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Deep learning (DL) has substantially enhanced natural language processing (NLP) in healthcare research. 
However, the increasing complexity of DL-based NLP necessitates transparent model interpretability, or at least 
explainability, for reliable decision-making. This work presents a thorough scoping review of explainable and 
interpretable DL in healthcare NLP. The term “eXplainable and Interpretable Artificial Intelligence” (XIAI) is 
introduced to distinguish XAI from IAI. Different models are further categorized based on their functionality 
(model-, input-, output-based) and scope (local, global). Our analysis shows that attention mechanisms are 
the most prevalent emerging IAI technique. The use of IAI is growing, distinguishing it from XAI. The major 
challenges identified are that most XIAI does not explore “global” modelling processes, the lack of best practices, 
and the lack of systematic evaluation and benchmarks. One important opportunity is to use attention mechanisms 
to enhance multi-modal XIAI for personalized medicine. Additionally, combining DL with causal logic holds 
promise. Our discussion encourages the integration of XIAI in Large Language Models (LLMs) and domain-specific 
smaller models. In conclusion, XIAI adoption in healthcare requires dedicated in-house expertise. Collaboration 
with domain experts, end-users, and policymakers can lead to ready-to-use XIAI methods across NLP and medical 
tasks. While challenges exist, XIAI techniques offer a valuable foundation for interpretable NLP algorithms in 
healthcare.
1. Introduction

Recently, deep learning (DL) has been instrumental in enhancing 
the performance of natural language processing (NLP) in a wide range 
of healthcare settings [1–10]. DL has notably advanced the analysis of 
NLP in areas like medical diagnosis [11,12,7], patient monitoring [13]
and drug discovery [14,15].

The evolution of DL models in NLP has led to substantial perfor-
mance improvements over traditional machine learning methods, with 
advancements ranging from recurrent neural networks (RNNs) [16] and 
long short-term memory (LSTM) networks [17] to convolutional neu-
ral networks (CNNs) [18] and the latest self-attention mechanisms and 
transformers [19]. However, these gains in performance come at the 
cost of increasingly complex model architectures. In healthcare settings, 
where trustworthy and transparent decision-making is paramount, there 
is a growing need for interpretable or explainable models [20]. Both 
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explainability and interpretability pose significant challenges, as un-
derstanding how NLP embeddings translate into DL decision-making 
mechanisms remains complex [21,22]. Fortunately, recent research in 
explainable [23,24] and interpretable [25,26] DL for NLP in healthcare 
shows promise. Furthermore, the rise of large language models (LLMs) 
highlights the growing importance of evaluating which explainable and 
interpretable methods are most beneficial for healthcare, especially as 
data and model complexity increase over time.

In our work, the evolution of eXplainable and Interpretable Artificial 
Intelligence (denoted with the new term “XIAI”) is reviewed [27–30]. 
Since there is no systematic definition of IAI and XAI [27,28], there is an 
ongoing inconsistency regarding how these terms are used in DL [29]. 
To define XIAI in this review, the statistical definition by Rudin [30]
is followed: IAI focuses on designing inherently interpretable mod-
els; XAI aims to provide post hoc model explanations. Further, XIAI 
method designs were evaluated, by organizing them into model-based, 
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input-based, and output-based approaches. To improve clarity and un-
derstanding, XIAI is further grouped based on their scope (local, global): 
local XIAI yields insights derived from particular inputs, whereas global 
XIAI grants a wider understanding based on the entire predictive mech-
anism of the model [20]. Our analysis seeks to enhance clarity and 
insight into the most effective ways to combine DL and XIAI methods in 
healthcare NLP by examining and revealing essential architectural de-
signs. Through a quantitative assessment of IAI and XAI in both NLP 
and medical tasks, we pinpoint current and future opportunities, chal-
lenges, advantages, and limitations. In line with the most recent LLM 
developments, our review evaluates whether attention mechanisms can 
reinforce the implementation of IAI against XAI. By carefully investigat-
ing XIAI DL in healthcare NLP, our review aims to provide insights into 
the scientific and clinical impact that can potentially be important for 
XIAI democratization in healthcare NLP.

This review is organised as follows. Initially, the key related work in 
the domain is reviewed by analysing the important XIAI research trends, 
methodology designs, paradigms and scope. Subsequently, our review 
analyses challenges and opportunities for translating XIAI into clinical 
practice. Finally, we assess the gap between current XIAI capabilities 
and real-world healthcare implementation, highlighting areas for future 
research.

2. Methods

2.1. Literature review strategy

A comprehensive scoping review of explainable and interpretable 
deep learning (DL)–based natural language processing (NLP) techniques 
applied to healthcare was conducted, considering publications between 
January 1, 2018, and December 31, 2022. We searched the following 
databases: Scopus, Web of Science, PubMed, and the Association for 
Computing Machinery (ACM), following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [31]. 
To address real-world data needs and assess the potential for the de-
mocratization of XIAI methods, our review focused on electronic health 
record (EHR) and electronic medical record (EMR) NLP data. The emer-
gence of Transformers as an effective approach to learning long-range 
interactions via attention modules in 2017 [19] marked the beginning 
of a new era in NLP, with Transformer variants becoming the most 
prevalent and promising techniques [32]. To focus our review on these 
significant developments, our observation window was selected to start 
in 2018. Fig. 1(a) illustrates the PRISMA flow.

Initial Filtering: To broaden the search, publications were ini-
tially retrieved using the following keywords in the title, abstract, and 
manuscript keywords: (“natural language processing” OR “NLP”) AND 
(“healthcare” OR “medic” OR “clinic” OR “EHR” OR “EMR”). This led to 
a preliminary list of 4,147 papers. Subsequently, to refine the focus on 
XIAI methods, irrelevant papers were removed, resulting in 234 papers. 
In the subsequent step, removing duplicate records across databases re-
sulted in 146 unique papers selected for title and abstract screening.

Title and Abstract Screening: All authors independently reviewed 
the titles and abstracts of all 146 papers. Articles demonstrably irrele-
vant to the field of study were excluded, resulting in 110 papers eligible 
for full-text review.

Full-Text Review: During the full-text review, 68 papers were ex-
cluded for the following reasons:

• 25 papers did not utilize DL techniques.
• 5 papers were not relevant to XIAI.
• 4 papers lacked a medical focus.
• 21 papers were review articles.
• 13 papers fell outside the scope of DL, NLP, or healthcare.

This resulted in a final selection of 42 journal and conference papers 
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for our review analysis.
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2.2. Review aspects

Full-Text Evaluation: During the full-text review, we focused on 
evaluating the following aspects of each paper:

1. Publication Date: This provided context for the development of the 
methods.

2. DL Model: The specific DL model employed was identified (see Re-
sults for DL model categorization).

3. IAI vs. XAI: The paper’s focus on interpretability or explainability 
was distinguished.

4. Scope of XIAI Method: We categorized the XIAI method as local or 
global based on its ability to inform about the model predictions 
regarding a specific input, or the entire modelling process (end-to-
end), respectively [20].

5. XIAI Method Type: The type of XIAI method used (model-based, 
input-based, or output-based) was identified.

6. Medical Task: The specific medical task addressed by the XIAI ap-
proach was categorized.

7. NLP Task: The type of NLP task involved (e.g., classification, infor-
mation extraction) was identified.

8. Data Source: We categorized the data source used (public or private 
data).

9. Source Code Availability: The availability of the source code for 
the method was assessed.

10. XIAI Evaluation: The presence or absence of an evaluation for the 
XAI method was noted.

Furthermore, we analyzed the XIAI methods based on three key as-
pects to identify challenges, opportunities, advantages, and drawbacks:

XAI and IAI methods with DL Models, NLP Tasks, and Medical Tasks: 
This analysis explored how XAI and IAI methods were combined with 
a) the specific DL model used, b) the type of NLP task analyzed, and c) 
the medical task addressed.

3. Results

The results section is organised as follows: first the research trends 
are detailed, then the XAI against IAI methods, the scope of XIAI meth-
ods, the three XIAI method paradigms (i.e., model-, input- and output-
based methods), the DL models explained/interpreted and the NLP and 
medical tasks addressed. Further, the evaluation metrics of XIAI meth-
ods and open code are described. Finally, the dataset sources (public 
and/or private) are assessed.

3.1. Research trends

Published work on XAI and IAI NLP in healthcare was reviewed. 
A rapid increase in the number of studies was observed from 2021 to 
2022, compared to the first years of our observation window (Fig. 1(b)). 
This trend coincides with the dominance of Transformer DL models 
(Fig. 1(b)). In addition, this trend reflects the rapid rise of attention 
mechanisms, which have rapidly overtaken other XIAI methods during 
this time (Fig. 1(d–e)).

3.2. IAI against XAI

All methods across papers were examined to assess whether they 
focused on IAI or XAI. More studies involved IAI methods (𝑛 = 29) 
than XAI methods (𝑛 = 15), with this trend being evident in the period 
2020–2022. Fig. 1(d) illustrates the publication record of XAI methods 
used per year.

Among XAI methods, t-SNE (𝑛 = 4) was the most widely used, fol-
lowed by LIME (𝑛 = 3), SHAP (𝑛 = 3) and other methods (𝑛 = 5) such as 
maximum aggregator (MaXi) [33], SKET eXplained (SKET X) [34], syn-
tax tree-guided semantic explanation (STEP) [35], evidence-based [36]

and sentiment intensity score [37].
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Fig. 1. (a) PRISMA flowchart. The flowchart presents the inclusion and exclusion of papers at each review stage. (b) Publication records of XIAI, (c) main DL model 

category, (d) main XAI and (e) main IAI methods, per year.

As illustrated in Fig. 1(e), most IAI methods involved attention 
mechanisms (𝑛 = 11), followed by feature importance (𝑛 = 8), knowl-
edge base/graph (𝑛 = 5) and other methods (𝑛 = 5), including causal 
graphs [38], logistic regression-based parametric predictions [39], 
opinion aggregator [40], case-based reasoning [41] and interactive clas-
sification [42].

3.3. Scope of XIAI methods

XIAI method scopes were further grouped into local and global [20]. 
The majority of papers employed local methods (𝑛 = 37), with only 
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𝑛 = 5 studies involving global XIAI (Table 1).
3.4. Three XIAI method paradigms

Three distinct XIAI categories were introduced: model-, input- and 
output-based methods. These definitions were conceptualized based on 
whether an XIAI method relies on internal/external modules (model) to 
perform XIAI, measures how the input features affect model decisions 
or explains/interprets model behaviour through analyzing prediction 
outcomes, respectively. Table 1 presents a comprehensive overview of 
sixteen different XIAI approaches identified in our review and their dis-
tinct categories (model-, input-, and output-based methods). There were 
eighteen, thirteen and thirteen model-, input- and output-based meth-

ods identified, respectively.
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Table 1

Explainable and interpretable artificial intelligence (XIAI) methods, their category, and scope.

XIAI category XIAI methods Explainable/Interpretable Local/Global Articles

Model-based

Causal graph Interpretable Global [38]
Logistic regression-based parametric predictor Interpretable Global [39]
Opinion aggregator Interpretable Global [40]
Case-based reasoning Interpretable Global [41]
Interactive classification Interpretable Global [42]
LIME Explainable Local [43,23,44]
MAXi Explainable Local [33]
SHAP Explainable Local [24,45,46]
SKET X Explainable Local [34]
STEP Explainable Local [35]
t-SNE Explainable Local [47–50]

Input-based
Feature importance Interpretable Local [51–55,48,56,57]
Knowledge base/graph Interpretable Local [58–61,25]

Output-based
Attention Interpretable Local [26,25,62–70]
Evidence-based Explainable Local [36]
Sentiment intensity score Explainable Local [37]
According to Table 1, the most popular model-based XIAI was t-SNE 
(𝑛 = 4), followed by LIME (𝑛 = 3), SHAP (𝑛 = 3) and other methods 
that have been sparsely used. Among input-based XIAI, studies either 
used feature importance-based (𝑛 = 8) or knowledge graph-based (𝑛 =
5) methods. Regarding output-based methods, the attention mechanism 
was the most frequently used approach (Table 1). While benefiting from 
their performance advancements, attention mechanisms may therefore 
be an important IAI approach.

3.4.1. Model-based XIAI

Model-based XIAI focuses on describing how DL functions through 
the use of internal or external modules. The following section presents 
the most promising XAI and IAI methods that we have identified.

LIME. Ribeiro et al. [71] introduced the local interpretable model-
agnostic explanation (LIME) method. To produce explanations, LIME 
perturbs an instance, generates neighbouring data, and learns linear 
models within that neighbourhood. For instance Zhang et al. [43] an-
alyzed physician ordering for magnetic resonance imaging (MRI) scans 
and corresponding radiology reports (outcomes), by developing an RNN 
model integrated with a LIME module. The authors showed that it is 
possible to justify whether a patient should undergo MRI or not and 
if any brain abnormalities are likely to be detected, based on certain 
keywords from the physician order text entries.

SHAP. Shapley Additive exPlanations (SHAP) is an algorithm used 
to obtain local, post-hoc explanations [72]. The SHAP method is a 
model agnostic approach, that allows to elucidate how individual input 
features contribute to model decisions. The method is based on deriv-
ing Shapley values from cooperative game theory [73], which aims to 
quantify the contribution of each input, both individually as well as 
collectively in combination with all other inputs. Naseem et al. [46]in-
troduced a Transformer-based encoder with a SHAP module for suicide 
risk identification. The SHAP module collected the contribution of im-
portant words that were most relevant to mental health and suicide.

t-SNE. t-SNE can effectively capture local interactions within data, 
although it is less effective in identifying long-range interactions [74]. 
Using t-SNE, it is possible to visualize local clusters consisting of specific 
word embeddings, towards enhancing model explainability [47–50].

Although less explored, model-based techniques may be promising 
for IAI (Table 1). Lu et al. [40] employed an opinion aggregator in com-
bination with BERT, which involved k-means clustering to disentangle 
responses for COVID-19 questions. Another study developed a Bayesian 
network-derived causal graph to identify causal relationships between 
NLP variables extracted from mammography reports [38]. The authors 
fed the causal graph into a TabNet model and showed that they could 
improve model interpretability. Causal modelling can be a promising 
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technique to perform global IAI.
3.4.2. Input-based XIAI

Input-based XIAI methods focus on understanding how specific in-
puts influence network decisions. All input-based methods identified 
were either under the feature importance or knowledge base/graphs 
categories.

Feature Importance. Lindsay et al. [51] extracted semantic, syn-
tactic and paralinguistic features using NLP from spontaneous picture 
descriptions to identify cognitive impairments for Alzheimer’s disease 
(AD) detection. The authors quantified statistically significant (“gener-
alizable”) NLP features, across two different languages. Subsequently, 
they performed binary (AD vs healthy) patient classification using DL 
and showed more accurate results when the generalizable features were 
used, against when all features were considered. Holderness et al. [54]
integrated clinically relevant multiword expressions during preprocess-
ing which improved the accuracy and interpretability of their DL mod-
els (multilayer perceptrons and radial basis function DL) in identifying 
psychosis patients at risk of hospital readmission. Mellado et al. [55]
engineered clinically interpretable NLP-based features from topic ex-
traction and clinical sentiment analysis to predict early readmission risk 
in psychiatry patients. In a different setting, Xue and Chuah [56] de-
signed a knowledge extraction framework from heterogeneous medical 
data sources, capable of generating an aggregated dataset to charac-
terize diseases. Based on this dataset, they introduced an end-to-end 
DL-based medical multi-disease diagnosis system.

Knowledge graphs. Knowledge graphs (KGs) are employed to struc-
ture knowledge representations from either internal or external sources 
[75–77]. Teng et al. [25] introduced an end-to-end KG-based frame-
work for diagnosis code predictions. Gu et al. [61] proposed a novel 
method to solve complex question-answering from a medical dataset by 
combining KG information. The authors used Wikipedia as an external 
text source to extract documents related to questions and then mined 
triples (subject, predicate, object) from the documents to construct a 
KG. They subsequently extracted evidence graphs from the KG and em-
bedded them into an Attention-based Graph Neural Network to perform 
complex question answering.

3.4.3. Output-based XIAI

Output-based XIAI methods focus on explaining/interpreting DL 
models by unravelling how internal computations within DL converge 
to output decisions.

Attention Mechanisms. The attention mechanism was initially de-
signed to learn long-range interactions in NLP and improve machine 
translation [78]. The attention mechanism allows to search for a set 
of positions in a source sentence and encourages the model to pre-
dict a target word based on the context vectors associated with these 

source positions and all the previously generated target words [78]. 
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Following attention, the self-attention mechanism was designed to fur-
ther enhance the modelling of long-range interactions [79]. Within a 
self-attention layer, each position (known as query, key, and value) can 
attend to all positions in the output of the previous layer. Attention 
and self-attention mechanisms are the building blocks of Transform-
ers. Transformer models have been recently applied in biomedical NLP 
[65,66] and image analysis [80]. Next to performance gains, attention 
mechanisms and Transformers have demonstrated their applicability in 
enhancing interpretability [81]. Attention mechanisms were the most 
widely used XIAI techniques in our review.

Dong et al. [26] designed a Hierarchical Label-wise Attention Net-
work to perform medical coding. The proposed model was able to 
provide interpretations in the form of attention weights quantified from 
both words and sentences. Duarte et al. [62] engineered attention mech-
anisms inside a neural network to derive death certifications through 
the analysis of diagnosis codes. Their method produced accurate and 
interpretable results and can potentially be transferrable to clinical set-
tings. Zhang et al. [63] incorporated a series of self-attention modules 
into an RNN architecture. They showed accurate and interpretable pre-
dictions of patients at risk for all-cause hospitalizations through the 
analysis of EHR data. Chen et al. [65] trained BERT-based models via 
federated learning for ICD-10 coding. To interpret the model outputs, 
the authors added a label attention mechanism to the BERT model, 
which was able to display federated learning outcomes.

3.5. Deep learning

Table 2 presents all DL models identified across papers. DL models 
were classified as 1) CNN/RNN/GRU/LSTM-based models; 2) Trans-
former/BERT-based models, featuring pre-trained language models; 3) 
Multilayer Perceptrons (MLPs); 4) Graph neural networks (GNNs) and; 
5) other which includes models used once like unsupervised learning 
[39] and stacked denoising autoencoder [48].

The publication trends across DL models were examined (Fig. 1(c)). 
Figs. 2(a) and (b) illustrate DL model combinations with XAI and IAI, 
respectively. CNN/RNN/GRU/LSTM-based models were the most fre-
quently used (𝑛 = 17), followed by Transformer/BERT-based (𝑛 = 14), 
MLP (𝑛 = 4), GNN-based (𝑛 = 2) and other models (𝑛 = 7). Consid-
ering the period 2021–2022, Transformer/BERT-based models were 
the most dominant backbone architecture used. Although Transformer-
based techniques were introduced in 2017 [19], our analysis shows that 
their adoption in the healthcare domain was not immediately adopted.

3.6. XIAI and NLP

As shown in Table 2, seven NLP tasks were identified: 1) text classifi-
cation (which includes sentiment analysis [55]), 2) information extrac-
tion, including knowledge extraction [34,56] and relation extraction 
[60], 3) named entity recognition, 4) question answering, 5) document 
clustering, 6) information retrieval and 7) topic extraction. Text clas-
sification was the main NLP task (𝑛 = 35), followed by information 
extraction (𝑛 = 5), named entity recognition (𝑛 = 4) and other 4 tasks 
(𝑛 = 5).

Fig. 2(c–d) presents NLP tasks against XAI and IAI, respectively. Of 
note, IAI methods have been employed across all NLP tasks defined. In 
contrast, XAI methods have been exclusively used for text classification 
and information extraction.

3.7. XIAI and medical tasks

Medical tasks across all studies were extracted and categorized into 
sixteen categories (see Table 2). Fig. 3 illustrates the primary medi-
cal tasks, including medical diagnosis (𝑛 = 10), medical coding (𝑛 = 6), 
medical decision making (𝑛 = 6), mental health diagnosis (𝑛 = 5), dis-
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ease classification (𝑛 = 3) and other (𝑛 = 12).
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Fig. 3(a–b) illustrates all medical tasks addressed using XAI and IAI 
methods, respectively. IAI methods were broadly applied to a more di-
versified set of medical tasks, against XAI methods which were mainly 
utilized in mental health diagnosis, medical diagnosis and decision mak-
ing.

3.8. Evaluation metrics and open code

In our review, only 3 out of all 42 articles involved dedicated eval-
uation processes and metrics of XIAI methods. These studies either 
involved qualitative evaluations by developers [26] and end-users (i.e., 
clinicians) [25], or developed a quantitative explainability index [35].

Limited code availability (only 5 out of 42 studies provided code 
access) was identified across publications, which restricts the ability 
to assess if these XIAI methods can be replicated on public or future 
benchmark datasets [39,26,52,58,50].

3.9. Datasets

Finally, methods were categorized based on whether they were 
developed using public datasets (open source and accessible), or pri-

vate datasets (otherwise). According to Table 2, the majority of papers 
(𝑛 = 32 out of 42 papers) used private data and only 10 papers analyzed 
public datasets. EHR from hospitals was the most prevalent type of pri-
vate data analyzed (Table 2). The most widely used public dataset was 
MIMIC (𝑛 = 5), which is a large clinical database consisting of multi-
modal (text and imaging) data (Table 2).

4. Discussion

4.1. Challenges and opportunities for clinical translation

In this section we discuss the key opportunities and challenges sur-
rounding the clinical translation of XIAI. XIAI presents significant op-
portunities such as leveraging attention mechanisms to combine and 
interpret multi-modal information (text, images, genetic data, clinical 
history) for personalized medicine and combining DL with causal mod-
elling towards further enhancing inherent interpretability. However, 
our findings also suggest that all these methods require strong in-house 
technical expertise to infer XIAI. Other key challenges include the lack 
of established best practices for XIAI selection based on data and prob-
lem type, as well as the unmet need for systematic evaluation methods 
and high-quality benchmarks. In the following paragraphs, we expand 
on these challenges and opportunities, identified from the perspective 
of clinical translation.

Based on our literature review, there is no previous survey focusing 
on these topics. Considering their early development phase, more exten-
sive studies are needed in the future to develop XIAI methods that will 
allow “global” (end-to-end) interpretations that go beyond visualiza-
tion maps, devise more transparent XIAI that will require less technical 
oversight and design XIAI evaluation metrics that are critical to estab-
lish best practices for XIAI selection. The following points can therefore 
guide future work and systematic reviews towards strengthening and 
democratizing XIAI in healthcare NLP.

Challenges: The majority of publications focused on local XIAI, 
with only 5 papers involving a global XIAI approach [38–42]. Mov-
ing beyond local XIAI (which provides relatively limited insights based 
on specific inputs or features) towards “globally” enhancing the trans-
parency of the entire modelling process might be necessary to reduce 
the requirement of in-house technical expertise and to develop readily 
translational XIAI methods for end-users.

In our review, the evaluation of XIAI methods was substantially 
limited (only 3 papers involved XIAI evaluation metrics). Developing 
robust evaluation metrics for XIAI is challenging given the limited avail-

ability of ground truths in healthcare data [80] and the complexity of 
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Table 2

All the articles grouped based on the XIAI method along with the associated medical task, NLP task and the dataset used for.

DL Model Medical task category Medical task NLP task Dataset Article

Transformer/BERT-based

Medical entity disambiguation Biomedical named entity disambiguation NER ClinWikiNED [52]
Medical decision making Chinese medicine instruction parsing NER;

Information 
extraction

Private dataset [60]

Medical bias mitigation Reducing genderization Text classification MIMIC-III [49]
Medical decision making Drug indication classification Text classification curated drug

indication corpus
[50]

Medical research Accelerate COVID-19 research Question 
Answering

Private dataset [40]

Management of health services Automatically scoring request for proposals 
(RFP)

Information 
extraction;
Text classification

Private dataset [45]

Medical note generation Radiology report generation assistance NER MIMIC-CXR [41]
Medical coding Medical coding Text classification Private dataset [65]
Medical diagnosis Long-term COVID effects Text classification Private dataset [66]
Medical fake news detection Fake news detector to covid-19 Text classification Private dataset [36]
Mental health diagnosis Suicide risk identification Text classification Private dataset [46]
Medical diagnosis Chronic cough Text classification Private dataset [69]
Medical diagnosis Alzheimer’s disease Text classification Private dataset [70]
Mental health diagnosis Depression symptoms detection (DSD) Text classification Private dataset [35]

CNN/RNN/GRU/LSTM-based

Medical coding Medical coding Text classification MIMIC-III [25]
Medical diagnosis Ischemic stroke Text classification Private dataset [53]
Disease classification Predict adherence to ACR guidelines Text classification Private dataset [43]
Medical coding Causes of death Text classification Private dataset [62]
Medical diagnosis Diagnosis Text classification Private dataset [63]
Medical decision making Entrustment assessment Text classification Private dataset [57]
Medical diagnosis Cancer pathology Text classification Private dataset [33]
Survival detection Discrete-time survival estimates Text classification Private dataset [24]
Medical coding ICD multi-label classifcation Text classification MIMIC-III;

Spanish Osa Corpus
(Private dataset)

[64]

Management of health services Automatically scoring request for proposals 
(RFP)

Information 
extraction;
Text classification

Private dataset [45]

Medical diagnosis Disease diagnosis Information 
extraction;
Text classification

Private dataset [56]

Monitor public sentiments 
during pandemics

COVID-19 pandemic Information 
extraction;
Text classification

Private dataset [37]

Telehealth services Telehealth services Text classification Private dataset [23]
Mental health diagnosis Internet-delivered psychological treatment 

(IDPT)
Text classification Private dataset [67]

Mental health diagnosis Depression Text classification Amazon Mechanical 
Turk

[68]

Mental health diagnosis Depression Text classification Private dataset [44]
Disease classification Diabetes-related biomedical literature 

exploration
Document 
clustering;
Text classification

Private dataset [42]

GNN-based
Medical diagnosis Breast cancer Text classification Private dataset [38]
Medical question-answering Medical QA Question 

Answering
Head-QA [61]

MLP

Medical diagnosis Language impairment in Alzheimer’s disease Text classification Private dataset [51]
Readmission prediction Psychiatric readmission prediction Text classification Private dataset [54]
Readmission prediction Psychiatric readmission risk prediction Text classification;

Topic extraction
Private dataset [55]

Medical diagnosis Alzheimer’s disease Text classification Private dataset [70]

Other

Medical coding Patient medical conditions NER;
Text classification

Private dataset [39]

Medical decision making Clustering of patients’ visits Text classification Private dataset [47]
Medical coding Medical coding Text classification MIMIC-III-50;

MIMIC-III-shielding;
MIMIC-III

[26]

Medical decision making Esophageal achalasia Information 
retrieval

Private dataset [58]

Disease classification Cardiovascular diseases Text classification OHSUMED [59]
Medical decision making Patient mortality prediction; Primary 

diagnostic category prediction; Primary 
procedural category prediction; Gender 
prediction

Text classification Private dataset [48]

Medical diagnosis Pathology Information 
extraction

Private dataset [34]
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Fig. 2. Publication record showing combinations between (a) deep learning model and XAI method, (b) deep learning model and IAI method, (c) NLP task and XAI 

method and (d) NLP task and IAI method.

rapidly evolving models (like LLMs) [82]. The majority of papers an-
alyzed private data (32 papers) and did not provide source code (37 
papers). Legal implications around private data pose another critical 
challenge in terms of democratizing data and assessing reproducibility 
for these XIAI techniques. Hence, it is particularly challenging to assess 
the reproducibility of these XIAI NLP methods. Significant variability 
in the literature was observed across model-, input- and output-based 
methodologies used (Table 1) and NLP and medical tasks addressed 
(Figs. 2 and 3). Each of these method types presents different advan-
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tages and drawbacks (see subsection 4.2). It is therefore substantially 
challenging to develop generalization frameworks regarding which XIAI 
method is most optimal across different NLP and medical applications. 
In that context, there is an unmet yet pivotal need to develop bench-
mark data/metrics to extensively evaluate XIAI methods across different 
NLP and medical tasks, with associated open-access codes.

While attention-based IAI holds promise, it primarily relies on visu-
alizing important attention weights as heat maps [78,79]. Heat maps 
may reveal patterns in the way the model prioritizes specific types of 
words or grammatical structures, providing some insight into which 

parts of the processed text are most influential. However, heat maps 
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Fig. 3. Publication record showing combinations between medical task and (a) XAI and (b) IAI method.
highlight what the model “looks at,” but not necessarily how it in-
terprets that information. Moreover, attention weights do not linearly 
correlate with model outcomes [21,70]. These two main limitations cur-
rently compromise attention-based IAI. The adoption of current XIAI in 
healthcare and industry systems is therefore challenging, given the lim-
ited access to global XIAI techniques and the absence of robust XIAI 
metrics, ground truths and benchmark data/studies, which form an im-
portant barrier to their systematization.

XIAI systematization and deployment necessitate further thorough 
work. A possible practical mitigation to accelerate the systematization 
of robust and transparent XIAI developments for NLP in healthcare is 
to bring “humans into the DL loop” [83,84]: domain experts, end-users, 
policymakers and patients will be able to contribute to the XIAI method 
design, development and evaluation. This collective approach can po-
tentially lead to the emergence of robust and ready-to-use XIAI methods 
across different NLP and medical tasks.

Opportunities: Attention mechanisms were the most diversified 
XIAI techniques in terms of DL used (Fig. 2 a, b) as well as NLP (Fig. 2
c, d) and medical tasks (Fig. 3) addressed. It is noteworthy that al-
though Transformers were the dominant DL backbones in the period 
2021–2022, individual attention mechanisms were the most frequently 
used IAI technique. Attention and self-attention mechanisms have also 
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recently been used in combination with CNN models for medical image 
analysis, as lighter alternatives of Transformers [80]. This demonstrates 
their diverse applicability across data domains and tasks. A major op-
portunity identified is the versatility of attention mechanisms to be com-
bined with multiple DL structures (e.g., CNN [64], RNN [63], BERT [65]
and full Transformers) [70]. Another translational opportunity identi-
fied via the use of attention mechanisms is to simultaneously model and 
interpret information from variable multi-modal data (e.g., text, images, 
genetics, clinical history) [80]. Based on the previous, developing multi-
modal XIAI can potentially support personalized medicine which ben-
efits from combining patient-level information from multiple sources 
[85]. Despite the challenges associated with attention-based heat maps 
described above, combining information from multiple sources e.g., im-
ages and text, can potentially enhance interpretability. A characteristic 
example are DL models developed for MIMIC data analysis, in which 
features extracted from X-ray images and radiology reports are com-
bined to create a unified representation that fuses information from 
both modalities [25,26,41,47,49]. Attention heat maps can highlight 
which parts of the image and text were most influential in the model de-
cision. Combining image and text data can offer insights into a model’s 
decision-making that go beyond the limitations of single-modal (text-
only) attention heat maps.

A clear trend towards IAI against XAI was observed across stud-

ies, particularly in the period 2021–2022. While our review highlights 
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the benefits of using IAI against XAI, their combination can be use-
ful as an auxiliary assessment to cross-evaluate IAI and XAI outcomes. 
For instance, the SHAP method that can provide both global and local 
explanations [72], has been effectively combined with a Transformer 
encoder for suicide risk prediction [46]. Although this work focused 
on the SHAP method to perform XAI, future work could aim to also 
co-extract IAI information from specific attention mechanisms within 
Transformers.

Causality is an emerging topic in DL which aims to improve model 
interpretability, fairness and generalization [86,87]. The fundamental 
aim of causal DL is to unravel causal relationships between variables 
which determine the model’s decision-making process [86]. Under-
standing how the data are causally related can help us design better 
DL models. This leads to more reliable predictions and a deeper under-
standing of how our models work [88]. Next to identifying causal paths 
between data, central to causality is also to understand the relation-
ships between cause and effect [87]. Understanding cause and effect 
is crucial for many important decisions. In clinical trials for example, 
doctors need to know if a new drug actually improves patient out-
comes (not just whether there is a statistical correlation). In our review, 
a Bayesian Network-derived causal graph has been fed into a TabNet, 
showing promising IAI results [38]. Further work in this field can signif-
icantly enhance IAI in NLP for healthcare. We endeavour to inspire and 
guide relevant benchmark studies to thoroughly examine XIAI in terms 
of strengthening NLP applications in healthcare. For example, lever-
aging causal mechanisms to better understand how foundation models 
such as Transformers interact with data or prompts, may be a critical 
path forward.

4.2. The three XIAI paradigms

Model-based XIAI methods, such as SHAP [72], LIME [71], and 
t-SNE [74], offer important advantages by providing both global and 
local DL interpretability options. These methods are designed to be 
transparent and accessible as ready-to-use entities thus, potentially be-
ing able to democratize XIAI tools for a wide audience [24]. Intuitive 
visualizations can to some extent elucidate complex model predictions, 
enhancing trust and facilitating the communication of findings. How-
ever, they also have drawbacks, such as the instability of methods like 
LIME, which is prone to minor data variations that can affect XAI re-
liability [30,70]. Moreover, relying on separate modules for XIAI may 
be subject to misinterpretations, in case these modules have inherent 
biases or limitations. Hence, despite their ease of use, they require 
technical expertise to evaluate any biases or implementation incom-
patibilities.

Input-based XIAI methods allow for DL model interpretation by 
leveraging specific input feature importance [51–53] and medical KG 
[58–60], to discern how different inputs influence model decisions. 
These methods are intuitive and accessible to computer scientists and 
NLP researchers, due to their relative ease of being combined with DL 
architectures. In that context, the incorporation of “important features” 
or medical KGs into AI can enrich models with domain-specific insights, 
which in turn allows them to interpret even complex medical concepts 
that are common in clinical practice [58].

Input methods based on feature importance requires the incorpo-
ration of techniques that are not readily transparent to non-technical 
medical professionals (end-users). Hence, it may not always be straight-
forward for end-users to understand “how an important feature was 
derived and/or evaluated” [51,54,55]. The effectiveness of KG meth-
ods relies on medical professionals with expertise and capacity to de-
velop comprehensive medical KG, posing a challenge if such expertise 
is scarce. Integrating medical KG into DL presents challenges in terms 
of ontology construction as well as knowledge extraction [25], which 
are labour-intensive techniques.

Output-based XIAI methods, are important to interpret DL out-
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puts and can offer computational insights through mechanisms like 
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attention [81]. Output-based methods focus on explaining/interpret-
ing DL models by uncovering how internal computations within DL 
converge to output decisions, which can be mainly useful to computer 
scientists/modellers. Nevertheless, attention mechanism-based IAI faces 
debates [89–93], as high attention weights don’t necessarily linearly 
correlate with model predictions [21]. This can lead to ambiguity while 
emphasizes the need for further research on IAI methods and their eval-
uation.

4.3. Inspired by the future

Go Large: Recently, LLMs have attracted significant attention in AI 
[94–96]. The intersection of LLMs and healthcare creates unique op-
portunities towards designing future studies, from drug discovery to 
personalized diagnosis and treatment [97–99]. Healthcare data analy-
sis is one of the high gain-high risk domains for LLMs [82]. One of 
the limitations of LLMs is that they sometimes tend to “hallucinate” re-
sults [94–96]. This can add considerable barriers to their utilization in 
healthcare settings [97–99]. As discussed in subsection 4, causal infer-
ence can be an effective solution towards enhancing IAI [86]. Although 
designing causal logic inside LLMs is challenging due to their architec-
tural complexity and the fact that models are already “trained” on a 
causal-agnostic mode, there have been recent attempts which aim to 
develop causal reasoning between prompts and responses [100,101].

Go Small: An ongoing discussion in the community is whether 
LLMs or domain-specific smaller models can be more robust solutions 
for healthcare data [102]. Recently, smaller-parameter domain-specific 
LMs have outperformed larger LMs when examined on clinical notes 
from large public databases (MIMIC) [103]. This approach has sev-
eral possible benefits: a) small-parameter LMs can be trained using 
in-house computational capabilities, which b) minimizes the risks asso-
ciated with transmitting sensitive patient data to cloud-based or exter-
nal servers (thus, adhering to privacy regulations). Moreover, c) causal 
DL techniques can be more optimally designed and validated since they 
can be trained on domain-specific data from scratch.

5. Conclusions

There is a growing trend of using IAI techniques alongside XAI, 
with attention mechanisms emerging as the most dominant approach 
for interpretation. Our analysis reveals a major opportunity: leverag-
ing attention mechanisms to combine and interpret multi-modal data 
(text, images, genetics, etc.), potentially leading to advances in XIAI 
approaches for personalized medicine solutions [80]. Another promis-
ing XIAI opportunity lies in combining DL with causality, which can 
further enhance inherent interpretability. While the benefits of model-
, input-, and output-based XIAI have been demonstrated, our findings 
suggest that the drawbacks of all these methods is that they require in-
house technical expertise to infer XIAI. The key challenges include the 
lack of established best practices for XIAI selection based on data and 
problem type, as well as the unmet need for systematic evaluation met-
rics and high-quality benchmarks. Moreover, to effectively adopt DL in 
healthcare NLP, moving from “local” to “global” XIAI techniques that 
can inform the entire modelling process is crucial. Finally, our discus-
sion encourages the integration of XIAI into the ongoing development 
of LLMs and domain-specific smaller language models.

Our results indicate that XIAI adoption in healthcare is not possible 
without dedicated in-house technical expertise. Bringing “humans into 
the DL loop” (domain experts, end-users, policymakers and patients) 
may be an effective solution to collectively design, develop and evalu-
ate ready-to-use XIAI methods across different NLP and medical tasks. 
Despite the challenges identified, the XIAI techniques detailed in this 
review offer a valuable foundation for further research and benchmark 
studies. This will ultimately lead to enhanced inherent interpretability 

and facilitate the use of complex NLP algorithms in healthcare settings.
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