation are shown in the Table 7.
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(a) (b)
Figure 21: Samples from experiment trajectories

Figure 22: pose estimation on real point cloud data

Mean Absolute Error Traj1 Traj2 Traj3
Roll 0.5253 0.9128 0.5536
Pitch 0.4994 0.6392 1.2069
Yaw 2.2592 0.2932 0.3312
Standard deviation
Roll 0.0826 0.0536 0.0488
Pitch 0.1624 0.2322 0.6854
Yaw 0.0995 0.1446 0.1531

Table 7
Mean absolute error with the standard deviation of the orientation

4.4. Algorithm’s parameters analysis
We propose in this sub-section a parametric variations evaluation in the landing scenario to explore the envelope

of the algorithm’s performance. Given the main of the presented architecture in Figure 4, we propose to evaluate
how varying the parameters 𝐼𝑘,𝑘+1 input size, the interpolation scheme and several CNN-RNN(LSTM) bridge layer
configurations have an effect on the 𝑇𝑒𝑟𝑟𝑜𝑟 metric.
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Figure 23: Estimated landing position

𝑇𝑒𝑟𝑟𝑜𝑟(%) t(s)
nearest neighbor 0.34984 0.0150
bilinear 0.58723 0.0150
bicubic 0.49560 0.0150

Table 8
Performance and computation results with different interpolation techniques

4.4.1. Input image sizes
The quantization factor (𝑞𝑓 = 20) is playing a key role in finding the optimal height/width ratio, affecting

substantially the deep learning pose estimation. It is also critical to keep the 𝐼𝑘 depth variation preserved, as these
parameters trigger the responses within each CNN-RNN(LSTM) layers Figure 24 summarizes our tests using different
input image sizes and evaluated by 𝑇𝑒𝑟𝑟𝑜𝑟 . It is observed that the accuracy of pose estimation has improved while
increasing the width of the input from 16 to 32. Further increase of the image width to 64 provides almost similar
accuracy to 16 but with higher computational time. We conclude then that the optimal input image size, which can be
used is 128 × 32 as it achieves good pose estimation accuracy while having the low computational time.

Figure 24: Performance for various input image sizes

Another important parameter affecting the details available in 𝐼𝑘 is the method of interpolation used to quantize
and resize the depth images to produce the 𝐼𝑘 input image. We evaluate different methods of interpolations: the first
one is the nearest neighbor, the second is the bilinear, and the last one is the bicubic. The nearest neighbor is the best
selected technique (see Table 8).
4.4.2. Bridge-layer configurations

The bridge layer that connects the CNN and RNN(LSTMs) modules has a significant role in the CNN-
RNN(LSTMs) network performance. The minimum bridge-layer size of the fully Connected (FC) layer is 16 × 1
expressed in a form of a vector. Altering that impacts on the RNN(LSTM)’s input and output. Although using an
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FC-16 layer with size of a 16 × 1 vector is appealing, it is not the optimal choice. It may be beneficial to increase the
FC layer size elements and exploit the first 16 element whereas the FC layer size is at least 1024. This is confirmed by
the figure below showing how the error in terms of pose estimation can get reduced in this case.

Figure 25: Performance using various configuration of the bridge-layer

5. Conclusion
In this work, we present an innovative and effective AI based relative navigation solution for space landing by

proposing a Deep Recurrent Convolutional Neural Network (DRCNN) architecture. Both CNNs and RNN(LSTMs)
are leveraged in this architecture. In particular, CNNs are adopted for feature extraction and learning and RNN(LSTMs)
providing a robust navigation motion modelling. Tests of the solution have shown that the hybrid CNN-RNN(LSTM)
architecture delivers high accuracy with a low processing burden. Furthermore, the architecture’s adaptability allows
it to be trained and tested on a variety of data types while still providing accurate pose estimation.

The next phase of the project will focus on the implementation of the designed solution in real-time. Thus, the right
on-board computation hardware must be carefully selected to meet the real-time requirements. The proposed solution
will also be trained on different planetary terrains and surfaces, and tested on unseen planetary terrain models.
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