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Buying from a Group

Nima Haghpanah Aditya Kuvalekar Elliot Lipnowski∗

May 8, 2024

Abstract

A buyer procures a good owned by a group of sellers whose heterogeneous
cost of trade is private information. The buyer must either buy the whole
good or nothing, and sellers share the transfer in proportion to their share
of the good. We characterize the optimal mechanism: trade occurs if and
only if the buyer’s benefit of trade exceeds a weighted average of sellers’
virtual costs. These weights are endogenous, with sellers who are ex ante
less inclined to trade receiving higher weight. This mechanism always out-
performs posted-price mechanisms. An extension characterizes the entire
Pareto frontier.
JEL Classification: D23, D47, D71, D82, Q15

For developing countries, a key challenge in transitioning from an agricultural

economy to a manufacturing economy is land acquisition. Manufacturers often

require large parcels of land whose ownership is dispersed among a group of indi-

viduals. Acquiring such land from a group of sellers is a challenging problem in the

presence of property rights: no individual can be forced to part with his land.1 In

describing the puzzle of empty storefronts in prime areas in Moscow in the post-

Soviet era, Heller (1998) terms such a situation “the tragedy of the anticommons”:

strong property rights lead to underuse of a resource. Several projects in India, for

example, have sparked protests around issues of land acquisition largely because of

unfair terms offered to the sellers or because they are coerced into selling against

their wishes, resulting in those projects’ relocation or complete abandonment.2

∗Haghpanah: Department of Economics, Pennsylvania State University, haghpanah@psu.edu.
Kuvalekar: Department of Economics, University of Essex, a.kuvalekar@essex.ac.uk. Lipnowski:
Department of Economics, Columbia University, e.lipnowski@columbia.edu. A previous version
of this paper was circulated under the title “Selling to a Group.” We thank the coeditor,
anonymous referees, Nageeb Ali, Dirk Bergemann, Dhruva Bhaskar, Ben Brooks, Yeon-Koo Che,
Rahul Deb, Laura Doval, Alex Frankel, Marina Halac, Navin Kartik, George Mailath, Benny
Moldovanu, Doron Ravid, Luis Rayo, Ilya Segal, and Ludvig Sinander for helpful discussions.

1Sood (2020) argues that frictions associated with land fragmentation have hindered manu-
facturing growth in India. The effect of land fragmentation has also been studied in agriculture
(Chand, Prasanna and Singh (2011); Manjunatha et al. (2013)) and urban development (Gandhi
et al. (2021)).

2One famous such case is that of protests in Singur in the state of West Bengal, India.
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In a similar vein, one can think of redevelopment projects in cities. Redevelop-

ment of apartment complexes typically involves a construction company building

a larger apartment complex in place of an old one. The developer usually compen-

sates the existing residents through apartments in the newly built building, where

the apartment size is commensurate with the apartment size in the old building.

Until recently, some Indian states, such as Gujarat, required the consent of all the

residents of an apartment complex.

Or consider buying an indivisible asset, such as a business, from a group of sib-

lings who have inherited it. The business has just one price, and owners typically

receive a proportional share of the price. And as in the previous two examples, no

person can be forced to agree to the offered terms of trade.3

While each of the above settings has its own idiosyncratic features, three com-

mon features stand out. First, a buyer wishes to purchase an indivisible good

collectively owned by a group of sellers (agents). Each agent owns a fraction of

the good, and while an agent’s share is public information, his valuation of that

share is private information. Second, strong property rights give any group mem-

ber a refusal right—the right not to participate in trading. And third, the buyer

can only offer one price for the entire good, and each seller receives a fraction of

that price proportional to their ownership share.4

Motivated by such settings, we study the problem of acquiring a commonly

owned good in a mechanism design setting with private information, voluntary

participation, and ex-post transfers that are proportional to agents’ shares. We

assume that the buyer’s valuation of the good is public information, but each

seller’s type is drawn independently from a publicly known distribution. In a (di-

rect) mechanism, agents first report their types, and then the mechanism specifies

the probability of trade and the price of trade (to be divided in proportion to

agents’ shares) as a function of the entire profile of reported types. Our main goal

is to understand the buyer’s profit-maximizing mechanism among all Bayesian

The then government of West Bengal used eminent domain provisions to acquire 997 acres of
land from farmers to allow Tata Motors to build a factory. The use of eminent domain for an
arguably nonpublic project was met with massive protests that, eventually, led to the factory’s
being shifted out of West Bengal. See https://en.wikipedia.org/wiki/Tata_Nano_Singur_

controversy.
3Kuran (2004) argues that Islamic inheritance laws have hindered the growth of Middle East-

ern countries because they lead to fragmentation of enterprises and therefore prevent the creation
of large-scale firms. Kuran documents that, by the nineteenth century, Western enterprises grew
in size, but Middle Eastern enterprises did not. He suggests that Islamic inheritance laws played
a role.

4For example, a recently proposed “Right to Fair Compensation and Transparency in Land
Acquisition, Rehabilitation and Resettlement Act, 2013” in India stipulates that the landowners
whose land has been acquired for private projects should be paid a specified fraction of the
deemed market value of the land parcel. See https://lddashboard.legislative.gov.in/

sites/default/files/A2013-30.pdf for details.
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incentive-compatible, interim individually rational mechanisms—henceforth the

optimal mechanism.5

The first step toward understanding optimal mechanisms is to understand the

class of implementable allocation rules in our setting. If the buyer could use

transfers that need not be proportional to shares, standard arguments à la Myer-

son (1981) teach us that a given allocation rule would be implementable if and only

if its associated interim allocations are nonincreasing. But in our setting, interim

transfers are constrained because ex-post transfers must be proportional to shares,

and it is a priori unclear what additional constraints this restriction places on the

type of implementable mechanisms the buyer can offer. Even with this additional

constraint, Lemma 1 shows that the same condition characterizes implementabil-

ity in our setting. However, because of the proportional-transfers constraint, the

agents’ average per-share payments must coincide. Hence, the minimal average

purchase price that can be attained for a given implementable allocation rule is

pinned down by the condition that one agent’s individual-rationality constraint

is binding (and the others’ are satisfied). Consequently, we can recast the buyer’s

problem as a maximin problem in which the maximum is over interim-monotone

allocation rules and the minimum is over agents whose individual-rationality con-

straint is binding.

We solve the buyer’s reformulated problem via an analogy to zero-sum games.

We view the problem as a two-player zero-sum game in which one player (the

Maximizer) chooses an allocation rule and the other player (the Minimizer) chooses

an agent but may use a mixed strategy. We characterize the equilibria of this game

to establish that the optimal allocation rule is unique and is a weighted allocation

rule: the good is sold if and only if the buyer’s benefit is larger than the weighted

sum of agents’ virtual valuations. These weights are endogenously determined,

and are characterized by a simple program. These results are summarized in

Theorem 1.

Given that the optimal mechanism assigns a weight to each agent, we study

which agents are assigned higher weights. At a high level, agents with higher

weights have more influence over the outcomes of the mechanism since trade is

more sensitive to their reports. Theorem 2 answers this question by giving a con-

dition under which we can rank agents’ weights. In short, the optimal mechanism

assigns higher weight to agents that have a higher valuation of the good in per-unit

terms. More precisely, agent i has a higher valuation than agent j if i’s virtual

cost is higher in the reversed hazard-rate order than j’s virtual cost.

5The individual-rationality requirement, imposed for each agent, is meant to capture the
strong property rights in the above examples. Our model imposes interim incentive constraints—
that any agent must find it worthwhile in expectation (being uncertain of others’ valuations) to
participate in the mechanism and to report his valuation truthfully. In Section VI we discuss ex
post versions of both constraints.
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The question of which agents have higher weights seems especially relevant

to our land-acquisition application. Might the optimal mechanism discriminate

against certain agents based on their characteristics? Our ranking result says that

in this application, the optimal mechanism assigns more weight to agents with

more productive land as measured in per-unit terms. Which agents are more

productive depends on the context. Suppose first that there are two sellers who

differ in how they use their land. Say agent 1 has a larger plot of land on which he

can install a factory, while agent 2 has a smaller plot of land that he can use only

for farming. Then, it is conceivable that (per square foot of land) agent 1 typically

has higher productivity than agent 2. In this case, the optimal mechanism puts

more weight on agent 1. In contrast, suppose that both the agents are small-scale

farmers who differ only in their plot sizes. A literature in development economics

has documented an inverse relationship between plot size and productivity (e.g.,

Banerjee et al., 2000). If this relationship were to hold for our two agents, then

agent 1—the agent with a larger parcel of land—would have lower productivity

(per square foot of land) than agent 2 and so would be granted a smaller weight.

Even though any mechanism in our setting offers all agents a uniform price

per share, this price might depend on the entire profile of agents’ types. But one

might wonder whether the optimal mechanism could nonetheless be a posted-price

mechanism in which the price is fixed. Such mechanisms are known to be optimal

when there is one seller. However, with two or more sellers in the group, posted-

price mechanisms are strictly suboptimal (Proposition 2). This result is derived

from Theorem 1, which says that the price—even conditional on trade—must be

responsive to the profile of reported types by the group members, a property

evidently not shared by posted-price mechanisms.

In Section V, we apply our analysis to shed light on the differences between

mechanism design for a group versus an individual. To do so, we compare optimal

mechanisms in our setting with optimal mechanisms in a benchmark setting in

which a single agent owns the entire good. We first observe that optimal alloca-

tions in both settings have the familiar downward distortion to reduce information

rent to the high types. However, trade outcomes are additionally distorted in the

group setting in two novel ways. One distortion rotates the trade region in the

type space, and the other affects its curvature. The overall effect depends on how

the three types of distortions interact, and these distortions might even lead to a

form of over-trading in which trade occurs when doing so is inefficient. We then

compare the efficiency of optimal mechanisms in these two settings. We show that

the ranking depends crucially on how large a benefit the good generates to the

buyer. If this benefit is low, then the single-agent setting generates greater surplus;

and if this benefit is high, then our group setting generates greater surplus.

While most of our analysis focuses on buyer-optimal mechanisms, one might
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consider alternative bargaining arrangements that give more power to the sell-

ers. A more general notion of efficiency can be especially compelling when the

buyer is a government or similar entity that might have a significant concern for

nonmonetary welfare outcomes. With this in mind, in Theorem 3 in the Online

Appendix we fully characterize the set of all the Pareto-optimal mechanisms. This

characterization is facilitated by techniques similar to those we develop en route

to Theorem 1. As we show, any Pareto-optimal mechanism allocates the good if

and only if the weighted sum of agents’ actual and virtual costs is lower than the

benefit to the buyer.

We impose the assumption that the buyer must pay agents the same price per

share as a fairness or institutional requirement that is natural in our main appli-

cations. We show additionally that this restriction reduces the agents’ incentives

to collude in a certain sense. In particular, we study a larger game in which

the agents may trade their shares before interacting with the mechanism. We

assume the sellers have identical distributions of value (i.e., their cost of trade)

per unit but may possibly be endowed with nonidentical shares. We show that

the sellers optimally choose not to trade shares if they are paid the same price

per share, but they may benefit from trading if they are paid different prices per

share. The literature on uniform- versus discriminatory-price auctions also argues

that uniform-price auctions might reduce agents’ incentives to collude (Friedman,

1960). Further, this literature points out that agents might be more likely to par-

ticipate in uniform-price auctions (Malvey and Archibald, 1998; Ausubel et al.,

2014).

Related Work. Because the buyer procures the good from all sellers or none,

our work is closely related to the literature on designing mechanisms for the provi-

sion of public goods. The canonical model (e.g., d’Aspremont and Gérard-Varet,

1979) allows for arbitrary monetary transfers between agents. Rob (1989) shows

that with a large number of agents, profit-maximizing mechanisms are very inef-

ficient, and Mailath and Postlewaite (1990) extend this inefficiency result to all

incentive-feasible mechanisms. In a setting in which agents’ values for a good are

symmetric, and each is initially endowed with a share, Cramton, Gibbons and

Klemperer (1987) show efficient and individually rational trading mechanisms ex-

ist if and only if agents’ shares are sufficiently symmetric. Ekmekci, Kos and

Vohra (2016) identify profit-maximizing mechanisms for selling some fraction of

a firm owned by a single agent to a single buyer. Güth and Hellwig (1986) iden-

tify profit-maximizing mechanisms for public good provision subject to incentive-

compatibility and individual-rationality constraints. Hence, our buyer’s problem

is equivalent (up to a sign change) to that of Güth and Hellwig (1986), with the

added restriction that transfers must be proportional to shares. Virtual costs
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(or values) often appear in the literature that studies profit-maximizing mech-

anisms, but a special feature of profit-maximizing mechanisms in our setting is

that virtual costs are multiplied by endogenous weights that arise because of the

proportional-transfers constraint.6 These weights are interpretable as the degree

of influence that the optimal mechanism gives to different agent, and we study

how this influence is affected by seller heterogeneity.

Another strand of the literature on public goods studies voting mechanisms

without monetary transfers. Starting with Rae (1969), many papers in this

literature study mechanisms that maximize utilitarian efficiency. Schmitz and

Tröger (2012) and Krishna and Morgan (2015) identify conditions under which a

(weighted) majority does or does not maximize efficiency. Azrieli and Kim (2014)

show any incentive-compatible mechanism must be a weighted-majority rule, and

they characterize the weights that maximize efficiency.7 The (weighted) majority

structure of mechanisms in this literature is typically either assumed or is a prop-

erty of all incentive compatible mechanisms. In our setting, on the other hand,

the weights arise only as a feature of optimal mechanisms and are not necessarily

a feature of all incentive compatible mechanisms.

Whereas we take a mechanism design approach to our problem, several papers

study collective-decision problems in specific bargaining situations. Bergstrom

(1978) studies a setting in which each seller of a commonly owned good names a

price to sell their share, and he shows that the likelihood of the good being sold

approaches zero. Che (2002) studies how the ability to bargain jointly affects a

group’s bargaining position. The model takes a hybrid approach in which a group

cannot commit to which offers to accept but can commit to a mechanism that

specifies how the surplus is divided once an offer is accepted. Grossman and Hart

(1980) show that takeover of a firm by a buyer might not be profitable when the

buyer offers shareholders a uniform price per share even if the takeover increases

efficiency. Oliveros and Iaryczower (2022) study coalition formation when a prin-

cipal bargains sequentially with a group of agents. Naturally, in many of these

collective-decision bargaining games, some form of the holdout problem appears.

Instead, in our setting, holdout is implicit and is reflected in the constraint that

all sellers must be willing to participate in the mechanism.

6Cai, Daskalakis and Weinberg (2013) show that virtual values can be constructed to describe
optimal mechanisms even in settings with multidimensional types, if agent-specific transfers can
be used. Our analysis shows that the appropriate notion of a virtual value/cost is substantially
simpler in the context of multidimensional IR constraints than in their setting with multidimen-
sional IC constraints.

7Also see Gershkov, Moldovanu and Shi (2017), who further study optimal voting mechanisms
for a class of environments with more than two social outcomes.
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I. Model

We study the problem of a buyer who wishes to buy one good, such as a plot of

land, from a group of sellers who each own some share of the good. We denote the

finite set of agents (the sellers) N “ t1, . . . , Nu and assume N ě 2. Each agent i

owns a fraction σi P p0, 1q of the good, where
ř

iPN σi “ 1. The buyer receives a

benefit b from purchasing the good. Each agent i’s cost of selling his own share of

the good (or, equivalently, his valuation for keeping it) is σiθi, where θi denotes

the agent’s cost per unit of the good.

An outcome of our contracting environment consists of (i) the probability x P

r0, 1s with which the good is sold to the buyer and (ii) the (signed) transfer m P R
paid by the buyer to the group of sellers. This transfer is divided among the

agents proportionally to their shares, so each agent i receives a payment of σim.

The assumption that each agent is paid proportionally to his share is motivated

by our application to land acquisition, in which a buyer is often required to offer

identical terms to sellers ex post. The buyer must treat the agents identically and

cannot offer different prices (per unit) to different agents.

The buyer’s payoff for outcome px, mq is bx ´ m. The payoff of each agent i for

this outcome is the amount of money he receives minus his cost for his share if the

good is sold, σim ´ σiθix. Since σi is a positive constant for each i, we can rescale

each agent’s payoff to be m ´ xθi. Such rescaling leaves the agents’ incentives

unchanged. We henceforth write agent i’s payoff as m ´ xθi and refer to θi as

agent i’s cost.

Let us now describe our informational assumptions. The benefit b is publicly

known. Each agent privately knows his own valuation. We assume that the N

random variables tθiuiPN are independent and each takes values in the compact

interval Θi “ rθi, θ̄is Ă R; denote the cumulative distribution function of θi by

Fi.
8 All parties know these distributions.

We make the following regularity assumption for each i P N : the cumulative

distribution function Fi admits a density fi which is continuous and strictly pos-

itive, and the virtual cost φi : Θi Ñ R given by φipθiq :“ θi `
Fipθiq
fipθiq

is strictly

increasing. Working directly with an agent’s virtual cost φi :“ φipθiq, an atom-

lessly distributed random variable with convex support, is often convenient. To

avoid trivialities, we assume every agent i has θi ă b ă φipθ̄iq.
9

8We use the following standard notation throughout. The set of type profiles is Θ :“
ś

jPN Θj ,
and Θ´i :“

ś

jPNztiu Θj for i P N . We also sometimes use a measure and its cumulative
distribution function interchangeably, and we use F and F´i to refer to associated product
measures on Θ and Θ´i, respectively. Throughout the paper, we use the boldface notation θ,θi,
etc. to refer to these random variables, and use the notation θi to refer to an element of Θi (that
is, a potential realization of θi).

9This assumption reduces casework but is not important for analyzing our model. For exam-

7



I.A. Mechanisms

An allocation rule is a measurable function x : Θ Ñ r0, 1s; let X denote the set of

all allocation rules. A (collective) transfer rule is a bounded measurable function

m : Θ Ñ R. A (direct) mechanism is a pair px,mq consisting of an allocation rule

and a transfer rule. For any reported type profile θ, the buyer transfers mpθq to

the group, and xpθq is the probability with which she acquires the good.10

Say a mechanism px,mq is incentive compatible (IC) if

θi P argmaxθ̂iPΘi
E
”

mpθ̂i,θ´iq ´ θixpθ̂i,θ´iq

ı

, @i P N, @θi P Θi, (IC)

that is, report θ̂i “ θi maximizes the expected payoff of type θi of agent i over all

possible reports in Θi, taking the expectation over other agents’ types θ´i. Say

the mechanism is individually rational (IR) if

E rmpθi,θ´iq ´ θixpθi,θ´iqs ě 0, @i P N, @θi P Θi, (IR)

that is, the expected payoff of type θi of agent i when reporting truthfully, taking

the expectation over type profiles of other agents, is nonnegative. An IC and IR

mechanism px,mq generates a buyer profit of

Πpx,mq :“ E rbxpθq ´ mpθqs .

An optimal mechanism is an IC and IR mechanism that generates weakly higher

buyer profit than any other IC and IR mechanism. An optimal allocation rule

is any allocation rule x such that px,mq is an optimal mechanism for some m.

I.B. Alternative interpretations of our model

Before moving on to our analysis, we discuss some alternative interpretations of

our model.

Recall that after normalization, we have a setting in which the buyer’s payoff

for outcome px, mq is bx ´ m and each agent i’s payoff is m ´ θix. We can inter-

pret this setting as one in which the agents sell a good they collectively own in

exchange for public funds (instead of some money that is divided between them).

The money m appears in every agent’s payoff function. For example, the agents

might be a committee of decision-makers in an organization, such as the high-level

executives at a firm, who decide whether they should sell an asset owned by the

ple, without it, Theorem 1 would still hold as stated, except that when the essentially unique
allocation rule specifies never trading or always trading, the weights can be non-unique.

10Because the payoffs are linear in the transfer, we assume without loss that in a direct
mechanism the transfer is a deterministic function of the reported type profile.
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organization. In this interpretation, an agent’s type θi specifies his marginal rate

of substitution between the organization retaining the good and the organization’s

use of additional funds.

We do not make assumptions about the signs of b or the values θi might take.

In particular, we allow them to be negative. In that case, after relabeling the

variables appropriately, the problem becomes one of finding optimal mechanisms

for a single seller who wants to sell a good to a group of buyers. If sold, the

good is publicly available to all members of the group. Depending on whether

the agents in the group pay for the good with private money or public funds, two

interpretations are again available. The first interpretation entails private transfers

with a fixed cost-sharing rule. Here, each agent i is responsible for paying a fixed

fraction σi of the transfer to the seller. So if the good is sold with probability

x and the group pays m to the seller, then agent i’s payoff is vix ´ σim, where

vi denotes agent i’s benefit if the good is acquired by the group. For example,

the group might be a condo association in which each member pays for a public

service proportionally to the size of their unit, or it might be a cartel in which

each firm pays proportionally to its market share. Now define θi :“
1
σi
vi, which

allows us to write agent i’s payoff as σiθix ´ σim, which can then be normalized

to θix ´ m. The second interpretation has the group paying for the product with

public funds. Here, if the good is sold with probability x and the group pays m

to the seller from its collective funds, then agent i’s payoff is θix ´ m. Agent i’s

type θi again denotes his marginal rate of substitution between the public good

and the organization’s alternative use of its funds.

II. Characterizing the optimal mechanism

In this section, we fully characterize optimal mechanisms. First, we describe which

allocation rules are implementable and solve for the buyer’s optimal profit from

implementing such an allocation rule; doing so requires a reduced-form implemen-

tation result for transfers, characterizing exactly which profiles of interim transfer

rules can be implemented with some collective transfer rule. Then, the main result

of this section establishes that a unique optimal allocation rule exists, and shows it

can be described as a weighted allocation rule with (uniquely determined) weights

that we explicitly characterize.

We begin by introducing some convenient notation and terminology for stan-

dard objects. Just as in the auction setting, the Bayesian incentive properties of

our design environment are convenient to discuss in terms of each agent’s interim

(i.e., conditioning only on his own type) outcomes.

Definition 1: Fix any agent i P N . Given an allocation rule x, define the

interim allocation rule to be Xx
i : Θi Ñ R given by Xx

i pθiq :“ Erxpθi,θ´iqs.

9



Similarly, given a transfer rule m, define the interim transfer rule to be Mm
i :

Θi Ñ r0, 1s given by Mm
i pθiq :“ Ermpθi,θ´iqs.

Now, say an allocation rule x is interim monotone if Xx
i is weakly decreasing

for every i P N . We say that an allocation rule x is implementable if a transfer

rule m exists such that px,mq is IC.

To characterize optimal mechanisms, we first need to understand which al-

location rules are implementable. Classic results (Myerson, 1981; Myerson and

Satterthwaite, 1983) would imply that interim monotonicity would fully charac-

terize implementability if the buyer could freely choose the interim transfer rule

that each agent faces. However, our buyer is constrained in that different agents’

interim transfers must be derived from a common ex post transfer rule. Neverthe-

less, Lemma 1 below shows that the exact same characterization applies despite

the added constraint on the transfers. Using this characterization, we also obtain

the maximum buyer profit compatible with implementing an allocation rule x.

Lemma 1: . Let x be some allocation rule.

(i) Mechanism px,mq is IC and IR for some transfer rule m if and only if x is

interim monotone.

(ii) If some transfer rule m exists such that mechanism px,mq is IC and IR, then

a maximally profitable such mechanism exists, with resulting profit

min
iPN

E rxpθqpb ´ φiqs .

Part (i) of the lemma combines a standard observation with a novel one. The

standard observation is that a given mechanism px,mq is IC for seller i if and only

if Xi is weakly decreasing and some constant U i exists such that the payment

identity,

Mipθiq “ U i ` Xipθiqθi `

ż θ̄i

θi

Xipθ̃iq dθ̃i for every θi, ($)

holds. So the allocation rule x and the constants U1, . . . , UN pin down the interim

transfer rules. The novel observation for establishing part (i) is that a profile of

interim transfer rules pMiqiPN can be implemented via a common ex-post trans-

fer rule m if and only if ErMipθiqs coincide for all i. This condition is obviously

necessary, given iterated expectations. Perhaps surprisingly, the condition is also

sufficient, and sufficiency has a one-line proof: if m̄ is the common expected trans-

fer, then the ex-post transfer rule mpθq :“ ´pN ´ 1qm̄ `
ř

iPN Mipθiq generates

the desired interim transfer rules.11

11Gopalan, Nisan and Roughgarden (2018) show that a slight variant of this problem is compu-
tationally intractable. In particular, it is computationally hard to decide whether a given profile
of interim transfer rules can be implemented via a common ex post transfer that is constrained
to belong to some bounded interval. Our construction—which settles the question of imple-
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To establish part (ii), we use the payment identity ($) to write the buyer’s

expected payoff as

E rbxpθq ´ mpθqs “ E rbxpθqs ´ E rMipθiqs “ E rxpθqpb ´ φiqs ´ U i

for each seller i. Importantly, because the interim transfers are identical on

average, choosing U i for any seller i pins down the entire profile of constants

pU iqi P RN . Analogously to how an optimal auction would optimize the transfer

rule by setting each agent’s IR constraint to be binding, our remaining constant

is optimized by requiring that some agent’s IR constraint binds (and the others’

constraints are satisfied). Since ErMipθiqs “ Erxpθqφis `U i coincide for all i P N ,

an agent i whose IR constraint binds is the one with the highest expected vir-

tual cost of trade E rxpθqφis. Therefore, the buyer’s optimal payoff for a given

allocation rule x is

min
iPN

E rxpθqpb ´ φiqs .

With Lemma 1 in hand, our buyer’s problem can be recast directly as an opti-

mization over allocation rules. Formally, the buyer’s optimization over allocation

rules is

max
xPX

!

min
iPN

E rxpθqpb ´ φiqs

)

(BP)

s.t. x is interim monotone.

Our main result is a complete characterization of the solution to the pro-

gram (BP). To this end, we define a class of allocation rules that play a special

role in our analysis and results.

Definition 2: Given ω P ∆N , the ω-allocation rule is the allocation rule

xω :“ 1ω¨φďb. Say ω P ∆N is optimal if the ω-allocation rule is optimal. Say

an allocation rule is a weighted allocation rule if it is a ω-allocation rule for

some ω P ∆N .

We now state our main characterization theorem.

Theorem 1 (Optimal allocation):

A weighted allocation rule is essentially uniquely optimal.12 The unique optimal-

weight vector ω is characterized by either of the following two equivalent conditions:

(i) ω P argminω̃P∆N Erpb ´ ω̃ ¨ φq`s.

mentability absent such a constraint—resembles previous constructions in the literature that
convert ex-ante budget-balanced mechanisms into ex post budget-balanced mechanisms while
preserving the players’ interim transfer rules (e.g., Makowski and Mezzetti, 1994; d’Aspremont,
Crémer and Gérard-Varet, 2004; Che and Kim, 2006; Börgers and Norman, 2009).

12By “essentially uniquely,” we mean any alternative optimal allocation rule generates the
same trade decision almost surely.
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(ii) supppωq Ď argmaxiPN E rφi | ω ¨ φ ď bs.

Moreover, if b ă θ̄j for at least two j P N , then every i P N has ωi ă 1.

Theorem 1 says that trade outcomes in optimal mechanisms are given by

weighted allocation rules. Notice that a weighted allocation rule is determinis-

tic, so the theorem implies the buyer does not benefit from randomization. Note

also that the weights are fixed and do not depend on reports. A higher weight

for an agent means the mechanism is in a sense more responsive to that agent’s

private information. So by comparing agents’ weights, we can understand which

agents exert greater influence over the outcomes of the mechanism, a topic we will

revisit in the next section.

Theorem 1 also characterizes the optimal weights with two equivalent condi-

tions. Condition (i) above is useful for computing the optimal weights numerically

and analytically. The function ω ÞÑ Erpb ´ ω ¨ φq`s is convex, and so determining

optimal weights corresponds to minimizing a convex objective over a compact con-

vex set. Moreover, in certain cases, as in Example 1 presented later, we can even

compute the optimal weights ω analytically using the first-order conditions of the

convex optimization problem. Condition (ii) of the theorem facilitates verification

of optimality: once a candidate for optimal weights is chosen, one can verify opti-

mality by checking that any agent who has a positive weight is a minimizer of the

conditional expected virtual cost term. This condition reflects the fact that every

agent who influences the trade outcome should have a binding IR constraint.

Specializing to the case of a single seller, Theorem 1 confirms the classic char-

acterization of optimal mechanisms. In this case, trade happens whenever the

benefit to the buyer exceeds the lone seller’s virtual cost. The “weight” for this

case is trivial, assigning all influence the seller’s private information. The opti-

mal allocation is deterministic (trade occurs whenever the agent’s type is below a

cutoff type at which the benefit is equal to virtual cost), just as in Theorem 1.

The proof of Theorem 1 studies a relaxed program (RBP) in which the interim-

monotonicity constraint is ignored. To solve the relaxed program, we consider an

auxiliary two-player zero-sum game in which the Maximizer chooses an alloca-

tion rule x, the Minimizer chooses an agent i whose IR constraint must bind,

and so the Maximizer’s objective is E rxpθqpb ´ φiqs. Observe that an allocation

rule solves (RBP) if and only if it is a cautious optimum for the Maximizer in

the auxiliary game—that is, a maximin strategy. Moreover, standard results for

zero-sum games imply a maximin strategy is a Nash equilibrium strategy for the

Maximizer, and vice versa, as long as some Nash equilibrium exists. Hence, we

turn to characterizing Nash equilibria of the auxiliary game.

We first show that if the Minimizer is allowed to choose a mixture, some Nash

equilibrium of this auxiliary game exists by an appropriate minimax theorem, and

12



every mixed strategy ω for the Minimizer exhibits a unique (up to almost-sure

equivalence) best response for the Maximizer. Indeed, xω is the essentially unique

maximizer of

x ÞÑ
ÿ

i

ωiE rxpθqpb ´ φiqs “ E rxpθqpb ´ ω ¨ φqs

because it sets xpθq P r0, 1s to maximize the integrand xpθqpb ´ ω ¨ φq in every

realized state. Then, because the set of Nash equilibria of a two-player zero-sum

game exhibits a product structure, it follows that an essentially unique allocation

rule can be an optimal strategy for the Maximizer of the auxiliary game, and that

it takes the form xω for any Nash equilibrium choice ω of the Minimizer. The

pair of conditions characterizing such ω’s are standard to zero-sum games: the

mixed strategy ω is a cautious optimum for the Minimizer (condition (i)) if and

only if it is a best response to some Maximizer’s best response to ω (condition (ii),

once the Maximizer’s best response to ω is substituted in). Now, observe that

the essentially unique Nash equilibrium strategy for the Maximizer is actually

interim monotone: because virtual costs are increasing, a cutoff rule for the ω-

weighted virtual cost is monotone and hence interim monotone. The result is a

characterization of the unique optimal allocation rule, solving not only (RBP)

but also (BP). Then, because our assumption that θi ă b ă φipθ̄iq (for each

i) implies every weighted allocation rule has an interior probability of trade, a

geometric argument converts uniqueness of the allocation rule into uniqueness of

agents’ weights. Finally, to verify the last sentence of the theorem, we note that

any agents i ‰ j have E rφi | φi ď bs ď b and E rφj | φi ď bs “ E rφjs “ θ̄j, so

that putting all weight on agent i would violate condition (ii) if θ̄j ą b.

To conclude the section, let us specialize our setting to a parametric example.

We use the example to illustrate how we can use condition (i) of Theorem 1 to

identify the optimal weights analytically. We then give an indirect implementation

of the optimal mechanism.

Example 1: Suppose that there are two sellers. Seller i has a power distri-

bution Fipθiq “ θαi
i over θi P r0, 1s for some power αi ą 0.13 Assume that

b ď mint 1`α1

α1`α2
, 1`α2

α1`α2
u—which for instance holds if α1, α2, b ď 1. Then, as we

13When αi ‰ 1, the derivative of Fi at θi “ 0 is either zero or infinite, violating our assumption
of a continuous and strictly positive density. However, our main results (in particular, Theo-
rems 1 and 2 and their supporting analysis) apply to the more general version of our model in
which the density is only assumed to be continuous and strictly positive on pθi, θ̄iq. In particular,

assuming the density f is positive over pθi, θ̄iq, we can define φipθiq :“ θi `
Fipθiq

fipθiq
over pθi, θ̄iq,

and extend it continuously to the endpoints.

13



show in the appendix, the optimal weight vector is:

ω˚ :“

ˆ

α1

α1 ` α2

,
α2

α1 ` α2

˙

.

A convenient feature of this example is that virtual costs are linear in costs,

φipθiq “

ˆ

1 `
1

αi

˙

θi.

Combining this observation with the optimal weights we have computed, the essen-

tially unique optimal allocation rule results in trade if and only if

b ě ω˚
¨ φ “

α1

α1 ` α2

φ1 `
α2

α1 ` α2

φ2 “
1 ` α1

α1 ` α2

θ1 `
1 ` α2

α1 ` α2

θ2.

So trade occurs whenever the benefit is at least a certain positive linear combination

of the sellers’ costs. This allocation rule, combined with any transfer rule that

satisfies the payment identity ($) with U1 “ U2 “ 0, forms an optimal mechanism.

In addition, we show that the following indirect mechanism is optimal:

• Both sellers simultaneously send bids, si P R`.

• Trade occurs if and only if b ě τ1s1 ` τ2s2, where τi :“
1`α´i

pα1`α2qα´i
for each i.

• The price that the buyer pays is s1 ` s2 ` κb if the good is sold, and zero

otherwise, where κ “ α1`α2

p1`α1qp1`α2q
p1 ´ α1α2q.

This indirect mechanism has a “name-your-price” structure. Each seller submits

a bid. It is useful to think of the bid as the price the buyer has to pay in exchange

for that seller’s consent. The buyer pays the sum of the bids (plus a constant) if

and only if trade occurs. Trade occurs when the benefit is higher than some linear

combination of the bids.

When submitting a bid, each seller faces a trade-off like in a first-price auction.

Increasing the bid means the agent is paid more if trade occurs. But increasing the

bid also lowers the probability of trade. We show that the game has an equilibrium

with linear strategies in which type θi bids
p1`αiqα´i

1`α´i
θi, and in this equilibrium the

buyer obtains her maximum possible payoff.

As mentioned earlier, determining the optimal weights using condition (i) in

Theorem 1 entails solving a convex optimization program. We show in the ap-

pendix that ω˚ is a local minimum of this program, and hence is optimal. Toward

showing the indirect mechanism is optimal, we first establish that the given strat-

egy profile generates the above-described allocation rule and interim allocation

rules. Thus, the indirect mechanism and strategy profile constitute an optimal

mechanism if the strategy profile is an equilibrium. Moreover, because the in-
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duced allocation rule is interim monotone and the payment identity ($) holds, it
follows that no type of either agent has a profitable deviation to submit another

type’s bid. Finally, notice that any off-path bid—a bid not submitted by any type

on-path—is outcome equivalent to bidding the highest type’s bid (generating no

trade and zero transfer). Therefore, no type has any profitable deviation—that is,

the given strategy profile is indeed an equilibrium.

Let us highlight two important features of the above example. First, notice that

ω˚
1 ą ω˚

2 whenever α1 ą α2: the seller with a higher αi receives a higher weight in

the optimal mechanism, and in this sense has greater influence over the outcomes

of the mechanism. In the bidding-game implementation, this influence ranking is

reflected in τ1 ą τ2. Section III studies the role of asymmetry more broadly, asking

how ex-ante heterogeneity in sellers’ characteristics leads to asymmetric treatment

by the mechanism beyond this parametric example. Using the characterization of

optimal weights in Theorem 1, we show that the optimal mechanism assigns a

higher weight to agents who have higher costs ex ante. Theorem 2 formalizes the

appropriate sense in which α1 ě α2 corresponds to seller 1 having higher costs ex

ante, and shows that it generates a ranking of weights more generally.

Second, the terms of trade arose in the example from a complex pricing mechanism—

complex in the sense that bidding behavior altered the terms of trade, not just

whether trade occurred. In particular, the price at which the trade occurs depends

on the type profile, unlike the case with N “ 1 where the optimal mechanism can

be implemented with a posted price. In Section IV, we show that this complex

pricing aspect of this mechanism is a feature of every optimal mechanism in our

setting.

III. The role of agent heterogeneity

In light of our leading application—sale of a large plot of land with dispersed

ownership to an industrialist—it is natural to explore how the optimal mechanism

treats (ex ante) heterogeneity between agents. Because the optimal mechanism

uses a weighted-average allocation rule, this question amounts to understanding

how agents’ endogenous weights differ.

Specifically, we seek conditions on primitives under which we can rank ωi and

ωj for two agents i and j. The main result of this section, Theorem 2, provides an

interpretable condition under which a ranking of agents’ virtual cost distributions

implies a ranking on the weights in the optimal mechanism. To state this result,

we use the following distributional-ranking definition.

Definition 3: Given two real random variables v and w with respective cumu-

lative distribution functions given by G and H, v is larger than w in the re-
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versed hazard-rate order, denoted by v ěrh w, if infrsupppwqs ď infrsupppvqs

and G
H

is weakly increasing on pinfrsupppwqs,8q.

The above distributional ranking is a useful strengthening of first-order stochas-

tic dominance. Intuitively, the ranking requires that the conditional distributions,

when conditioned on lying below any common threshold, are stochastically ranked.

This ranking condition has been fruitful in past work in mechanism design. Specif-

ically, in the literature on asymmetric auctions (e.g., Maskin and Riley, 2000;

Kirkegaard, 2012), ranking bidders’ value distributions via the reversed hazard-

rate order has enabled the ranking of equilibrium bidding behavior, which in turn

has been used to provide revenue rankings for alternative auction formats. In our

setting, as the following theorem shows, a reversed hazard-rate order on agents’

virtual cost distributions is relevant in designing optimal mechanisms.

Theorem 2 (Ranking allocation weights): If φi ěrh φj `β for some β ě 0, then

the optimal vector of allocation weights ω satisfies ωi ě ωj. Moreover, ωi ą ωj

whenever β ą 0 and ωj ą 0.

Theorem 2 follows from more general results (which further provide quantitative

bounds on how asymmetric the weights are) that we prove in the appendix.14 The

core of the theorem’s proof is a result from the theory of stochastic orders that

converts a reversed hazard-rate ranking on random variables into a second-order

stochastic-dominance ranking of their weighted averages as the weights are made

more assortative. More specifically, we work with the convex program given in

condition (i) of Theorem 1, and note that its loss function can be written as

´E rhpωiφi ` ωjφjqs

for some increasing and concave function h that depends on pωkqk‰i,j. Suppose

φi ěrh φj `β for some β ě 0, and consider any weight vector ω with ωi ă ωj. We

can then define an alternate weight vector ω̃ by swapping the i and j coordinates

of ω. Because φi ěrh φj ` β and ωi ă ωj, a textbook stochastic ranking result

tells us ωiφi ` ωjpφj ` βq is below ωjφi ` ωipφj ` βq in the sense of second-order

stochastic dominance. But then,

E rh pωiφi ` ωjφjqs ď E rh pωjφi ` ωiφj ´ pωj ´ ωiqβqs ď E rh pωjφi ` ωiφjqs ,

so that ω̃ performs at least as well as ω in the convex program. But Theorem 1

then tells us that ω cannot be the unique optimal weight vector.

When types are drawn from power distributions, virtual costs can be ranked in

the reversed hazard-rate order, and so Theorem 2 gives a ranking of the weights

14More specifically, if φi ěrh αφj ` β, where 0 ă α ď 1 and β exceeds a certain bound, then
αωi ě ωj ; and we prove a corresponding strict version of the same.
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that matches our closed-form calculations in Example 1. In particular, consider

two agents i and j with distributions given by Fipθiq “ θαi
i and Fjpθjq “ θ

αj

j for

θi, θj P r0, 1s, where αi, αj ą 0. If αi ě αj, then φi is higher than φj in the reversed

hazard-rate order, and so ωi ě ωj by the theorem, regardless of the distributions

of other agents.15

Let us now revisit our land-acquisition interpretation. The principal, an indus-

trialist, wishes to buy a large plot of land whose ownership is dispersed across N

individuals, with agent i owning share σi of the land. Each agent’s valuation per

unit of land is θi, and his utility is σim ´ σiθix. Because σi is a positive scalar

multiplying m ´ θix, it is strategically irrelevant. Therefore, if the agents’ virtual

cost distributions are ranked according to the reversed hazard-rate order, then

a ranking of the weights follows. Land shares per se play no role in determin-

ing agents’ optimal weights. For instance, if two agents have the same virtual

cost distributions, then the optimal mechanism will weigh them equally however

asymmetric their land shares are.

But could the amount of landholding be systematically related to the cost

distribution? For example, consider two sellers with landholdings σ1 ă σ2, and

assume that the shares are sufficiently asymmetric. Then it is conceivable that the

agent with a larger landholding may have uses of land that generate higher value

(thus, a higher cost of trade) in per-unit terms. For example, an agent with a larger

piece of land might install a manufacturing plant. The smaller landowner cannot

do the same because of the associated fixed costs and minimum-size constraints.

This difference in how they use their plots can lead to φ2 ěrh φ1; that is, the

agent with a larger landholding may have higher productivity (and therefore cost

of trade) per unit of land. As Theorem 2 says, the optimal mechanism assigns

agent 2, the more productive agent, a higher weight.

Another compelling story could, however, apply to situations in which all the

landowners have the same land use, say agriculture, and they differ only in the

sizes of plots they own (in addition to idiosyncratic shocks). A negative relation-

ship between the size of land and productivity is well documented (e.g., Banerjee

et al., 2000; Berry, Cline et al., 1979). In fact, the magnitude of this difference in

productivity is often sizable. As Banerjee et al. (2000) says:16

15As pointed out in Example 1, any θi P r0, 1s has φipθiq “ αi`1
αi

θi, implying P rφi ď xs “
´

αix
αi`1

¯αi

for x P

”

0, αi`1
αi

ı

—and analogously for j. Because αi`1
αi

ě
αj`1
αj

and any x in the

common support has
P rφi ď xs

P rφj ď xs
proportional to xαi´αj ,

it follows that φi is larger than φj in the reversed hazard-rate order.
16One reason Banerjee et al. (2000) offers for this negative relationship is decreasing returns

to scale arising from incentive costs. Smaller plots tend to be managed by families, while larger
ones require significant external labor.
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In Punjab, Pakistan, productivity on the largest farms (as measured

by value added per unit of land) is less than 40 percent that on the

second smallest size group, while in Muda, Malaysia, productivity on

the largest farms is just two-thirds that on the second smallest size

farms.

In such contexts, in which the agents with smaller landholdings are more pro-

ductive (in per-unit terms), we could have φ1 ěrh φ2 and therefore ω1 ě ω2 per

Theorem 2. That is, the optimal mechanism would favor the agents with smaller

landholdings.

In summary, a general qualitative feature emerges from the above two situa-

tions: the optimal mechanism favors the more productive agents, who are less

ex ante inclined to part with their land. Given a systematic positive or negative

relationship between agents’ productivity and their landholdings, this observation

further enables us to understand which agents the optimal mechanism favors.

IV. Posted-price mechanisms

In some mechanism design problems—for example, selling a single indivisible good

to a single agent—the optimal mechanism is a take-it-or-leave-it posted-price

mechanism (Myerson, 1981; Riley and Zeckhauser, 1983). Beyond the single-

agent setting, there are environments in which such pricing mechanisms remain

approximately optimal (Chawla et al., 2010; Chawla, Malec and Sivan, 2015; Hart

and Nisan, 2017; Babaioff et al., 2020). Especially in our setting—in which any

agent can unilaterally veto the mechanism and all the agents must pay a common

price—a natural conjecture is that posted-price mechanisms remain optimal. The

purpose of this section is to establish that this conjecture is false. Of course, before

we can do so, we must first define a posted-price mechanism for our setting.

In the one-agent setting, the IC direct mechanisms that correspond to a posted

price are those satisfying two properties. First, the transfer is directly proportional

to the allocation probability. And second, the allocation probability is 1 for types

above the price and 0 for those below it. The first condition—which we can

interpret as a restriction that money never changes hands if the good is not sold

and that the price at which trade occurs is constant when it does—generalizes

immediately. But the second condition—which we can interpret as stating that the

agent freely decides whether to execute a trade—does not immediately generalize

to the multi-agent setting. Who decides whether trade occurs? Once the buyer

announces a price for the good, a complex negotiation process could ensue between

the agents deciding whether to sell. Might eventual trade outcomes arise from some

mixed-strategy equilibrium of the resulting bargaining game between the agents?
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In light of these difficulties, we define a collective posted price rather permis-

sively, only incorporating the first of the two conditions mentioned in the previous

paragraph. We also introduce a specific, interpretable pricing mechanism that will

be important for our results.

Definition 4: A mechanism px,mq is a collective posted-price mechanism

if some p P R` exists such that m “ px. It is a unanimous posted-price

mechanism if it is a collective posted-price mechanism with price p such that

xpθq “ 1θiďp @iPN for every θ P Θ.

One can envision several examples of collective posted-price mechanisms. For

example, the buyer could set a price p and execute a sale if and only if all agents

agree to the purchase—a unanimous posted price. Alternatively, the buyer could

post a price and select an agent, or even a subset of agents, perhaps randomly,

and execute the trade if all the agents in this chosen subset agree to the sale.

Although the space of all collective posted-price mechanisms is rather rich, the

next result shows that arguably the simplest example of them is optimal.

Proposition 1 (Optimal posted price is unanimous): Some unanimous posted-

price mechanism is optimal among IC and IR collective posted-price mechanisms.

To show this result, we begin with an arbitrary collective posted-price mech-

anism, with a view to showing some unanimous posted price does better. If the

price exceeds the benefit of trade b, then the mechanism is not profitable, and so

a unanimous posted price slightly below b yields higher buyer profit. Now focus

on the case of a price below b. Observe that IR implies an agent’s interim allo-

cation is zero whenever the agent’s type is above the price. Therefore, trade has

zero probability conditional on any agent’s having a realized valuation above the

price. Hence, a unanimous posted price (at the same price level) would generate

profitable trade with a higher probability, and so it is more profitable.

Having characterized the optimal form of collective posted-price mechanism,

we are poised to answer the question that motivated this subsection: when are

collective posted-price mechanisms optimal? The result below establishes that,

under a mild nondegeneracy condition, they never are.

Proposition 2 (Posted prices are suboptimal): If at least two j P N have b ă θ̄j,

then no collective posted-price mechanism is optimal.

To establish the above result, in light of Proposition 1, it suffices to show the

optimal allocation mechanism is not a unanimous posted price. We show the two

cannot coincide by examining their interim allocation rules for an agent who has

positive weight in the optimal weighted allocation rule. His interim allocation rule

is clearly a step function under a unanimous posted-price mechanism. Meanwhile,

it cannot be one under the optimal mechanism: his interim probability of trade
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is nonconstant in his type because the allocation rule puts positive weight on his

own virtual cost, and it is continuous in his type because it puts positive weight

on the (atomlessly distributed) virtual cost of at least one other agent. So the two

allocation rules cannot coincide.

Thus, optimal mechanisms incorporate sellers’ private information, smoothly

varying the terms of trade with an agent’s reported type. Observe that such

continuous incentives are reflected in the bidding game of Example 1, in which

changing a bid leads to a change in the price conditional on trade.

V. Group versus single-agent mechanisms

In this section, we compare optimal mechanisms in our setting with optimal mech-

anisms for buying from a single agent. We use this comparison to highlight how

optimal allocations are distorted and discuss welfare consequences of these distor-

tions.

We start by defining the single-agent benchmark. In this benchmark, a single

agent owns a good that has valuation v :“ σ ¨ θ for him, where σ “ pσ1, . . . , σNq

is a fixed vector of positive weights summing to 1, and the random vector θ “

pθ1, . . . ,θNq has each θi drawn independently from Fi. Using the terminology from

our land acquisition application, the agent owns a plot of land that is divided into

N parcels, possibly of different sizes. Land parcel i has size σi and selling it

has per-unit cost θi to the agent.17 The agent privately knows θ1, . . . ,θN (and

hence privately knows v). The buyer designs a (direct) mechanism in which the

single seller reports her type θ, resulting in a probability of trade and a transfer the

buyer pays him. We study mechanisms that maximize the buyer’s profit subject to

single-agent analogues of the IC and IR constraints. Let G denote the cumulative

distribution function v, and let g be the continuous and strictly positive density

of v. Although we do not make this assumption for our analysis, let us focus our

discussion around the regular case in which the associated virtual cost v `
Gpvq

gpvq
is

strictly increasing in v.18

17These costs might be independent (conditional on observables) if they represent produc-
tivity of different parcels of land, and any shocks that affect multiple parcels’ productivity are
observable to the buyer.

18We make this assumption here only to streamline the exposition. Regularity of the distri-
bution of v would follow if we were to assume each fi

Fi
is nonincreasing on pθi, θ̄iq for each i P N .

Indeed, in this case, the corresponding ratio for vi “ σiθi given by

vi ÞÑ
fi

´

1
σi

vi

¯

σiFi

´

1
σi

vi

¯

is nonincreasing there too. Iteratively applying Corollary 3.3 from Barlow, Marshall and
Proschan (1963) then tells us g

G is nonincreasing there, so that the associated virtual cost is
strictly increasing—that is, v has a regular distribution.
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Figure 1: (a) In the efficient allocation, trade occurs below the iso cost curve given by b “ σ ¨θ.
(b) In the optimal allocation for the single-agent benchmark, trade occurs below the iso-single-

agent-virtual-cost curve given by b “ σ ¨ θ `
Gpσ¨θq

gpσ¨θq
. (c) In the optimal allocation for our group

setting, trade occurs below the iso-group-virtual-cost curve given by b “ ω ¨ φ.

Notice that, both in the single-agent benchmark and in our group setting, a

mechanism stipulates a probability of trade as a function of the random variable

θ, and that this random variable has the same distribution in both settings. Also,

in both settings, the total monetary value of the good to the seller(s) is σ ¨ θ

and has the same distribution in both cases. From the perspective of the buyer,

regardless of whether she interacts with a single agent (as described in the previous

paragraph) or with the group (as in our main model), she is paying money to buy

a good, and she has the same belief about how valuable the good is to the seller(s).

Hence, the utilitarian-efficient allocation is the same in either setting: the good is

efficiently traded whenever the benefit of doing so is greater than its cost,

b ě σ ¨ θ.

For any c0, let the iso-cost curve for c0 be the set of all type profiles that have

the same cost c0, i.e., those θ P Θ that satisfy c0 “ σ¨θ. Then, efficient trade occurs

in the region of the type space that is below the iso-cost curve for b. Panel (a) of

Figure 1 illustrates this region for the case of two agents (N “ 2), in which iso-cost

curves are straight lines with slope ´σ1

σ2
. Iso-cost curves that are further in the

northeast direction correspond to larger cost levels. In what follows, we compare

the efficiency of the buyer’s optimal allocation rule across these two models.

In a buyer-optimal mechanism for the single-agent benchmark, the good is

traded whenever the benefit exceeds its single-agent virtual cost,

b ě σ ¨ θ `
Gpσ ¨ θq

gpσ ¨ θq
.

For any c0, let the iso-single-agent-virtual-cost curve for c0 be the set of all
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θ P Θ that have the same virtual cost c0—that is, satisfying c0 “ σ ¨ θ `
Gpσ¨θq

gpσ¨θq
.

Then trade occurs below the iso-single-agent-virtual-cost curve for b. This curve is

shown for two agents in Panel (b) of Figure 1. Observe that every iso-single-agent-

virtual-cost curve is also an iso-cost curve (associated with a lower cost level), so

that the former curves are also straight lines with slope ´σ1

σ2
, and the virtual cost

also increases as we move in the northeast direction. As is well known, optimal

allocations for single-agent settings entail a downward distortion in trade: when

σ ¨ θ ă b ă σ ¨ θ `
Gpσ¨θq

Gpσ¨θq
, trade occurs in the efficient allocation but not according

to optimal allocations in the single-agent benchmark.

In buyer-optimal mechanisms in our group setting, trade occurs whenever the

benefit exceeds the weighted virtual cost of all group members,

b ě ω ¨ φ “
ÿ

i

ωi

„

θi `
Fipθiq

fipθiq

ȷ

.

For any c0, let the iso-group-virtual-cost curve for c0 be the set of all type

profiles that have the same weighted virtual cost c0, i.e., those θ P Θ satisfying

c0 “
ř

i ωi

”

θi `
Fipθiq
fipθiq

ı

. Then, in the optimal allocation rule for our group setting,

trade occurs below the iso-group-virtual-cost curve for b. This allocation rule is

illustrated for two agents in panel (c) of Figure 1. Notably, because the weights ω

do not depend on the shares σ, iso-group-virtual-cost curves are unrelated to the

shares (holding fixed the distribution of θ).

A comparison of the iso-cost curves with the iso-group-virtual-cost curves shows

that an optimal allocation rule in our group setting differs from the efficient allo-

cation for three reasons. To see this, let us convert the weighted virtual costs to

(actual) costs in three steps, and study each conversion:

ÿ

i

ωi

„

θi `
Fipθiq

fipθiq

ȷ

ù
ÿ

i

σi

„

θi `
Fipθiq

fipθiq

ȷ

ù
ÿ

i

σi

„

θi `
Fipσ ¨ θq

fipσ ¨ θq

ȷ

ù
ÿ

i

σiθi.

The first conversion highlights a rotational distortion. Whereas the iso-group-

virtual-cost curves are unaffected by the shares σ, the iso-cost curves rotate as the

shares change. With two agents, as σ1 increases, each iso-cost curve rotates clock-

wise whereas iso-group-virtual-cost curves are unaltered. The second conversion

highlights a curvature distortion. Unlike iso-cost curves, iso-group-virtual-cost

curves might be non-linear because the inverse hazard rate functions Fi{fi might

be non-linear. The third conversion highlights the familiar downward distortion.

The addition of the inverse hazard rate term elevates the iso-weighted-virtual-cost

curves and leads to lower probability of trade. The optimal mechanism for the

single-agent benchmark exhibits only the third distortion (with a different inverse

hazard rate, G{g) and not the other two.
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Two salient features emerge from examining how these three different distor-

tions interact. First, as we will demonstrate, trade in the group setting may be

inefficiently high. That is, optimal allocations in our main model may prescribe

trade even when trading is inefficient. This type of inefficient trade cannot hap-

pen in the single-agent benchmark, which exhibits only the downward distortion.

Second, an efficiency comparison between buying from a group and buying from

a single agent is ambiguous in general. As we will show, a key determinant of

the welfare ranking is how large a benefit the good yields for the buyer. Focusing

on the natural case in which the per-unit costs tθiui are identically distributed,

we show optimal allocations in our group setting are more efficient than in the

single-agent setting if b is large, and are less efficient when b is small. We elaborate

more on these two observations below.

For the first observation, suppose each i P N has θi P r0, 1s following the power

distribution Fipθiq “ θαi for a power α ą 0. Recall that identically distributed tθiui

lead to ω “
`

1
N
, . . . , 1

N

˘

being optimal in the group setting, and that φipθiq “
α`1
α

θi for any θi P r0, 1s. Given the latter linear form, iso-weighted-virtual-cost

curves are linear, and so there is no curvature distortion in this example. The

overall distortion depends on the interaction between rotational and downward

distortions, and the rotational distortion might dominate for certain type profiles.

In particular, compare the weighted virtual cost,

ω ¨ φ “
ÿ

i

1

N
φi “

1 ` α

αN

ÿ

i

θi,

to the (actual) cost,

ÿ

i

σiθi.

Suppose the share vector σ is asymmetric, so that some i has σi ą 1
N
. Then, any

large enough α admits a range of b for which

1 ` α

αN
ă b ă σi.

In this case, with positive probability—specifically, when θi is high and tθjuj‰i

are low—trading is inefficient but still happens under the optimal allocation rule

for the group setting. This example suggests that the irrelevance of land shares, σ,

to the optimal mechanism may distort trade in favor of smaller landholders with

low productivity.

Second, consider the efficiency of the allocation. Specializing to the case in

which tθiui are identically distributed, we provide an efficiency ranking between

the group and single-agent settings for two cases: when the benefit to the buyer
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is very low, and when it is very high. First, when the benefit is low enough,

we show our group setting generates a lower expected surplus than the single-

agent benchmark. This surplus ranking holds in an ex-post sense—that is, the

buyer’s chosen mechanism for the single-agent setting stipulates trade whenever

trade is efficient and happens in the group setting—if and only if the shares are

sufficiently similar. On the other hand, when the benefit is large enough, then

our group setting yields more surplus (in the stronger ex-post sense) than the

single-agent one whatever the share vector. In particular, our results imply that

the efficiency ranking between the group and single-agent settings will generally

depend on the specific parameters of the model. We formally state and prove

these results in the Online Appendix.

To provide some intuition, let us focus on the case in which the land shares

are symmetric. In this case, because both weighted virtual costs and single-agent

virtual costs are above actual costs, it follows that trading is efficient whenever the

optimal allocation in the group or the single-agent setting prescribes it. Therefore,

a surplus ranking will follow from showing one regime specifies trade in a bigger

region than the other. When the actual cost realizations are extreme—either very

high or very low—we can establish this ranking of trade regions. This is because,

in these cases, we can rank the single-agent virtual costs against the weighted

virtual costs. The case of high costs is simpler: Because the average cost can

only be high if all sellers have a high cost, the density of the average cost must

vanish at the tails, leading to an infinite single-agent virtual cost (whereas the

weighted virtual cost is finite). The case of low costs requires a more detailed

quantitative calculation, but we show in the appendix that single-agent virtual

costs are indeed lower than weighted virtual costs when the average actual cost is

low. The ranking follows: when the benefit to the buyer is very low, the single-

agent optimal mechanism generates more surplus than the optimal mechanism in

the group setting, while the reverse ranking holds when the benefit is high.

VI. Discussion

We now consider some variants of our main model and briefly discuss how our

analysis can be extended in these directions. Any nontrivial formalism is deferred

to the Online Appendix.

Dominant strategies. The notion of incentive compatibility we have employed

so far is Bayesian incentive compatibility (BIC, which we have called IC through-

out), which requires only that sellers’ reports be best responses in expectation,

given their own realized types. However, in our leading application—a group of

sellers who collectively own a plot of land—one could envision scenarios without
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any private information inside the group. That is, the group members might know

other members’ costs, but the buyer does not.

Motivated by such situations, it is perhaps natural to consider more demanding

incentive constraints. Specifically, we consider what happens when the buyer is

constrained to offer a mechanism that is dominant-strategy incentive compatible

(DIC). Whereas proportional transfers impose no constraints on what allocation

rules can be implemented under Bayesian incentive constraints, we show they

significantly constrain a buyer restricted to DIC mechanisms; that is, there is no

counterpart to part (i) of Lemma 1 saying every ex-post monotone allocation rule

is DIC-implementable by some transfer rule.19 In particular, all deterministic DIC

mechanisms take the form of a posted price (augmented by an upfront transfer)

with trade occurring if and only if enough sellers approve the trade. Using this

observation, we show that no optimal mechanism (i.e., those characterized by

Theorem 1) is also DIC. The intuition is similar to that of Proposition 2: optimal

mechanisms (putting weight on multiple agents) deliver smooth incentives to a

single agent, whereas deterministic DIC mechanisms cannot.

Ex-post participation. With a view to respecting individual property rights,

we have constrained our buyer to employ a mechanism that is individually ratio-

nal for each seller—that is, such that every seller can keep his land rather than

interacting with the mechanism. As with our other incentive constraints, we for-

mulated IR in the interim sense, having each seller assess his participation decision

in expectation over others’ types. One may wish to consider a buyer constrained

by a stronger form of property rights—namely, that any seller has the option to

walk away from the mechanism even after all uncertainty has been resolved. For

some examples, such an ex post IR constraint imposes no additional costs on the

buyer.20 For instance, in the equilibrium described in the bidding game of Ex-

ample 1, no seller ever has an incentive to walk away, even after he learns the

other seller’s bid if the powers in the sellers’ distributions multiply to at most one,

α1α2 ď 1. When does this property hold more generally? And can our analytical

approach be applied to understand such ex post constraints?

To better understand the ex post IR constraint more generally, we first answer

an implementability question: When can a given allocation rule, together with an

expected transfer, be implemented in some IC and ex post IR mechanism? Using

this characterization, we provide sufficient conditions on primitives under which

19This fact is reminiscent of other work showing BIC-DIC equivalence fails given financial
constraints. Even though unidimensional private-values mechanism design settings with flexible
transfers admit a strong form of this equivalence (Gershkov et al., 2013), a DIC constraint
severely constrains implementable allocations when paired with ex post budget balance. See
(Hagerty and Rogerson, 1987), for example.

20A similar equivalence arises in related work by Che (2002).
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some buyer-optimal mechanism is also ex post IR. Applied to Example 1, these

conditions say if α1 “ α2 ď 1, some optimal mechanism exists that is also ex post

IR, consistent with our calculations for that example.

Pareto-optimal mechanisms. Our paper has focused on mechanisms that

maximize the buyer’s expected payoff. Although this objective is a natural bench-

mark, it assumes the buyer has extreme bargaining power relative to the seller

group. More generally, one might wonder what mechanisms can arise naturally

with different allocations of bargaining rights. Specifically, we study Pareto-

optimal mechanisms—that is, IC and IR mechanisms for which there is no al-

ternative IC and IR mechanism that delivers a weakly higher buyer profit, and

a weakly higher agent i value for each agent i, with at least one of these N ` 1

inequalities strict. Our land-acquisition application suggests another reason to

care about the entire Pareto frontier. If the buyer is a government, state-owned

enterprise, or other large stakeholder in the relevant community, then they may

care about the welfare of the current landholders in addition to the purely finan-

cial consequences of trade. Understanding the range of optimal mechanisms all

such stakeholders might wish to use amounts to understanding all Pareto optima

of our space of IC and IR mechanisms.

Pareto-optimal mechanisms trade if and only if the buyer’s benefit maximizes

a weighted average of sellers’ virtual and actual costs. Although this class of allo-

cation rules is richer than the unique buyer optimum, it enjoys similar tractability

and qualitative structure. For instance, Pareto-optimal mechanisms are determin-

istic and use weights that are fixed and do not depend on reports. The weight that

applies to a seller’s cost is exactly the Pareto weight of that seller, whereas the

weight that applies to the virtual cost is identified endogenously and reflects the

agent’s influence over the outcomes. We also use our characterization to generalize

the main result of Section IV, showing every Pareto-optimal mechanism entails

complex pricing.

Our characterization of implementable allocation rules, along with the analyt-

ical approach we adopt in developing Theorem 1, proves useful in providing our

characterization of Pareto-optimal mechanisms. A standard separation result en-

ables us to represent Pareto optima as maximizers of weighted sums of the N ` 1

individuals’ objectives, and we can adapt our zero-sum game proof to this more

general class of objectives.

Pre-market trade. Throughout, we have restricted attention to mechanisms

in which agents are paid proportionally to their land shares. We mainly impose

this structure as a fairness or institutional requirement that is natural in many

applications. As formalized in the appendix, we point out another desirable prop-
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erty of such mechanisms for the case in which sellers’ per-unit costs are identically

distributed. We show that if the buyer uses these proportional transfer mecha-

nisms, then sellers have no incentives to manipulate the outcome by trading their

shares before interacting with the mechanism. We also show, by example, that

this property could be violated if the buyer were not restricted to paying agents

proportionally to their shares (as in Güth and Hellwig, 1986). Thus, in addition

to being realistic in many settings, our assumption of collective transfers yields a

desirable robustness property for buying mechanisms.

The result that the sellers have no incentives to trade shares is based on two

observations. First, the optimal mechanism is independent of the shares. Sec-

ond, in a mechanism that is independent of the shares, the sellers’ incentives to

trade shares disappear if agents are paid the same price per share. When discrim-

inatory pricing is allowed, the buyer optimally treats sellers with different shares

differently, opening the door to gaming by trading shares.

Beyond veto bargaining. An important feature of our environment is that

any agent can unilaterally veto the mechanism. This feature, captured by the

requirement that the mechanism be IR for all of the agents, is natural in settings

with strong property rights. However, a more permissive bargaining arrangement

may be more appropriate for modeling some contexts—for example, when eminent

domain enables a government to forcibly acquire land from some individuals for

public projects. As in some redevelopment projects, we could require that rather

than unanimity, the terms of trade need to be approved by at least n agents for

some given n ă N . This flexibility raises new modeling questions concerning how

exactly one determines whether a mechanism has sufficient approval.

In one approach, we could require this approval by n sellers determined ex

ante—that is, independent of their type realizations. This formulation reduces

nearly immediately to the analysis in our main model. Indeed, one need only

replace the IR constraint (which we imposed for all N agents in our model) with a

weaker assumption that at least n agents’ IR constraints are satisfied. Because the

buyer has no reason to condition on the types of agents facing no IR constraint,

her problem reduces to an n-agent specification of our main model. The optimal

mechanism allocates the good if and only if the benefit to the buyer exceeds a

weighted sum of the chosen n agents’ virtual costs. The buyer would then choose

to tailor the mechanism to the n agents she finds most favorable to interact with

ex ante—for instance (given Theorem 1), the n agents with the lowest virtual cost

distributions if these distributions are first-order stochastically ranked.
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Appendix

A. Proofs for main results

A.A. Proofs for Section II

We first reproduce the statement of Lemma 1.

Lemma: . Let x be some allocation rule.

(i) Mechanism px,mq is IC and IR for some transfer rule m if and only if x is
interim monotone.

(ii) If some transfer rule m exists such that mechanism px,mq is IC and IR, then
a maximally profitable such mechanism exists, with resulting profit

min
iPN

E rxpθqpb ´ φiqs .

Proof of Lemma 1. For each i P N , let Xi :“ Xx
i , and define M˚

i : Θi Ñ R by

M˚
i pθiq :“ Xipθiqθi `

ż θ̄i

θi

Xipθ̃iq dθ̃i.

Given a transfer rule m, standard arguments (Myerson, 1981; Myerson and Sat-
terthwaite, 1983) show that px,mq is IC if and only if each i P N has Xi weakly
decreasing andMm

i “ M˚
i `U i for some constant U i P R; that such a mechanism is

IR if and only if U i ě 0 for each i P N ; and that E rM˚
i pθiqs “ E rXipθiqφis. Given

iterated expectations, the latter equation simplifies to E rM˚
i pθiqs “ E rxpθqφis.

Using the above observations, let us prove the two parts of the lemma in turn.

Toward part (i), note the first paragraph says interim monotonicity is necessary
for x to be IC implementable; and for sufficiency it suffices to show some transfer
rule m0 exists such that Mm0

i ´ M˚
i is constant for each i P N (since raising such

a transfer rule by a large enough constant will ensure IR). The transfer rule m0

given by m0pθq :“
ř

iPN M˚
i pθiq has this property, and so part (i) follows.

Now, toward part (ii), suppose x is indeed implementable; say transfer rule
m is such that px,mq is IC and IR. Then each i P N admits U i ě 0 such that
Mm

i “ M˚
i ` U i. Hence, for any i P N , we can write the expected transfer as

E rmpθqs “ E
“

MM
i pθiq

‰

“ E rxpθqφis ` U i,

so that the buyer’s expected value can be written as

E rbxpθq ´ mpθqs “ E rxpθqpb ´ φiqs ´ U i.

Reducing the transfer rule by a constant will reduce each of tU iui by the same
constant, and so raise the buyer’s expected value. The buyer therefore optimally
sets miniPN U i “ 0. But in this case, we have E rbxpθq ´ mpθqs ď E rxpθqpb ´ φiqs

for every i P N , with equality for some i. Said differently, we then have

E rbxpθq ´ mpθqs “ min
iPN

E rxpθqpb ´ φiqs ,

delivering part (ii)
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The following notation will be convenient to us in making formal arguments.

Notation 1: Let X̃ denote the set of all allocation rules X , modulo the F -almost
everywhere equivalence relation, a subset of L8pΘ, F q. Each element of X corre-
sponds to one of X̃ in the obvious way.

Consider now the relaxed buyer problem,

max
xPX̃

!

min
iPN

E rxpθqpb ´ φiqs

)

. (RBP)

which is our buyer’s problem without the interim-monotonicity constraint (and
cast in X̃ ). The following lemma characterizes solutions of this relaxed program.

Lemma 2: A unique solution exists to program (RBP). This solution is given
by the ω-allocation rule, where ω P ∆N is any weight vector satisfying the two
equivalent conditions (i) and (ii) in the statement of Theorem 1.

Proof. Consider a two-player zero-sum game where the maximizer (Max) chooses
x P X̃ and the minimizer (Min) chooses ω P ∆N . The objective (that is, the
payoff to Max) is

Gpx, ωq :“ Erxpθqpb ´ ω ¨ φqs.

We will first argue that a Nash equilibrium exists for this zero-sum game; and that
the Nash equilibria are exactly the pairs px˚, ω˚q P X̃ ˆ ∆N for which x˚ solves
(RBP) and ω˚ satisfies condition (i). Then we will argue that xω is Max’s unique
best response to any Min strategy ω; that Max has a unique Nash equilibrium
strategy; and that condition (ii) is equivalent to being a Nash equilibrium strategy
for Min. Establishing these facts will establish the lemma.

First, because X̃ is weak*-compact (by Banach-Alaoglu) and convex, the space
∆N obviously is as well, and the objective is weak*-continuous in the strategy
profile, it follows from Sion’s minimax theorem that

max
xPX̃

min
ωP∆N

Gpx, ωq “ min
ωP∆N

max
xPX̃

Gpx, ωq,

where all extrema in the equation are attained by Berge’s theorem. Then, be-
cause the auxiliary game is strictly competitive, Proposition 22.2 from Osborne
and Rubinstein (1994) tells us some Nash equilibrium exists, and that the Nash
equilibria are exactly the pairs px˚, ω˚q P X̃ ˆ ∆N for which

x˚
P argmaxxPX̃ min

ωP∆N
Gpx, ωq and

ω˚
P argminωP∆N max

xPX̃
Gpx, ωq.

(In particular, the set of equilibria forms a product set.) Observe, though, that
minωP∆N Gpx, ωq “ miniPN E rxpθqpb ´ φiqs for each x P X̃ because Gpx, ¨q affine.
Hence, x˚ maximizes this quantity if and only if x˚ solves (RBP). Moreover,
maxxPX̃ Gpx, ωq “ E

“

maxxPr0,1spb ´ ω ¨ φqx
‰

“ E rpb ´ ω ¨ φq`s for each ω P ∆N ,
so that minimizing these expressions is equivalent—that is, the minimax strategies
are exactly those satisfying condition (i). So we have established that some Nash
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equilibrium exists; and that the Nash equilibria are exactly the pairs px˚, ω˚q P

X̃ ˆ ∆N for which x˚ solves (RBP) and ω˚ satisfies condition (i).

It remains to show that xω is Max’s unique best response to any Min strategy
ω; that Max has a unique Nash equilibrium strategy; and that condition (ii) is
equivalent to being a Nash equilibrium strategy for Min. Toward the first assertion,
consider any ω P ∆N . Because tθiuiPN are atomless and independent and tφiuiPN

are all strictly increasing, it follows that Ptω ¨ φ “ bu “ 0, so that the X̃ element
with representative xω is the unique x P X̃ such that

P
␣

xpθq P argmaxxPr0,1s rpb ´ ω ¨ φqxs
(

“ 1.

Thus, the ω-allocation rule xω is Min’s unique best response (in X̃ ) to ω. From
the product structure of the set of Nash equilibria, then, it follows that Max has a
unique Nash equilibrium strategy x˚, which is then the unique solution to (RBP).

All that remains now is to show that condition (ii) is equivalent to being a
Nash equilibrium strategy for Min. But because xω is the unique Max best re-
sponse to ω P ∆N , we know ω is a Nash equilibrium strategy if and only ω P

argmaxω̃P∆N Gpxω, ω̃q or, equivalently (since Gpxω, ¨q is affine) every i P supppωq

belongs to argmaxiPN E rpb ´ θiq1ω¨θďbs. Finally b ą θi for every i P N , the event
tω¨θ ď bu has strictly positive probability, so that the latter condition is equivalent
to condition (i). The lemma follows.

We now reproduce the statement of Theorem 1.

Theorem (Optimal allocation):
A weighted allocation rule is essentially uniquely optimal. The unique optimal-
weight vector ω is characterized by either of the following two equivalent conditions:

(i) ω P argminω̃P∆N Erpb ´ ω̃ ¨ φq`s.

(ii) supppωq Ď argmaxiPN E rφi | ω ¨ φ ď bs.

Moreover, if b ă θ̄j for at least two j P N , then every i P N has ωi ă 1.

Proof of Theorem 1. First, by Lemma 1, an allocation rule is optimal if and
only if it solves program (BP), so we focus on solutions to this program.

Now, Lemma 2 tells us that conditions (i) and (ii) in the theorem’s statement
are equivalent, that some ω P ∆N exists that satisfies those conditions, and that
(the almost-sure equivalence class of) xω is uniquely optimal in (RBP). Because
xω is interim monotone and solves a relaxation of (BP), it follows directly that
xω solves (BP), and that every other solution x to (BP) has xpθq “ xωpθq almost
surely.

Next, we establish i P N has ωi ă 1 if some j P Nztiu has b ă θ̄j. To see this
fact, note that if i P N had ωi “ 1, then j P Nztiu would have

E rφi | ω ¨ φ ď bs “ E rφi | φi ď bs ď b ă θ̄j “ E rφjs “ E rφj | ω ¨ φ ď bs ,

in contradiction to condition (ii).

Finally, we turn to uniqueness of ω. Suppose ω̃ P ∆N is such that xω̃ is
optimal, and so xω̃pθq “ xωpθq almost surely; our aim is to show ω̃ “ ω. Toward
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establishing this equality, define G :“
ś

iPN

`

b ´ φipθ̄iq, b ´ θi
˘

, the interior of
the support of b1N ´ φ. Now, define the linear map L : RN Ñ R2 by letting
Lpzq :“ pω ¨ z, ω̃ ¨ zq for each z P RN . Let us now observe some properties of G
and L. First, that ω ¨ φpθq ă b ă ω ¨ φpθ̄q and ω̃ ¨ φpθq ă b ă ω̃ ¨ φpθ̄q implies
LpGq is not a subset of R` ˆR, of R´ ˆR, of RˆR`, or of RˆR´. Second, that
P txω̃pθq “ xωpθqu “ 1 implies LpGq is a subset of R2

` Y R2
´. Third, because L is

linear and G is convex, the set LpGq is convex. Combining these three observations
tells us that LpGq is contained in a single line through the origin. Because G is
open and L is linear, then, LpRNq is contained in the same line. Said differently,
the rank of the linear map L is 1, so that vectors ω, ω̃ P RN

` are proportional.
Because ||ω||1 “ 1 “ ||ω̃||1, it follows that ω “ ω̃.

Proof for Example 1. In what follows, we proceed in three steps. First, we
show ω˚ is the optimal weight vector, thus characterizing optimal allocation rules.
Second, we name a specific (ex-post) transfer rule, and show that this transfer
rule paired with our optimal allocation rule constitutes an optimal mechanism.
Third, we show that the strategy profile we have named for the bidding game is
an equilibrium that induces this optimal mechanisms.

We first prove that ω˚ is the optimal vector of weights. To this end, let

νi :“ 1 `
1

αi

“
αi ` 1

αi

for each agent i, and notice that φipθiq “ νiθi for every θi P Θi “ r0, 1s. For any
ω P ∆N with mintω1ν1, ω2ν2u ě b (an interval of ω including ω˚), observe that

Erpb´ω¨φq`s “

ż b
ω1ν1

0

ż

b´ω1ν1θ1
p1´ω1qν2

0

rb ´ ω1ν1θ1 ´ p1 ´ ω1qν2θ2sα1θ
α1´1
1 α2θ

α2´1
2 dθ2 dθ1.

Therefore,

d

dω1

E
␣

rb ´ pω1, 1 ´ ω1q ¨ φs
`

(

“

ż b
ω1ν1

0

α1α2

ż

b´ω1ν1θ1
p1´ω1qν2

0

pν2θ2 ´ ν1θ1qθα1´1
1 θα2´1

2 dθ2 dθ1

“

ż b
ω1ν1

0

α1α2

$

&

%

ν2θ
α1´1
1

„

b´ω1ν1θ1
p1´ω1qν2

ȷα2`1

1`α2
´ ν1θ

α1
1

„

b´ω1ν1θ1
p1´ω1qν2

ȷα2

α2

,

.

-

dθ1

“

ż b
ω1ν1

0

θα1´1
1

”

b´ω1ν1θ1
p1´ω1qν2

ıα2
”

α1
b´ω1ν1θ1
p1´ω1qν2

´ α2
ω˚
1 ν1

1´ω˚
1
θ1

ı

dθ1.

Note now that if ω1 “ ω˚
1 , the integrand is then equal to

d

dθ1

"

θα1
1

”

b´ω1ν1θ1
p1´ω1qν2

ıα2`1
*

,

so that

d

dω1

E
␣

rb ´ pω1, 1 ´ ω1q ¨ φs
`

(

“

´

b
ω1ν1

¯α1

0α2`1
´ 0α1

”

b
p1´ω1qν2

ıα2`1

“ 0.
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Hence, ω˚ solves the convex program from Theorem 1(i), meaning it is optimal.

Now, consider the mechanism px,mq given by xpθq :“ xω˚pθq and

mpθq :“ xpθqrκb ` β1θ1 ` β2θ2s,

where

κ “ α1`α2

pα1`1qpα2`1q
p1 ´ α1α2q

βi “
αi`1
α´i`1

α´i for i P N.

Let us argue that px,mq is an optimal mechanism. For each i P N , define the
interim allocation rule Xi :“ Xx

i , the interim transfer rule Mi :“ Mm
i , and the

interim transfer rule M˚
i as defined in the proof of Lemma 1. If Mi “ M˚

i for both
i P N , then as explained in Lemma 1 proof, the mechanism px,mq is IC and has
binding IR for both agents, and is therefore best for the buyer among all IC and
IR mechanisms with allocation rule x; because x is optimal, it will then follow
that px,mq is optimal. So we now turn to showing Mi “ M˚

i for both i P N . To
that end, let

γi :“ ω˚
i νi “

αi ` 1

α1 ` α2

ą 0,

and note that b ď γi by hypothesis. Therefore, Xi is zero on
´

b
γi
, 1
ı

, so that any

θi P r0, 1s has

Xipθiq “ P rγ´iθ´i ď b ´ γiθis “

´

b´γiθi
γ´i

¯α´i

`

and

ż 1

θi

Xi “ 1
θiď

b
γi

ż

b
γi

θi

´

b´γiθ̃i
γ´i

¯α´i

dθ̃i

“ 1
θiď

b
γi

ż

b
γi

θi

´

b´γiθ̃i
γ´i

¯α´i

dθ̃i

“
γ´i

γi
1
θiď

b
γi

ż

b´γiθi
γ´i

0

yα´i dy

“
α´i`1
αi`1

1
θiď

b
γi

¨ 1
α´i`1

´

b´γiθi
γ´i

¯α´i`1

“ 1
αi`1

´

b´γiθi
γ´i

¯

Xipθiq

“

”

1
αi`1

1
γ´i

b ´ 1
αi`1

γi
γ´i

θi

ı

Xipθiq

“

”

α1`α2

pα1`1qpα2`1q
b ´ 1

α´i`1
θi

ı

Xipθiq.

Hence,

M˚
i pθiq “ Xipθiqθi `

ż θ̄i

θi

Xi “

”

α1`α2

pα1`1qpα2`1q
b `

α´i

α´i`1
θi

ı

Xipθiq.
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Next, note that each y P r0, 1s has

E
“

θ´i1θ´iďy

‰

“

ż y

0

θ´i

´

α´iθ
α´i´1
´i

¯

dθ´i “
α´i

α´i`1
yα´i`1.

Therefore, each i P N and θi P r0, 1s has

E rθ´ixpθi,θ´iqs “ E
„

θ´i1
θ´iď

b´γiθi
γ´i

ȷ

“ 1
θiď

b
γi

¨
α´i

α´i`1

´

b´γiθi
γ´i

¯α´i`1

“
α´i

α´i`1

´

b´γiθi
γ´i

¯

Xipθiq

“ α´i
αi`1
α´i`1

”

α1`α2

pα1`1qpα2`1q
b ´ 1

α´i`1
θi

ı

Xipθiq

“
α´i

pα´i`1q2
rpα1 ` α2qb ´ pαi ` 1qθisXipθiq.

It follows that

Mpθiq “ E trκb ` βiθi ` β´iθ´isxpθi,θ´iqu

“

!

κb ` βiθi ` β´i
α´i

pα´i`1q2
rpα1 ` α2qb ´ pαi ` 1qθis

)

Xipθiq

“

!”

κ ` β´i
α´i

pα´i`1q2
pα1 ` α2q

ı

b `

”

βi ´ β´i
α´i

pα´i`1q2
pαi ` 1q

ı

θi

)

Xipθiq

“

!”

κ ` α1α2

p1`α1qp1`α2q
pα1 ` α2q

ı

b `

”

βi ´ α1α2

p1`α1qp1`α2q
pαi ` 1q

ı

θi

)

Xipθiq

“

”

α1`α2

p1`α1qp1`α2q
b `

´

βi ´ α1α2

1`α´i

¯

θi

ı

Xipθiq

“

”

α1`α2

p1`α1qp1`α2q
b `

α´i

1`α´i
θi

ı

Xipθiq

“ M˚
i pθiq.

Hence, the given mechanism px,mq is optimal.

Finally, let us turn to the bidding game in which each agent i can submit any
bid si ě 0; trade occurs if and only if

τ1s1 ` τ2s2 ď b,

where

τi :“
α´i ` 1

pα1 ` α2qα´i

for i P N ;

and the price (paid if and only if trade occurs) is p “ κb ` s1 ` s2. Let us
consider the strategy profile in which each type θi of each agent i bids βiθi. We
will argue that this strategy profile constitutes a Bayes Nash equilibrium and that
it generates allocation rule x and transfer rule m; optimality will then follow from
optimality of the mechanism px,mq. First, any type profile θ P Θ has

τiβiθi “ ω˚
i νiθi “ ω˚

i φipθiq @i P N ùñ τ1β1θ1 ` τ2β2θ2 “ ω˚
¨ φpθq.
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Because each agent i bids si “ βiθi, it follows that trade occurs if and only if
ω˚ ¨ φpθq ď b—that is, the induced allocation rule is exactly x. Second, if trade
happens at type profile θ, the price paid under this strategy profile is

p “ κb ` s1 ` s2 “ κb ` β1θ1 ` β2θ2.

Thus, the induced transfer rule is exactly m. All that remains then is to check
that the described bidding rule is an equilibrium. To that end, consider any type
θi P r0, 1s of any agent i; we want to show βiθi yields a weakly higher expected
payoff for this type than any other si ě 0. Because the mechanism px,mq is IC,

we know that θi P argmaxθ̃iPr0,1s E
”

mpθ̃i,θ´iq ´ θixpθ̃i,θ´iq

ı

. But then, because

the bidding game and strategy profile induce x and m, it follows that θi has no

profitable deviation in
!

βiθ̃i

)

θ̃iPr0,1s
“ r0, βis. Meanwhile, every bid si ě βi has

τisi ě τiβi “ γi ě b,

and so (because agent ´i has a strictly positive bid almost surely) leads to a zero
probability of trade. Thus, all bids si ě βi are payoff-equivalent for i, and so
do not constitute profitable deviations because bid βi does not. Hence, the given
strategy profile is an equilibrium, as required.

A.B. Proofs for Section III

The following lemma provides a sufficient condition to be able to weakly rank
agents’ weights in the optimal mechanism, and further provides a quantitative
sufficient conditions for one agent’s weight to be substantially higher than an-
other’s.

Lemma 3: Suppose constants α P p0, 1s and β ě p1 ´ αq
pθ̄i`αθ̄jq

p1`αq
are such that

φi ěrh αφj ` β.

Then, the optimal weight vector ω satisfies αωi ě ωj.

Proof. Suppose φi,φj, α, β satisfy the given hypotheses, and let ω P ∆N have
αωi ă ωj (which in particular implies ωj ą 0). To establish the lemma, we need
to show that ω is not optimal. To do so, we construct ω̃i, ω̃j ě 0 such that
ω̃i ` ω̃j “ ωi `ωj and pω̃i, ω̃jq ‰ pωi, ωjq, with ω̃iφi ` ω̃jφj ěicv ωiφi `ωjφj, where
ěicv is the increasing concave order (a.k.a second-order stochastic dominance).
Because h : R Ñ R given by hpzq :“ ´Erpb ´ z ´

ř

kPNzti,ju
ωkφkq`s is (weakly)

increasing and concave, finding such ω̃i, ω̃j would show that ω is not the unique
minimizer of ω̂ ÞÑ Erpb´ω̂ ¨φq`s—the objective in condition (i) of Theorem 1—and
so is not optimal.

Now, define γ :“
αpωi`ωjq

α2ωi`ωj
ą 0, and let ω̃i :“ γ 1

α
ωj and ω̃j :“ γαωi. By

construction, ω̃i ` ω̃j “ ωi ` ωj. Moreover, pω̃i, ω̃jq ‰ pωi, ωjq—obviously if ωi “

0 ă ω̃i, and otherwise because
ω̃j

ω̃i
“ ααωi

ωj
ă α ă

ωj

ωi
. It thus remains to show that
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ω̃iφi ` ω̃jφj ěicv ωiφi ` ωjφj. To that end, first observe that

ω̃iφi ` ω̃jφj “ γ
ωj

α
φi ` γαωiφj

“ γ
ωj

α
φi ` γωipαφj ` βq ´ γωiβ

ěicv γωiφi ` γ
ωj

α
pαφj ` βq ´ γωiβ

“ γpωiφi ` ωjφjq ` γ
`ωj

α
´ ωi

˘

β

“ γ
“

ωipφi ´ θ̄iq ` ωjpφj ´ θ̄jq
‰

` γ
“`ωj

α
´ ωi

˘

β ` ωiθ̄i ` ωj θ̄j
‰

,

where the inequality comes from Theorem 4.A.37 of Shaked and Shanthikumar
(2007). Next, we establish that

γ
“

ωipφi ´ θ̄iq ` ωjpφj ´ θ̄jq
‰

` γ
“`ωj

α
´ ωi

˘

β ` ωiθ̄i ` ωj θ̄j
‰

ěicv ωipφi ´ θ̄iq ` ωjpφj ´ θ̄jq ` γ
“`ωj

α
´ ωi

˘

β ` ωiθ̄i ` ωj θ̄j
‰

To do so, observe that γ “ 1 ´
p1´αq

pα2ωi`ωjq
pωj ´ αωiq ď 1 and z :“ ωipφi ´ θ̄iq `

ωjpφj ´ θ̄jq has zero mean. Because a constant shift obviously preserves ěicv, we
need only observe γz ěicv z, which follows directly from Jensen’s inequality.21

Therefore,

ω̃iφi ` ω̃jφj ěicv γ
“

ωipφi ´ θ̄iq ` ωjpφj ´ θ̄jq
‰

` γ
“`ωj

α
´ ωi

˘

β ` ωiθ̄i ` ωj θ̄j
‰

ěicv ωipφi ´ θ̄iq ` ωjpφj ´ θ̄jq ` γ
“`ωj

α
´ ωi

˘

β ` ωiθ̄i ` ωj θ̄j
‰

“ ωiφi ` ωjφj ` γ
`ωj

α
´ ωi

˘

β ´ p1 ´ γq
`

ωiθ̄i ` ωj θ̄j
˘

,

Because β ě p1´αq
θ̄i`αθ̄j
1`α

, it will therefore follow that ω̃iφi`ω̃jφj ěicv ωiφi`ωjφj

if we establish that

λ :“ γ
`ωj

α
´ ωi

˘

p1 ´ αq
θ̄i`αθ̄j
1`α

´ p1 ´ γq
`

ωiθ̄i ` ωj θ̄j
˘

is nonnegative. And indeed, λ “
p1´αqpαωi´ωjq2

p1`αqpα2ωi`ωjq
pθ̄i ´ θ̄jq, so the lemma will follow

as long as we have θ̄i ě θ̄j. For this ranking, note Theorem 1.B.42 of Shaked and
Shanthikumar (2007) implies Erφis ě E rαφj ` βs , i.e.,

θ̄i ě αθ̄j ` β ě αθ̄j ` p1 ´ αq
θ̄i`αθ̄j
1`α

“ θ̄i ´ 2α
1`α

pθ̄i ´ θ̄jq.

Hence, θ̄i ě θ̄j, as required.

The following lemma sharpens the previous one by showing the weight ranking
result often holds strictly. Whereas the previous lemma’s proof uses the charac-
terization of optimal weights as a minimax strategy, the following one uses the
characterization as Minimizer’s best response.

Lemma 4: Suppose constants α P p0, 1s and β ě p1 ´ αq
θ̄i`αθ̄j
1`α

are such that

φi ěrh αφj ` β

and β ą 0. Then, the optimal weight vector ω cannot satisfy αωi “ ωj ą 0.

21For η : R Ñ R concave, Eηpγzq ě E rγηpzq ` p1 ´ γqηp0qs “ γEηpzq ` p1´ γqηpEzq ě Eηpzq.
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Proof. Consider any ω P ∆N with αωi “ ωj ą 0, with a view to showing it
cannot be optimal. Defining the random variables φ̃j :“ αφj ` β and y :“
1
ωi

´

b ´
ř

kPNzti,ju
ωkφk

¯

` β, observe that xωpθq “ 1φi`φ̃jďy. Meanwhile, the

random variables φi, φ̃j,y are independent of y and φi ěrh φ̃j.

Now, let us observe that E rφi | ω ¨ φ ď bs ě E rφ̃j | ω ¨ φ ď bs. Indeed, this
inequality is equivalent to showing Eηpφ̃j,φiq ě 0, where η : R2 Ñ R is given
by ηps, tq :“ pt ´ sqE r1s`tďys. Because ηps, tq ` ηpt, sq “ 0 for every s, t P R
and η is nonincreasing in its first argument (as a product of two nonnegative
nonincreasing functions) on tps, tq P R2 : s ď tu, the inequality follows directly
from Theorem 1.B.48 of Shaked and Shanthikumar (2007).

Hence, ω satisfies

E rφi | ω ¨ φ ď bs ě E rφ̃j | ω ¨ φ ď bs

“ αE rφj | ω ¨ φ ď bs ` β.

Assume now, for a contradiction, that ω is optimal. In this case, Theorem 1(ii)
yields

E rφi | ω ¨ φ ď bs “ E rφj | ω ¨ φ ď bs “: θ̂.

Because the (interior-probability) event that ω¨φ ď b is the event that the bounded
random variable φi [resp. φj] lies below some random variable independent of it,

it follows that θ̂ ă Erφis “ θ̄i [resp. θ̂ ă θ̄j]. Therefore,
θ̄i`αθ̄j
1`α

ą θ̂, implying

β ą p1 ´ αqθ̂. Hence, θ̂ ě αθ̂ ` β ą θ̂, a contradiction.

We now reproduce the statement of Theorem 2.

Theorem (Ranking allocation weights): If φi ěrh φj ` β for some β ě 0, then
the optimal vector of allocation weights ω satisfies ωi ě ωj. Moreover, ωi ą ωj

whenever β ą 0 and ωj ą 0.

Proof of Theorem 2. The first statement is exactly Lemma 3, specialized to
the case of α “ 1. Given this result, the second statement corresponds exactly to
Lemma 4, specialized to the case of α “ 1.

A.C. Proofs for Section IV

We now reproduce the statement of Proposition 1.

Proposition (Optimal posted price is unanimous): Some unanimous posted-
price mechanism is optimal among IC and IR collective posted-price mechanisms.

Proof of Proposition 1. Consider an arbitrary collective posted-price mecha-
nism px,mq with price p. Let us show a unanimous posted price performs better.22

If p ě b, then the profit associated with the mechanism is always nonpositive,
and so a unanimous posted price with price in pmaxiPN θi, bq is more profitable.

22Our proof establishes any IC and IR collective posted price that is not almost surely identical
to a unanimous one is strictly worse than some unanimous posted price.
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Now, suppose p ă b. For any agent i P N and θi P pp, θ̄is, IR implies Xx
i pθiq “

0—and so xpθi,θ´iq must be zero almost surely. It follows that xpθq ď xUpθq

almost surely, where xU is the allocation rule

xU
pθq :“ 1θjďp @jPN

associated with a unanimous posted price of p. Hence, pb ´ pqErxpθqs ď pb ´

pqErxUpθqs—strictly so unless xpθq “ xUpθq almost surely. Therefore, the unani-
mous posted-price mechanism pxU , pxUq yields a higher profit.

Having shown every collective posted price is outperformed by some unani-
mous posted price, it remains to note that an optimal posted price exists. Any
posted price outside of pmaxiPN θi, bq yields a nonpositive profit, whereas unani-
mous posted prices in this interval yield strictly positive profit. It thus suffices to
show the buyer has some preferred price in rmaxiPN θi, bs—which follows from com-
pactness of this interval and continuity of the objective p ÞÑ pb´pq

ś

iPN Fippq.

Lemma 5: If x is an optimal allocation rule, then Xx
i p¨q is continuous on pθi, θ̄iq

for every i P N with ωi ă 1, and is nonconstant on pθi, θ̄iq if the optimal weights
ω have ωi ą 0.

Proof. Let ω P ∆N be optimal, and let Xi :“ Xxω
i for each i P N . Essential

uniqueness of the optimal allocation rule (assured by Theorem 1) means it suffices
to show Xip¨q is continuous for every i P N , and is nonconstant on pθi, θ̄iq if the
optimal weights ω have ωi ą 0.23

First, let us see any given i P supppωq is nonconstant. Indeed, a nonempty open
neighborhood in Θ´i exists such that ω ¨ pθi, θ´iq ă b ă ω ¨φpθ̄i, θ´iq for any θ´i in
this neighborhood.24 Because θ´i has full support and x is decreasing, it follows
that limθiŒθi

Xipθiq ă limθiÕθ̄i Xipθiq. Hence, Xi is not constant on pθi, θ̄iq.

Next, let us show that any i P N with ωi ă 1 has Xi continuous. For each
θi P Θi, the interim probability of trade is given by

Xx
i pθiq “ P

!

b ´
ÿ

jPNztiu
ωjφjpθjq ď ωiφipθiq

)

.

Recall that tθjujPN are independent and atomlessly distributed, ω´i is nonzero,
and φip¨q is continuous. It follows that the random variable on the left side of
the above inequality is atomlessly distributed, while the quantity on the right side
varies continuously with θi. Hence, X

x
i is continuous, as desired.

We now reproduce the statement of Proposition 2.

Proposition (Posted prices are suboptimal): If at least two j P N have b ă θ̄j,
then no collective posted-price mechanism is optimal.

23Essential uniqueness implies Xx
i pθiq “ Xipθiq almost surely. Because θi has convex support

and Xx
i is monotone, it then follows (after establishing continuity of Xi) that the two functions

are identical on pθi, θ̄iq.
24Indeed, these inequalities hold whenever all of tφjpθjqujPNztiu are within ϵ of b, where ϵ ą 0

is smaller than ωi mintb´θi, φipθ̄iq´bu. This condition describes an open neighborhood because
tφjujPN are continuous.
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Proof of Proposition 2. Given Proposition 1, we need only show the unani-
mous posted-price mechanism is not an optimal mechanism for any price. Let
ω denote the optimal weight vector assured by Theorem 1, fix some i P N such
that ωi ą 0, and let Xi denote i’s interim allocation rule induced by a unanimous
posted-price mechanism. By iterated expectations, constants p and x̄ exist such
that every θi P Θi has Xipθiq “ x̄1θiďp. The function Xi therefore cannot be both
continuous and nonconstant on pθi, θ̄iq—it is discontinuous there if θi ă p ă θ̄i and
x̄ ‰ 0, and is constant there otherwise. Given that the last assertion of Theorem 1
tells us ωi ă 1, Lemma 5 thus delivers the proposition.
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